my-markdown-library 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (113) hide show
  1. checksums.yaml +7 -0
  2. data/F24LS_md/ Lecture 4 - Public.md +347 -0
  3. data/F24LS_md/Lecture 1 - Introduction and Overview.md +327 -0
  4. data/F24LS_md/Lecture 10 - Development_.md +631 -0
  5. data/F24LS_md/Lecture 11 - Econometrics.md +345 -0
  6. data/F24LS_md/Lecture 12 - Finance.md +692 -0
  7. data/F24LS_md/Lecture 13 - Environmental Economics.md +299 -0
  8. data/F24LS_md/Lecture 15 - Conclusion.md +272 -0
  9. data/F24LS_md/Lecture 2 - Demand.md +349 -0
  10. data/F24LS_md/Lecture 3 - Supply.md +329 -0
  11. data/F24LS_md/Lecture 5 - Production C-D.md +291 -0
  12. data/F24LS_md/Lecture 6 - Utility and Latex.md +440 -0
  13. data/F24LS_md/Lecture 7 - Inequality.md +607 -0
  14. data/F24LS_md/Lecture 8 - Macroeconomics.md +704 -0
  15. data/F24LS_md/Lecture 8 - Macro.md +700 -0
  16. data/F24LS_md/Lecture 9 - Game Theory_.md +436 -0
  17. data/F24LS_md/summary.yaml +105 -0
  18. data/F24Lec_MD/LecNB_summary.yaml +206 -0
  19. data/F24Lec_MD/lec01/lec01.md +267 -0
  20. data/F24Lec_MD/lec02/Avocados_demand.md +425 -0
  21. data/F24Lec_MD/lec02/Demand_Steps_24.md +126 -0
  22. data/F24Lec_MD/lec02/PriceElasticity.md +83 -0
  23. data/F24Lec_MD/lec02/ScannerData_Beer.md +171 -0
  24. data/F24Lec_MD/lec02/demand-curve-Fa24.md +213 -0
  25. data/F24Lec_MD/lec03/3.0-CubicCostCurve.md +239 -0
  26. data/F24Lec_MD/lec03/3.1-Supply.md +274 -0
  27. data/F24Lec_MD/lec03/3.2-sympy.md +332 -0
  28. data/F24Lec_MD/lec03/3.3a-california-energy.md +120 -0
  29. data/F24Lec_MD/lec03/3.3b-a-really-hot-tuesday.md +121 -0
  30. data/F24Lec_MD/lec04/lec04-CSfromSurvey-closed.md +335 -0
  31. data/F24Lec_MD/lec04/lec04-CSfromSurvey.md +331 -0
  32. data/F24Lec_MD/lec04/lec04-Supply-Demand-closed.md +519 -0
  33. data/F24Lec_MD/lec04/lec04-Supply-Demand.md +514 -0
  34. data/F24Lec_MD/lec04/lec04-four-plot-24.md +34 -0
  35. data/F24Lec_MD/lec04/lec04-four-plot.md +34 -0
  36. data/F24Lec_MD/lec05/Lec5-Cobb-Douglas.md +131 -0
  37. data/F24Lec_MD/lec05/Lec5-CobbD-AER1928.md +283 -0
  38. data/F24Lec_MD/lec06/6.1-Sympy-Differentiation.md +253 -0
  39. data/F24Lec_MD/lec06/6.2-3D-utility.md +287 -0
  40. data/F24Lec_MD/lec06/6.3-QuantEcon-Optimization.md +399 -0
  41. data/F24Lec_MD/lec06/6.4-latex.md +138 -0
  42. data/F24Lec_MD/lec06/6.5-Edgeworth.md +269 -0
  43. data/F24Lec_MD/lec07/7.1-inequality.md +283 -0
  44. data/F24Lec_MD/lec07/7.2-historical-inequality.md +237 -0
  45. data/F24Lec_MD/lec08/macro-fred-api.md +313 -0
  46. data/F24Lec_MD/lec09/lecNB-prisoners-dilemma.md +88 -0
  47. data/F24Lec_MD/lec10/Lec10.2-waterguard.md +401 -0
  48. data/F24Lec_MD/lec10/lec10.1-mapping.md +199 -0
  49. data/F24Lec_MD/lec11/11.1-slr.md +305 -0
  50. data/F24Lec_MD/lec11/11.2-mlr.md +171 -0
  51. data/F24Lec_MD/lec12/Lec12-4-PersonalFinance.md +590 -0
  52. data/F24Lec_MD/lec12/lec12-1_Interest_Payments.md +267 -0
  53. data/F24Lec_MD/lec12/lec12-2-stocks-options.md +235 -0
  54. data/F24Lec_MD/lec13/Co2_ClimateChange.md +139 -0
  55. data/F24Lec_MD/lec13/ConstructingMAC.md +213 -0
  56. data/F24Lec_MD/lec13/EmissionsTracker.md +170 -0
  57. data/F24Lec_MD/lec13/KuznetsHypothesis.md +219 -0
  58. data/F24Lec_MD/lec13/RoslingPlots.md +217 -0
  59. data/F24Lec_MD/lec15/vibecession.md +485 -0
  60. data/F24Textbook_MD/00-intro/index.md +292 -0
  61. data/F24Textbook_MD/01-demand/01-demand.md +152 -0
  62. data/F24Textbook_MD/01-demand/02-example.md +131 -0
  63. data/F24Textbook_MD/01-demand/03-log-log.md +284 -0
  64. data/F24Textbook_MD/01-demand/04-elasticity.md +248 -0
  65. data/F24Textbook_MD/01-demand/index.md +15 -0
  66. data/F24Textbook_MD/02-supply/01-supply.md +203 -0
  67. data/F24Textbook_MD/02-supply/02-eep147-example.md +86 -0
  68. data/F24Textbook_MD/02-supply/03-sympy.md +138 -0
  69. data/F24Textbook_MD/02-supply/04-market-equilibria.md +204 -0
  70. data/F24Textbook_MD/02-supply/index.md +16 -0
  71. data/F24Textbook_MD/03-public/govt-intervention.md +73 -0
  72. data/F24Textbook_MD/03-public/index.md +10 -0
  73. data/F24Textbook_MD/03-public/surplus.md +351 -0
  74. data/F24Textbook_MD/03-public/taxes-subsidies.md +282 -0
  75. data/F24Textbook_MD/04-production/index.md +15 -0
  76. data/F24Textbook_MD/04-production/production.md +178 -0
  77. data/F24Textbook_MD/04-production/shifts.md +296 -0
  78. data/F24Textbook_MD/05-utility/budget-constraints.md +166 -0
  79. data/F24Textbook_MD/05-utility/index.md +15 -0
  80. data/F24Textbook_MD/05-utility/utility.md +136 -0
  81. data/F24Textbook_MD/06-inequality/historical-inequality.md +253 -0
  82. data/F24Textbook_MD/06-inequality/index.md +15 -0
  83. data/F24Textbook_MD/06-inequality/inequality.md +226 -0
  84. data/F24Textbook_MD/07-game-theory/bertrand.md +257 -0
  85. data/F24Textbook_MD/07-game-theory/cournot.md +333 -0
  86. data/F24Textbook_MD/07-game-theory/equilibria-oligopolies.md +96 -0
  87. data/F24Textbook_MD/07-game-theory/expected-utility.md +61 -0
  88. data/F24Textbook_MD/07-game-theory/index.md +19 -0
  89. data/F24Textbook_MD/07-game-theory/python-classes.md +340 -0
  90. data/F24Textbook_MD/08-development/index.md +35 -0
  91. data/F24Textbook_MD/09-macro/CentralBanks.md +101 -0
  92. data/F24Textbook_MD/09-macro/Indicators.md +77 -0
  93. data/F24Textbook_MD/09-macro/fiscal_policy.md +36 -0
  94. data/F24Textbook_MD/09-macro/index.md +14 -0
  95. data/F24Textbook_MD/09-macro/is_curve.md +76 -0
  96. data/F24Textbook_MD/09-macro/phillips_curve.md +70 -0
  97. data/F24Textbook_MD/10-finance/index.md +10 -0
  98. data/F24Textbook_MD/10-finance/options.md +178 -0
  99. data/F24Textbook_MD/10-finance/value-interest.md +60 -0
  100. data/F24Textbook_MD/11-econometrics/index.md +16 -0
  101. data/F24Textbook_MD/11-econometrics/multivariable.md +218 -0
  102. data/F24Textbook_MD/11-econometrics/reading-econ-papers.md +25 -0
  103. data/F24Textbook_MD/11-econometrics/single-variable.md +483 -0
  104. data/F24Textbook_MD/11-econometrics/statsmodels.md +58 -0
  105. data/F24Textbook_MD/12-environmental/KuznetsHypothesis-Copy1.md +187 -0
  106. data/F24Textbook_MD/12-environmental/KuznetsHypothesis.md +187 -0
  107. data/F24Textbook_MD/12-environmental/MAC.md +254 -0
  108. data/F24Textbook_MD/12-environmental/index.md +36 -0
  109. data/F24Textbook_MD/LICENSE.md +11 -0
  110. data/F24Textbook_MD/intro.md +26 -0
  111. data/F24Textbook_MD/references.md +25 -0
  112. data/F24Textbook_MD/summary.yaml +414 -0
  113. metadata +155 -0
@@ -0,0 +1,631 @@
1
+ ---
2
+ title: "Lecture 10 - Development\_"
3
+ type: slides
4
+ week: 10
5
+ source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/Lecture 10 - Development_.pptx"
6
+ ---
7
+
8
+ ## Slide 1: Data 88E: Economic Models
9
+
10
+ - Lecture 10: Development - Randomized Controlled Trials
11
+
12
+ ## Slide 2: Announcements
13
+
14
+ - Lab 9 released today
15
+ - Project 3 is due next week
16
+
17
+ ## Slide 3: Meme?
18
+
19
+ - Meme?
20
+
21
+ ## Slide 4: Lecture 8 Outline
22
+
23
+ - A/B testing
24
+ - Facebook Ads
25
+ - Development Economics
26
+ - Correlation vs Causality
27
+ - Randomized Controlled Trials
28
+ - RCTs in Development Economics
29
+ - Project in Kenya on Clean Drinking Water
30
+ - I am not covering all or most of Development Economics
31
+ - - the recent rise of Randomized Controlled Trials in Development Economics as relates to Data Science
32
+
33
+ ## Slide 5: A/B testing -
34
+
35
+ ## Slide 6: A/B Testing in Data 8
36
+
37
+ ## Slide 7: A/B Testing is built into the internet !
38
+
39
+ - https://marketingplatform.google.com/about/optimize/
40
+
41
+ ## Slide 8: A/B testing is the bread and butter of data science in Web Development
42
+
43
+ ## Slide 9: A/B testing in Web Design
44
+
45
+ ## Slide 10: The Social Dilemma - we are all constantly being AB tested
46
+
47
+ ## Slide 11: (untitled)
48
+
49
+ - https://youtu.be/3FmX8SBIeco?feature=shared
50
+
51
+ ## Slide 12: https://www.miamiherald.com/news/politics-government/article246429000.html
52
+
53
+ ## Slide 13: Dark Facebook ads + Cambridge Analytica targeting
54
+ Used to discourage ( black ) voters from voting
55
+
56
+ ## Slide 14: And at the same time - Russia was doing the same thing!
57
+
58
+ - https://www.businessinsider.com/some-of-the-russian-social-media-accounts-that-could-have-influenced-the-2016-election-2018-12\#heart-of-texas-4
59
+
60
+ ## Slide 15: Facebook ad library
61
+
62
+ - Facebook does not curate content
63
+ - But after 2016 - make a library of the all ads shown
64
+ - Doesn’t say exactly who the demographic profiles are
65
+ - Other affiliated groups are advertising at the same time
66
+
67
+ ## Slide 16: Sampling of ads
68
+
69
+ - Trump ads - many attack ads
70
+ - Some are meant to discourage voters
71
+
72
+ ## Slide 17: This looks like a deterrence ad
73
+
74
+ ## Slide 18: This is the ad being tested - October
75
+
76
+ - Different subgroups?
77
+ - Data on engagement?
78
+ - How many people watch the video?
79
+
80
+ ## Slide 19: “I see a way out” - 7m views on Trump’s Youtube page
81
+
82
+ ## Slide 20: (untitled)
83
+
84
+ ## Slide 21: (untitled)
85
+
86
+ ## Slide 22: Biden ad getting tested
87
+
88
+ - https://www.facebook.com/ads/library/?id=358668698526428
89
+
90
+ ## Slide 23: Trump ads - October 2024
91
+
92
+ ## Slide 24: About this ad - ~60 variants
93
+
94
+ ## Slide 25: Who targets me
95
+
96
+ - Meta ad spends
97
+
98
+ ## Slide 26: Total Ad spend per target group
99
+
100
+ - https://favstats.github.io/us24/targeting.html
101
+
102
+ ## Slide 27: Who targets me
103
+
104
+ - https://favstats.github.io/us24/detailed.html
105
+
106
+ ## Slide 28: Contested Ad Groups
107
+
108
+ ## Slide 29: What is this a picture of
109
+
110
+ ## Slide 30: What is this a picture of?
111
+
112
+ ## Slide 31: (untitled)
113
+
114
+ ## Slide 32: End of Facebook -> A/B testing -> Experimental Design
115
+
116
+ - How do we test different populations?
117
+ - Test within a population
118
+ - What is the population
119
+ - If we do randomization right we can make generalizations about the entire population
120
+ - How do we split up populations into comparable subsets
121
+ - Internet - easy
122
+ - Surveys / Drug Trials - harder
123
+ - Need a map of the domain to do randomization from
124
+ - What list , how to check the balance
125
+
126
+ ## Slide 33: Data 8 Chapter 2
127
+
128
+ - John Snow and the Broad Street Pump
129
+ - 1854
130
+ - Water source caused Cholera
131
+ - (People didn’t believe it)
132
+ - Comparison of similar population
133
+ - Different water company - but similar otherwise
134
+ - This was a “natural experiment”
135
+ - Hygiene
136
+ - Microbiology
137
+ - Disinfection
138
+ - Wastewater treatment
139
+ - http://blog.rtwilson.com/john-snows-cholera-data-in-more-formats/
140
+
141
+ ## Slide 34: Observational Studies ~ Confounding Variables
142
+
143
+ - Inferential Thinking
144
+ - “ what if some people worked in a factory and some did not”
145
+ - Or …. Does Coffee cause lung cancer?
146
+ - -- but … smoking
147
+ - Observational Studies
148
+ - You can measure correlation
149
+ - But you can’t measure causation unless you can control for all confounding variables
150
+ - Experimental Design ( Project 3)
151
+ - Eighty-four pairs of undergraduate volunteers between the ages of 18 and 26 from North Dakota State University participated for course credit and were randomly assigned to either an asymmetrical or symmetrical camera condition.
152
+
153
+ ## Slide 35: A/B Testing in Project 3
154
+
155
+ ## Slide 36: Clinical Trials - Randomization of population
156
+
157
+ - Phase 1 - ( 20-50 people)
158
+ - Is the Treatments Safe?
159
+ - Measure and Observe Side Effects
160
+ - Phase 2 - ( 50-100 people)
161
+ - Does the treatment works
162
+ - Recruit people with the disease
163
+ - Phase 3 - ( 1000s of people)
164
+ - Randomized population
165
+ - Placebo given to Control population
166
+ - Double Blinded - participant and researcher
167
+
168
+ ## Slide 37: Covid 19 Clinical Trials - 2021
169
+
170
+ - 446 in Phase 3
171
+ - Hydroxychloroquine
172
+ - Remdesivir
173
+ - Mononoclonal Antibodies
174
+ - Vaccines
175
+ - https://clinicaltrials.gov/ct2/results?cond=COVID-19&age\_v=&gndr=&type=&rslt=&phase=2&Search=Apply
176
+
177
+ ## Slide 38: A study taken at Random - Argentina Vaccine study
178
+
179
+ - 3000 people
180
+ - Triple blinded
181
+ - Participant,
182
+ - Care Provider
183
+ - Researcher
184
+ - 2 shots 21 days apart
185
+ - Completed Dec 2021
186
+ - Primary outcome -
187
+ - Incidence of cases
188
+ - Secondary outcome -
189
+ - Antibodies measured
190
+
191
+ ## Slide 39: Cholera in Clinical Trials
192
+
193
+ ## Slide 40: Cholera
194
+
195
+ - 3-5 million cases per year
196
+ - 20,000-100,000 deaths per year
197
+ - Most deaths are in children under 5
198
+ - Iraq, Yemen, Haiti, Zimbabwe
199
+ - Treatment
200
+ - Oral Rehydration Therapy
201
+ - Antibiotics
202
+ - Vaccine -
203
+ - Drops to 50% effective after 1 year
204
+
205
+ ## Slide 41: Long term solution is clean water and sanitation
206
+
207
+ - https://www.who.int/news-room/fact-sheets/detail/cholera
208
+
209
+ ## Slide 42: Effectiveness of Government Programs - Impact Evaluation
210
+
211
+ - What is the most effective way to :
212
+ - Save lives (e.g for children under 5)
213
+ - Change behavior ( sanitation & hygiene)
214
+ - Improve people’s welfare
215
+ - For governments and policymakers - National or Local Governments
216
+ - For implementers - Local or International NGOS
217
+ - For International Donors ( Gates Foundation)
218
+
219
+ ## Slide 43: Is it the domain of Economics?
220
+
221
+ - Public Health – address health issues
222
+ - Epidemiology – measure sickness
223
+ - Microbiology – measure contamination
224
+ - Behavioral Science – nudges
225
+ - Environmental Engineering – who often takes on these issues
226
+ - Economics - costs of different approaches
227
+ - Technology adoption
228
+ - Behavior changes around technology
229
+ - Objective outcome measures
230
+
231
+ ## Slide 44: Randomized Controlled Trials (RCTs) in Economics
232
+
233
+ - Also called Impact Evaluation
234
+ - Effectiveness of Aid – interest to measure impacts of
235
+ - international projects, health interventions, schooling, welfare
236
+ - Impact of a program, device, innovation, system, behavior change, education
237
+ - Causality cannot be determined in observational studies
238
+ - Compare to a control group - a counterfactual - a comparison group
239
+ - Endogeneity of economic choices - Remove Selection Bias!
240
+ - In an observational study you cannot separate correlation from causality – because of factors involving selection into the treatment. Those who sign up are different from those who do not
241
+
242
+ ## Slide 45: 2019 Nobel Prize in Economics
243
+
244
+ - Jpal - Poverty Action Lab
245
+ - MIT and Harvard Faculty
246
+ - Leaders in RCT movement
247
+ - Michael Kremer
248
+ - Esther Duflo
249
+ - Abhijit Banerjee
250
+
251
+ ## Slide 46: CEGA - UC Berkeley based Evaluation Network
252
+
253
+ - http://cega.berkeley.edu/
254
+ - Ted Miguel
255
+ - Josh Blumenstock
256
+
257
+ ## Slide 47: Michael Kremer and Ted Miguel
258
+
259
+ - Worked at a school in Busia Kenya
260
+ - There was a lot of student absenteeism
261
+ - Intestinal parasites that could be easily treated
262
+ - Work with NGO that was going to pilot mass de-worming
263
+ - Randomize which schools would get the interventions
264
+ - Water borne diarrheal diseases
265
+ - Work with NGO to improve local water sources
266
+ - Randomize communities getting improved springs
267
+ - Also have water related hygiene behaviors
268
+
269
+ ## Slide 48: Deworming RCT
270
+
271
+ - Deworming RCT
272
+ - Simple single pill for worm ( helminths)
273
+ - Mass Deworming - giving pill to entire sectors of population, using existing infrastructure like schools
274
+
275
+ <details><summary>Speaker notes</summary>
276
+
277
+ Line up the students]
278
+ Give them a pill and
279
+
280
+ What about handwashing, and open defacation, and shoes, and concrete floors?
281
+
282
+ </details>
283
+
284
+ ## Slide 49: https://www.povertyactionlab.org/sites/default/files/publications/2012.3.22-Deworming.pdf
285
+
286
+ - https://www.povertyactionlab.org/sites/default/files/publications/2012.3.22-Deworming.pdf
287
+ - Data for
288
+ - Students with treatment in treatment school
289
+ - Students without treatment in treatment school
290
+ - Students in other schools
291
+
292
+ <details><summary>Speaker notes</summary>
293
+
294
+ Outcome varialbe – 14.6 more days of school
295
+
296
+ Untreated also affected – this is usually a problem
297
+ Usually you are trying to not have spillovers if you are measuring treatment – control
298
+ But they did some more advanced techniques to establish a counterfactual for spillovers as well.
299
+ Contaminated the control! But it was an awesome outcome so measure and show it
300
+
301
+ </details>
302
+
303
+ ## Slide 50: https://www.povertyactionlab.org/sites/default/files/publications/2012.3.22-Deworming.pdf
304
+
305
+ - https://www.povertyactionlab.org/sites/default/files/publications/2012.3.22-Deworming.pdf
306
+ - Ten Years Later !!!
307
+ - Long term panel dataset - KLPS
308
+ - Follow original deworming panel
309
+ - Many other aspects of panel research
310
+
311
+ <details><summary>Speaker notes</summary>
312
+
313
+ Kept tracking people
314
+ Some moved all over Kenya
315
+
316
+ </details>
317
+
318
+ ## Slide 51: Reduction in disease = 7.5% increase in schooling
319
+ Spillover effects - Reduction by other students not treated
320
+ Health improvements by infants and siblings – cognitive improvements due to reduced disease burden
321
+ 10 year follow-up – worked more / had better jobs / earned 20% more
322
+ Huge Scale up efforts at the national level, across countries - 40 million children per year
323
+
324
+ - Reduction in disease = 7.5% increase in schooling
325
+ - Spillover effects - Reduction by other students not treated
326
+ - Health improvements by infants and siblings – cognitive improvements due to reduced disease burden
327
+ - 10 year follow-up – worked more / had better jobs / earned 20% more
328
+ - Huge Scale up efforts at the national level, across countries - 40 million children per year
329
+ - Deworming outcomes - measured by RCT structure
330
+
331
+ <details><summary>Speaker notes</summary>
332
+
333
+ Very influential study
334
+ Now it is being scaled up in kenya nationally by government
335
+ Many countries are doing it
336
+
337
+ </details>
338
+
339
+ ## Slide 52: Spring Protection - waterborne diarrheal diseases
340
+
341
+ - Households are disperse in a relatively rural area
342
+ - Draw water from local springs
343
+ - Roll out - randomized from list - project to protect springs and improve water quality
344
+
345
+ ## Slide 53: Spring Protection
346
+
347
+ <details><summary>Speaker notes</summary>
348
+
349
+ There is something we can do to protect the water – water quality and availability
350
+ By digging up and protecting the spring head
351
+
352
+ </details>
353
+
354
+ ## Slide 54: Protected Spring
355
+
356
+ <details><summary>Speaker notes</summary>
357
+
358
+ There is something we can do to protect the water – water quality and availability
359
+ By digging up and protecting the spring head
360
+
361
+ </details>
362
+
363
+ ## Slide 55: How to make this a Randomized Trial
364
+
365
+ - List of 200 springs
366
+ - Protect 50 springs each year
367
+ - Survey before and after Springs are protected
368
+ - All springs will be protected by the end of the project
369
+
370
+ ## Slide 56: But water quality not improved in Household
371
+
372
+ - Recontamination in Transport!?
373
+ - Recontamination in Home!?
374
+ - Treat at community source?
375
+ - Treat at household level?
376
+
377
+ <details><summary>Speaker notes</summary>
378
+
379
+ There is something we can do to protect the water – water quality and availability
380
+ By digging up and protecting the spring head
381
+
382
+ </details>
383
+
384
+ ## Slide 57: ‹\#›
385
+
386
+ - WHO. 2016. “Results of Round 1 of the WHO International Scheme to Evaluate Household Water Treatment Technologies.” World Health Organization.
387
+ - How many people practice Household Water Treatment (HWT)?
388
+
389
+ <details><summary>Speaker notes</summary>
390
+
391
+ Boiling is still the most common around the world
392
+
393
+ </details>
394
+
395
+ ## Slide 58: Options for Household Water Treatment
396
+
397
+ - Boiling
398
+ - Ceramic Filters
399
+ - Slow Sand Filters
400
+ - Membrane Filters
401
+ - Solar Disinfection
402
+ - Flocculant Sachets
403
+
404
+ <details><summary>Speaker notes</summary>
405
+
406
+ So you can treat the water at the household level
407
+
408
+ </details>
409
+
410
+ ## Slide 59: Options for Household Water Treatment
411
+
412
+ - Dilute Chlorine at household level
413
+ - Water Guard
414
+ - Sell in local stores that carry oil, soap, rice
415
+ - One month supply per bottle, one capful per 20l water
416
+
417
+ <details><summary>Speaker notes</summary>
418
+
419
+ So you can treat the water at the household level
420
+
421
+ </details>
422
+
423
+ ## Slide 60: Social Marketing - sell it at the store, with ads
424
+
425
+ <details><summary>Speaker notes</summary>
426
+
427
+ And tablet – Waterguard cross marketing with PUR
428
+
429
+ </details>
430
+
431
+ ## Slide 61: Social Marketing
432
+
433
+ ## Slide 62: Water Guard - Use and Cost Study
434
+
435
+ - Set up study
436
+ - Lists of springs List of Households
437
+ - Randomization of 200 springs
438
+ - Randomly select 8 hhs per spring
439
+ - Protect 50 springs
440
+ - Protect 50 springs
441
+ - Baseline Survey
442
+ - Follow-up 1 survey
443
+ - Follow-up 2 survey
444
+ - Follow-up 3 survey
445
+ - Study Design !
446
+
447
+ ## Slide 63: Chlorine Testing
448
+
449
+ - Are they using Water Guard?
450
+ - After study has passed
451
+ - At a random visit
452
+ - Self – Reported
453
+ - Validated measure
454
+ - Find chlorine in water
455
+
456
+ ## Slide 64: Hach Pocket Colorimeter
457
+
458
+ - Add sachet of reagent to water sample
459
+ - Does water turn pink
460
+ - How pink does it turn
461
+
462
+ ## Slide 65: Water Guard Promotion study – 7 armed RCT
463
+
464
+ - Add an intervention arm that was the most possibly convenient and lowest cost to household
465
+ - Incentivized Promoter
466
+ - Free Chlorine
467
+ - Free Delivery
468
+ - Reminders and Reinforcement
469
+
470
+ ## Slide 66: Water Guard Promotion Study
471
+
472
+ - Usually we think of RCTs as 2 arms
473
+ - But this study has 1 control and 6 possible treatments
474
+ - How long afterwards is there an effect?
475
+
476
+ ## Slide 67: Treatment Arm 7 - Proto Dispenser
477
+
478
+ - Locate it at the protected Spring.
479
+ - Provide a secure locked supply of chlorine
480
+ - Be rugged under local conditions
481
+ - Provide a way to have 3ml ( capful) delivered into the neck of a jerrycan
482
+ - Provide a way to get it periodically refilled
483
+ - Provide a way for community ownership / guardianship
484
+
485
+ ## Slide 68: Inventing the Dispenser
486
+
487
+ ## Slide 69: Results looked very promising!
488
+ 3 Month follow-up had a very high rate of usage
489
+
490
+ - Results looked very promising!
491
+ - 3 Month follow-up had a very high rate of usage
492
+
493
+ ## Slide 70: Local Promoter
494
+
495
+ - Local person trained & paid
496
+ - In charge of maintaining, filling,
497
+ - Reporting broken dispensers
498
+ - Encouraging use
499
+ - May be part of a local committee
500
+ - Local promoter has always been part of dispensers from the beginning to long term rollout
501
+
502
+ ## Slide 71: Behavioral Economics
503
+
504
+ - Economics with Psychology and Cognitive Science
505
+ - How do people make decisions
506
+ - Bounded Rationality
507
+ - People are limited in information, ability to process information
508
+ - Heuristics
509
+ - People use rules of thumb or mental shortcuts to make decisionsStatus Quo Bias
510
+ - Cognitive Burden of changing
511
+ - Prospect Theory
512
+ - Choice under uncertainty , Bounding, Loss Aversion
513
+ - Choice Architecture - Nudge
514
+ - Set up how people make small decisions to change behavior
515
+
516
+ ## Slide 72: Peer Effects in Dispensers
517
+
518
+ - You do it because others are doing it
519
+ - Visibly see others doing it
520
+ - Discuss it , get knowledge about it, becomes “normal”
521
+
522
+ ## Slide 73: Salience - noticeable, important, prominent
523
+
524
+ - Make sure that a problem , and solution are visible
525
+ - Diarrhea – not so visible
526
+ - Microbes in drinking water – not visible
527
+ - Human behaviors that reduce risks – not always visible
528
+ - Remember to Use it – reinforcement of a daily behavior
529
+ - See it while doing the water collecting moment
530
+ - Visible / standing out because of the placement
531
+
532
+ ## Slide 74: Dispensers are now huge
533
+
534
+ - USAID financing
535
+ - Carbon Credits in some cases
536
+ - Part of a very large RCT comparing many types of Water and Sanitation interventions
537
+ - Many different implementations besides springs in Western Kenya
538
+
539
+ ## Slide 75: Kremer donates dispenser to Nobel Museum
540
+
541
+ ## Slide 76: https://www.evidenceaction.org/programs/safe-water-now
542
+
543
+ ## Slide 77: GiveWell - $65mn in January 2022 - evaluate charities
544
+
545
+ ## Slide 78: Effective Altruism - evidence based philanthropy
546
+
547
+ - https://eaberkeley.com/
548
+
549
+ ## Slide 79: Lab 7 - Household Surveys - What and Why?
550
+
551
+ - Big Picture – how does a survey flow and look all together
552
+ - Experimental Design
553
+ - Survey Design
554
+ - Details – how do different modules work specifically
555
+ - Critically – does this make sense, will the answers be useful? What have the survey authors done to help to make answers useful?
556
+ - I want you to see a big messy dataset or 2 or 3 that are part of a real research project, that leads to a graph at the end
557
+ - (that is part of someone winning a Nobel Prize?)
558
+
559
+ ## Slide 80: Start with Springs Sample and Map
560
+
561
+ - Google Maps of Western Kenya
562
+ - Look at how Springs as Treatment Arms are scattered
563
+ - Think about spatial randomization
564
+ - Tips
565
+ - If maps not displaying reload the browser page
566
+ - Click to Satellite within map window
567
+
568
+ ## Slide 81: (untitled)
569
+
570
+ - LINK to SURVEY
571
+
572
+ ## Slide 82: Closed/Limited Answers
573
+
574
+ - Want to make a specific set of answers
575
+ - Not Open Ended
576
+ - Not Text
577
+ - Simple codes are in survey - WGP Baseline
578
+ - 1=yes 2=no
579
+ - 88= don’t know
580
+ - Code sheet – with numbers for fixed answers for most common responses – when there are many
581
+ - Want answers to be in a certain range, or of a certain type
582
+
583
+ ## Slide 83: (untitled)
584
+
585
+ ## Slide 84: Treatment Arms
586
+
587
+ - This variable is added to dataset afterwards
588
+ - Arm 1 - Control
589
+ - Arm 2 - Household Script
590
+ - Arm 3 - Community Script
591
+ - Arm 4 - HH + Community Script
592
+ - Arm 5 - Flat-Fee Promoter + Coupons
593
+ - Arm 6 - Incentivized Promoter + Coupons
594
+ - Arm 7 - Incentivized Promoter + Dispenser at Spring
595
+
596
+ ## Slide 85: Elements of Survey Design
597
+
598
+ - Start with map of region, list of houses
599
+ - Number and randomize springs
600
+ - Number and randomize houses around each spring
601
+ - Important for later checks
602
+ - Who is doing survey
603
+ - Who is doing data entry
604
+ - What if there is variability in the reliability of the answers?
605
+
606
+ ## Slide 86: Missing Data and skip patterns
607
+
608
+ - There is missing data - and what to do about it!!!
609
+ - NAN - pandas has routines for NAN
610
+ - There are skip patterns in surveys
611
+ - e.g. Depending on the Answer to Question 1
612
+ - If answer yes go to question 1b, 1c, 1d
613
+ - If answer no go to question 2
614
+
615
+ ## Slide 87: Household Construction -
616
+
617
+ <details><summary>Speaker notes</summary>
618
+
619
+ Traditional thatched house
620
+
621
+ </details>
622
+
623
+ ## Slide 88: Assets? ( D Variables in dataset)
624
+
625
+ <details><summary>Speaker notes</summary>
626
+
627
+ I like this picture, simple furniture
628
+ Water storage container – jerry can – which we will see a lot of
629
+
630
+ </details>
631
+