my-markdown-library 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (113) hide show
  1. checksums.yaml +7 -0
  2. data/F24LS_md/ Lecture 4 - Public.md +347 -0
  3. data/F24LS_md/Lecture 1 - Introduction and Overview.md +327 -0
  4. data/F24LS_md/Lecture 10 - Development_.md +631 -0
  5. data/F24LS_md/Lecture 11 - Econometrics.md +345 -0
  6. data/F24LS_md/Lecture 12 - Finance.md +692 -0
  7. data/F24LS_md/Lecture 13 - Environmental Economics.md +299 -0
  8. data/F24LS_md/Lecture 15 - Conclusion.md +272 -0
  9. data/F24LS_md/Lecture 2 - Demand.md +349 -0
  10. data/F24LS_md/Lecture 3 - Supply.md +329 -0
  11. data/F24LS_md/Lecture 5 - Production C-D.md +291 -0
  12. data/F24LS_md/Lecture 6 - Utility and Latex.md +440 -0
  13. data/F24LS_md/Lecture 7 - Inequality.md +607 -0
  14. data/F24LS_md/Lecture 8 - Macroeconomics.md +704 -0
  15. data/F24LS_md/Lecture 8 - Macro.md +700 -0
  16. data/F24LS_md/Lecture 9 - Game Theory_.md +436 -0
  17. data/F24LS_md/summary.yaml +105 -0
  18. data/F24Lec_MD/LecNB_summary.yaml +206 -0
  19. data/F24Lec_MD/lec01/lec01.md +267 -0
  20. data/F24Lec_MD/lec02/Avocados_demand.md +425 -0
  21. data/F24Lec_MD/lec02/Demand_Steps_24.md +126 -0
  22. data/F24Lec_MD/lec02/PriceElasticity.md +83 -0
  23. data/F24Lec_MD/lec02/ScannerData_Beer.md +171 -0
  24. data/F24Lec_MD/lec02/demand-curve-Fa24.md +213 -0
  25. data/F24Lec_MD/lec03/3.0-CubicCostCurve.md +239 -0
  26. data/F24Lec_MD/lec03/3.1-Supply.md +274 -0
  27. data/F24Lec_MD/lec03/3.2-sympy.md +332 -0
  28. data/F24Lec_MD/lec03/3.3a-california-energy.md +120 -0
  29. data/F24Lec_MD/lec03/3.3b-a-really-hot-tuesday.md +121 -0
  30. data/F24Lec_MD/lec04/lec04-CSfromSurvey-closed.md +335 -0
  31. data/F24Lec_MD/lec04/lec04-CSfromSurvey.md +331 -0
  32. data/F24Lec_MD/lec04/lec04-Supply-Demand-closed.md +519 -0
  33. data/F24Lec_MD/lec04/lec04-Supply-Demand.md +514 -0
  34. data/F24Lec_MD/lec04/lec04-four-plot-24.md +34 -0
  35. data/F24Lec_MD/lec04/lec04-four-plot.md +34 -0
  36. data/F24Lec_MD/lec05/Lec5-Cobb-Douglas.md +131 -0
  37. data/F24Lec_MD/lec05/Lec5-CobbD-AER1928.md +283 -0
  38. data/F24Lec_MD/lec06/6.1-Sympy-Differentiation.md +253 -0
  39. data/F24Lec_MD/lec06/6.2-3D-utility.md +287 -0
  40. data/F24Lec_MD/lec06/6.3-QuantEcon-Optimization.md +399 -0
  41. data/F24Lec_MD/lec06/6.4-latex.md +138 -0
  42. data/F24Lec_MD/lec06/6.5-Edgeworth.md +269 -0
  43. data/F24Lec_MD/lec07/7.1-inequality.md +283 -0
  44. data/F24Lec_MD/lec07/7.2-historical-inequality.md +237 -0
  45. data/F24Lec_MD/lec08/macro-fred-api.md +313 -0
  46. data/F24Lec_MD/lec09/lecNB-prisoners-dilemma.md +88 -0
  47. data/F24Lec_MD/lec10/Lec10.2-waterguard.md +401 -0
  48. data/F24Lec_MD/lec10/lec10.1-mapping.md +199 -0
  49. data/F24Lec_MD/lec11/11.1-slr.md +305 -0
  50. data/F24Lec_MD/lec11/11.2-mlr.md +171 -0
  51. data/F24Lec_MD/lec12/Lec12-4-PersonalFinance.md +590 -0
  52. data/F24Lec_MD/lec12/lec12-1_Interest_Payments.md +267 -0
  53. data/F24Lec_MD/lec12/lec12-2-stocks-options.md +235 -0
  54. data/F24Lec_MD/lec13/Co2_ClimateChange.md +139 -0
  55. data/F24Lec_MD/lec13/ConstructingMAC.md +213 -0
  56. data/F24Lec_MD/lec13/EmissionsTracker.md +170 -0
  57. data/F24Lec_MD/lec13/KuznetsHypothesis.md +219 -0
  58. data/F24Lec_MD/lec13/RoslingPlots.md +217 -0
  59. data/F24Lec_MD/lec15/vibecession.md +485 -0
  60. data/F24Textbook_MD/00-intro/index.md +292 -0
  61. data/F24Textbook_MD/01-demand/01-demand.md +152 -0
  62. data/F24Textbook_MD/01-demand/02-example.md +131 -0
  63. data/F24Textbook_MD/01-demand/03-log-log.md +284 -0
  64. data/F24Textbook_MD/01-demand/04-elasticity.md +248 -0
  65. data/F24Textbook_MD/01-demand/index.md +15 -0
  66. data/F24Textbook_MD/02-supply/01-supply.md +203 -0
  67. data/F24Textbook_MD/02-supply/02-eep147-example.md +86 -0
  68. data/F24Textbook_MD/02-supply/03-sympy.md +138 -0
  69. data/F24Textbook_MD/02-supply/04-market-equilibria.md +204 -0
  70. data/F24Textbook_MD/02-supply/index.md +16 -0
  71. data/F24Textbook_MD/03-public/govt-intervention.md +73 -0
  72. data/F24Textbook_MD/03-public/index.md +10 -0
  73. data/F24Textbook_MD/03-public/surplus.md +351 -0
  74. data/F24Textbook_MD/03-public/taxes-subsidies.md +282 -0
  75. data/F24Textbook_MD/04-production/index.md +15 -0
  76. data/F24Textbook_MD/04-production/production.md +178 -0
  77. data/F24Textbook_MD/04-production/shifts.md +296 -0
  78. data/F24Textbook_MD/05-utility/budget-constraints.md +166 -0
  79. data/F24Textbook_MD/05-utility/index.md +15 -0
  80. data/F24Textbook_MD/05-utility/utility.md +136 -0
  81. data/F24Textbook_MD/06-inequality/historical-inequality.md +253 -0
  82. data/F24Textbook_MD/06-inequality/index.md +15 -0
  83. data/F24Textbook_MD/06-inequality/inequality.md +226 -0
  84. data/F24Textbook_MD/07-game-theory/bertrand.md +257 -0
  85. data/F24Textbook_MD/07-game-theory/cournot.md +333 -0
  86. data/F24Textbook_MD/07-game-theory/equilibria-oligopolies.md +96 -0
  87. data/F24Textbook_MD/07-game-theory/expected-utility.md +61 -0
  88. data/F24Textbook_MD/07-game-theory/index.md +19 -0
  89. data/F24Textbook_MD/07-game-theory/python-classes.md +340 -0
  90. data/F24Textbook_MD/08-development/index.md +35 -0
  91. data/F24Textbook_MD/09-macro/CentralBanks.md +101 -0
  92. data/F24Textbook_MD/09-macro/Indicators.md +77 -0
  93. data/F24Textbook_MD/09-macro/fiscal_policy.md +36 -0
  94. data/F24Textbook_MD/09-macro/index.md +14 -0
  95. data/F24Textbook_MD/09-macro/is_curve.md +76 -0
  96. data/F24Textbook_MD/09-macro/phillips_curve.md +70 -0
  97. data/F24Textbook_MD/10-finance/index.md +10 -0
  98. data/F24Textbook_MD/10-finance/options.md +178 -0
  99. data/F24Textbook_MD/10-finance/value-interest.md +60 -0
  100. data/F24Textbook_MD/11-econometrics/index.md +16 -0
  101. data/F24Textbook_MD/11-econometrics/multivariable.md +218 -0
  102. data/F24Textbook_MD/11-econometrics/reading-econ-papers.md +25 -0
  103. data/F24Textbook_MD/11-econometrics/single-variable.md +483 -0
  104. data/F24Textbook_MD/11-econometrics/statsmodels.md +58 -0
  105. data/F24Textbook_MD/12-environmental/KuznetsHypothesis-Copy1.md +187 -0
  106. data/F24Textbook_MD/12-environmental/KuznetsHypothesis.md +187 -0
  107. data/F24Textbook_MD/12-environmental/MAC.md +254 -0
  108. data/F24Textbook_MD/12-environmental/index.md +36 -0
  109. data/F24Textbook_MD/LICENSE.md +11 -0
  110. data/F24Textbook_MD/intro.md +26 -0
  111. data/F24Textbook_MD/references.md +25 -0
  112. data/F24Textbook_MD/summary.yaml +414 -0
  113. metadata +155 -0
@@ -0,0 +1,345 @@
1
+ ---
2
+ title: "Lecture 11 - Econometrics"
3
+ type: slides
4
+ week: 11
5
+ source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/Lecture 11 - Econometrics.pptx"
6
+ ---
7
+
8
+ ## Slide 1: Lecture 11: Econometrics
9
+
10
+ - Lecture 11: Econometrics
11
+ - Data 88E: Economic Models
12
+
13
+ ## Slide 2: Announcements
14
+
15
+ - Project 4 will be released - Econometrics
16
+ - No Lab
17
+
18
+ ## Slide 3: Academic Dishonesty and Attendance
19
+
20
+ - Using ChatGPT to paste in code is dishonesty
21
+
22
+ ## Slide 4: Follow-ups
23
+
24
+ - Last time I ranted about Facebook 2016 and 2020 - its in court today!!!
25
+ - Did Facebook lie to shareholders about knowledge of risks?
26
+ - Brent Kavanaugh’s best friend Joel Kaplan is Facebook Policy head?
27
+
28
+ ## Slide 5: Fed Meeting tomorrow!
29
+
30
+ - What is forecast for tomorrow?
31
+ - How might the election affect the Fed decisions
32
+
33
+ ## Slide 6: (untitled)
34
+
35
+ - https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/fed-s-autonomy-could-be-at-risk-if-trump-wins-in-november-85804211
36
+
37
+ ## Slide 7: Project 2025 has a chapter on the Fed - Chapter 24!
38
+
39
+ - Do away with Dual Mandate
40
+ - https://static.project2025.org/2025\_MandateForLeadership\_CHAPTER-24.pdf
41
+
42
+ ## Slide 8: Today’s class
43
+
44
+ - Intro to econometrics
45
+ - Intro to regression
46
+ - Simple linear regression
47
+ - Multiple linear regression
48
+ - Dummy variables
49
+ - Reading econometrics tables
50
+ - Project demo
51
+ - Upper division econometrics classes
52
+
53
+ ## Slide 9: Memes of the day
54
+
55
+ ## Slide 10: Intro to econometrics
56
+
57
+ - An important part of economics is understanding the relationship between variables, especially cause-and-effect relationships
58
+ - How does price affect the quantity demanded?
59
+ - How does income tax affect consumption?
60
+ - How does schooling affect income?
61
+ - Ideally, we would do randomized controlled trials to see if one variable (independent variable) causes another (dependent variable): gold standard for establishing causality
62
+ - But we can’t usually conduct experiments in economics, the best we have is observational data
63
+ - What do you think are some challenges with conducting experiments in economics?
64
+ - This is why we use econometrics: we use statistical techniques (like regression) to model relationships between economic variables
65
+
66
+ ## Slide 11: Intro to regression
67
+
68
+ - Really important tool in econometrics
69
+ - Used for modelling relationships between variables
70
+ - E.g. relationship between price and quantity demanded
71
+ - 3 main purposes of regression:
72
+ - Describing associations: What kind of association do x and y have? Positive/negative? Strong/weak?
73
+ - Prediction: E.g. by how much will quantity demanded decrease if price increases by $1?
74
+ - Causal inference: Does x cause y or is it just a correlation?
75
+
76
+ ## Slide 12: Simple linear regression
77
+
78
+ - You hypothesize that there’s some association between two variables – say price and quantity demanded
79
+ - Start by creating a scatter plot to visualize the association
80
+ - This gives you an intuition for the association
81
+ - Gives you a sense for whether the association is positive/negative, strong/weak/none
82
+ - There is some randomness: e.g. in the example, y doesn’t always increase as x increases (otherwise the points would all lie on a straight line)
83
+
84
+ ## Slide 13: Simple linear regression
85
+
86
+ - You can quantify this association by calculating the correlation coefficient or r (DATA 8 review!)
87
+ - Review of correlation coefficient:
88
+ - Measure of linear association (won’t work for nonlinear association), i.e. slope is constant with respect to x
89
+ - Value between -1 and 1
90
+ - The sign tells you the direction of the association: positive or negative
91
+ - Take absolute value of r to determine strength of association
92
+ - 0 means no correlation
93
+ - Correlation is not causation!
94
+
95
+ ## Slide 14: Simple linear regression
96
+
97
+ - How to calculate the correlation coefficient:
98
+ - Step 1: Convert data to standard units
99
+ - Express each value in terms of the number of standard deviations it is from the mean (“distance” from the mean)
100
+ - Step 2: Take the mean of product of x and y
101
+
102
+ ## Slide 15: Simple linear regression
103
+
104
+ - We can draw a line of best fit through the data: the line that most accurately models the relationship between x and y
105
+ - Recall that this line has the form y = slope \* x + intercept
106
+ - We can use the correlation coefficient to find the slope and intercept
107
+ - Slope:
108
+ - Intercept:
109
+ - Equation of the line of best fit: → Regression equation
110
+ - A note notation: the hats indicate that the values are estimates (rather than actual values)
111
+ - (fact: because average of x and y are always on the regression line)
112
+
113
+ ## Slide 16: Simple linear regression
114
+
115
+ - Can plot the regression line (the line of best fit) using the equation we found
116
+ - This is the same as the line of best fit you get by using a function you already looked at: np.polyfit
117
+ - Not all the points lie on the regression line because of
118
+ - Random variation
119
+ - The model is not a perfect fit (not perfectly accurate)
120
+ - Note: assuming all assumptions of doing linear regression are satisfied
121
+
122
+ ## Slide 17: Avocado Demand in Week 2? np.polyfit(X,Y,1)
123
+
124
+ ## Slide 18: polyfit
125
+
126
+ ## Slide 19: Simple linear regression
127
+
128
+ - Use the regression equation to generate predictions for y
129
+ - Once we’ve generated predictions, we would be interested in knowing how accurate they are
130
+ - We can calculate root mean squared error (RMSE) to determine accuracy:
131
+ - Calculate residuals → Square them → Take the average → Take the square root
132
+
133
+ ## Slide 20: Simple linear regression
134
+
135
+ - RMSE: on average, how far are your predictions from the actual values?
136
+ - Think about whether your value for RMSE is a large number
137
+ - Most useful for comparing across models
138
+ - Regression minimizes the RMSE of your data: of all the lines you can draw through your points, the regression line has the lowest RMSE
139
+ - This is why it’s called least squares (OLS) regression
140
+ - We can use the minimize() function to see this
141
+ - Numpy minimizes RMSE when it’s calculating the slope and intercept (e.g. when you use np.polyfit)
142
+
143
+ ## Slide 21: Simple linear regression
144
+
145
+ - So far: DATA 8 version of regression
146
+ - We use the statsmodels library to do regression in Python
147
+ - First, import statsmodels.api as sm
148
+ - Code for regression:
149
+ - To get the coefficients (intercept, slope): result.params
150
+
151
+ ## Slide 22: (untitled)
152
+
153
+ ## Slide 23: Simple linear regression
154
+
155
+ - Always include intercept term in your model (that is, don’t forget sm.add\_constant)
156
+ - Regression line passes through point of averages (property of the regression line)
157
+ - Best prediction for the average of x is the average of y
158
+ - Including the intercept term makes sure that your regression line passes through the point of averages
159
+ - Also, can’t generally assume that your model doesn’t have a y-intercept
160
+
161
+ ## Slide 24: Simple linear regression
162
+
163
+ - Important things to focus on in the regression output:
164
+ - Slope (𝛃) : By how much does y increase/decrease when you increase x by 1 unit?
165
+ - Intercept (𝛂) : What is the value of y when x = 0?
166
+ - Not always meaningful (e.g. what are earnings when height is 0 inches?)
167
+ - Confidence interval: Is there a statistically significant association between x and y? (H0: 𝛃 = 0, H1: 𝛃 ≠ 0)
168
+
169
+ ## Slide 25: Simple linear regression
170
+
171
+ - Confidence interval on coefficient estimates:
172
+ - Related to hypothesis testing:
173
+ - Null hypothesis: No association between x and y (𝛃=0)
174
+ - Alternative hypothesis: There is an association between x and y (𝛃≠0)
175
+ - Regression output gives you 95% CI → test hypotheses at the 5% significance level
176
+ - If CI contains 0: evidence for the null
177
+ - If CI doesn’t contain 0: evidence against the null
178
+ - Can simulate using bootstrapping
179
+ - Center of the CI: regression slope
180
+
181
+ ## Slide 26: Regression Output ( Statsmodels)
182
+
183
+ ## Slide 27: Regression Output ( SM vs R vs Stata)
184
+
185
+ - Python (statsmodels)
186
+ - R - LM
187
+ - Stata
188
+
189
+ ## Slide 28: Regression Output ( Statsmodels)
190
+
191
+ - This is the amount of variation explained by the model
192
+ - Number of Observations - reality check on size of data N matters!
193
+ - coef = 𝛃 = magnitude of estimated coefficient
194
+ - std err = variability of estimate of coefficient
195
+ - t= a t-test testing whether 𝛃 = 0
196
+ - P>[t]= probability of that t-test
197
+
198
+ ## Slide 29: Jump to Notebook 1
199
+
200
+ ## Slide 30: Interactive Demo
201
+
202
+ ## Slide 31: (untitled)
203
+
204
+ ## Slide 32: (untitled)
205
+
206
+ ## Slide 33: Multiple linear regression
207
+
208
+ - These variables that affect the dependent variable and are correlated with the independent variable that are not included in the model are called omitted variables
209
+ - E.g. your socioeconomic background affects your earnings and is positively correlated with how much education you get
210
+ - They cause omitted variable bias: cause your estimate of the regression slope to be different from the actual slope
211
+ - What would a positive vs. negative value for omitted variable bias mean?
212
+ - Can use multiple linear regression to account for omitted variables (really important purpose of regression!)
213
+
214
+ ## Slide 34: Multiple linear regression
215
+
216
+ - These variables that affect the dependent variable and are correlated with the independent variable that are not included in the model are called omitted variables
217
+ - E.g. your socioeconomic background affects your earnings and is positively correlated with how much education you get
218
+ - They cause omitted variable bias: cause your estimate of the regression slope to be different from the actual slope
219
+ - Can use multiple linear regression to account for omitted variables
220
+
221
+ ## Slide 35: Multiple linear regression
222
+
223
+ - Using statsmodels: just select multiple columns when defining the x-variable
224
+ - Multiple regression slopes: each independent variable has a slope
225
+ - Compare slope on independent variable of interest from simple and multiple linear regression to see if it’s overstated or understated
226
+ - Example of a MLR model:
227
+
228
+ ## Slide 36: Multiple linear regression
229
+
230
+ - Mathematical intuition:
231
+ - Each slope is the partial effect of the corresponding independent variable on y: effect holding all other independent variables constant
232
+
233
+ ## Slide 37: Multiple linear regression
234
+
235
+ - Graphically with 2 independent variables: 3D plot with a regression plane (not line)
236
+ - Y
237
+ - X1 - continuous variable
238
+ - X2 - dummy variable
239
+ - Can only be 0,1
240
+
241
+ ## Slide 38: Dummy variables
242
+
243
+ - Dummy variables are variables that take on a value of either 0 or 1 to indicate the presence or absence in a category
244
+ - E.g. smoker or non-smoker, went to college or didn’t go to college
245
+ - Also known as indicator variables
246
+ - Mutually exclusive: you can only be in one of the categories (you either went to college or you didn’t – not both)
247
+ - Collectively exhaustive: you must be in one of the categories (only 2 possible scenarios)
248
+
249
+ ## Slide 39: Dummy variables
250
+
251
+ - Example of regression model with dummy variable:
252
+ - col is a dummy variable indicating whether or not the person went to college (0 = didn’t go to college)
253
+ - Coefficient on col → difference of mean earnings when col = 1 and col = 0
254
+
255
+ ## Slide 40: Dummy variables
256
+
257
+ - Beware of the dummy variable trap
258
+ - Say you include all possible variables for a dummy variable
259
+ - E.g. col (for whether or not you went to college) and notcol (for whether or not you didn’t go to college)
260
+ - Example:
261
+
262
+ ## Slide 41: Dummy variables
263
+
264
+ - There are infinite solutions for the coefficients (slopes and intercepts)
265
+ - This is because the independent variable in the model have a perfect correlation – perfect multicollinearity
266
+ - Happens any time one independent variable is a linear combination of another
267
+ - E.g. if you have age and schooling in your model and age = schooling + 3
268
+ - Use pd.get\_dummies() to convert categorical variables to dummy variables
269
+
270
+ ## Slide 42: Jump to Lec NB2
271
+
272
+ ## Slide 43: Reading econometrics tables
273
+
274
+ - In papers, the results of econometric analysis are summarized in regression tables
275
+ - Example of regression table from project 4:
276
+
277
+ ## Slide 44: Reading econometrics tables
278
+
279
+ - In papers, the results of econometric analysis are summarized in regression tables
280
+ - Example of regression table from project 4:
281
+ - Filtering Variable
282
+ - X1
283
+ - X2
284
+ - X3,X4,X5…
285
+ - Y
286
+ - n
287
+
288
+ ## Slide 45: Reading econometrics tables
289
+
290
+ - Always look at how the dependent variable is being measured: in the example, the authors are taking log earnings
291
+ - Recall what you learned about semi-log demand curves: interpreted as % change in y per unit change in x
292
+ - Look at what is being controlled for, e.g.
293
+ - They are estimating separate models for men and women so they are controlling for gender
294
+ - In the second column for each group, they are controlling for test scores
295
+
296
+ ## Slide 46: Project demo
297
+
298
+ - In this project, you will use regression to analyze the relationship between a person’s height and earnings
299
+ - Based on a study conducted by Anne Case and Christina Paxson (very interesting study!)
300
+ - Divided into 3 parts: simple linear regression, multiple linear regression and reading econometrics tables
301
+
302
+ ## Slide 47: Upper division econometrics classes
303
+
304
+ - ECON 140: Economic Statistics and Econometrics
305
+ - Edwards - in R in Fall
306
+ - ECON 141: Econometric Analysis (with Linear Algebra)
307
+ - ECON 142: Applied Econometrics and Public Policy
308
+ - ECON 143: Econometrics: Advanced Methods and Applications ( New)
309
+ - ECON 144: Financial Econometrics
310
+ - STAT 153: Time Series
311
+ - ECON 148: Data Science for Economists
312
+ - Learn more here: http://guide.berkeley.edu/courses/econ/
313
+
314
+ ## Slide 48: Aside - Econometrics vs ML
315
+
316
+ - The idea of Econometrics is that the model has an underlying structure
317
+ - Economic Theory gives us a reason to structure the model
318
+ - We seek to explain the effect of X on Y
319
+ - We also need to hold multiple variables constant
320
+ - We will adapt a lot of techniques to get an unbiased estimator
321
+ - OLS is the starting point - variations depart from there
322
+ - Machine Learning - we don’t need to have an underlying model
323
+ - Whatever does the best job in prediction! Or modeling, or classification...
324
+ - ML has many models that can inform econometrics!
325
+ - Random Forest, Network Graph theory, nonparametric approaches
326
+ - Neural Networks
327
+
328
+ ## Slide 49: Terminology - an aside econometrics vs ML
329
+
330
+ - Dependent Variable ( Y) ~ predictor and predicted values
331
+ - Independent Variable ( X) ~ regressors, explanatory variables ~ coefficients, betas
332
+ - X in the ML world might be called “model features”
333
+ - Y in the ML world might be called “target”
334
+ - 0-1 variables when they are in the Y variable - call for a different class of models- especially Logit model - in ML this would be a classifier model
335
+ - 0-1 dummy variables - in the X variable would be called “one hot encoding” of categorical variables
336
+ - ML - split up your datasetTraining data - used for training the modelTesting data - used for measuring the accuracy of your model
337
+
338
+ ## Slide 50: Matrix notation for Linear Regression
339
+
340
+ - https://online.stat.psu.edu/stat462/node/132/
341
+ - Formula for Data Model
342
+ - Formula for OLS
343
+
344
+ ## Slide 51: SKlearn
345
+