my-markdown-library 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (113) hide show
  1. checksums.yaml +7 -0
  2. data/F24LS_md/ Lecture 4 - Public.md +347 -0
  3. data/F24LS_md/Lecture 1 - Introduction and Overview.md +327 -0
  4. data/F24LS_md/Lecture 10 - Development_.md +631 -0
  5. data/F24LS_md/Lecture 11 - Econometrics.md +345 -0
  6. data/F24LS_md/Lecture 12 - Finance.md +692 -0
  7. data/F24LS_md/Lecture 13 - Environmental Economics.md +299 -0
  8. data/F24LS_md/Lecture 15 - Conclusion.md +272 -0
  9. data/F24LS_md/Lecture 2 - Demand.md +349 -0
  10. data/F24LS_md/Lecture 3 - Supply.md +329 -0
  11. data/F24LS_md/Lecture 5 - Production C-D.md +291 -0
  12. data/F24LS_md/Lecture 6 - Utility and Latex.md +440 -0
  13. data/F24LS_md/Lecture 7 - Inequality.md +607 -0
  14. data/F24LS_md/Lecture 8 - Macroeconomics.md +704 -0
  15. data/F24LS_md/Lecture 8 - Macro.md +700 -0
  16. data/F24LS_md/Lecture 9 - Game Theory_.md +436 -0
  17. data/F24LS_md/summary.yaml +105 -0
  18. data/F24Lec_MD/LecNB_summary.yaml +206 -0
  19. data/F24Lec_MD/lec01/lec01.md +267 -0
  20. data/F24Lec_MD/lec02/Avocados_demand.md +425 -0
  21. data/F24Lec_MD/lec02/Demand_Steps_24.md +126 -0
  22. data/F24Lec_MD/lec02/PriceElasticity.md +83 -0
  23. data/F24Lec_MD/lec02/ScannerData_Beer.md +171 -0
  24. data/F24Lec_MD/lec02/demand-curve-Fa24.md +213 -0
  25. data/F24Lec_MD/lec03/3.0-CubicCostCurve.md +239 -0
  26. data/F24Lec_MD/lec03/3.1-Supply.md +274 -0
  27. data/F24Lec_MD/lec03/3.2-sympy.md +332 -0
  28. data/F24Lec_MD/lec03/3.3a-california-energy.md +120 -0
  29. data/F24Lec_MD/lec03/3.3b-a-really-hot-tuesday.md +121 -0
  30. data/F24Lec_MD/lec04/lec04-CSfromSurvey-closed.md +335 -0
  31. data/F24Lec_MD/lec04/lec04-CSfromSurvey.md +331 -0
  32. data/F24Lec_MD/lec04/lec04-Supply-Demand-closed.md +519 -0
  33. data/F24Lec_MD/lec04/lec04-Supply-Demand.md +514 -0
  34. data/F24Lec_MD/lec04/lec04-four-plot-24.md +34 -0
  35. data/F24Lec_MD/lec04/lec04-four-plot.md +34 -0
  36. data/F24Lec_MD/lec05/Lec5-Cobb-Douglas.md +131 -0
  37. data/F24Lec_MD/lec05/Lec5-CobbD-AER1928.md +283 -0
  38. data/F24Lec_MD/lec06/6.1-Sympy-Differentiation.md +253 -0
  39. data/F24Lec_MD/lec06/6.2-3D-utility.md +287 -0
  40. data/F24Lec_MD/lec06/6.3-QuantEcon-Optimization.md +399 -0
  41. data/F24Lec_MD/lec06/6.4-latex.md +138 -0
  42. data/F24Lec_MD/lec06/6.5-Edgeworth.md +269 -0
  43. data/F24Lec_MD/lec07/7.1-inequality.md +283 -0
  44. data/F24Lec_MD/lec07/7.2-historical-inequality.md +237 -0
  45. data/F24Lec_MD/lec08/macro-fred-api.md +313 -0
  46. data/F24Lec_MD/lec09/lecNB-prisoners-dilemma.md +88 -0
  47. data/F24Lec_MD/lec10/Lec10.2-waterguard.md +401 -0
  48. data/F24Lec_MD/lec10/lec10.1-mapping.md +199 -0
  49. data/F24Lec_MD/lec11/11.1-slr.md +305 -0
  50. data/F24Lec_MD/lec11/11.2-mlr.md +171 -0
  51. data/F24Lec_MD/lec12/Lec12-4-PersonalFinance.md +590 -0
  52. data/F24Lec_MD/lec12/lec12-1_Interest_Payments.md +267 -0
  53. data/F24Lec_MD/lec12/lec12-2-stocks-options.md +235 -0
  54. data/F24Lec_MD/lec13/Co2_ClimateChange.md +139 -0
  55. data/F24Lec_MD/lec13/ConstructingMAC.md +213 -0
  56. data/F24Lec_MD/lec13/EmissionsTracker.md +170 -0
  57. data/F24Lec_MD/lec13/KuznetsHypothesis.md +219 -0
  58. data/F24Lec_MD/lec13/RoslingPlots.md +217 -0
  59. data/F24Lec_MD/lec15/vibecession.md +485 -0
  60. data/F24Textbook_MD/00-intro/index.md +292 -0
  61. data/F24Textbook_MD/01-demand/01-demand.md +152 -0
  62. data/F24Textbook_MD/01-demand/02-example.md +131 -0
  63. data/F24Textbook_MD/01-demand/03-log-log.md +284 -0
  64. data/F24Textbook_MD/01-demand/04-elasticity.md +248 -0
  65. data/F24Textbook_MD/01-demand/index.md +15 -0
  66. data/F24Textbook_MD/02-supply/01-supply.md +203 -0
  67. data/F24Textbook_MD/02-supply/02-eep147-example.md +86 -0
  68. data/F24Textbook_MD/02-supply/03-sympy.md +138 -0
  69. data/F24Textbook_MD/02-supply/04-market-equilibria.md +204 -0
  70. data/F24Textbook_MD/02-supply/index.md +16 -0
  71. data/F24Textbook_MD/03-public/govt-intervention.md +73 -0
  72. data/F24Textbook_MD/03-public/index.md +10 -0
  73. data/F24Textbook_MD/03-public/surplus.md +351 -0
  74. data/F24Textbook_MD/03-public/taxes-subsidies.md +282 -0
  75. data/F24Textbook_MD/04-production/index.md +15 -0
  76. data/F24Textbook_MD/04-production/production.md +178 -0
  77. data/F24Textbook_MD/04-production/shifts.md +296 -0
  78. data/F24Textbook_MD/05-utility/budget-constraints.md +166 -0
  79. data/F24Textbook_MD/05-utility/index.md +15 -0
  80. data/F24Textbook_MD/05-utility/utility.md +136 -0
  81. data/F24Textbook_MD/06-inequality/historical-inequality.md +253 -0
  82. data/F24Textbook_MD/06-inequality/index.md +15 -0
  83. data/F24Textbook_MD/06-inequality/inequality.md +226 -0
  84. data/F24Textbook_MD/07-game-theory/bertrand.md +257 -0
  85. data/F24Textbook_MD/07-game-theory/cournot.md +333 -0
  86. data/F24Textbook_MD/07-game-theory/equilibria-oligopolies.md +96 -0
  87. data/F24Textbook_MD/07-game-theory/expected-utility.md +61 -0
  88. data/F24Textbook_MD/07-game-theory/index.md +19 -0
  89. data/F24Textbook_MD/07-game-theory/python-classes.md +340 -0
  90. data/F24Textbook_MD/08-development/index.md +35 -0
  91. data/F24Textbook_MD/09-macro/CentralBanks.md +101 -0
  92. data/F24Textbook_MD/09-macro/Indicators.md +77 -0
  93. data/F24Textbook_MD/09-macro/fiscal_policy.md +36 -0
  94. data/F24Textbook_MD/09-macro/index.md +14 -0
  95. data/F24Textbook_MD/09-macro/is_curve.md +76 -0
  96. data/F24Textbook_MD/09-macro/phillips_curve.md +70 -0
  97. data/F24Textbook_MD/10-finance/index.md +10 -0
  98. data/F24Textbook_MD/10-finance/options.md +178 -0
  99. data/F24Textbook_MD/10-finance/value-interest.md +60 -0
  100. data/F24Textbook_MD/11-econometrics/index.md +16 -0
  101. data/F24Textbook_MD/11-econometrics/multivariable.md +218 -0
  102. data/F24Textbook_MD/11-econometrics/reading-econ-papers.md +25 -0
  103. data/F24Textbook_MD/11-econometrics/single-variable.md +483 -0
  104. data/F24Textbook_MD/11-econometrics/statsmodels.md +58 -0
  105. data/F24Textbook_MD/12-environmental/KuznetsHypothesis-Copy1.md +187 -0
  106. data/F24Textbook_MD/12-environmental/KuznetsHypothesis.md +187 -0
  107. data/F24Textbook_MD/12-environmental/MAC.md +254 -0
  108. data/F24Textbook_MD/12-environmental/index.md +36 -0
  109. data/F24Textbook_MD/LICENSE.md +11 -0
  110. data/F24Textbook_MD/intro.md +26 -0
  111. data/F24Textbook_MD/references.md +25 -0
  112. data/F24Textbook_MD/summary.yaml +414 -0
  113. metadata +155 -0
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: 4d6a09ff04878518ddcac6c9ce009130e5595eeea07b9597ea58b3f83f0ae35b
4
+ data.tar.gz: bcef97a473fe4062c31612c01442d979d514c144c73f6f0a6f3a38b687b35c57
5
+ SHA512:
6
+ metadata.gz: e8425948b9fea5f18e55dcc95ac7c58c77ee979f5a30bac93987c6cd4899f05c7d077d0110eaadbd5463f96f734e29908251a9f9f0de80967c460ca36fd031a5
7
+ data.tar.gz: b588607ab1aefdd148725a1e68bac34c7dba1e620da19813a36052711c89507817d84531d0f2f52ce58a70d7244deaee984705953285f45567e1c2c3461ecc03
@@ -0,0 +1,347 @@
1
+ ---
2
+ title: " Lecture 4 - Public"
3
+ type: slides
4
+ week: 4
5
+ source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/ Lecture 4 - Public.pptx"
6
+ ---
7
+
8
+ ## Slide 1: Data 88E: Economic Models
9
+
10
+ - Lecture 4: Public
11
+ - Welfare & Government Intervention
12
+
13
+ ## Slide 2: Announcements
14
+
15
+ - Lab 3 will be released today. It is due Tuesday September 25 11:59pm
16
+ - Project 1 is due Tuesday September 25 11:59pm
17
+ - Come to Office Hours for help! Start the Project!
18
+ - Read the Textbook - Especially if you don’t have prior Econ Experience
19
+ - UNITS
20
+ - Graders gave leeway on units this lab
21
+ - Pay attention to units - will lose points in the future
22
+ - Some people used Chat GPT and it was super obvious
23
+ - DON’T USE CHAT GPT for CODE or TEXT ANSWERS
24
+ - Project 1
25
+ - Air BNB
26
+ - Is a little bit longer - get started
27
+
28
+ ## Slide 3: Python Reference
29
+
30
+ - https://www.data8.org/fa24/reference/
31
+
32
+ ## Slide 4: Announcements
33
+
34
+ - Got a few submissions for Lab 1 who used ChatGPT
35
+ - It’s super obvious
36
+ - The answer was much more complicated, used other techniques than we use in class
37
+ - Data 8 syntax is 2-3 lines of code
38
+ - Wrong package
39
+
40
+ ## Slide 5: Meme of the week
41
+
42
+ - student during the school year
43
+ - student during summer internship
44
+
45
+ ## Slide 6: Welfare Analysis - Consumer and Producer Surplus
46
+
47
+ - A consumer surplus is the aggregate (across all consumers) difference between willingness to pay and actual price paid.
48
+ - A producer surplus is the aggregate (across all producers) difference between willingness to receive and actual price received.
49
+ - E.g. If the supply curve decreases, the units originally purchased at a higher price will still be purchased now at a lower price. This price difference is a surplus.
50
+
51
+ ## Slide 7: Switch to first part of Lecture Notebook -
52
+
53
+ - Check out Lecture notebook and let’s walk through the example from Class Demand Lecture
54
+
55
+ ## Slide 8: Lecture Notebook on Surplus
56
+
57
+ - Histogram of Surplus
58
+ - Counting up
59
+ - Graphing a surplus triangle
60
+
61
+ ## Slide 9: (untitled)
62
+
63
+ ## Slide 10: (untitled)
64
+
65
+ ## Slide 11: (untitled)
66
+
67
+ ## Slide 12: (Consumption) Taxes
68
+
69
+ - We will consider only taxes levied on consumption today. These are typically enforced on a state level in the US.
70
+ - Typically they take a few forms:
71
+ - Excise tax: Dollar amount, e.g. 1 dollar per pack of cigarettes
72
+ - Ad valorem tax (sales tax): % amount, e.g. 9% sales tax
73
+
74
+ ## Slide 13: Why Tax? (or provide Subsidies?)
75
+
76
+ - Negative externalities: true cost not reflected in the market transacted price
77
+ - E.g. Pollution, traffic congestion, passive smoking
78
+ - These costs spillover to others!
79
+ - Marginal private cost < marginal social cost (overproduction)
80
+ - Positive externalities: true benefit not reflected in the market transacted price
81
+ - E.g. education, vaccines, Ed questions (public goods)
82
+ - These benefits spillover to others!
83
+ - Marginal private benefit < marginal social benefit
84
+
85
+ ## Slide 14: An aside: Ed
86
+
87
+ - Answering and posting questions is a public good with positive externalities; the market under supplies the good.
88
+ - What is a public good? 2 important attributes:
89
+ - Non-rivalrous: One’s use of the good does not affect another’s use
90
+ - Non-excludable: We cannot prevent anyone from benefiting from the good
91
+ - To correct for positive externalities, typically the government will provide subsidies.
92
+ - Now a couple of people are answering questions on Ed - YAY!
93
+
94
+ ## Slide 15: Positive Externality
95
+
96
+ ## Slide 16: Negative Externality
97
+
98
+ ## Slide 17: Tax on Cigarettes
99
+
100
+ ## Slide 18: Tax to reduce a Negative Externality
101
+
102
+ ## Slide 19: Externalities Graphed
103
+
104
+ - Negative Externality
105
+ - Positive Externality
106
+ - Which good is underproduced? Which good is overproduced?
107
+ - Supply Side
108
+ - Demand Side
109
+
110
+ ## Slide 20: A technicality on variables
111
+
112
+ - Pc := price consumer pays
113
+ - Pp := price producer receives
114
+ - Pc = Pp + tax
115
+ - Quantity demanded: D(Pc)
116
+ - Quantity supplied: S(Pp)
117
+ - In previous weeks without tax, Pc = Pp (which we denoted as P for short), and equilibrium was such that D(Pc) = S(Pp).
118
+ - However, this changes when a third player -- the government -- is introduced!
119
+
120
+ ## Slide 21: Expressing Taxes Mathematically
121
+
122
+ - If the Demand Curve is given by D(Pc) = 2000 - 20Pc and a 4 dollar sales tax is implemented on the consumer, what is the new demand curve?
123
+ - If the Supply Curve is given by S(Pp) = 200 + 15 Pp and a 4 dollar tax is implemented on the producer, what is the new supply curve?
124
+ - D(Pc) = 2000 - 20(Pp+4) = 2000 - 20Pp - 80 = 1920 - 20Pp
125
+ - S(Pp) = 200 + 15 (Pc-4) = 200 + 15Pc - 60 = 140 + 15Pc
126
+ - Pp: amount received by producer
127
+ - Pp+4: amount paid by consumer (Pc)
128
+ - Pc-4: amount received by producer (Pp)
129
+ - Pc: amount paid by consumer
130
+
131
+ ## Slide 22: Graphing Taxes
132
+
133
+ - Mathematically, a tax is a shift in the supply/demand curve due to a change in the intercept.
134
+ - A tax allows us to correct for negative externalities by charging the marginal social cost curve!
135
+
136
+ ## Slide 23: Graphing Taxes (supply side)
137
+
138
+ - Quantity transacted falls from Q to Q’
139
+ - Pc paid by consumers
140
+ - Pp received by producers
141
+ - Tax = Pc - Pp
142
+ - CS and PS are reduced
143
+ - Deadweight loss: area of surplus that no longer exists, due to less units being transacted
144
+
145
+ ## Slide 24: Incidence of Tax
146
+
147
+ - Statutory Incidence: the side that is legally responsible for paying the tax
148
+ - Economic Incidence: side that bears the burden of the tax.
149
+ - We can measure who bears the burden of the tax by comparing the amount being received/paid by producers/consumers to the original price.
150
+ - Statutory incidence is independent of economic incidence!
151
+ - i.e. a tax that is levied on consumers will have the same burden as the same tax levied on producers.
152
+
153
+ ## Slide 25: Economic Incidence Depends on Elasticities
154
+
155
+ - Inelastic Demand
156
+ - Elastic Demand
157
+ - If demand is more elastic, will consumers or producers bear more of the burden of the tax?
158
+
159
+ ## Slide 26: An Example (I)
160
+
161
+ - The demand for rutabagas is:
162
+ - D(Pc) = 2000 − 100Pc
163
+ - The supply of rutabagas is:
164
+ - S(Pp) = −100 + 200Pp
165
+ - What is the equilibrium price without the tax?
166
+
167
+ ## Slide 27: An Example (I)
168
+
169
+ - The demand for rutabagas is:
170
+ - D(Pc) = 2000 − 100Pc
171
+ - The supply of rutabagas is:
172
+ - S(Pp) = −100 + 200Pp
173
+ - What is the equilibrium price without the tax?
174
+ - Pp = Pc = P
175
+ - 2000 - 100P = -100 + 200 P
176
+ - P = 7
177
+
178
+ ## Slide 28: An Example (II)
179
+
180
+ - What is the equilibrium price with a per unit $2 sales tax?
181
+
182
+ ## Slide 29: An Example (II)
183
+
184
+ - What is the equilibrium price with a per unit $2 sales tax?
185
+ - 2000 - 100Pc = -100 + 200 Pp
186
+ - 2000 - 100(Pp+2) = -100 + 200Pp
187
+ - Pp = 6.33
188
+ - Pc = 6.33 + 2 = 8.33
189
+
190
+ ## Slide 30: An Example (III)
191
+
192
+ - What are the tax burdens on the consumer and producer?
193
+
194
+ ## Slide 31: An Example (III)
195
+
196
+ - What are the tax burdens on the consumer and producer?
197
+ - Consumer: New price paid - Old price paid = 8.33 - 7 = 1.33
198
+ - Producer: Old price received - New price received = 7 - 6.33 = 0.67
199
+ - The consumer bears ⅔ of the total burden of the tax
200
+
201
+ ## Slide 32: An Example (IV)
202
+
203
+ - What is change in quantity transacted due to the tax?
204
+
205
+ ## Slide 33: An Example (IV)
206
+
207
+ - What is change in quantity transacted due to the tax?
208
+ - Originally, Q = 2000 - 100Pc = 2000 - 100\*7 = 1300
209
+ - Now, Q = 2000 - 100Pc = 2000 - 100\*8.33 = 1167
210
+ - 1300 - 1167 = 133
211
+ - We can also plug in Pp into the supply equation and get the same results
212
+
213
+ ## Slide 34: Let’s put it all together in the Notebook - with sliders
214
+
215
+ ## Slide 35: Graph 1
216
+
217
+ ## Slide 36: Graph 1 - sliders with 3 questions
218
+
219
+ - Price Start does nothing
220
+ - Supply shifts Slope
221
+ - Demand shifts Intercept
222
+ - Intercept shift - no change in shares
223
+ - Slope Shifts - change in relative shares
224
+
225
+ ## Slide 37: Lab - Are Consumers Aware of Taxes?
226
+
227
+ - Raj Chetty, Adam Looney, and Kory Kroft (AER 2010) seek to answer this
228
+ - “We find that posting tax-inclusive price tags reduces demand by 8 percent.”
229
+ - US vs Europe?
230
+
231
+ ## Slide 38: Journal article
232
+
233
+ - Raj Chetty was at Berkeley
234
+ - 2003-2009
235
+
236
+ ## Slide 39: Reproducibility
237
+
238
+ - AER website
239
+
240
+ ## Slide 40: Dataset in replication repository
241
+
242
+ ## Slide 41: Replication Data ( ~2009 version)
243
+
244
+ ## Slide 42: Price Controls
245
+
246
+ - Price Ceilings
247
+ - Forcibly lower prices:
248
+ - price ceiling < equilibrium price
249
+ - Creates a shortage
250
+ - E.g. rent control
251
+ - Price Floors
252
+ - Forcible raise prices
253
+ - price floor > equilibrium price
254
+ - Creates a surplus
255
+ - E.g. minimum wage
256
+
257
+ ## Slide 43: World Trade vs. Autarky
258
+
259
+ - Autarky: A state of economic self-sufficiency
260
+ - World trade: constant world price is introduced to the market
261
+ - What happens to: consumer surplus? Producer surplus? Total surplus?
262
+
263
+ ## Slide 44: What are the benefits of free trade?
264
+
265
+ - Increases consumer surplus
266
+ - Can increase GDP and drive growth
267
+ - Encourages specialization
268
+ - Increases efficiency and tech transfer
269
+ - Encourages innovation
270
+
271
+ <details><summary>Speaker notes</summary>
272
+
273
+ Image: https://www.newint.com.au/blog/wp-content/uploads/2012/03/free-trade-agreements2.jpg
274
+
275
+ </details>
276
+
277
+ ## Slide 45: Not everything is rosy with free trade...
278
+
279
+ - Loss of outsourced jobs, leading to economic stagnation in certain areas
280
+ - Exploitation of developing countries
281
+ - Is specialization in low costs to pollute sustainable?
282
+ - Countries have Industrial Policies to favor indsustries
283
+
284
+ <details><summary>Speaker notes</summary>
285
+
286
+ Image source: https://econfix.files.wordpress.com/2016/06/free-trade.jpg?w=404&h=296
287
+
288
+ </details>
289
+
290
+ ## Slide 46: US Steel - Nippon Steel's $14.9 billion bid for U.S. Steel
291
+
292
+ ## Slide 47: (untitled)
293
+
294
+ - https://www.technologyreview.com/2023/02/21/1068880/how-did-china-dominate-electric-cars-policy/
295
+
296
+ ## Slide 48: Protectionism: Tariffs
297
+
298
+ - Tariffs: ‘an excise tax’ on imported goods
299
+ - What happens to:
300
+ - Consumer surplus?
301
+ - Producer surplus?
302
+ - Total surplus?
303
+ - Government revenue?
304
+ - Imports?
305
+
306
+ ## Slide 49: Protectionism: Quotas
307
+
308
+ - Quotas: limits the quantity a good can be imported
309
+ - What happens to:
310
+ - Consumer surplus?
311
+ - Producer surplus?
312
+ - Total surplus?
313
+ - Government revenue?
314
+ - Imports?
315
+
316
+ <details><summary>Speaker notes</summary>
317
+
318
+ Image source: https://www.economicsonline.co.uk/Global\_economics/Tariffs\_and\_quotas.html
319
+
320
+ </details>
321
+
322
+ ## Slide 50: One more Lecture Notebook
323
+
324
+ - Four Plot notebook with sliders
325
+
326
+ ## Slide 51: AirBNB
327
+
328
+ ## Slide 52: (untitled)
329
+
330
+ ## Slide 53: AirBnB - other data companies AirDNA
331
+
332
+ - https://www.airdna.co/airbnb-pricing-tool
333
+
334
+ ## Slide 54: AirBnb - activist data website - Project 1 data!
335
+
336
+ - http://insideairbnb.com/san-francisco
337
+
338
+ ## Slide 55: Summary Data from Scraped Info
339
+
340
+ ## Slide 56: Global Issue
341
+
342
+ ## Slide 57: AirBNB
343
+
344
+ - https://news.airbnb.com/wp-content/uploads/sites/4/2020/06/Project-Lighthouse-Airbnb-2020-06-12.pdf
345
+
346
+ ## Slide 58: Hiring Lots of Data Scientists
347
+
@@ -0,0 +1,327 @@
1
+ ---
2
+ title: "Lecture 1 - Introduction and Overview"
3
+ type: slides
4
+ week: 1
5
+ source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/Lecture 1 - Introduction and Overview.pptx"
6
+ ---
7
+
8
+ ## Slide 1: Data 88E: Economic Models
9
+
10
+ - Lecture 1: Introduction and Overview
11
+
12
+ ## Slide 2: A fun aside - the logo derived from stonks meme
13
+
14
+ ## Slide 3: TL;DR of the course
15
+
16
+ - Examine economics concepts through real-world data and data science methods.
17
+ - Motivate economics topics through modeling
18
+ - Practice Python skills while learning economics concepts.
19
+ - 9th time being offered!
20
+
21
+ ## Slide 4: Jupyter as inspiration
22
+
23
+ - Almost everything you’ll do will be in Jupyter, using Python.
24
+ - Textbook
25
+ - The textbook is compiled and structured via Jupyter Books, with each page written using Jupyter Notebooks
26
+ - Interactivity
27
+ - Jupyter Notebooks facilitates interactive computing, encouraging learning by doing and tinkering. This applies to the textbook too!
28
+ - Data Centric
29
+ - Jupyter Notebooks were built to conduct data analysis.
30
+ - The course is an open source project - you too can collaborate!
31
+
32
+ ## Slide 5: Why should I take this course?
33
+
34
+ - Student Instructors: We built this course to be a class that we wish we could’ve taken when we were Freshmen or Sophomores. Essentially, it’s everything related to data science & economics that we wish we would’ve known a couple years ago.
35
+ - This course will:
36
+ - Prepare students for upper division economics courses and research.
37
+ - Apply data science, computation, and visualization techniques to the field of economics based on real world data.
38
+ - Survey economics subdomains including financial economics, development economics, macroeconomic policy, econometrics, and more.
39
+ - Motivate modeling, the use of tools and techniques, explore the intersection of economics and data science.
40
+
41
+ ## Slide 6: Prerequisites
42
+
43
+ - Data 8, or some basic programming/data science equivalent (e.g. STAT 20 w/ R).
44
+ - It will be harder to follow on, and succeed, if you do not have Data 8.
45
+ - Specifically there is a package datascience
46
+ - with Table commands
47
+ - Economics coursework is not necessary, but will be helpful.
48
+ - Python experience will be fundamental
49
+ - If you are a Concurrent Enrollment student - you may have to decide for yourself!
50
+ - Look at last year’s class assignments
51
+ - Look at Data 8 assignments
52
+
53
+ ## Slide 7: What is a connector course?
54
+
55
+ - The design of the course is for 1st/2nd year students - who are currently or recently taken Data 8 - https://www.data8.org/
56
+ - Linked to topics and pace of Data 8
57
+ - Connectors give a domain specific application of Data 8 toolset
58
+ - If you haven’t taken Data 8 - the Data 8 textbook is also useful
59
+ - https://inferentialthinking.com/chapters/intro.html
60
+ - There is a lot behind these materials that we weren’t able to fit into the course.
61
+ - Find a study group - come to office hours
62
+ - Ask questions on Ed for other students to answer?
63
+
64
+ ## Slide 8: Will I be challenged?
65
+
66
+ - If you are a junior/senior with a programming background or have taken advanced upper division Econ classes, this course will be pretty easy. As a result, we expect you to:
67
+ - Go above and beyond in the labs, dig into the programming and routines beyond just clicking through the notebooks.
68
+ - Read the papers behind the materials in the class.
69
+ - Think about the limitations in our presented methods.
70
+ - Use these labs as a starting point and try some programming on your own.
71
+ - There is a lot behind these materials that we weren’t able to fit into the course.
72
+ - Help other students out - You can learn by teaching!
73
+ - We get scores from Ed discussions on who answers other’s questions
74
+
75
+ ## Slide 9: You better help other students
76
+
77
+ - You better help other students
78
+
79
+ ## Slide 10: A Caveat
80
+
81
+ - This class a work in progress - while we’ve offered it for several semesters now, we’re still looking to continue improving on the content!
82
+ - Basically it’s complicated, lots of complicated labs
83
+ - You will help to participate, give feedback, and improve the course!
84
+ - Hybrid Instruction in uncertain times - we have no idea how the semester will play out: Omicron, COVID, Power Shutoff, People’s Park
85
+
86
+ ## Slide 11: Fall Semester Hex - back in my day
87
+
88
+ ## Slide 12: Data Paradise
89
+
90
+ - You will be in data paradise this semester. We will largely clean the data for you.
91
+ - After this class, expect to experience Paradise Lost.
92
+ - “[Data scientist] respondents reported they spent most of their time cleaning data (60 percent), and [noted the] task to be the least enjoyable part of their job (57 percent).”
93
+ - We would’ve liked to teach data cleaning as well in this course, but there simply wasn’t enough time :(
94
+
95
+ ## Slide 13: Expectations for in person instruction
96
+
97
+ - This class is planned being taught in person. In case you cannot make it to class due to an emergency, please make a private Ed post explaining why by 11:59 pm on the Tuesday before lecture. If your excuse is legitimate, we will give an alternative method for you to make up the lecture.
98
+ - DO NOT COME if you are sick
99
+
100
+ ## Slide 14: Student Instruction!
101
+
102
+ - This class is created by students who were interested in these topics.
103
+ - Students teach some of the classes! Or part of the classes!
104
+ - Bennett - Macro
105
+ - Peter - Environmental
106
+ - Guest Speakers
107
+ - And the class evolves and changes every semester:
108
+ - Bear with us if it’s bumpy
109
+
110
+ ## Slide 15: Course Website: data88e.org
111
+
112
+ - https://data88e.org/fa24/
113
+ - Readings - Textbook
114
+ - Lecture Slides
115
+ - Lecture Notebook
116
+ - Links to Labs / Projects
117
+ - You don't have to do Lecture NB
118
+ - But you will learn more if you do
119
+ - There is no Bcourses for this class
120
+
121
+ ## Slide 16: Online platforms
122
+
123
+ - Course website (https://www.data88e.org/sp24/)
124
+ - Where all lectures, assignments, and discussions are posted.
125
+ - Course textbook (https://data88e.org/textbook/content/intro.html)
126
+ - Course textbook
127
+ - DataHub (datahub.berkeley.edu)
128
+ - Where you will work on all assignments (links on the course website automatically take you here).
129
+ - Ed (https://edstem.org/us/courses/64772/discussion/)
130
+ - A place to ask and answer questions about assignments and concepts.
131
+ - Where all announcements are posted (exam logistics, new assignment released, etc).
132
+ - Gradescope (gradescope.com, added via roster)
133
+ - Where all assignments are submitted, and where all of your grades in this course will live.
134
+ - Kaltura (https://kaltura.berkeley.edu/my-channels)
135
+ - Video recording of Lectures
136
+ - PollEV (PollEv.com/ericvandusen)
137
+ - In class Polling and Attendance Check. These all have to sync / LTI so be patient
138
+
139
+ ## Slide 17: Eric Van Dusen
140
+
141
+ - Not a Data Scientist!
142
+ - PhD in Agricultural and Resource Economics - UC Davis
143
+ - Worked on research projects in Economics and Ag Economics
144
+ - Taught 2 Data Science Connectors
145
+ - Economic Development
146
+ - Reproducibility and Open Science
147
+ - Teaching Honors Thesis Seminar
148
+ - Economics 148 in Spring
149
+ - ericvd@berkeley.edu
150
+
151
+ ## Slide 18: Eric Van Dusen
152
+
153
+ - I am also staff in Data Science Undergraduate Studies
154
+ - Helped to build Major and Minor
155
+ - Lead on Data Science Connectors
156
+ - Lead on Data Science Modules - Curriculum
157
+ - Working on Outreach - e.g. Data 8 at Community Colleges
158
+ - Come and work with us if you are interested
159
+ - Motivation to make these tools more widely used
160
+ - Break down the static textbook/slides paradigm
161
+ - Working with other Econ Faculty… EEP 147, ECON 172
162
+ - Several years working with Econ 140 - Econometrics
163
+ - If you have Econ classes that need Jupyter - let us know!
164
+
165
+ ## Slide 19: Econ 148 - https://www.econ148.org/sp24/
166
+
167
+ - Econ department commissioned a class
168
+ - New class in Spring 23
169
+ - Will be taught again in Spring 24
170
+ - Pandas
171
+ - API
172
+ - SQL
173
+ - ML
174
+ - Time Series
175
+
176
+ ## Slide 20: Concurrent Enrollment - Gradescope and Ed
177
+
178
+ - Berkeley Students have priority (and like to shop)
179
+ - You will probably get in if there are enough seats in the room
180
+ - After admitted you will get added to Gradescope and Ed as the rosters sync
181
+
182
+ ## Slide 21: Grading
183
+
184
+ - Attendance (13): 20%
185
+ - Labs (10): 40%
186
+ - Projects (4): 40%
187
+
188
+ ## Slide 22: Participation is 20% of your grade
189
+
190
+ - In Person attendance is expected / compulsory
191
+ - Option 1: Attend In person lecture - and complete Quiz / Poll
192
+ - There will be random class sessions where there will be an in person exit ticket.
193
+ - Option 2 - if you have a Ed approved excuse: Watch recorded lecture videos and take Gradescope quiz.
194
+
195
+ ## Slide 23: Labs
196
+
197
+ - Labs are released in lecture (Wednesdays) and due Tues at 11:59pm.
198
+ - Refer to the website (https://data88e.org/fa24/policies) for the late policy
199
+ - Labs should take approx. 2-3 hours each week. We might begin the lab in lecture but it is expected that you will finish it on your own time.
200
+ - Labs are graded on accuracy, not completion. There will be hidden tests.
201
+ - We encourage you to come to office hours and post on Ed for help!
202
+ - We encourage you to help each other without copying
203
+ - There is no lab today.
204
+
205
+ ## Slide 24: Projects
206
+
207
+ - Projects are released after lecture (Wednesdays) and due the second or third Tuesday at 11:59pm, meaning you have 2-3 weeks to work on them
208
+ - Refer to the website (https://data88e.org/fa24/policies/) for the late policy
209
+ - The projects will be similar in difficulty to that of Data 8, but a little bit shorter. Projects may go over new concepts.
210
+ - We encourage you to come to office hours and post on Ed for help!
211
+ - Ed Mega Threads for each project.
212
+
213
+ ## Slide 25: Infrastructure and Support
214
+
215
+ - Ed: ask your questions here!
216
+ - Public Good - answer other people’s questions!
217
+ - Search through other people’s questions
218
+ - Course staff updates ( eg if there are mistakes on our side)
219
+ - Ed offers us metrics of engagement - answering on Ed can help your participation grade
220
+ - Gradescope: make sure you are enrolled to submit assignments!
221
+ - Autograding of Notebooks is part of the workflow
222
+ - Run all cells in order / download zip / upload to GS
223
+
224
+ ## Slide 26: Office Hours
225
+
226
+ - Office Hours / Lab Time:
227
+ - Justin and Bennett: Monday 2-4PM and Tuesday 12-2PM at Warren 101A
228
+ - Online OH TBA on Ed
229
+ - Professor: I will try to come to Tuesday OH and
230
+ - By appointment (email ericvd@berkeley.edu)
231
+
232
+ ## Slide 27: Infrastructure and Support
233
+
234
+ ## Slide 28: Policies
235
+
236
+ - Please do not plagiarize. This is against the code of conduct.
237
+ - We encourage working and studying with fellow classmates, but all work you turn in must ultimately be your own.
238
+ - For a comprehensive list of the course policies, please refer to the course website (https://data88e.org/fa23/policies/).
239
+ - ChatGPT - Gemini - Generative AI !?!
240
+ - You are here to learn Python Data Science
241
+ - You are here to learn Economics
242
+ - Learning the basics matters
243
+ - It may give you the wrong answers
244
+ - - autograder is picky, expecting a certain set of commands
245
+ - Sometimes the answers are super obvoius
246
+
247
+ ## Slide 29: Our Team
248
+
249
+ - Bennett Somerville
250
+ - Computer Science
251
+ - Justin Wang
252
+ - Data Science &
253
+ - Economics
254
+
255
+ ## Slide 30: Testimonials from Previous Students
256
+
257
+ - Bennett
258
+ - Justin
259
+
260
+ ## Slide 31: Metacognition ~ Praxis ~ Process of Learning
261
+
262
+ - Tools built for reproducibility are powerful for pedagogy
263
+ - Key elements of Open Science in teaching
264
+ - Data Science curriculum built on Open Source tools
265
+ - Explicit and Implicit Learning
266
+ - First year students learn Jupyter/ Numpy ~ bridge to more
267
+ - Teaching staff learn Github / open publishing
268
+ - Open Source - Scientific Python ecosystem
269
+ - Inter-related web of software
270
+ - “Notebook based instruction” - is it an evolution in how we teach?
271
+
272
+ <details><summary>Speaker notes</summary>
273
+
274
+ Balaji
275
+
276
+ </details>
277
+
278
+ ## Slide 32: Demo - Financial Benefits of a Major
279
+
280
+ ## Slide 33: https://github.com/fivethirtyeight/data/tree/master/college-majors
281
+
282
+ ## Slide 34: All Grads: https://career.berkeley.edu/start-exploring/where-do-cal-grads-go/
283
+
284
+ ## Slide 35: Econ Grads:
285
+
286
+ - Econ Grads:
287
+
288
+ ## Slide 36: Data Science Grads:
289
+
290
+ ## Slide 37: Lets go to the Lab - Earnings by Major
291
+
292
+ - Cal First Destination survey - from 2019
293
+ - ACS - American Community Survey
294
+ - Selection of those 28 and younger
295
+ - Data need to be merged by majors! Different sets of majors
296
+ - EECS
297
+ - Data Science ( Data Analytics, Data Engineering)
298
+ - Earnings of Majors - Over time
299
+
300
+ ## Slide 38: CS Majors
301
+
302
+ - 331 responses
303
+ - Avg Salary $107k
304
+
305
+ ## Slide 39: What’s up with Music
306
+
307
+ - Music majors at Berkeley?
308
+
309
+ ## Slide 40: Outcomes by Major
310
+
311
+ - https://www.universityofcalifornia.edu/infocenter/berkeley-outcomes
312
+
313
+ ## Slide 41: Research in Higher Education - role of UC
314
+
315
+ ## Slide 42: Economics Majors earn more?
316
+
317
+ ## Slide 43: GPA cutoffs for a major lead to lower shares of URM
318
+
319
+ ## Slide 44: Amal Bhatnagar!
320
+
321
+ - DS and Econ 2021
322
+ - CDSS News story -
323
+
324
+ ## Slide 45: https://sites.google.com/berkeley.edu/datascienceineconomics
325
+
326
+ - Data Science in Undergraduate Economics Workshop
327
+