my-markdown-library 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/F24LS_md/ Lecture 4 - Public.md +347 -0
- data/F24LS_md/Lecture 1 - Introduction and Overview.md +327 -0
- data/F24LS_md/Lecture 10 - Development_.md +631 -0
- data/F24LS_md/Lecture 11 - Econometrics.md +345 -0
- data/F24LS_md/Lecture 12 - Finance.md +692 -0
- data/F24LS_md/Lecture 13 - Environmental Economics.md +299 -0
- data/F24LS_md/Lecture 15 - Conclusion.md +272 -0
- data/F24LS_md/Lecture 2 - Demand.md +349 -0
- data/F24LS_md/Lecture 3 - Supply.md +329 -0
- data/F24LS_md/Lecture 5 - Production C-D.md +291 -0
- data/F24LS_md/Lecture 6 - Utility and Latex.md +440 -0
- data/F24LS_md/Lecture 7 - Inequality.md +607 -0
- data/F24LS_md/Lecture 8 - Macroeconomics.md +704 -0
- data/F24LS_md/Lecture 8 - Macro.md +700 -0
- data/F24LS_md/Lecture 9 - Game Theory_.md +436 -0
- data/F24LS_md/summary.yaml +105 -0
- data/F24Lec_MD/LecNB_summary.yaml +206 -0
- data/F24Lec_MD/lec01/lec01.md +267 -0
- data/F24Lec_MD/lec02/Avocados_demand.md +425 -0
- data/F24Lec_MD/lec02/Demand_Steps_24.md +126 -0
- data/F24Lec_MD/lec02/PriceElasticity.md +83 -0
- data/F24Lec_MD/lec02/ScannerData_Beer.md +171 -0
- data/F24Lec_MD/lec02/demand-curve-Fa24.md +213 -0
- data/F24Lec_MD/lec03/3.0-CubicCostCurve.md +239 -0
- data/F24Lec_MD/lec03/3.1-Supply.md +274 -0
- data/F24Lec_MD/lec03/3.2-sympy.md +332 -0
- data/F24Lec_MD/lec03/3.3a-california-energy.md +120 -0
- data/F24Lec_MD/lec03/3.3b-a-really-hot-tuesday.md +121 -0
- data/F24Lec_MD/lec04/lec04-CSfromSurvey-closed.md +335 -0
- data/F24Lec_MD/lec04/lec04-CSfromSurvey.md +331 -0
- data/F24Lec_MD/lec04/lec04-Supply-Demand-closed.md +519 -0
- data/F24Lec_MD/lec04/lec04-Supply-Demand.md +514 -0
- data/F24Lec_MD/lec04/lec04-four-plot-24.md +34 -0
- data/F24Lec_MD/lec04/lec04-four-plot.md +34 -0
- data/F24Lec_MD/lec05/Lec5-Cobb-Douglas.md +131 -0
- data/F24Lec_MD/lec05/Lec5-CobbD-AER1928.md +283 -0
- data/F24Lec_MD/lec06/6.1-Sympy-Differentiation.md +253 -0
- data/F24Lec_MD/lec06/6.2-3D-utility.md +287 -0
- data/F24Lec_MD/lec06/6.3-QuantEcon-Optimization.md +399 -0
- data/F24Lec_MD/lec06/6.4-latex.md +138 -0
- data/F24Lec_MD/lec06/6.5-Edgeworth.md +269 -0
- data/F24Lec_MD/lec07/7.1-inequality.md +283 -0
- data/F24Lec_MD/lec07/7.2-historical-inequality.md +237 -0
- data/F24Lec_MD/lec08/macro-fred-api.md +313 -0
- data/F24Lec_MD/lec09/lecNB-prisoners-dilemma.md +88 -0
- data/F24Lec_MD/lec10/Lec10.2-waterguard.md +401 -0
- data/F24Lec_MD/lec10/lec10.1-mapping.md +199 -0
- data/F24Lec_MD/lec11/11.1-slr.md +305 -0
- data/F24Lec_MD/lec11/11.2-mlr.md +171 -0
- data/F24Lec_MD/lec12/Lec12-4-PersonalFinance.md +590 -0
- data/F24Lec_MD/lec12/lec12-1_Interest_Payments.md +267 -0
- data/F24Lec_MD/lec12/lec12-2-stocks-options.md +235 -0
- data/F24Lec_MD/lec13/Co2_ClimateChange.md +139 -0
- data/F24Lec_MD/lec13/ConstructingMAC.md +213 -0
- data/F24Lec_MD/lec13/EmissionsTracker.md +170 -0
- data/F24Lec_MD/lec13/KuznetsHypothesis.md +219 -0
- data/F24Lec_MD/lec13/RoslingPlots.md +217 -0
- data/F24Lec_MD/lec15/vibecession.md +485 -0
- data/F24Textbook_MD/00-intro/index.md +292 -0
- data/F24Textbook_MD/01-demand/01-demand.md +152 -0
- data/F24Textbook_MD/01-demand/02-example.md +131 -0
- data/F24Textbook_MD/01-demand/03-log-log.md +284 -0
- data/F24Textbook_MD/01-demand/04-elasticity.md +248 -0
- data/F24Textbook_MD/01-demand/index.md +15 -0
- data/F24Textbook_MD/02-supply/01-supply.md +203 -0
- data/F24Textbook_MD/02-supply/02-eep147-example.md +86 -0
- data/F24Textbook_MD/02-supply/03-sympy.md +138 -0
- data/F24Textbook_MD/02-supply/04-market-equilibria.md +204 -0
- data/F24Textbook_MD/02-supply/index.md +16 -0
- data/F24Textbook_MD/03-public/govt-intervention.md +73 -0
- data/F24Textbook_MD/03-public/index.md +10 -0
- data/F24Textbook_MD/03-public/surplus.md +351 -0
- data/F24Textbook_MD/03-public/taxes-subsidies.md +282 -0
- data/F24Textbook_MD/04-production/index.md +15 -0
- data/F24Textbook_MD/04-production/production.md +178 -0
- data/F24Textbook_MD/04-production/shifts.md +296 -0
- data/F24Textbook_MD/05-utility/budget-constraints.md +166 -0
- data/F24Textbook_MD/05-utility/index.md +15 -0
- data/F24Textbook_MD/05-utility/utility.md +136 -0
- data/F24Textbook_MD/06-inequality/historical-inequality.md +253 -0
- data/F24Textbook_MD/06-inequality/index.md +15 -0
- data/F24Textbook_MD/06-inequality/inequality.md +226 -0
- data/F24Textbook_MD/07-game-theory/bertrand.md +257 -0
- data/F24Textbook_MD/07-game-theory/cournot.md +333 -0
- data/F24Textbook_MD/07-game-theory/equilibria-oligopolies.md +96 -0
- data/F24Textbook_MD/07-game-theory/expected-utility.md +61 -0
- data/F24Textbook_MD/07-game-theory/index.md +19 -0
- data/F24Textbook_MD/07-game-theory/python-classes.md +340 -0
- data/F24Textbook_MD/08-development/index.md +35 -0
- data/F24Textbook_MD/09-macro/CentralBanks.md +101 -0
- data/F24Textbook_MD/09-macro/Indicators.md +77 -0
- data/F24Textbook_MD/09-macro/fiscal_policy.md +36 -0
- data/F24Textbook_MD/09-macro/index.md +14 -0
- data/F24Textbook_MD/09-macro/is_curve.md +76 -0
- data/F24Textbook_MD/09-macro/phillips_curve.md +70 -0
- data/F24Textbook_MD/10-finance/index.md +10 -0
- data/F24Textbook_MD/10-finance/options.md +178 -0
- data/F24Textbook_MD/10-finance/value-interest.md +60 -0
- data/F24Textbook_MD/11-econometrics/index.md +16 -0
- data/F24Textbook_MD/11-econometrics/multivariable.md +218 -0
- data/F24Textbook_MD/11-econometrics/reading-econ-papers.md +25 -0
- data/F24Textbook_MD/11-econometrics/single-variable.md +483 -0
- data/F24Textbook_MD/11-econometrics/statsmodels.md +58 -0
- data/F24Textbook_MD/12-environmental/KuznetsHypothesis-Copy1.md +187 -0
- data/F24Textbook_MD/12-environmental/KuznetsHypothesis.md +187 -0
- data/F24Textbook_MD/12-environmental/MAC.md +254 -0
- data/F24Textbook_MD/12-environmental/index.md +36 -0
- data/F24Textbook_MD/LICENSE.md +11 -0
- data/F24Textbook_MD/intro.md +26 -0
- data/F24Textbook_MD/references.md +25 -0
- data/F24Textbook_MD/summary.yaml +414 -0
- metadata +155 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 4d6a09ff04878518ddcac6c9ce009130e5595eeea07b9597ea58b3f83f0ae35b
|
4
|
+
data.tar.gz: bcef97a473fe4062c31612c01442d979d514c144c73f6f0a6f3a38b687b35c57
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: e8425948b9fea5f18e55dcc95ac7c58c77ee979f5a30bac93987c6cd4899f05c7d077d0110eaadbd5463f96f734e29908251a9f9f0de80967c460ca36fd031a5
|
7
|
+
data.tar.gz: b588607ab1aefdd148725a1e68bac34c7dba1e620da19813a36052711c89507817d84531d0f2f52ce58a70d7244deaee984705953285f45567e1c2c3461ecc03
|
@@ -0,0 +1,347 @@
|
|
1
|
+
---
|
2
|
+
title: " Lecture 4 - Public"
|
3
|
+
type: slides
|
4
|
+
week: 4
|
5
|
+
source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/ Lecture 4 - Public.pptx"
|
6
|
+
---
|
7
|
+
|
8
|
+
## Slide 1: Data 88E: Economic Models
|
9
|
+
|
10
|
+
- Lecture 4: Public
|
11
|
+
- Welfare & Government Intervention
|
12
|
+
|
13
|
+
## Slide 2: Announcements
|
14
|
+
|
15
|
+
- Lab 3 will be released today. It is due Tuesday September 25 11:59pm
|
16
|
+
- Project 1 is due Tuesday September 25 11:59pm
|
17
|
+
- Come to Office Hours for help! Start the Project!
|
18
|
+
- Read the Textbook - Especially if you don’t have prior Econ Experience
|
19
|
+
- UNITS
|
20
|
+
- Graders gave leeway on units this lab
|
21
|
+
- Pay attention to units - will lose points in the future
|
22
|
+
- Some people used Chat GPT and it was super obvious
|
23
|
+
- DON’T USE CHAT GPT for CODE or TEXT ANSWERS
|
24
|
+
- Project 1
|
25
|
+
- Air BNB
|
26
|
+
- Is a little bit longer - get started
|
27
|
+
|
28
|
+
## Slide 3: Python Reference
|
29
|
+
|
30
|
+
- https://www.data8.org/fa24/reference/
|
31
|
+
|
32
|
+
## Slide 4: Announcements
|
33
|
+
|
34
|
+
- Got a few submissions for Lab 1 who used ChatGPT
|
35
|
+
- It’s super obvious
|
36
|
+
- The answer was much more complicated, used other techniques than we use in class
|
37
|
+
- Data 8 syntax is 2-3 lines of code
|
38
|
+
- Wrong package
|
39
|
+
|
40
|
+
## Slide 5: Meme of the week
|
41
|
+
|
42
|
+
- student during the school year
|
43
|
+
- student during summer internship
|
44
|
+
|
45
|
+
## Slide 6: Welfare Analysis - Consumer and Producer Surplus
|
46
|
+
|
47
|
+
- A consumer surplus is the aggregate (across all consumers) difference between willingness to pay and actual price paid.
|
48
|
+
- A producer surplus is the aggregate (across all producers) difference between willingness to receive and actual price received.
|
49
|
+
- E.g. If the supply curve decreases, the units originally purchased at a higher price will still be purchased now at a lower price. This price difference is a surplus.
|
50
|
+
|
51
|
+
## Slide 7: Switch to first part of Lecture Notebook -
|
52
|
+
|
53
|
+
- Check out Lecture notebook and let’s walk through the example from Class Demand Lecture
|
54
|
+
|
55
|
+
## Slide 8: Lecture Notebook on Surplus
|
56
|
+
|
57
|
+
- Histogram of Surplus
|
58
|
+
- Counting up
|
59
|
+
- Graphing a surplus triangle
|
60
|
+
|
61
|
+
## Slide 9: (untitled)
|
62
|
+
|
63
|
+
## Slide 10: (untitled)
|
64
|
+
|
65
|
+
## Slide 11: (untitled)
|
66
|
+
|
67
|
+
## Slide 12: (Consumption) Taxes
|
68
|
+
|
69
|
+
- We will consider only taxes levied on consumption today. These are typically enforced on a state level in the US.
|
70
|
+
- Typically they take a few forms:
|
71
|
+
- Excise tax: Dollar amount, e.g. 1 dollar per pack of cigarettes
|
72
|
+
- Ad valorem tax (sales tax): % amount, e.g. 9% sales tax
|
73
|
+
|
74
|
+
## Slide 13: Why Tax? (or provide Subsidies?)
|
75
|
+
|
76
|
+
- Negative externalities: true cost not reflected in the market transacted price
|
77
|
+
- E.g. Pollution, traffic congestion, passive smoking
|
78
|
+
- These costs spillover to others!
|
79
|
+
- Marginal private cost < marginal social cost (overproduction)
|
80
|
+
- Positive externalities: true benefit not reflected in the market transacted price
|
81
|
+
- E.g. education, vaccines, Ed questions (public goods)
|
82
|
+
- These benefits spillover to others!
|
83
|
+
- Marginal private benefit < marginal social benefit
|
84
|
+
|
85
|
+
## Slide 14: An aside: Ed
|
86
|
+
|
87
|
+
- Answering and posting questions is a public good with positive externalities; the market under supplies the good.
|
88
|
+
- What is a public good? 2 important attributes:
|
89
|
+
- Non-rivalrous: One’s use of the good does not affect another’s use
|
90
|
+
- Non-excludable: We cannot prevent anyone from benefiting from the good
|
91
|
+
- To correct for positive externalities, typically the government will provide subsidies.
|
92
|
+
- Now a couple of people are answering questions on Ed - YAY!
|
93
|
+
|
94
|
+
## Slide 15: Positive Externality
|
95
|
+
|
96
|
+
## Slide 16: Negative Externality
|
97
|
+
|
98
|
+
## Slide 17: Tax on Cigarettes
|
99
|
+
|
100
|
+
## Slide 18: Tax to reduce a Negative Externality
|
101
|
+
|
102
|
+
## Slide 19: Externalities Graphed
|
103
|
+
|
104
|
+
- Negative Externality
|
105
|
+
- Positive Externality
|
106
|
+
- Which good is underproduced? Which good is overproduced?
|
107
|
+
- Supply Side
|
108
|
+
- Demand Side
|
109
|
+
|
110
|
+
## Slide 20: A technicality on variables
|
111
|
+
|
112
|
+
- Pc := price consumer pays
|
113
|
+
- Pp := price producer receives
|
114
|
+
- Pc = Pp + tax
|
115
|
+
- Quantity demanded: D(Pc)
|
116
|
+
- Quantity supplied: S(Pp)
|
117
|
+
- In previous weeks without tax, Pc = Pp (which we denoted as P for short), and equilibrium was such that D(Pc) = S(Pp).
|
118
|
+
- However, this changes when a third player -- the government -- is introduced!
|
119
|
+
|
120
|
+
## Slide 21: Expressing Taxes Mathematically
|
121
|
+
|
122
|
+
- If the Demand Curve is given by D(Pc) = 2000 - 20Pc and a 4 dollar sales tax is implemented on the consumer, what is the new demand curve?
|
123
|
+
- If the Supply Curve is given by S(Pp) = 200 + 15 Pp and a 4 dollar tax is implemented on the producer, what is the new supply curve?
|
124
|
+
- D(Pc) = 2000 - 20(Pp+4) = 2000 - 20Pp - 80 = 1920 - 20Pp
|
125
|
+
- S(Pp) = 200 + 15 (Pc-4) = 200 + 15Pc - 60 = 140 + 15Pc
|
126
|
+
- Pp: amount received by producer
|
127
|
+
- Pp+4: amount paid by consumer (Pc)
|
128
|
+
- Pc-4: amount received by producer (Pp)
|
129
|
+
- Pc: amount paid by consumer
|
130
|
+
|
131
|
+
## Slide 22: Graphing Taxes
|
132
|
+
|
133
|
+
- Mathematically, a tax is a shift in the supply/demand curve due to a change in the intercept.
|
134
|
+
- A tax allows us to correct for negative externalities by charging the marginal social cost curve!
|
135
|
+
|
136
|
+
## Slide 23: Graphing Taxes (supply side)
|
137
|
+
|
138
|
+
- Quantity transacted falls from Q to Q’
|
139
|
+
- Pc paid by consumers
|
140
|
+
- Pp received by producers
|
141
|
+
- Tax = Pc - Pp
|
142
|
+
- CS and PS are reduced
|
143
|
+
- Deadweight loss: area of surplus that no longer exists, due to less units being transacted
|
144
|
+
|
145
|
+
## Slide 24: Incidence of Tax
|
146
|
+
|
147
|
+
- Statutory Incidence: the side that is legally responsible for paying the tax
|
148
|
+
- Economic Incidence: side that bears the burden of the tax.
|
149
|
+
- We can measure who bears the burden of the tax by comparing the amount being received/paid by producers/consumers to the original price.
|
150
|
+
- Statutory incidence is independent of economic incidence!
|
151
|
+
- i.e. a tax that is levied on consumers will have the same burden as the same tax levied on producers.
|
152
|
+
|
153
|
+
## Slide 25: Economic Incidence Depends on Elasticities
|
154
|
+
|
155
|
+
- Inelastic Demand
|
156
|
+
- Elastic Demand
|
157
|
+
- If demand is more elastic, will consumers or producers bear more of the burden of the tax?
|
158
|
+
|
159
|
+
## Slide 26: An Example (I)
|
160
|
+
|
161
|
+
- The demand for rutabagas is:
|
162
|
+
- D(Pc) = 2000 − 100Pc
|
163
|
+
- The supply of rutabagas is:
|
164
|
+
- S(Pp) = −100 + 200Pp
|
165
|
+
- What is the equilibrium price without the tax?
|
166
|
+
|
167
|
+
## Slide 27: An Example (I)
|
168
|
+
|
169
|
+
- The demand for rutabagas is:
|
170
|
+
- D(Pc) = 2000 − 100Pc
|
171
|
+
- The supply of rutabagas is:
|
172
|
+
- S(Pp) = −100 + 200Pp
|
173
|
+
- What is the equilibrium price without the tax?
|
174
|
+
- Pp = Pc = P
|
175
|
+
- 2000 - 100P = -100 + 200 P
|
176
|
+
- P = 7
|
177
|
+
|
178
|
+
## Slide 28: An Example (II)
|
179
|
+
|
180
|
+
- What is the equilibrium price with a per unit $2 sales tax?
|
181
|
+
|
182
|
+
## Slide 29: An Example (II)
|
183
|
+
|
184
|
+
- What is the equilibrium price with a per unit $2 sales tax?
|
185
|
+
- 2000 - 100Pc = -100 + 200 Pp
|
186
|
+
- 2000 - 100(Pp+2) = -100 + 200Pp
|
187
|
+
- Pp = 6.33
|
188
|
+
- Pc = 6.33 + 2 = 8.33
|
189
|
+
|
190
|
+
## Slide 30: An Example (III)
|
191
|
+
|
192
|
+
- What are the tax burdens on the consumer and producer?
|
193
|
+
|
194
|
+
## Slide 31: An Example (III)
|
195
|
+
|
196
|
+
- What are the tax burdens on the consumer and producer?
|
197
|
+
- Consumer: New price paid - Old price paid = 8.33 - 7 = 1.33
|
198
|
+
- Producer: Old price received - New price received = 7 - 6.33 = 0.67
|
199
|
+
- The consumer bears ⅔ of the total burden of the tax
|
200
|
+
|
201
|
+
## Slide 32: An Example (IV)
|
202
|
+
|
203
|
+
- What is change in quantity transacted due to the tax?
|
204
|
+
|
205
|
+
## Slide 33: An Example (IV)
|
206
|
+
|
207
|
+
- What is change in quantity transacted due to the tax?
|
208
|
+
- Originally, Q = 2000 - 100Pc = 2000 - 100\*7 = 1300
|
209
|
+
- Now, Q = 2000 - 100Pc = 2000 - 100\*8.33 = 1167
|
210
|
+
- 1300 - 1167 = 133
|
211
|
+
- We can also plug in Pp into the supply equation and get the same results
|
212
|
+
|
213
|
+
## Slide 34: Let’s put it all together in the Notebook - with sliders
|
214
|
+
|
215
|
+
## Slide 35: Graph 1
|
216
|
+
|
217
|
+
## Slide 36: Graph 1 - sliders with 3 questions
|
218
|
+
|
219
|
+
- Price Start does nothing
|
220
|
+
- Supply shifts Slope
|
221
|
+
- Demand shifts Intercept
|
222
|
+
- Intercept shift - no change in shares
|
223
|
+
- Slope Shifts - change in relative shares
|
224
|
+
|
225
|
+
## Slide 37: Lab - Are Consumers Aware of Taxes?
|
226
|
+
|
227
|
+
- Raj Chetty, Adam Looney, and Kory Kroft (AER 2010) seek to answer this
|
228
|
+
- “We find that posting tax-inclusive price tags reduces demand by 8 percent.”
|
229
|
+
- US vs Europe?
|
230
|
+
|
231
|
+
## Slide 38: Journal article
|
232
|
+
|
233
|
+
- Raj Chetty was at Berkeley
|
234
|
+
- 2003-2009
|
235
|
+
|
236
|
+
## Slide 39: Reproducibility
|
237
|
+
|
238
|
+
- AER website
|
239
|
+
|
240
|
+
## Slide 40: Dataset in replication repository
|
241
|
+
|
242
|
+
## Slide 41: Replication Data ( ~2009 version)
|
243
|
+
|
244
|
+
## Slide 42: Price Controls
|
245
|
+
|
246
|
+
- Price Ceilings
|
247
|
+
- Forcibly lower prices:
|
248
|
+
- price ceiling < equilibrium price
|
249
|
+
- Creates a shortage
|
250
|
+
- E.g. rent control
|
251
|
+
- Price Floors
|
252
|
+
- Forcible raise prices
|
253
|
+
- price floor > equilibrium price
|
254
|
+
- Creates a surplus
|
255
|
+
- E.g. minimum wage
|
256
|
+
|
257
|
+
## Slide 43: World Trade vs. Autarky
|
258
|
+
|
259
|
+
- Autarky: A state of economic self-sufficiency
|
260
|
+
- World trade: constant world price is introduced to the market
|
261
|
+
- What happens to: consumer surplus? Producer surplus? Total surplus?
|
262
|
+
|
263
|
+
## Slide 44: What are the benefits of free trade?
|
264
|
+
|
265
|
+
- Increases consumer surplus
|
266
|
+
- Can increase GDP and drive growth
|
267
|
+
- Encourages specialization
|
268
|
+
- Increases efficiency and tech transfer
|
269
|
+
- Encourages innovation
|
270
|
+
|
271
|
+
<details><summary>Speaker notes</summary>
|
272
|
+
|
273
|
+
Image: https://www.newint.com.au/blog/wp-content/uploads/2012/03/free-trade-agreements2.jpg
|
274
|
+
|
275
|
+
</details>
|
276
|
+
|
277
|
+
## Slide 45: Not everything is rosy with free trade...
|
278
|
+
|
279
|
+
- Loss of outsourced jobs, leading to economic stagnation in certain areas
|
280
|
+
- Exploitation of developing countries
|
281
|
+
- Is specialization in low costs to pollute sustainable?
|
282
|
+
- Countries have Industrial Policies to favor indsustries
|
283
|
+
|
284
|
+
<details><summary>Speaker notes</summary>
|
285
|
+
|
286
|
+
Image source: https://econfix.files.wordpress.com/2016/06/free-trade.jpg?w=404&h=296
|
287
|
+
|
288
|
+
</details>
|
289
|
+
|
290
|
+
## Slide 46: US Steel - Nippon Steel's $14.9 billion bid for U.S. Steel
|
291
|
+
|
292
|
+
## Slide 47: (untitled)
|
293
|
+
|
294
|
+
- https://www.technologyreview.com/2023/02/21/1068880/how-did-china-dominate-electric-cars-policy/
|
295
|
+
|
296
|
+
## Slide 48: Protectionism: Tariffs
|
297
|
+
|
298
|
+
- Tariffs: ‘an excise tax’ on imported goods
|
299
|
+
- What happens to:
|
300
|
+
- Consumer surplus?
|
301
|
+
- Producer surplus?
|
302
|
+
- Total surplus?
|
303
|
+
- Government revenue?
|
304
|
+
- Imports?
|
305
|
+
|
306
|
+
## Slide 49: Protectionism: Quotas
|
307
|
+
|
308
|
+
- Quotas: limits the quantity a good can be imported
|
309
|
+
- What happens to:
|
310
|
+
- Consumer surplus?
|
311
|
+
- Producer surplus?
|
312
|
+
- Total surplus?
|
313
|
+
- Government revenue?
|
314
|
+
- Imports?
|
315
|
+
|
316
|
+
<details><summary>Speaker notes</summary>
|
317
|
+
|
318
|
+
Image source: https://www.economicsonline.co.uk/Global\_economics/Tariffs\_and\_quotas.html
|
319
|
+
|
320
|
+
</details>
|
321
|
+
|
322
|
+
## Slide 50: One more Lecture Notebook
|
323
|
+
|
324
|
+
- Four Plot notebook with sliders
|
325
|
+
|
326
|
+
## Slide 51: AirBNB
|
327
|
+
|
328
|
+
## Slide 52: (untitled)
|
329
|
+
|
330
|
+
## Slide 53: AirBnB - other data companies AirDNA
|
331
|
+
|
332
|
+
- https://www.airdna.co/airbnb-pricing-tool
|
333
|
+
|
334
|
+
## Slide 54: AirBnb - activist data website - Project 1 data!
|
335
|
+
|
336
|
+
- http://insideairbnb.com/san-francisco
|
337
|
+
|
338
|
+
## Slide 55: Summary Data from Scraped Info
|
339
|
+
|
340
|
+
## Slide 56: Global Issue
|
341
|
+
|
342
|
+
## Slide 57: AirBNB
|
343
|
+
|
344
|
+
- https://news.airbnb.com/wp-content/uploads/sites/4/2020/06/Project-Lighthouse-Airbnb-2020-06-12.pdf
|
345
|
+
|
346
|
+
## Slide 58: Hiring Lots of Data Scientists
|
347
|
+
|
@@ -0,0 +1,327 @@
|
|
1
|
+
---
|
2
|
+
title: "Lecture 1 - Introduction and Overview"
|
3
|
+
type: slides
|
4
|
+
week: 1
|
5
|
+
source_path: "/Users/ericvandusen/Documents/Data88E-ForTraining/F24LS/Lecture 1 - Introduction and Overview.pptx"
|
6
|
+
---
|
7
|
+
|
8
|
+
## Slide 1: Data 88E: Economic Models
|
9
|
+
|
10
|
+
- Lecture 1: Introduction and Overview
|
11
|
+
|
12
|
+
## Slide 2: A fun aside - the logo derived from stonks meme
|
13
|
+
|
14
|
+
## Slide 3: TL;DR of the course
|
15
|
+
|
16
|
+
- Examine economics concepts through real-world data and data science methods.
|
17
|
+
- Motivate economics topics through modeling
|
18
|
+
- Practice Python skills while learning economics concepts.
|
19
|
+
- 9th time being offered!
|
20
|
+
|
21
|
+
## Slide 4: Jupyter as inspiration
|
22
|
+
|
23
|
+
- Almost everything you’ll do will be in Jupyter, using Python.
|
24
|
+
- Textbook
|
25
|
+
- The textbook is compiled and structured via Jupyter Books, with each page written using Jupyter Notebooks
|
26
|
+
- Interactivity
|
27
|
+
- Jupyter Notebooks facilitates interactive computing, encouraging learning by doing and tinkering. This applies to the textbook too!
|
28
|
+
- Data Centric
|
29
|
+
- Jupyter Notebooks were built to conduct data analysis.
|
30
|
+
- The course is an open source project - you too can collaborate!
|
31
|
+
|
32
|
+
## Slide 5: Why should I take this course?
|
33
|
+
|
34
|
+
- Student Instructors: We built this course to be a class that we wish we could’ve taken when we were Freshmen or Sophomores. Essentially, it’s everything related to data science & economics that we wish we would’ve known a couple years ago.
|
35
|
+
- This course will:
|
36
|
+
- Prepare students for upper division economics courses and research.
|
37
|
+
- Apply data science, computation, and visualization techniques to the field of economics based on real world data.
|
38
|
+
- Survey economics subdomains including financial economics, development economics, macroeconomic policy, econometrics, and more.
|
39
|
+
- Motivate modeling, the use of tools and techniques, explore the intersection of economics and data science.
|
40
|
+
|
41
|
+
## Slide 6: Prerequisites
|
42
|
+
|
43
|
+
- Data 8, or some basic programming/data science equivalent (e.g. STAT 20 w/ R).
|
44
|
+
- It will be harder to follow on, and succeed, if you do not have Data 8.
|
45
|
+
- Specifically there is a package datascience
|
46
|
+
- with Table commands
|
47
|
+
- Economics coursework is not necessary, but will be helpful.
|
48
|
+
- Python experience will be fundamental
|
49
|
+
- If you are a Concurrent Enrollment student - you may have to decide for yourself!
|
50
|
+
- Look at last year’s class assignments
|
51
|
+
- Look at Data 8 assignments
|
52
|
+
|
53
|
+
## Slide 7: What is a connector course?
|
54
|
+
|
55
|
+
- The design of the course is for 1st/2nd year students - who are currently or recently taken Data 8 - https://www.data8.org/
|
56
|
+
- Linked to topics and pace of Data 8
|
57
|
+
- Connectors give a domain specific application of Data 8 toolset
|
58
|
+
- If you haven’t taken Data 8 - the Data 8 textbook is also useful
|
59
|
+
- https://inferentialthinking.com/chapters/intro.html
|
60
|
+
- There is a lot behind these materials that we weren’t able to fit into the course.
|
61
|
+
- Find a study group - come to office hours
|
62
|
+
- Ask questions on Ed for other students to answer?
|
63
|
+
|
64
|
+
## Slide 8: Will I be challenged?
|
65
|
+
|
66
|
+
- If you are a junior/senior with a programming background or have taken advanced upper division Econ classes, this course will be pretty easy. As a result, we expect you to:
|
67
|
+
- Go above and beyond in the labs, dig into the programming and routines beyond just clicking through the notebooks.
|
68
|
+
- Read the papers behind the materials in the class.
|
69
|
+
- Think about the limitations in our presented methods.
|
70
|
+
- Use these labs as a starting point and try some programming on your own.
|
71
|
+
- There is a lot behind these materials that we weren’t able to fit into the course.
|
72
|
+
- Help other students out - You can learn by teaching!
|
73
|
+
- We get scores from Ed discussions on who answers other’s questions
|
74
|
+
|
75
|
+
## Slide 9: You better help other students
|
76
|
+
|
77
|
+
- You better help other students
|
78
|
+
|
79
|
+
## Slide 10: A Caveat
|
80
|
+
|
81
|
+
- This class a work in progress - while we’ve offered it for several semesters now, we’re still looking to continue improving on the content!
|
82
|
+
- Basically it’s complicated, lots of complicated labs
|
83
|
+
- You will help to participate, give feedback, and improve the course!
|
84
|
+
- Hybrid Instruction in uncertain times - we have no idea how the semester will play out: Omicron, COVID, Power Shutoff, People’s Park
|
85
|
+
|
86
|
+
## Slide 11: Fall Semester Hex - back in my day
|
87
|
+
|
88
|
+
## Slide 12: Data Paradise
|
89
|
+
|
90
|
+
- You will be in data paradise this semester. We will largely clean the data for you.
|
91
|
+
- After this class, expect to experience Paradise Lost.
|
92
|
+
- “[Data scientist] respondents reported they spent most of their time cleaning data (60 percent), and [noted the] task to be the least enjoyable part of their job (57 percent).”
|
93
|
+
- We would’ve liked to teach data cleaning as well in this course, but there simply wasn’t enough time :(
|
94
|
+
|
95
|
+
## Slide 13: Expectations for in person instruction
|
96
|
+
|
97
|
+
- This class is planned being taught in person. In case you cannot make it to class due to an emergency, please make a private Ed post explaining why by 11:59 pm on the Tuesday before lecture. If your excuse is legitimate, we will give an alternative method for you to make up the lecture.
|
98
|
+
- DO NOT COME if you are sick
|
99
|
+
|
100
|
+
## Slide 14: Student Instruction!
|
101
|
+
|
102
|
+
- This class is created by students who were interested in these topics.
|
103
|
+
- Students teach some of the classes! Or part of the classes!
|
104
|
+
- Bennett - Macro
|
105
|
+
- Peter - Environmental
|
106
|
+
- Guest Speakers
|
107
|
+
- And the class evolves and changes every semester:
|
108
|
+
- Bear with us if it’s bumpy
|
109
|
+
|
110
|
+
## Slide 15: Course Website: data88e.org
|
111
|
+
|
112
|
+
- https://data88e.org/fa24/
|
113
|
+
- Readings - Textbook
|
114
|
+
- Lecture Slides
|
115
|
+
- Lecture Notebook
|
116
|
+
- Links to Labs / Projects
|
117
|
+
- You don't have to do Lecture NB
|
118
|
+
- But you will learn more if you do
|
119
|
+
- There is no Bcourses for this class
|
120
|
+
|
121
|
+
## Slide 16: Online platforms
|
122
|
+
|
123
|
+
- Course website (https://www.data88e.org/sp24/)
|
124
|
+
- Where all lectures, assignments, and discussions are posted.
|
125
|
+
- Course textbook (https://data88e.org/textbook/content/intro.html)
|
126
|
+
- Course textbook
|
127
|
+
- DataHub (datahub.berkeley.edu)
|
128
|
+
- Where you will work on all assignments (links on the course website automatically take you here).
|
129
|
+
- Ed (https://edstem.org/us/courses/64772/discussion/)
|
130
|
+
- A place to ask and answer questions about assignments and concepts.
|
131
|
+
- Where all announcements are posted (exam logistics, new assignment released, etc).
|
132
|
+
- Gradescope (gradescope.com, added via roster)
|
133
|
+
- Where all assignments are submitted, and where all of your grades in this course will live.
|
134
|
+
- Kaltura (https://kaltura.berkeley.edu/my-channels)
|
135
|
+
- Video recording of Lectures
|
136
|
+
- PollEV (PollEv.com/ericvandusen)
|
137
|
+
- In class Polling and Attendance Check. These all have to sync / LTI so be patient
|
138
|
+
|
139
|
+
## Slide 17: Eric Van Dusen
|
140
|
+
|
141
|
+
- Not a Data Scientist!
|
142
|
+
- PhD in Agricultural and Resource Economics - UC Davis
|
143
|
+
- Worked on research projects in Economics and Ag Economics
|
144
|
+
- Taught 2 Data Science Connectors
|
145
|
+
- Economic Development
|
146
|
+
- Reproducibility and Open Science
|
147
|
+
- Teaching Honors Thesis Seminar
|
148
|
+
- Economics 148 in Spring
|
149
|
+
- ericvd@berkeley.edu
|
150
|
+
|
151
|
+
## Slide 18: Eric Van Dusen
|
152
|
+
|
153
|
+
- I am also staff in Data Science Undergraduate Studies
|
154
|
+
- Helped to build Major and Minor
|
155
|
+
- Lead on Data Science Connectors
|
156
|
+
- Lead on Data Science Modules - Curriculum
|
157
|
+
- Working on Outreach - e.g. Data 8 at Community Colleges
|
158
|
+
- Come and work with us if you are interested
|
159
|
+
- Motivation to make these tools more widely used
|
160
|
+
- Break down the static textbook/slides paradigm
|
161
|
+
- Working with other Econ Faculty… EEP 147, ECON 172
|
162
|
+
- Several years working with Econ 140 - Econometrics
|
163
|
+
- If you have Econ classes that need Jupyter - let us know!
|
164
|
+
|
165
|
+
## Slide 19: Econ 148 - https://www.econ148.org/sp24/
|
166
|
+
|
167
|
+
- Econ department commissioned a class
|
168
|
+
- New class in Spring 23
|
169
|
+
- Will be taught again in Spring 24
|
170
|
+
- Pandas
|
171
|
+
- API
|
172
|
+
- SQL
|
173
|
+
- ML
|
174
|
+
- Time Series
|
175
|
+
|
176
|
+
## Slide 20: Concurrent Enrollment - Gradescope and Ed
|
177
|
+
|
178
|
+
- Berkeley Students have priority (and like to shop)
|
179
|
+
- You will probably get in if there are enough seats in the room
|
180
|
+
- After admitted you will get added to Gradescope and Ed as the rosters sync
|
181
|
+
|
182
|
+
## Slide 21: Grading
|
183
|
+
|
184
|
+
- Attendance (13): 20%
|
185
|
+
- Labs (10): 40%
|
186
|
+
- Projects (4): 40%
|
187
|
+
|
188
|
+
## Slide 22: Participation is 20% of your grade
|
189
|
+
|
190
|
+
- In Person attendance is expected / compulsory
|
191
|
+
- Option 1: Attend In person lecture - and complete Quiz / Poll
|
192
|
+
- There will be random class sessions where there will be an in person exit ticket.
|
193
|
+
- Option 2 - if you have a Ed approved excuse: Watch recorded lecture videos and take Gradescope quiz.
|
194
|
+
|
195
|
+
## Slide 23: Labs
|
196
|
+
|
197
|
+
- Labs are released in lecture (Wednesdays) and due Tues at 11:59pm.
|
198
|
+
- Refer to the website (https://data88e.org/fa24/policies) for the late policy
|
199
|
+
- Labs should take approx. 2-3 hours each week. We might begin the lab in lecture but it is expected that you will finish it on your own time.
|
200
|
+
- Labs are graded on accuracy, not completion. There will be hidden tests.
|
201
|
+
- We encourage you to come to office hours and post on Ed for help!
|
202
|
+
- We encourage you to help each other without copying
|
203
|
+
- There is no lab today.
|
204
|
+
|
205
|
+
## Slide 24: Projects
|
206
|
+
|
207
|
+
- Projects are released after lecture (Wednesdays) and due the second or third Tuesday at 11:59pm, meaning you have 2-3 weeks to work on them
|
208
|
+
- Refer to the website (https://data88e.org/fa24/policies/) for the late policy
|
209
|
+
- The projects will be similar in difficulty to that of Data 8, but a little bit shorter. Projects may go over new concepts.
|
210
|
+
- We encourage you to come to office hours and post on Ed for help!
|
211
|
+
- Ed Mega Threads for each project.
|
212
|
+
|
213
|
+
## Slide 25: Infrastructure and Support
|
214
|
+
|
215
|
+
- Ed: ask your questions here!
|
216
|
+
- Public Good - answer other people’s questions!
|
217
|
+
- Search through other people’s questions
|
218
|
+
- Course staff updates ( eg if there are mistakes on our side)
|
219
|
+
- Ed offers us metrics of engagement - answering on Ed can help your participation grade
|
220
|
+
- Gradescope: make sure you are enrolled to submit assignments!
|
221
|
+
- Autograding of Notebooks is part of the workflow
|
222
|
+
- Run all cells in order / download zip / upload to GS
|
223
|
+
|
224
|
+
## Slide 26: Office Hours
|
225
|
+
|
226
|
+
- Office Hours / Lab Time:
|
227
|
+
- Justin and Bennett: Monday 2-4PM and Tuesday 12-2PM at Warren 101A
|
228
|
+
- Online OH TBA on Ed
|
229
|
+
- Professor: I will try to come to Tuesday OH and
|
230
|
+
- By appointment (email ericvd@berkeley.edu)
|
231
|
+
|
232
|
+
## Slide 27: Infrastructure and Support
|
233
|
+
|
234
|
+
## Slide 28: Policies
|
235
|
+
|
236
|
+
- Please do not plagiarize. This is against the code of conduct.
|
237
|
+
- We encourage working and studying with fellow classmates, but all work you turn in must ultimately be your own.
|
238
|
+
- For a comprehensive list of the course policies, please refer to the course website (https://data88e.org/fa23/policies/).
|
239
|
+
- ChatGPT - Gemini - Generative AI !?!
|
240
|
+
- You are here to learn Python Data Science
|
241
|
+
- You are here to learn Economics
|
242
|
+
- Learning the basics matters
|
243
|
+
- It may give you the wrong answers
|
244
|
+
- - autograder is picky, expecting a certain set of commands
|
245
|
+
- Sometimes the answers are super obvoius
|
246
|
+
|
247
|
+
## Slide 29: Our Team
|
248
|
+
|
249
|
+
- Bennett Somerville
|
250
|
+
- Computer Science
|
251
|
+
- Justin Wang
|
252
|
+
- Data Science &
|
253
|
+
- Economics
|
254
|
+
|
255
|
+
## Slide 30: Testimonials from Previous Students
|
256
|
+
|
257
|
+
- Bennett
|
258
|
+
- Justin
|
259
|
+
|
260
|
+
## Slide 31: Metacognition ~ Praxis ~ Process of Learning
|
261
|
+
|
262
|
+
- Tools built for reproducibility are powerful for pedagogy
|
263
|
+
- Key elements of Open Science in teaching
|
264
|
+
- Data Science curriculum built on Open Source tools
|
265
|
+
- Explicit and Implicit Learning
|
266
|
+
- First year students learn Jupyter/ Numpy ~ bridge to more
|
267
|
+
- Teaching staff learn Github / open publishing
|
268
|
+
- Open Source - Scientific Python ecosystem
|
269
|
+
- Inter-related web of software
|
270
|
+
- “Notebook based instruction” - is it an evolution in how we teach?
|
271
|
+
|
272
|
+
<details><summary>Speaker notes</summary>
|
273
|
+
|
274
|
+
Balaji
|
275
|
+
|
276
|
+
</details>
|
277
|
+
|
278
|
+
## Slide 32: Demo - Financial Benefits of a Major
|
279
|
+
|
280
|
+
## Slide 33: https://github.com/fivethirtyeight/data/tree/master/college-majors
|
281
|
+
|
282
|
+
## Slide 34: All Grads: https://career.berkeley.edu/start-exploring/where-do-cal-grads-go/
|
283
|
+
|
284
|
+
## Slide 35: Econ Grads:
|
285
|
+
|
286
|
+
- Econ Grads:
|
287
|
+
|
288
|
+
## Slide 36: Data Science Grads:
|
289
|
+
|
290
|
+
## Slide 37: Lets go to the Lab - Earnings by Major
|
291
|
+
|
292
|
+
- Cal First Destination survey - from 2019
|
293
|
+
- ACS - American Community Survey
|
294
|
+
- Selection of those 28 and younger
|
295
|
+
- Data need to be merged by majors! Different sets of majors
|
296
|
+
- EECS
|
297
|
+
- Data Science ( Data Analytics, Data Engineering)
|
298
|
+
- Earnings of Majors - Over time
|
299
|
+
|
300
|
+
## Slide 38: CS Majors
|
301
|
+
|
302
|
+
- 331 responses
|
303
|
+
- Avg Salary $107k
|
304
|
+
|
305
|
+
## Slide 39: What’s up with Music
|
306
|
+
|
307
|
+
- Music majors at Berkeley?
|
308
|
+
|
309
|
+
## Slide 40: Outcomes by Major
|
310
|
+
|
311
|
+
- https://www.universityofcalifornia.edu/infocenter/berkeley-outcomes
|
312
|
+
|
313
|
+
## Slide 41: Research in Higher Education - role of UC
|
314
|
+
|
315
|
+
## Slide 42: Economics Majors earn more?
|
316
|
+
|
317
|
+
## Slide 43: GPA cutoffs for a major lead to lower shares of URM
|
318
|
+
|
319
|
+
## Slide 44: Amal Bhatnagar!
|
320
|
+
|
321
|
+
- DS and Econ 2021
|
322
|
+
- CDSS News story -
|
323
|
+
|
324
|
+
## Slide 45: https://sites.google.com/berkeley.edu/datascienceineconomics
|
325
|
+
|
326
|
+
- Data Science in Undergraduate Economics Workshop
|
327
|
+
|