galaaz 0.4.10 → 0.5.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +2048 -531
- data/Rakefile +3 -2
- data/bin/gknit +152 -6
- data/bin/gknit-draft +105 -0
- data/bin/gknit-draft.rb +28 -0
- data/bin/gknit_Rscript +127 -0
- data/bin/grun +27 -1
- data/bin/gstudio +47 -4
- data/bin/{gstudio.rb → gstudio_irb.rb} +0 -0
- data/bin/gstudio_pry.rb +7 -0
- data/blogs/galaaz_ggplot/galaaz_ggplot.html +10 -195
- data/blogs/galaaz_ggplot/galaaz_ggplot.md +404 -0
- data/blogs/galaaz_ggplot/galaaz_ggplot_files/figure-html/midwest_rb.png +0 -0
- data/blogs/galaaz_ggplot/galaaz_ggplot_files/figure-html/scatter_plot_rb.png +0 -0
- data/blogs/gknit/gknit.Rmd +5 -3
- data/blogs/gknit/gknit.pdf +0 -0
- data/blogs/gknit/lst.rds +0 -0
- data/blogs/manual/lst.rds +0 -0
- data/blogs/manual/manual.Rmd +826 -53
- data/blogs/manual/manual.html +2338 -695
- data/blogs/manual/manual.md +2032 -539
- data/blogs/manual/manual.pdf +0 -0
- data/blogs/manual/manual.tex +1804 -594
- data/blogs/manual/manual_files/figure-html/bubble-1.png +0 -0
- data/blogs/manual/manual_files/figure-html/diverging_bar.png +0 -0
- data/blogs/manual/manual_files/figure-latex/bubble-1.png +0 -0
- data/blogs/manual/manual_files/figure-latex/diverging_bar.pdf +0 -0
- data/blogs/manual/model.rb +41 -0
- data/blogs/nse_dplyr/nse_dplyr.Rmd +226 -73
- data/blogs/nse_dplyr/nse_dplyr.html +254 -336
- data/blogs/nse_dplyr/nse_dplyr.md +353 -158
- data/blogs/oh_my/oh_my.html +274 -386
- data/blogs/oh_my/oh_my.md +208 -205
- data/blogs/ruby_plot/ruby_plot.html +20 -205
- data/blogs/ruby_plot/ruby_plot.md +14 -15
- data/blogs/ruby_plot/ruby_plot_files/figure-html/dose_len.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facet_by_delivery.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facet_by_dose.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_by_delivery_color.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_by_delivery_color2.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_decorations.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_jitter.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_points.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/final_box_plot.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/final_violin_plot.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/violin_with_jitter.png +0 -0
- data/examples/Bibliography/master.bib +50 -0
- data/examples/Bibliography/stats.bib +72 -0
- data/examples/islr/x_y_rnorm.jpg +0 -0
- data/examples/latex_templates/Test-acm_article/Makefile +16 -0
- data/examples/latex_templates/Test-acm_article/Test-acm_article.Rmd +65 -0
- data/examples/latex_templates/Test-acm_article/acm_proc_article-sp.cls +1670 -0
- data/examples/latex_templates/Test-acm_article/sensys-abstract.cls +703 -0
- data/examples/latex_templates/Test-acm_article/sigproc.bib +59 -0
- data/examples/latex_templates/Test-acs_article/Test-acs_article.Rmd +260 -0
- data/examples/latex_templates/Test-acs_article/Test-acs_article.pdf +0 -0
- data/examples/latex_templates/Test-acs_article/acs-Test-acs_article.bib +11 -0
- data/examples/latex_templates/Test-acs_article/acs-my_output.bib +11 -0
- data/examples/latex_templates/Test-acs_article/acstest.bib +17 -0
- data/examples/latex_templates/Test-aea_article/AEA.cls +1414 -0
- data/{blogs/gknit/marshal.dump → examples/latex_templates/Test-aea_article/BibFile.bib} +0 -0
- data/examples/latex_templates/Test-aea_article/Test-aea_article.Rmd +108 -0
- data/examples/latex_templates/Test-aea_article/Test-aea_article.pdf +0 -0
- data/examples/latex_templates/Test-aea_article/aea.bst +1269 -0
- data/examples/latex_templates/Test-aea_article/multicol.sty +853 -0
- data/examples/latex_templates/Test-aea_article/references.bib +0 -0
- data/examples/latex_templates/Test-aea_article/setspace.sty +546 -0
- data/examples/latex_templates/Test-amq_article/Test-amq_article.Rmd +256 -0
- data/examples/latex_templates/Test-amq_article/Test-amq_article.pdf +0 -0
- data/examples/latex_templates/Test-amq_article/Test-amq_article.pdfsync +3397 -0
- data/examples/latex_templates/Test-amq_article/pics/Figure2.pdf +0 -0
- data/examples/latex_templates/Test-ams_article/Test-ams_article.Rmd +215 -0
- data/examples/latex_templates/Test-ams_article/amstest.bib +436 -0
- data/examples/latex_templates/Test-asa_article/Test-asa_article.Rmd +153 -0
- data/examples/latex_templates/Test-asa_article/Test-asa_article.pdf +0 -0
- data/examples/latex_templates/Test-asa_article/agsm.bst +1353 -0
- data/examples/latex_templates/Test-asa_article/bibliography.bib +233 -0
- data/examples/latex_templates/Test-ieee_article/IEEEtran.bst +2409 -0
- data/examples/latex_templates/Test-ieee_article/IEEEtran.cls +6346 -0
- data/examples/latex_templates/Test-ieee_article/Test-ieee_article.Rmd +175 -0
- data/examples/latex_templates/Test-ieee_article/Test-ieee_article.pdf +0 -0
- data/examples/latex_templates/Test-ieee_article/mybibfile.bib +20 -0
- data/examples/latex_templates/Test-rjournal_article/RJournal.sty +335 -0
- data/examples/latex_templates/Test-rjournal_article/RJreferences.bib +18 -0
- data/examples/latex_templates/Test-rjournal_article/RJwrapper.pdf +0 -0
- data/examples/latex_templates/Test-rjournal_article/Test-rjournal_article.Rmd +52 -0
- data/examples/latex_templates/Test-springer_article/Test-springer_article.Rmd +65 -0
- data/examples/latex_templates/Test-springer_article/Test-springer_article.pdf +0 -0
- data/examples/latex_templates/Test-springer_article/bibliography.bib +26 -0
- data/examples/latex_templates/Test-springer_article/spbasic.bst +1658 -0
- data/examples/latex_templates/Test-springer_article/spmpsci.bst +1512 -0
- data/examples/latex_templates/Test-springer_article/spphys.bst +1443 -0
- data/examples/latex_templates/Test-springer_article/svglov3.clo +113 -0
- data/examples/latex_templates/Test-springer_article/svjour3.cls +1431 -0
- data/examples/rmarkdown/svm-rmarkdown-anon-ms-example/svm-rmarkdown-anon-ms-example.Rmd +73 -0
- data/examples/rmarkdown/svm-rmarkdown-anon-ms-example/svm-rmarkdown-anon-ms-example.pdf +0 -0
- data/examples/rmarkdown/svm-rmarkdown-article-example/svm-rmarkdown-article-example.Rmd +382 -0
- data/examples/rmarkdown/svm-rmarkdown-article-example/svm-rmarkdown-article-example.pdf +0 -0
- data/examples/rmarkdown/svm-rmarkdown-beamer-example/svm-rmarkdown-beamer-example.Rmd +164 -0
- data/examples/rmarkdown/svm-rmarkdown-beamer-example/svm-rmarkdown-beamer-example.pdf +0 -0
- data/examples/rmarkdown/svm-rmarkdown-cv/svm-rmarkdown-cv.Rmd +92 -0
- data/examples/rmarkdown/svm-rmarkdown-cv/svm-rmarkdown-cv.pdf +0 -0
- data/examples/rmarkdown/svm-rmarkdown-syllabus-example/attend-grade-relationships.csv +482 -0
- data/examples/rmarkdown/svm-rmarkdown-syllabus-example/svm-rmarkdown-syllabus-example.Rmd +280 -0
- data/examples/rmarkdown/svm-rmarkdown-syllabus-example/svm-rmarkdown-syllabus-example.pdf +0 -0
- data/examples/rmarkdown/svm-xaringan-example/svm-xaringan-example.Rmd +386 -0
- data/lib/R_interface/r.rb +1 -1
- data/lib/R_interface/r_libs.R +1 -1
- data/lib/R_interface/r_methods.rb +10 -0
- data/lib/R_interface/rpkg.rb +1 -0
- data/lib/R_interface/rsupport.rb +4 -6
- data/lib/gknit.rb +2 -0
- data/lib/gknit/draft.rb +105 -0
- data/lib/gknit/knitr_engine.rb +0 -33
- data/lib/util/exec_ruby.rb +1 -27
- data/specs/figures/bg.jpeg +0 -0
- data/specs/figures/bg.png +0 -0
- data/specs/figures/dose_len.png +0 -0
- data/specs/figures/no_args.jpeg +0 -0
- data/specs/figures/no_args.png +0 -0
- data/specs/figures/width_height.jpeg +0 -0
- data/specs/figures/width_height.png +0 -0
- data/specs/figures/width_height_units1.jpeg +0 -0
- data/specs/figures/width_height_units1.png +0 -0
- data/specs/figures/width_height_units2.jpeg +0 -0
- data/specs/figures/width_height_units2.png +0 -0
- data/specs/r_dataframe.spec.rb +11 -11
- data/specs/ruby_expression.spec.rb +1 -0
- data/specs/tmp.rb +41 -20
- data/version.rb +1 -1
- metadata +73 -35
- data/blogs/galaaz_ggplot/galaaz_ggplot.aux +0 -41
- data/blogs/galaaz_ggplot/galaaz_ggplot.out +0 -10
- data/blogs/galaaz_ggplot/galaaz_ggplot_files/figure-latex/midwest_rb.pdf +0 -0
- data/blogs/galaaz_ggplot/galaaz_ggplot_files/figure-latex/scatter_plot_rb.pdf +0 -0
- data/blogs/gknit/gknit.md +0 -1430
- data/blogs/gknit/gknit.tex +0 -1358
- data/blogs/manual/graph.rb +0 -29
- data/blogs/nse_dplyr/nse_dplyr.tex +0 -1373
- data/blogs/ruby_plot/ruby_plot.Rmd_external_figs +0 -662
- data/blogs/ruby_plot/ruby_plot_files/figure-html/dose_len.svg +0 -57
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facet_by_delivery.svg +0 -106
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facet_by_dose.svg +0 -110
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_by_delivery_color.svg +0 -174
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_by_delivery_color2.svg +0 -236
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_jitter.svg +0 -296
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_points.svg +0 -236
- data/blogs/ruby_plot/ruby_plot_files/figure-html/final_box_plot.svg +0 -218
- data/blogs/ruby_plot/ruby_plot_files/figure-html/final_violin_plot.svg +0 -128
- data/blogs/ruby_plot/ruby_plot_files/figure-html/violin_with_jitter.svg +0 -150
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/dose_len.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facet_by_delivery.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facet_by_dose.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_by_delivery_color.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_by_delivery_color2.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_with_decorations.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_with_jitter.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_with_points.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/final_box_plot.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/final_violin_plot.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/violin_with_jitter.png +0 -0
- data/examples/paper/paper.rb +0 -36
Binary file
|
Binary file
|
data/blogs/gknit/gknit.Rmd
CHANGED
@@ -7,13 +7,14 @@ tags: [Tech, Data Science, Ruby, R, GraalVM]
|
|
7
7
|
date: "29/04/2019"
|
8
8
|
bibliography: stats.bib
|
9
9
|
output:
|
10
|
-
html_document:
|
11
|
-
self_contained: true
|
12
|
-
keep_md: true
|
13
10
|
pdf_document:
|
14
11
|
includes:
|
15
12
|
in_header: ["../../sty/galaaz.sty"]
|
16
13
|
number_sections: yes
|
14
|
+
html_document:
|
15
|
+
self_contained: true
|
16
|
+
keep_md: true
|
17
|
+
biblio-style: apsr
|
17
18
|
---
|
18
19
|
|
19
20
|
```{r setup, echo=FALSE}
|
@@ -726,5 +727,6 @@ the gnu compiler and tools should be enough. I am not sure what is needed on th
|
|
726
727
|
|
727
728
|
* gknit \<filename\>
|
728
729
|
|
730
|
+
|
729
731
|
# References
|
730
732
|
|
data/blogs/gknit/gknit.pdf
CHANGED
Binary file
|
data/blogs/gknit/lst.rds
CHANGED
Binary file
|
Binary file
|
data/blogs/manual/manual.Rmd
CHANGED
@@ -4,6 +4,7 @@ subtitle: "How to tightly couple Ruby and R in GraalVM"
|
|
4
4
|
author: "Rodrigo Botafogo"
|
5
5
|
tags: [Galaaz, Ruby, R, TruffleRuby, FastR, GraalVM, ggplot2]
|
6
6
|
date: "2019"
|
7
|
+
bibliography: "/home/rbotafogo/Bibliography/stats.bib"
|
7
8
|
output:
|
8
9
|
pdf_document:
|
9
10
|
includes:
|
@@ -11,7 +12,7 @@ output:
|
|
11
12
|
keep_tex: yes
|
12
13
|
number_sections: yes
|
13
14
|
toc: true
|
14
|
-
toc_depth:
|
15
|
+
toc_depth: 3
|
15
16
|
html_document:
|
16
17
|
self_contained: true
|
17
18
|
keep_md: true
|
@@ -21,6 +22,7 @@ fontsize: 11pt
|
|
21
22
|
---
|
22
23
|
|
23
24
|
```{ruby setup, echo=FALSE}
|
25
|
+
R.options(crayon__enabled: false)
|
24
26
|
R.install_and_loads('kableExtra')
|
25
27
|
```
|
26
28
|
|
@@ -33,6 +35,92 @@ other hand, R is considered one of the most powerful languages for solving all o
|
|
33
35
|
problems. Maybe the strongest competitor to R is Python with libraries such as NumPy,
|
34
36
|
Panda, SciPy, SciKit-Learn and a couple more.
|
35
37
|
|
38
|
+
With Galaaz we do not intend to re-implement any of the scientific libraries in R, we allow
|
39
|
+
for very tight coupling between the two languages to the point that the Ruby developer does
|
40
|
+
not need to know that there is an R engine running.
|
41
|
+
|
42
|
+
According to Wikipedia "Ruby is a dynamic, interpreted, reflective, object-oriented,
|
43
|
+
general-purpose programming language. It was designed and developed in the mid-1990s by Yukihiro
|
44
|
+
"Matz" Matsumoto in Japan." It reached high popularity with the development of Ruby on Rails
|
45
|
+
(RoR) by David Heinemeier Hansson. RoR is a web application framework first released
|
46
|
+
around 2005. It makes extensive use of Ruby's metaprogramming features. With RoR,
|
47
|
+
Ruby became very popular. According to [Ruby's Tiobe index](https://www.tiobe.com/tiobe-index/ruby/)
|
48
|
+
it peeked in popularity around 2008, then declined until 2015 when it started picking up again.
|
49
|
+
At the time of this writing (November 2018), the Tiobe index puts Ruby in 16th position as
|
50
|
+
most popular language.
|
51
|
+
|
52
|
+
Python, a language similar to Ruby, ranks 4th in the index. Java, C and C++ take the
|
53
|
+
first three positions. Ruby is often criticized for its focus on web applications.
|
54
|
+
But Ruby can do [much more](https://github.com/markets/awesome-ruby) than just web applications.
|
55
|
+
Yet, for scientific computing, Ruby lags way behind Python and R. Python has
|
56
|
+
Django framework for web, NumPy for numerical arrays, Pandas for data analysis.
|
57
|
+
R is a free software environment for statistical computing and graphics with thousands
|
58
|
+
of libraries for data analysis.
|
59
|
+
|
60
|
+
Until recently, there was no real perspective for Ruby to bridge this gap.
|
61
|
+
Implementing a complete scientific computing infrastructure would take too long.
|
62
|
+
Enters [Oracle's GraalVM](https://www.graalvm.org/):
|
63
|
+
|
64
|
+
> GraalVM is a universal virtual machine for running applications written in
|
65
|
+
> JavaScript, Python 3, Ruby, R, JVM-based languages like Java, Scala, Kotlin,
|
66
|
+
> and LLVM-based languages such as C and C++.
|
67
|
+
>
|
68
|
+
> GraalVM removes the isolation between programming languages and enables
|
69
|
+
> interoperability in a shared runtime. It can run either standalone or in the
|
70
|
+
> context of OpenJDK, Node.js, Oracle Database, or MySQL.
|
71
|
+
>
|
72
|
+
> GraalVM allows you to write polyglot applications with a seamless way to pass
|
73
|
+
> values from one language to another. With GraalVM there is no copying or
|
74
|
+
> marshaling necessary as it is with other polyglot systems. This lets you
|
75
|
+
> achieve high performance when language boundaries are crossed. Most of the time
|
76
|
+
> there is no additional cost for crossing a language boundary at all.
|
77
|
+
>
|
78
|
+
> Often developers have to make uncomfortable compromises that require them
|
79
|
+
> to rewrite their software in other languages. For example:
|
80
|
+
>
|
81
|
+
> * That library is not available in my language. I need to rewrite it.
|
82
|
+
> * That language would be the perfect fit for my problem, but we cannot
|
83
|
+
> run it in our environment.
|
84
|
+
> * That problem is already solved in my language, but the language is
|
85
|
+
> too slow.
|
86
|
+
>
|
87
|
+
> With GraalVM we aim to allow developers to freely choose the right language for
|
88
|
+
> the task at hand without making compromises.
|
89
|
+
|
90
|
+
As stated above, GraalVM is a _universal_ virtual machine that allows Ruby and R (and other
|
91
|
+
languages) to run on the same environment. GraalVM allows polyglot applications to
|
92
|
+
_seamlessly_ interact with one another and pass values from one language to the other.
|
93
|
+
Although a great idea, GraalVM still requires application writers to know several languages.
|
94
|
+
To eliminate that requirement, we built Galaaz, a gem for Ruby, to tightly couple
|
95
|
+
Ruby and R and allow those languages to interact in a way that the user will be unaware
|
96
|
+
of such interaction. In other words, a Ruby programmer will be able to use all
|
97
|
+
the capabilities of R without knowing the R syntax.
|
98
|
+
|
99
|
+
Library wrapping is a usual way of bringing features from one language into another.
|
100
|
+
To improve performance, Python often wraps more efficient C libraries. For the
|
101
|
+
Python developer, the existence of such C libraries is hidden. The problem with
|
102
|
+
library wrapping is that for any new library, there is the need to handcraft a new
|
103
|
+
wrapper.
|
104
|
+
|
105
|
+
Galaaz, instead of wrapping a single C or R library, wraps the whole R language
|
106
|
+
in Ruby. Doing so, all thousands of R libraries are available immediately
|
107
|
+
to Ruby developers without any new wrapping effort.
|
108
|
+
|
109
|
+
## What does Galaaz mean
|
110
|
+
|
111
|
+
Galaaz is the Portuguese name for "Galahad". From Wikipedia:
|
112
|
+
|
113
|
+
Sir Galahad (sometimes referred to as Galeas or Galath),
|
114
|
+
in Arthurian legend, is a knight of King Arthur's Round Table and one
|
115
|
+
of the three achievers of the Holy Grail. He is the illegitimate son
|
116
|
+
of Sir Lancelot and Elaine of Corbenic, and is renowned for his
|
117
|
+
gallantry and purity as the most perfect of all knights. Emerging quite
|
118
|
+
late in the medieval Arthurian tradition, Sir Galahad first appears in the
|
119
|
+
Lancelot–Grail cycle, and his story is taken up in later works such as
|
120
|
+
the Post-Vulgate Cycle and Sir Thomas Malory's Le Morte d'Arthur.
|
121
|
+
His name should not be mistaken with Galehaut, a different knight from
|
122
|
+
Arthurian legend.
|
123
|
+
|
36
124
|
# System Compatibility
|
37
125
|
|
38
126
|
* Oracle Linux 7
|
@@ -83,7 +171,7 @@ Panda, SciPy, SciKit-Learn and a couple more.
|
|
83
171
|
> galaaz -T
|
84
172
|
|
85
173
|
Shows a list with all available executalbe tasks. To execute a task, substitute the
|
86
|
-
|
174
|
+
'rake' word in the list with 'galaaz'. For instance, the following line shows up
|
87
175
|
after 'galaaz -T'
|
88
176
|
|
89
177
|
rake master_list:scatter_plot # scatter_plot from:....
|
@@ -92,6 +180,82 @@ Panda, SciPy, SciKit-Learn and a couple more.
|
|
92
180
|
|
93
181
|
> galaaz master_list:scatter_plot
|
94
182
|
|
183
|
+
|
184
|
+
# Accessing R from Ruby
|
185
|
+
|
186
|
+
One of the nice aspects of Galaaz on GraalVM, is that variables and functions defined in R, can
|
187
|
+
be easily accessed from Ruby. For instance, to access the 'mtcars' data frame from R
|
188
|
+
in Ruby, we use the ':mtcar' symbol preceded by the '~' operator, thus '~:r_vec' retrieves the
|
189
|
+
value of the 'mtcars' variable.
|
190
|
+
|
191
|
+
```{ruby access_r}
|
192
|
+
puts ~:mtcars
|
193
|
+
```
|
194
|
+
|
195
|
+
To access an R function from Ruby, the R function needs to be preceeded by 'R.' scoping.
|
196
|
+
Bellow we see and example of creating a R::Vector by calling the 'c' R function
|
197
|
+
|
198
|
+
```{ruby call_r_func}
|
199
|
+
puts vec = R.c(1.0, 2.0, 3.0, 4.0)
|
200
|
+
```
|
201
|
+
Note that 'vec' is an object of type R::Vector:
|
202
|
+
|
203
|
+
```{ruby r_object}
|
204
|
+
puts vec.class
|
205
|
+
```
|
206
|
+
Every object created by a call to an R function will be of a type that inherits from
|
207
|
+
R::Object. In R, there is also a function 'class'. In order to access that function we
|
208
|
+
can call method 'rclass' in the R::Object:
|
209
|
+
|
210
|
+
```{ruby rclass}
|
211
|
+
puts vec.rclass
|
212
|
+
```
|
213
|
+
When working with R::Object(s), it is possible to use the '.' operator to pipe operations.
|
214
|
+
When using '.', the object to which the '.' is applied becomes the first argument of the
|
215
|
+
corresponding R function. For instance, function 'c' in R, can be used to concatenate
|
216
|
+
two vectors or more vectors (in R, there are no scalar values, scalars are converted to
|
217
|
+
vectors of size 1. Within Galaaz, scalar parameter is converted to a size one vector):
|
218
|
+
|
219
|
+
```{ruby concat}
|
220
|
+
puts R.c(vec, 10, 20, 30)
|
221
|
+
```
|
222
|
+
The call above to the 'c' function can also be done using '.' notation:
|
223
|
+
|
224
|
+
```{ruby concat_with_dot}
|
225
|
+
puts vec.c(10, 20, 30)
|
226
|
+
```
|
227
|
+
We will talk about vector indexing in a latter section. But notice here that indexing
|
228
|
+
an R::Vector will return another R::Vector:
|
229
|
+
|
230
|
+
```{ruby indexing}
|
231
|
+
puts vec[1]
|
232
|
+
```
|
233
|
+
Sometimes we want to index an R::Object and get back a Ruby object that is not wrapped
|
234
|
+
in an R::Object, but the native Ruby object. For this, we can index the R object with
|
235
|
+
the '>>' operator:
|
236
|
+
|
237
|
+
```{ruby native_value}
|
238
|
+
puts vec >> 0
|
239
|
+
puts vec >> 2
|
240
|
+
```
|
241
|
+
|
242
|
+
It is also possible to call an R function with named arguments, by creating the function
|
243
|
+
in Galaaz with named parameters. For instance, here is an example of creating a 'list'
|
244
|
+
with named elements:
|
245
|
+
|
246
|
+
```{ruby named_parameters}
|
247
|
+
puts R.list(first_name: "Rodrigo", last_name: "Botafogo")
|
248
|
+
```
|
249
|
+
|
250
|
+
Many R functions receive another function as argument. For instance, method 'map' applies
|
251
|
+
a function to every element of a vector. With Galaaz, it is possible to pass a Proc,
|
252
|
+
Method or Lambda in place of the expected R function. In this next example, we will
|
253
|
+
add 2 to every element of our previously created vector:
|
254
|
+
|
255
|
+
```{ruby proc_as_param}
|
256
|
+
puts vec.map { |x| x + 2 }
|
257
|
+
```
|
258
|
+
|
95
259
|
# gKnitting a Document
|
96
260
|
|
97
261
|
This manual has been formatted usign gKnit. gKnit uses Knitr and R markdown to knit
|
@@ -101,9 +265,626 @@ chunks, making it an ideal solution for literate programming. Also, since it is
|
|
101
265
|
on Galaaz, Ruby chunks can have access to R variables and Polyglot Programming with
|
102
266
|
Ruby and R is quite natural.
|
103
267
|
|
104
|
-
|
268
|
+
The idea of "literate programming" was first introduced by Donald Knuth in the
|
269
|
+
1980's [@Knuth:literate_programming].
|
270
|
+
The main intention of this approach was to develop software interspersing macro snippets,
|
271
|
+
traditional source code, and a natural language such as English in a document
|
272
|
+
that could be compiled into
|
273
|
+
executable code and at the same time easily read by a human developer. According to Knuth
|
274
|
+
"The practitioner of
|
275
|
+
literate programming can be regarded as an essayist, whose main concern is with exposition
|
276
|
+
and excellence of style."
|
277
|
+
|
278
|
+
The idea of literate programming evolved into the idea of reproducible research, in which
|
279
|
+
all the data, software code, documentation, graphics etc. needed to reproduce the research
|
280
|
+
and its reports could be included in a
|
281
|
+
single document or set of documents that when distributed to peers could be rerun generating
|
282
|
+
the same output and reports.
|
283
|
+
|
284
|
+
The R community has put a great deal of effort in reproducible research. In 2002, Sweave was
|
285
|
+
introduced and it allowed mixing R code with Latex generating high quality PDF documents. A
|
286
|
+
Sweave document could include code, the results of executing the code, graphics and text
|
287
|
+
such that it contained the whole narrative to reproduce the research. In
|
288
|
+
2012, Knitr, developed by Yihui Xie from RStudio was released to replace Sweave and to
|
289
|
+
consolidate in one single package the many extensions and add-on packages that
|
290
|
+
were necessary for Sweave.
|
291
|
+
|
292
|
+
With Knitr, __R markdown__ was also developed, an extension to the
|
293
|
+
Markdown format. With __R markdown__ and Knitr it is possible to generate reports in a multitude
|
294
|
+
of formats such as HTML, markdown, Latex, PDF, dvi, etc. __R markdown__ also allows the use of
|
295
|
+
multiple programming languages such as R, Ruby, Python, etc. in the same document.
|
296
|
+
|
297
|
+
In __R markdown__, text is interspersed with
|
298
|
+
code chunks that can be executed and both the code and its results can become
|
299
|
+
part of the final report. Although __R markdown__ allows multiple programming languages in the
|
300
|
+
same document, only R and Python (with
|
301
|
+
the reticulate package) can persist variables between chunks. For other languages, such as
|
302
|
+
Ruby, every chunk will start a new process and thus all data is lost between chunks, unless it
|
303
|
+
is somehow stored in a data file that is read by the next chunk.
|
304
|
+
|
305
|
+
Being able to persist data
|
306
|
+
between chunks is critical for literate programming otherwise the flow of the narrative is lost
|
307
|
+
by all the effort of having to save data and then reload it. Although this might, at first, seem like
|
308
|
+
a small nuisance, not being able to persist data between chunks is a major issue. For example, let's
|
309
|
+
take a look at the following simple example in which we want to show how to create a list and the
|
310
|
+
use it. Let's first assume that data cannot be persisted between chunks. In the next chunk we
|
311
|
+
create a list, then we would need to save it to file, but to save it, we need somehow to marshal the
|
312
|
+
data into a binary format:
|
313
|
+
|
314
|
+
```{ruby no_persistence}
|
315
|
+
lst = R.list(a: 1, b: 2, c: 3)
|
316
|
+
lst.saveRDS("lst.rds")
|
317
|
+
```
|
318
|
+
then, on the next chunk, where variable 'lst' is used, we need to read back it's value
|
319
|
+
|
320
|
+
```{ruby load_persisted_data}
|
321
|
+
lst = R.readRDS("lst.rds")
|
322
|
+
puts lst
|
323
|
+
```
|
324
|
+
|
325
|
+
Now, any single code has dozens of variables that we might want to use and reuse between chunks.
|
326
|
+
Clearly, such an approach becomes quickly unmanageable. Probably, because of
|
327
|
+
this problem, it is very rare to see any __R markdown__ document in the Ruby community.
|
328
|
+
|
329
|
+
When variables can be used accross chunks, then no overhead is needed:
|
330
|
+
|
331
|
+
```{ruby persistence}
|
332
|
+
lst = R.list(a: 1, b: 2, c: 3)
|
333
|
+
# any other code can be added here
|
334
|
+
```
|
335
|
+
|
336
|
+
```{ruby use_var}
|
337
|
+
puts lst
|
338
|
+
```
|
339
|
+
|
340
|
+
In the Python community, the same effort to have code and text in an integrated environment
|
341
|
+
started around the first decade of 2000. In 2006 iPython 0.7.2 was released. In 2014,
|
342
|
+
Fernando Pérez, spun off project Jupyter from iPython creating a web-based interactive
|
343
|
+
computation environment. Jupyter can now be used with many languages, including Ruby with the
|
344
|
+
iruby gem (https://github.com/SciRuby/iruby). In order to have multiple languages in a Jupyter
|
345
|
+
notebook the SoS kernel was developed (https://vatlab.github.io/sos-docs/).
|
346
|
+
|
347
|
+
## gKnit and __R markdown__
|
348
|
+
|
349
|
+
gKnit is based on knitr and __R markdown__ and can knit a document
|
350
|
+
written both in Ruby and/or R and output it in any of the available formats of __R markdown__. gKnit
|
351
|
+
allows ruby developers to do literate programming and reproducible research by allowing them to
|
352
|
+
have in a single document, text and code.
|
353
|
+
|
354
|
+
In gKnit, Ruby variables are persisted between
|
355
|
+
chunks, making it an ideal solution for literate programming in this language. Also,
|
356
|
+
since it is based on Galaaz, Ruby chunks can have access to R variables and Polyglot Programming
|
357
|
+
with Ruby and R is quite natural.
|
358
|
+
|
359
|
+
This is not a blog post on __R markdown__, and the interested user is directed to the following links
|
360
|
+
for detailed information on its capabilities and use.
|
361
|
+
|
362
|
+
* https://rmarkdown.rstudio.com/ or
|
363
|
+
* https://bookdown.org/yihui/rmarkdown/
|
364
|
+
|
365
|
+
In this post, we will describe just the main aspects of __R markdown__, so the user can start
|
366
|
+
gKnitting Ruby and R documents quickly.
|
367
|
+
|
368
|
+
## The Yaml header
|
369
|
+
|
370
|
+
An __R markdown__ document should start with a Yaml header and be stored in a file with
|
371
|
+
'.Rmd' extension. This document has the following header for gKitting an HTML document.
|
372
|
+
|
373
|
+
```
|
374
|
+
---
|
375
|
+
title: "How to do reproducible research in Ruby with gKnit"
|
376
|
+
author:
|
377
|
+
- "Rodrigo Botafogo"
|
378
|
+
- "Daniel Mossé - University of Pittsburgh"
|
379
|
+
tags: [Tech, Data Science, Ruby, R, GraalVM]
|
380
|
+
date: "20/02/2019"
|
381
|
+
output:
|
382
|
+
html_document:
|
383
|
+
self_contained: true
|
384
|
+
keep_md: true
|
385
|
+
pdf_document:
|
386
|
+
includes:
|
387
|
+
in_header: ["../../sty/galaaz.sty"]
|
388
|
+
number_sections: yes
|
389
|
+
---
|
390
|
+
```
|
391
|
+
|
392
|
+
For more information on the options in the Yaml header, [check here](https://bookdown.org/yihui/rmarkdown/html-document.html).
|
393
|
+
|
394
|
+
## __R Markdown__ formatting
|
395
|
+
|
396
|
+
Document formatting can be done with simple markups such as:
|
397
|
+
|
398
|
+
## Headers
|
399
|
+
|
400
|
+
```
|
401
|
+
# Header 1
|
402
|
+
|
403
|
+
## Header 2
|
404
|
+
|
405
|
+
### Header 3
|
406
|
+
|
407
|
+
```
|
408
|
+
|
409
|
+
## Lists
|
410
|
+
|
411
|
+
```
|
412
|
+
Unordered lists:
|
413
|
+
|
414
|
+
* Item 1
|
415
|
+
* Item 2
|
416
|
+
+ Item 2a
|
417
|
+
+ Item 2b
|
418
|
+
```
|
419
|
+
|
420
|
+
```
|
421
|
+
Ordered Lists
|
422
|
+
|
423
|
+
1. Item 1
|
424
|
+
2. Item 2
|
425
|
+
3. Item 3
|
426
|
+
+ Item 3a
|
427
|
+
+ Item 3b
|
428
|
+
```
|
429
|
+
|
430
|
+
For more R markdown formatting go to https://rmarkdown.rstudio.com/authoring_basics.html.
|
431
|
+
|
432
|
+
## R chunks
|
433
|
+
|
434
|
+
Running and executing Ruby and R code is actually what really interests us is this blog.
|
435
|
+
Inserting a code chunk is done by adding code in a block delimited by three back ticks
|
436
|
+
followed by an open
|
437
|
+
curly brace ('{') followed with the engine name (r, ruby, rb, include, ...), an
|
438
|
+
any optional chunk_label and options, as shown bellow:
|
439
|
+
|
440
|
+
````
|
441
|
+
```{engine_name [chunk_label], [chunk_options]}`r ''`
|
442
|
+
```
|
443
|
+
````
|
444
|
+
|
445
|
+
for instance, let's add an R chunk to the document labeled 'first_r_chunk'. This is
|
446
|
+
a very simple code just to create a variable and print it out, as follows:
|
447
|
+
|
448
|
+
````
|
449
|
+
```{r first_r_chunk}`r ''`
|
450
|
+
vec <- c(1, 2, 3)
|
451
|
+
print(vec)
|
452
|
+
```
|
453
|
+
````
|
454
|
+
|
455
|
+
If this block is added to an __R markdown__ document and gKnitted the result will be:
|
456
|
+
|
457
|
+
```{r first_r_chunk}
|
458
|
+
vec <- c(1, 2, 3)
|
459
|
+
print(vec)
|
460
|
+
```
|
461
|
+
|
462
|
+
Now let's say that we want to do some analysis in the code, but just print the result and not the
|
463
|
+
code itself. For this, we need to add the option 'echo = FALSE'.
|
464
|
+
|
465
|
+
````
|
466
|
+
```{r second_r_chunk, echo = FALSE}`r ''`
|
467
|
+
vec2 <- c(10, 20, 30)
|
468
|
+
vec3 <- vec * vec2
|
469
|
+
print(vec3)
|
470
|
+
```
|
471
|
+
````
|
472
|
+
Here is how this block will show up in the document. Observe that the code is not shown
|
473
|
+
and we only see the execution result in a white box
|
474
|
+
|
475
|
+
```{r second_r_chunk, echo = FALSE}
|
476
|
+
vec2 <- c(10, 20, 30)
|
477
|
+
vec3 <- vec * vec2
|
478
|
+
print(vec3)
|
479
|
+
```
|
480
|
+
|
481
|
+
A description of the available chunk options can be found in https://yihui.name/knitr/.
|
482
|
+
|
483
|
+
Let's add another R chunk with a function definition. In this example, a vector
|
484
|
+
'r_vec' is created and
|
485
|
+
a new function 'reduce_sum' is defined. The chunk specification is
|
486
|
+
|
487
|
+
````
|
488
|
+
```{r data_creation}`r ''`
|
489
|
+
r_vec <- c(1, 2, 3, 4, 5)
|
490
|
+
|
491
|
+
reduce_sum <- function(...) {
|
492
|
+
Reduce(sum, as.list(...))
|
493
|
+
}
|
494
|
+
```
|
495
|
+
````
|
496
|
+
|
497
|
+
and this is how it will look like once executed. From now on, to be concise in the
|
498
|
+
presentation we will not show chunk definitions any longer.
|
499
|
+
|
500
|
+
|
501
|
+
```{r data_creation}
|
502
|
+
r_vec <- c(1, 2, 3, 4, 5)
|
503
|
+
|
504
|
+
reduce_sum <- function(...) {
|
505
|
+
Reduce(sum, as.list(...))
|
506
|
+
}
|
507
|
+
```
|
508
|
+
|
509
|
+
We can, possibly in another chunk, access the vector and call the function as follows:
|
510
|
+
|
511
|
+
```{r using_previous}
|
512
|
+
print(r_vec)
|
513
|
+
print(reduce_sum(r_vec))
|
514
|
+
```
|
515
|
+
## R Graphics with ggplot
|
516
|
+
|
517
|
+
In the following chunk, we create a bubble chart in R using ggplot and include it in
|
518
|
+
this document. Note that there is no directive in the code to include the image, this
|
519
|
+
occurs automatically. The 'mpg' dataframe is natively available to R and to Galaaz as
|
520
|
+
well.
|
521
|
+
|
522
|
+
For the reader not knowledgeable of ggplot, ggplot is a graphics library based on "the
|
523
|
+
grammar of graphics" [@Wilkinson:grammar_of_graphics]. The idea of the grammar of graphics
|
524
|
+
is to build a graphics by adding layers to the plot. More information can be found in
|
525
|
+
https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149.
|
526
|
+
|
527
|
+
In the plot bellow the 'mpg' dataset from base R is used. "The data concerns city-cycle fuel
|
528
|
+
consumption in miles per gallon, to be predicted in terms of 3 multivalued discrete and 5
|
529
|
+
continuous attributes." (Quinlan, 1993)
|
530
|
+
|
531
|
+
First, the 'mpg' dataset if filtered to extract only cars from the following manumactures: Audi, Ford,
|
532
|
+
Honda, and Hyundai and stored in the 'mpg_select' variable. Then, the selected dataframe is passed
|
533
|
+
to the ggplot function specifying in the aesthetic method (aes) that 'displacement' (disp) should
|
534
|
+
be plotted in the 'x' axis and 'city mileage' should be on the 'y' axis. In the 'labs' layer we
|
535
|
+
pass the 'title' and 'subtitle' for the plot. To the basic plot 'g', geom\_jitter is added, that
|
536
|
+
plots cars from the same manufactures with the same color (col=manufactures) and the size of the
|
537
|
+
car point equal its high way consumption (size = hwy). Finally, a last layer is plotter containing
|
538
|
+
a linear regression line (method = "lm") for every manufacturer.
|
539
|
+
|
540
|
+
```{r bubble, dev='png'}
|
541
|
+
# load package and data
|
542
|
+
library(ggplot2)
|
543
|
+
data(mpg, package="ggplot2")
|
544
|
+
|
545
|
+
mpg_select <- mpg[mpg$manufacturer %in% c("audi", "ford", "honda", "hyundai"), ]
|
105
546
|
|
106
|
-
#
|
547
|
+
# Scatterplot
|
548
|
+
theme_set(theme_bw()) # pre-set the bw theme.
|
549
|
+
g <- ggplot(mpg_select, aes(displ, cty)) +
|
550
|
+
labs(subtitle="mpg: Displacement vs City Mileage",
|
551
|
+
title="Bubble chart")
|
552
|
+
|
553
|
+
g + geom_jitter(aes(col=manufacturer, size=hwy)) +
|
554
|
+
geom_smooth(aes(col=manufacturer), method="lm", se=F)
|
555
|
+
```
|
556
|
+
|
557
|
+
## Ruby chunks
|
558
|
+
|
559
|
+
Including a Ruby chunk is just as easy as including an R chunk in the document: just
|
560
|
+
change the name of the engine to 'ruby'. It is also possible to pass chunk options
|
561
|
+
to the Ruby engine; however, this version does not accept all the options that are
|
562
|
+
available to R chunks. Future versions will add those options.
|
563
|
+
|
564
|
+
````
|
565
|
+
```{ruby first_ruby_chunk}`r ''`
|
566
|
+
```
|
567
|
+
````
|
568
|
+
|
569
|
+
In this example, the ruby chunk is called 'first_ruby_chunk'. One important
|
570
|
+
aspect of chunk labels is that they cannot be duplicated. If a chunk label is
|
571
|
+
duplicated, gKnit will stop with an error.
|
572
|
+
|
573
|
+
In the following chunk, variable 'a', 'b' and 'c' are standard Ruby variables
|
574
|
+
and 'vec' and 'vec2' are two vectors created by calling the 'c' method on the
|
575
|
+
R module.
|
576
|
+
|
577
|
+
In Galaaz, the R module allows us to access R functions transparently. The 'c'
|
578
|
+
function in R, is a function that concatenates its arguments making a vector.
|
579
|
+
|
580
|
+
It
|
581
|
+
should be clear that there is no requirement in gknit to call or use any R
|
582
|
+
functions. gKnit will knit standard Ruby code, or even general text without
|
583
|
+
any code.
|
584
|
+
|
585
|
+
```{ruby split_data}
|
586
|
+
a = [1, 2, 3]
|
587
|
+
b = "US$ 250.000"
|
588
|
+
c = "The 'outputs' function"
|
589
|
+
|
590
|
+
vec = R.c(1, 2, 3)
|
591
|
+
vec2 = R.c(10, 20, 30)
|
592
|
+
```
|
593
|
+
|
594
|
+
In the next block, variables 'a', 'vec' and 'vec2' are used and printed.
|
595
|
+
|
596
|
+
```{ruby split2}
|
597
|
+
puts a
|
598
|
+
puts vec * vec2
|
599
|
+
```
|
600
|
+
|
601
|
+
Note that 'a' is a standard Ruby Array and 'vec' and 'vec2' are vectors that behave accordingly,
|
602
|
+
where multiplication works as expected.
|
603
|
+
|
604
|
+
## Inline Ruby code
|
605
|
+
|
606
|
+
When using a Ruby chunk, the code and the output are formatted in blocks as seen above.
|
607
|
+
This formatting is not always desired. Sometimes, we want to have the results of the
|
608
|
+
Ruby evaluation included in the middle of a phrase. gKnit allows adding inline Ruby code
|
609
|
+
with the 'rb' engine. The following chunk specification will
|
610
|
+
create and inline Ruby text:
|
611
|
+
|
612
|
+
````
|
613
|
+
This is some text with inline Ruby accessing variable 'b' which has value:
|
614
|
+
```{rb puts "```{rb puts b}\n```"}
|
615
|
+
```
|
616
|
+
and is followed by some other text!
|
617
|
+
````
|
618
|
+
|
619
|
+
<div style="margin-bottom:30px;">
|
620
|
+
</div>
|
621
|
+
|
622
|
+
This is some text with inline Ruby accessing variable 'b' which has value:
|
623
|
+
```{rb puts b}
|
624
|
+
```
|
625
|
+
and is followed by some other text!
|
626
|
+
|
627
|
+
<div style="margin-bottom:30px;">
|
628
|
+
</div>
|
629
|
+
|
630
|
+
Note that it is important not to add any new line before of after the code
|
631
|
+
block if we want everything to be in only one line, resulting in the following sentence
|
632
|
+
with inline Ruby code.
|
633
|
+
|
634
|
+
|
635
|
+
```{ruby heading, echo = FALSE}
|
636
|
+
outputs "### #{c}"
|
637
|
+
```
|
638
|
+
|
639
|
+
He have previously used the standard 'puts' method in Ruby chunks in order produce
|
640
|
+
output. The result of a 'puts', as seen in all previous chunks that use it, is formatted
|
641
|
+
inside a white box that
|
642
|
+
follows the code block. Many times however, we would like to do some processing in the
|
643
|
+
Ruby chunk and have the result of this processing generate and output that is
|
644
|
+
"included" in the document as if we had typed it in __R markdown__ document.
|
645
|
+
|
646
|
+
For example, suppose we want to create a new heading in our document, but the heading
|
647
|
+
phrase is the result of some code processing: maybe it's the first line of a file we are
|
648
|
+
going to read. Method 'outputs' adds its output as if typed in the __R markdown__ document.
|
649
|
+
|
650
|
+
Take now a look at variable 'c' (it was defined in a previous block above) as
|
651
|
+
'c = "The 'outputs' function". "The 'outputs' function" is actually the name of this
|
652
|
+
section and it was created using the 'outputs' function inside a Ruby chunk.
|
653
|
+
|
654
|
+
The ruby chunk to generate this heading is:
|
655
|
+
|
656
|
+
````
|
657
|
+
```{ruby heading}`r ''`
|
658
|
+
outputs "### #{c}"
|
659
|
+
```
|
660
|
+
````
|
661
|
+
|
662
|
+
The three '###' is the way we add a Heading 3 in __R markdown__.
|
663
|
+
|
664
|
+
|
665
|
+
### HTML Output from Ruby Chunks
|
666
|
+
|
667
|
+
We've just seen the use of method 'outputs' to add text to the the __R markdown__
|
668
|
+
document. This technique can also be used to add HTML code to the document. In
|
669
|
+
__R markdown__, any html code typed directly in the document will be properly rendered.
|
670
|
+
Here, for instance, is a table definition in HTML and its output in the document:
|
671
|
+
|
672
|
+
```
|
673
|
+
<table style="width:100%">
|
674
|
+
<tr>
|
675
|
+
<th>Firstname</th>
|
676
|
+
<th>Lastname</th>
|
677
|
+
<th>Age</th>
|
678
|
+
</tr>
|
679
|
+
<tr>
|
680
|
+
<td>Jill</td>
|
681
|
+
<td>Smith</td>
|
682
|
+
<td>50</td>
|
683
|
+
</tr>
|
684
|
+
<tr>
|
685
|
+
<td>Eve</td>
|
686
|
+
<td>Jackson</td>
|
687
|
+
<td>94</td>
|
688
|
+
</tr>
|
689
|
+
</table>
|
690
|
+
```
|
691
|
+
<div style="margin-bottom:30px;">
|
692
|
+
</div>
|
693
|
+
|
694
|
+
<table style="width:100%">
|
695
|
+
<tr>
|
696
|
+
<th>Firstname</th>
|
697
|
+
<th>Lastname</th>
|
698
|
+
<th>Age</th>
|
699
|
+
</tr>
|
700
|
+
<tr>
|
701
|
+
<td>Jill</td>
|
702
|
+
<td>Smith</td>
|
703
|
+
<td>50</td>
|
704
|
+
</tr>
|
705
|
+
<tr>
|
706
|
+
<td>Eve</td>
|
707
|
+
<td>Jackson</td>
|
708
|
+
<td>94</td>
|
709
|
+
</tr>
|
710
|
+
</table>
|
711
|
+
|
712
|
+
<div style="margin-bottom:30px;">
|
713
|
+
</div>
|
714
|
+
|
715
|
+
But manually creating HTML output is not always easy or desirable, specially
|
716
|
+
if we intend the document to be rendered in other formats, for example, as Latex.
|
717
|
+
Also, The above
|
718
|
+
table looks ugly. The 'kableExtra' library is a great library for
|
719
|
+
creating beautiful tables. Take a look at https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
|
720
|
+
|
721
|
+
In the next chunk, we output the 'mtcars' dataframe from R in a nicely formatted
|
722
|
+
table. Note that we retrieve the mtcars dataframe by using '~:mtcars'.
|
723
|
+
|
724
|
+
```{ruby nice_table}
|
725
|
+
R.install_and_loads('kableExtra')
|
726
|
+
outputs (~:mtcars).kable.kable_styling
|
727
|
+
```
|
728
|
+
|
729
|
+
## Including Ruby files in a chunk
|
730
|
+
|
731
|
+
R is a language that was created to be easy and fast for statisticians to use. As far
|
732
|
+
as I know, it was not a
|
733
|
+
language to be used for developing large systems. Of course, there are large systems and
|
734
|
+
libraries in R, but the focus of the language is for developing statistical models and
|
735
|
+
distribute that to peers.
|
736
|
+
|
737
|
+
Ruby on the other hand, is a language for large software development. Systems written in
|
738
|
+
Ruby will have dozens, hundreds or even thousands of files. To document a
|
739
|
+
large system with literate programming, we cannot expect the developer to add all the
|
740
|
+
files in a single '.Rmd' file. gKnit provides the 'include' chunk engine to include
|
741
|
+
a Ruby file as if it had being typed in the '.Rmd' file.
|
742
|
+
|
743
|
+
To include a file, the following chunk should be created, where <filename> is the name of
|
744
|
+
the file to be included and where the extension, if it is '.rb', does not need to be added.
|
745
|
+
If the 'relative' option is not included, then it is treated as TRUE. When 'relative' is
|
746
|
+
true, ruby's 'require\_relative' semantics is used to load the file, when false, Ruby's
|
747
|
+
\$LOAD_PATH is searched to find the file and it is 'require'd.
|
748
|
+
|
749
|
+
````
|
750
|
+
```{include <filename>, relative = <TRUE/FALSE>}`r ''`
|
751
|
+
```
|
752
|
+
````
|
753
|
+
|
754
|
+
Bellow we include file 'model.rb', which is in the same directory of this blog.
|
755
|
+
This code uses R 'caret' package to split a dataset in a train and test sets.
|
756
|
+
The 'caret' package is a very important a useful package for doing Data Analysis,
|
757
|
+
it has hundreds of functions for all steps of the Data Analysis workflow. To
|
758
|
+
use 'caret' just to split a dataset is like using the proverbial cannon to
|
759
|
+
kill the fly. We use it here only to show that integrating Ruby and R and
|
760
|
+
using even a very complex package as 'caret' is trivial with Galaaz.
|
761
|
+
|
762
|
+
A word of advice: the 'caret' package has lots of dependencies and installing
|
763
|
+
it in a Linux system is a time consuming operation. Method 'R.install_and_loads'
|
764
|
+
will install the package if it is not already installed and can take a while.
|
765
|
+
|
766
|
+
````
|
767
|
+
```{include model}`r ''`
|
768
|
+
```
|
769
|
+
````
|
770
|
+
|
771
|
+
```{include model}
|
772
|
+
```
|
773
|
+
|
774
|
+
```{ruby model_partition}
|
775
|
+
mtcars = ~:mtcars
|
776
|
+
model = Model.new(mtcars, percent_train: 0.8)
|
777
|
+
model.partition(:mpg)
|
778
|
+
puts model.train.head
|
779
|
+
puts model.test.head
|
780
|
+
```
|
781
|
+
|
782
|
+
## Documenting Gems
|
783
|
+
|
784
|
+
gKnit also allows developers to document and load files that are not in the same directory
|
785
|
+
of the '.Rmd' file.
|
786
|
+
|
787
|
+
Here is an example of loading the 'find.rb' file from TruffleRuby. In this example, relative
|
788
|
+
is set to FALSE, so Ruby will look for the file in its $LOAD\_PATH, and the user does not
|
789
|
+
need to no it's directory.
|
790
|
+
|
791
|
+
````
|
792
|
+
```{include find, relative = FALSE}`r ''`
|
793
|
+
```
|
794
|
+
````
|
795
|
+
|
796
|
+
```{include find, relative = FALSE}
|
797
|
+
```
|
798
|
+
|
799
|
+
## Converting to PDF
|
800
|
+
|
801
|
+
One of the beauties of knitr is that the same input can be converted to many different outputs.
|
802
|
+
One very useful format, is, of course, PDF. In order to converted an __R markdown__ file to PDF
|
803
|
+
it is necessary to have LaTeX installed on the system. We will not explain here how to
|
804
|
+
install LaTeX as there are plenty of documents on the web showing how to proceed.
|
805
|
+
|
806
|
+
gKnit comes with a simple LaTeX style file for gknitting this blog as a PDF document. Here is
|
807
|
+
the Yaml header to generate this blog in PDF format instead of HTML:
|
808
|
+
|
809
|
+
```
|
810
|
+
---
|
811
|
+
title: "gKnit - Ruby and R Knitting with Galaaz in GraalVM"
|
812
|
+
author: "Rodrigo Botafogo"
|
813
|
+
tags: [Galaaz, Ruby, R, TruffleRuby, FastR, GraalVM, knitr, gknit]
|
814
|
+
date: "29 October 2018"
|
815
|
+
output:
|
816
|
+
pdf\_document:
|
817
|
+
includes:
|
818
|
+
in\_header: ["../../sty/galaaz.sty"]
|
819
|
+
number\_sections: yes
|
820
|
+
---
|
821
|
+
```
|
822
|
+
|
823
|
+
## Template based documents generation
|
824
|
+
|
825
|
+
When a document is converted to PDF it follows a certain convertion template. We've seen above
|
826
|
+
the use of 'galaaz.sty' as a basic template to generate a PDF document. Using the
|
827
|
+
'gknit-draft' app that comes with Galaaz, the same .Rmd file can be compiled to different
|
828
|
+
looking PDF documents. Galaaz automatically loads the 'rticles' R package that comes with
|
829
|
+
templates for the following journals with the respective template name:
|
830
|
+
|
831
|
+
* ACM articles: acm_article
|
832
|
+
* ACS articles: acs_article
|
833
|
+
* AEA journal submissions: aea_article
|
834
|
+
* AGU journal submissions: ????
|
835
|
+
* AMS articles: ams_article
|
836
|
+
* American Statistical Association: asa_article
|
837
|
+
* Biometrics articles: biometrics_article
|
838
|
+
* Bulletin de l'AMQ journal submissions: amq_article
|
839
|
+
* CTeX documents: ctex
|
840
|
+
* Elsevier journal submissions: elsevier_article
|
841
|
+
* IEEE Transaction journal submissions: ieee_article
|
842
|
+
* JSS articles: jss_article
|
843
|
+
* MDPI journal submissions: mdpi_article
|
844
|
+
* Monthly Notices of the Royal Astronomical Society articles: mnras_article
|
845
|
+
* NNRAS journal submissions: nmras_article
|
846
|
+
* PeerJ articles: peerj_article
|
847
|
+
* Royal Society Open Science journal submissions: rsos_article
|
848
|
+
* Royal Statistical Society: rss_article
|
849
|
+
* Sage journal submissions: sage_article
|
850
|
+
* Springer journal submissions: springer_article
|
851
|
+
* Statistics in Medicine journal submissions: sim_article
|
852
|
+
* Copernicus Publications journal submissions: copernicus_article
|
853
|
+
* The R Journal articles: rjournal_article
|
854
|
+
* Frontiers articles: ???
|
855
|
+
* Taylor & Francis articles: ???
|
856
|
+
* Bulletin De L'AMQ: amq_article
|
857
|
+
* PLOS journal: plos_article
|
858
|
+
* Proceedings of the National Academy of Sciences of the USA: pnas_article
|
859
|
+
|
860
|
+
In order to create a document with one of those templates, use the following command:
|
861
|
+
|
862
|
+
```
|
863
|
+
gknit-draft --filename <my_document> --template <template> --package <package>
|
864
|
+
--create_dir
|
865
|
+
```
|
866
|
+
So, in order to create a template for writing an R Journal, use:
|
867
|
+
|
868
|
+
```
|
869
|
+
gknit-draft --filename my_r_article --template rjournal_article --package rticles
|
870
|
+
--create_dir
|
871
|
+
```
|
872
|
+
|
873
|
+
# Accessing R variables
|
874
|
+
|
875
|
+
Galaaz allows Ruby to access variables created in R. For example, the 'mtcars' data set is
|
876
|
+
available in R and can be accessed from Ruby by using the 'tilda' operator followed by the
|
877
|
+
symbol for the variable, in this case ':mtcar'. In the code bellow method 'outputs' is
|
878
|
+
used to output the 'mtcars' data set nicely formatted in HTML by use of the 'kable' and
|
879
|
+
'kable_styling' functions. Method 'outputs' is only available when used with 'gknit'.
|
880
|
+
|
881
|
+
```{ruby view_kable}
|
882
|
+
outputs (~:mtcars).kable.kable_styling
|
883
|
+
```
|
884
|
+
|
885
|
+
# Basic Data Types
|
886
|
+
|
887
|
+
## Vector
|
107
888
|
|
108
889
|
Vectors can be thought of as contiguous cells containing data. Cells are accessed through
|
109
890
|
indexing operations such as x[5]. Galaaz has six basic (‘atomic’) vector types: logical,
|
@@ -178,7 +959,7 @@ vec = R.c(true, true, false, false, true)
|
|
178
959
|
puts vec
|
179
960
|
```
|
180
961
|
|
181
|
-
|
962
|
+
### Combining Vectors
|
182
963
|
|
183
964
|
The 'c' functions used to create vectors can also be used to combine two vectors:
|
184
965
|
|
@@ -200,7 +981,7 @@ vec = vec1.c(vec2)
|
|
200
981
|
puts vec
|
201
982
|
```
|
202
983
|
|
203
|
-
|
984
|
+
### Vector Arithmetic
|
204
985
|
|
205
986
|
Arithmetic operations on vectors are performed element by element:
|
206
987
|
|
@@ -219,7 +1000,7 @@ vec3 = R.c(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)
|
|
219
1000
|
puts vec4 = vec1 + vec3
|
220
1001
|
```
|
221
1002
|
|
222
|
-
|
1003
|
+
### Vector Indexing
|
223
1004
|
|
224
1005
|
Vectors can be indexed by using the '[]' operator:
|
225
1006
|
|
@@ -275,7 +1056,7 @@ full_name = R.c(First: "Rodrigo", Middle: "A", Last: "Botafogo")
|
|
275
1056
|
puts full_name
|
276
1057
|
```
|
277
1058
|
|
278
|
-
|
1059
|
+
### Extracting Native Ruby Types from a Vector
|
279
1060
|
|
280
1061
|
Vectors created with 'R.c' are of class R::Vector. You might have noticed that when indexing a
|
281
1062
|
vector, a new vector is returned, even if this vector has one single element. In order to use
|
@@ -290,19 +1071,7 @@ puts vec4 >> 4
|
|
290
1071
|
|
291
1072
|
Note that indexing with '>>' starts at 0 and not at 1, also, we cannot do negative indexing.
|
292
1073
|
|
293
|
-
|
294
|
-
|
295
|
-
Galaaz allows Ruby to access variables created in R. For example, the 'mtcars' data set is
|
296
|
-
available in R and can be accessed from Ruby by using the 'tilda' operator followed by the
|
297
|
-
symbol for the variable, in this case ':mtcar'. In the code bellow method 'outputs' is
|
298
|
-
used to output the 'mtcars' data set nicely formatted in HTML by use of the 'kable' and
|
299
|
-
'kable_styling' functions. Method 'outputs' is only available when used with 'gknit'.
|
300
|
-
|
301
|
-
```{ruby view_kable}
|
302
|
-
outputs (~:mtcars).kable.kable_styling
|
303
|
-
```
|
304
|
-
|
305
|
-
# Matrix
|
1074
|
+
## Matrix
|
306
1075
|
|
307
1076
|
A matrix is a collection of elements organized as a two dimensional table. A matrix can be
|
308
1077
|
created by the 'matrix' function:
|
@@ -326,7 +1095,7 @@ mat_row = R.matrix(R.c(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0),
|
|
326
1095
|
puts mat_row
|
327
1096
|
```
|
328
1097
|
|
329
|
-
|
1098
|
+
### Indexing a Matrix
|
330
1099
|
|
331
1100
|
A matrix can be indexed by [row, column]:
|
332
1101
|
|
@@ -360,7 +1129,7 @@ and 'cbind':
|
|
360
1129
|
puts mat_row.cbind(mat)
|
361
1130
|
```
|
362
1131
|
|
363
|
-
|
1132
|
+
## List
|
364
1133
|
|
365
1134
|
A list is a data structure that can contain sublists of different types, while vector and matrix
|
366
1135
|
can only hold one type of element.
|
@@ -376,7 +1145,7 @@ puts lst
|
|
376
1145
|
Note that 'lst' elements are named elements.
|
377
1146
|
|
378
1147
|
|
379
|
-
|
1148
|
+
### List Indexing
|
380
1149
|
|
381
1150
|
List indexing, also called slicing, is done using the '[]' operator and the '[[]]' operator. Let's
|
382
1151
|
first start with the '[]' operator. The list above has three sublist indexing with '[]' will
|
@@ -406,7 +1175,7 @@ then the first element of the vector was extracted (note that vectors also accep
|
|
406
1175
|
operator) and then the vector was indexed by its first element, extracting the native Ruby type.
|
407
1176
|
|
408
1177
|
|
409
|
-
|
1178
|
+
## Data Frame
|
410
1179
|
|
411
1180
|
A data frame is a table like structure in which each column has the same number of
|
412
1181
|
rows. Data frames are the basic structure for storing data for data analysis. We have already
|
@@ -421,7 +1190,7 @@ df = R.data__frame(
|
|
421
1190
|
puts df
|
422
1191
|
```
|
423
1192
|
|
424
|
-
|
1193
|
+
### Data Frame Indexing
|
425
1194
|
|
426
1195
|
A data frame can be indexed the same way as a matrix, by using '[row, column]', where row and
|
427
1196
|
column can either be a numeric or the name of the row or column
|
@@ -530,7 +1299,7 @@ puts exp6
|
|
530
1299
|
In general we think that using the functional notation is preferable to using the
|
531
1300
|
symbolic notation as otherwise, we end up writing invalid expressions such as
|
532
1301
|
|
533
|
-
```{ruby exp_wrong, warning=FALSE}
|
1302
|
+
```{ruby exp_wrong, warning=FALSE, eval=FALSE}
|
534
1303
|
exp_wrong = (:a + :b) == :z
|
535
1304
|
puts exp_wrong
|
536
1305
|
```
|
@@ -600,11 +1369,15 @@ Galaaz.
|
|
600
1369
|
|
601
1370
|
For these
|
602
1371
|
examples, we will investigate the nycflights13 data set available on the package by the
|
603
|
-
same name. We use function 'R.
|
1372
|
+
same name. We use function 'R.install\_and\_loads' that checks if the library is available
|
604
1373
|
locally, and if not, installs it. This data frame contains all 336,776 flights that
|
605
1374
|
departed from New York City in 2013. The data comes from the US Bureau of
|
606
1375
|
Transportation Statistics.
|
607
1376
|
|
1377
|
+
Dplyr uses 'tibbles' in place of data frames; unfortunately, tibbles do not print yet properly in
|
1378
|
+
Galaaz due to a bug in fastR. In order to print a tibble we need to convert it to a data frame
|
1379
|
+
using the 'as\_\_data__frame' method.
|
1380
|
+
|
608
1381
|
```{ruby nycflights13}
|
609
1382
|
R.install_and_loads('nycflights13')
|
610
1383
|
R.library('dplyr')
|
@@ -612,7 +1385,7 @@ R.library('dplyr')
|
|
612
1385
|
|
613
1386
|
```{ruby flights}
|
614
1387
|
flights = ~:flights
|
615
|
-
puts flights.head
|
1388
|
+
puts flights.head
|
616
1389
|
```
|
617
1390
|
|
618
1391
|
## Filtering rows with Filter
|
@@ -621,7 +1394,7 @@ In this example we filter the flights data set by giving to the filter function
|
|
621
1394
|
the first :month.eq 1
|
622
1395
|
|
623
1396
|
```{ruby filter_rows}
|
624
|
-
puts flights.filter((:month.eq 1), (:day.eq 1)).head
|
1397
|
+
puts flights.filter((:month.eq 1), (:day.eq 1)).head
|
625
1398
|
```
|
626
1399
|
|
627
1400
|
## Logical Operators
|
@@ -629,7 +1402,7 @@ puts flights.filter((:month.eq 1), (:day.eq 1)).head.as__data__frame
|
|
629
1402
|
All flights that departed in November of December
|
630
1403
|
|
631
1404
|
```{ruby nov_dec}
|
632
|
-
puts flights.filter((:month.eq 11) | (:month.eq 12)).head
|
1405
|
+
puts flights.filter((:month.eq 11) | (:month.eq 12)).head
|
633
1406
|
```
|
634
1407
|
|
635
1408
|
The same as above, but using the 'in' operator. In R, it is possible to define many operators
|
@@ -638,7 +1411,7 @@ operators from Galaaz the '._' method is used, where the first argument is the o
|
|
638
1411
|
symbol, in this case ':in' and the second argument is the vector:
|
639
1412
|
|
640
1413
|
```{ruby in_op}
|
641
|
-
puts flights.filter(:month._ :in, R.c(11, 12)).head
|
1414
|
+
puts flights.filter(:month._ :in, R.c(11, 12)).head
|
642
1415
|
```
|
643
1416
|
|
644
1417
|
## Filtering with NA (Not Available)
|
@@ -650,20 +1423,20 @@ what is obtained from data frame.
|
|
650
1423
|
|
651
1424
|
```{ruby na_tibble}
|
652
1425
|
df = R.tibble(x: R.c(1, R::NA, 3))
|
653
|
-
puts df
|
1426
|
+
puts df
|
654
1427
|
```
|
655
1428
|
|
656
1429
|
Now filtering by :x > 1 shows all lines that satisfy this condition, where the row with R:NA does
|
657
1430
|
not.
|
658
1431
|
|
659
1432
|
```{ruby filter_na}
|
660
|
-
puts df.filter(:x > 1)
|
1433
|
+
puts df.filter(:x > 1)
|
661
1434
|
```
|
662
1435
|
|
663
1436
|
To match an NA use method 'is__na'
|
664
1437
|
|
665
1438
|
```{ruby with_na}
|
666
|
-
puts df.filter((:x.is__na) | (:x > 1))
|
1439
|
+
puts df.filter((:x.is__na) | (:x > 1))
|
667
1440
|
```
|
668
1441
|
|
669
1442
|
## Arrange Rows with arrange
|
@@ -671,13 +1444,13 @@ puts df.filter((:x.is__na) | (:x > 1)).as__data__frame
|
|
671
1444
|
Arrange reorders the rows of a data frame by the given arguments.
|
672
1445
|
|
673
1446
|
```{ruby arrange}
|
674
|
-
puts flights.arrange(:year, :month, :day).head
|
1447
|
+
puts flights.arrange(:year, :month, :day).head
|
675
1448
|
```
|
676
1449
|
|
677
1450
|
To arrange in descending order, use function 'desc'
|
678
1451
|
|
679
1452
|
```{ruby desc_arrange}
|
680
|
-
puts flights.arrange(:dep_delay.desc).head
|
1453
|
+
puts flights.arrange(:dep_delay.desc).head
|
681
1454
|
```
|
682
1455
|
|
683
1456
|
## Selecting columns
|
@@ -685,19 +1458,19 @@ puts flights.arrange(:dep_delay.desc).head.as__data__frame
|
|
685
1458
|
To select specific columns from a dataset we use function 'select':
|
686
1459
|
|
687
1460
|
```{ruby select}
|
688
|
-
puts flights.select(:year, :month, :day).head
|
1461
|
+
puts flights.select(:year, :month, :day).head
|
689
1462
|
```
|
690
1463
|
|
691
1464
|
It is also possible to select column in a given range
|
692
1465
|
|
693
1466
|
```{ruby select_range}
|
694
|
-
puts flights.select(:year.up_to :day).head
|
1467
|
+
puts flights.select(:year.up_to :day).head
|
695
1468
|
```
|
696
1469
|
|
697
1470
|
Select all columns that start with a given name sequence
|
698
1471
|
|
699
1472
|
```{ruby select_starts_with}
|
700
|
-
puts flights.select(E.starts_with('arr')).head
|
1473
|
+
puts flights.select(E.starts_with('arr')).head
|
701
1474
|
```
|
702
1475
|
|
703
1476
|
Other functions that can be used:
|
@@ -714,7 +1487,7 @@ Other functions that can be used:
|
|
714
1487
|
A helper function that comes in handy when we just want to rearrange column order is 'Everything':
|
715
1488
|
|
716
1489
|
```{ruby everything}
|
717
|
-
puts flights.select(:year, :month, :day, E.everything).head
|
1490
|
+
puts flights.select(:year, :month, :day, E.everything).head
|
718
1491
|
```
|
719
1492
|
|
720
1493
|
## Add variables to a dataframe with 'mutate'
|
@@ -726,14 +1499,14 @@ flights_sm = flights.
|
|
726
1499
|
:distance,
|
727
1500
|
:air_time)
|
728
1501
|
|
729
|
-
puts flights_sm.head
|
1502
|
+
puts flights_sm.head
|
730
1503
|
```
|
731
1504
|
|
732
1505
|
```{ruby mutate}
|
733
1506
|
flights_sm = flights_sm.
|
734
1507
|
mutate(gain: :dep_delay - :arr_delay,
|
735
1508
|
speed: :distance / :air_time * 60)
|
736
|
-
puts flights_sm.head
|
1509
|
+
puts flights_sm.head
|
737
1510
|
```
|
738
1511
|
|
739
1512
|
## Summarising data
|
@@ -742,14 +1515,14 @@ Function 'summarise' calculates summaries for the data frame. When no 'group_by'
|
|
742
1515
|
a single value is obtained from the data frame:
|
743
1516
|
|
744
1517
|
```{ruby summarise}
|
745
|
-
puts flights.summarise(delay: E.mean(:dep_delay, na__rm: true))
|
1518
|
+
puts flights.summarise(delay: E.mean(:dep_delay, na__rm: true))
|
746
1519
|
```
|
747
1520
|
|
748
|
-
When a data frame is
|
1521
|
+
When a data frame is grouped with 'group_by' summaries apply to the given group:
|
749
1522
|
|
750
1523
|
```{ruby summarise_group_by}
|
751
1524
|
by_day = flights.group_by(:year, :month, :day)
|
752
|
-
puts by_day.summarise(delay: :dep_delay.mean(na__rm: true)).head
|
1525
|
+
puts by_day.summarise(delay: :dep_delay.mean(na__rm: true)).head
|
753
1526
|
```
|
754
1527
|
|
755
1528
|
Next we put many operations together by pipping them one after the other:
|
@@ -763,7 +1536,7 @@ delays = flights.
|
|
763
1536
|
delay: :arr_delay.mean(na__rm: true)).
|
764
1537
|
filter(:count > 20, :dest != "NHL")
|
765
1538
|
|
766
|
-
puts delays.
|
1539
|
+
puts delays.head
|
767
1540
|
```
|
768
1541
|
|
769
1542
|
# Using Data Table
|
@@ -1061,13 +1834,13 @@ def my_summarize(df, group_var)
|
|
1061
1834
|
summarize(a: :a.mean)
|
1062
1835
|
end
|
1063
1836
|
|
1064
|
-
puts my_summarize(:df, :g1)
|
1837
|
+
puts my_summarize(:df, :g1)
|
1065
1838
|
```
|
1066
1839
|
|
1067
1840
|
It works!!! Well, let's make sure this was not just some coincidence
|
1068
1841
|
|
1069
1842
|
```{ruby group_g2}
|
1070
|
-
puts my_summarize(:df, :g2)
|
1843
|
+
puts my_summarize(:df, :g2)
|
1071
1844
|
```
|
1072
1845
|
|
1073
1846
|
Great, everything is fine! No magic, no new functions, no complexities, just normal, standard Ruby
|
@@ -1184,7 +1957,7 @@ def my_summarise3(df, *group_vars)
|
|
1184
1957
|
summarise(a: E.mean(:a))
|
1185
1958
|
end
|
1186
1959
|
|
1187
|
-
puts my_summarise3((~:df), :g1, :g2)
|
1960
|
+
puts my_summarise3((~:df), :g1, :g2)
|
1188
1961
|
```
|
1189
1962
|
|
1190
1963
|
## Why does R require NSE and Galaaz does not?
|
@@ -1235,7 +2008,7 @@ In the following examples, we show the use of functions 'group\_by\_at', 'summar
|
|
1235
2008
|
features of characters in the Starwars movies:
|
1236
2009
|
|
1237
2010
|
```{ruby starwars}
|
1238
|
-
puts (~:starwars).head
|
2011
|
+
puts (~:starwars).head
|
1239
2012
|
```
|
1240
2013
|
The grouped_mean function bellow will receive a grouping variable and calculate summaries for
|
1241
2014
|
the value\_variables given:
|
@@ -1266,7 +2039,7 @@ def grouped_mean(data, grouping_variables, value_variables)
|
|
1266
2039
|
rename_at(value_variables, E.funs(E.paste0("mean_", value_variables)))
|
1267
2040
|
end
|
1268
2041
|
|
1269
|
-
puts grouped_mean((~:starwars), "eye_color", E.c("mass", "birth_year"))
|
2042
|
+
puts grouped_mean((~:starwars), "eye_color", E.c("mass", "birth_year"))
|
1270
2043
|
```
|
1271
2044
|
|
1272
2045
|
|
@@ -1275,7 +2048,6 @@ puts grouped_mean((~:starwars), "eye_color", E.c("mass", "birth_year")).as__data
|
|
1275
2048
|
|
1276
2049
|
# Contributing
|
1277
2050
|
|
1278
|
-
|
1279
2051
|
* Fork it
|
1280
2052
|
* Create your feature branch (git checkout -b my-new-feature)
|
1281
2053
|
* Write Tests!
|
@@ -1283,3 +2055,4 @@ puts grouped_mean((~:starwars), "eye_color", E.c("mass", "birth_year")).as__data
|
|
1283
2055
|
* Push to the branch (git push origin my-new-feature)
|
1284
2056
|
* Create new Pull Request
|
1285
2057
|
|
2058
|
+
# References
|