galaaz 0.4.10 → 0.5.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +2048 -531
- data/Rakefile +3 -2
- data/bin/gknit +152 -6
- data/bin/gknit-draft +105 -0
- data/bin/gknit-draft.rb +28 -0
- data/bin/gknit_Rscript +127 -0
- data/bin/grun +27 -1
- data/bin/gstudio +47 -4
- data/bin/{gstudio.rb → gstudio_irb.rb} +0 -0
- data/bin/gstudio_pry.rb +7 -0
- data/blogs/galaaz_ggplot/galaaz_ggplot.html +10 -195
- data/blogs/galaaz_ggplot/galaaz_ggplot.md +404 -0
- data/blogs/galaaz_ggplot/galaaz_ggplot_files/figure-html/midwest_rb.png +0 -0
- data/blogs/galaaz_ggplot/galaaz_ggplot_files/figure-html/scatter_plot_rb.png +0 -0
- data/blogs/gknit/gknit.Rmd +5 -3
- data/blogs/gknit/gknit.pdf +0 -0
- data/blogs/gknit/lst.rds +0 -0
- data/blogs/manual/lst.rds +0 -0
- data/blogs/manual/manual.Rmd +826 -53
- data/blogs/manual/manual.html +2338 -695
- data/blogs/manual/manual.md +2032 -539
- data/blogs/manual/manual.pdf +0 -0
- data/blogs/manual/manual.tex +1804 -594
- data/blogs/manual/manual_files/figure-html/bubble-1.png +0 -0
- data/blogs/manual/manual_files/figure-html/diverging_bar.png +0 -0
- data/blogs/manual/manual_files/figure-latex/bubble-1.png +0 -0
- data/blogs/manual/manual_files/figure-latex/diverging_bar.pdf +0 -0
- data/blogs/manual/model.rb +41 -0
- data/blogs/nse_dplyr/nse_dplyr.Rmd +226 -73
- data/blogs/nse_dplyr/nse_dplyr.html +254 -336
- data/blogs/nse_dplyr/nse_dplyr.md +353 -158
- data/blogs/oh_my/oh_my.html +274 -386
- data/blogs/oh_my/oh_my.md +208 -205
- data/blogs/ruby_plot/ruby_plot.html +20 -205
- data/blogs/ruby_plot/ruby_plot.md +14 -15
- data/blogs/ruby_plot/ruby_plot_files/figure-html/dose_len.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facet_by_delivery.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facet_by_dose.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_by_delivery_color.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_by_delivery_color2.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_decorations.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_jitter.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_points.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/final_box_plot.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/final_violin_plot.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-html/violin_with_jitter.png +0 -0
- data/examples/Bibliography/master.bib +50 -0
- data/examples/Bibliography/stats.bib +72 -0
- data/examples/islr/x_y_rnorm.jpg +0 -0
- data/examples/latex_templates/Test-acm_article/Makefile +16 -0
- data/examples/latex_templates/Test-acm_article/Test-acm_article.Rmd +65 -0
- data/examples/latex_templates/Test-acm_article/acm_proc_article-sp.cls +1670 -0
- data/examples/latex_templates/Test-acm_article/sensys-abstract.cls +703 -0
- data/examples/latex_templates/Test-acm_article/sigproc.bib +59 -0
- data/examples/latex_templates/Test-acs_article/Test-acs_article.Rmd +260 -0
- data/examples/latex_templates/Test-acs_article/Test-acs_article.pdf +0 -0
- data/examples/latex_templates/Test-acs_article/acs-Test-acs_article.bib +11 -0
- data/examples/latex_templates/Test-acs_article/acs-my_output.bib +11 -0
- data/examples/latex_templates/Test-acs_article/acstest.bib +17 -0
- data/examples/latex_templates/Test-aea_article/AEA.cls +1414 -0
- data/{blogs/gknit/marshal.dump → examples/latex_templates/Test-aea_article/BibFile.bib} +0 -0
- data/examples/latex_templates/Test-aea_article/Test-aea_article.Rmd +108 -0
- data/examples/latex_templates/Test-aea_article/Test-aea_article.pdf +0 -0
- data/examples/latex_templates/Test-aea_article/aea.bst +1269 -0
- data/examples/latex_templates/Test-aea_article/multicol.sty +853 -0
- data/examples/latex_templates/Test-aea_article/references.bib +0 -0
- data/examples/latex_templates/Test-aea_article/setspace.sty +546 -0
- data/examples/latex_templates/Test-amq_article/Test-amq_article.Rmd +256 -0
- data/examples/latex_templates/Test-amq_article/Test-amq_article.pdf +0 -0
- data/examples/latex_templates/Test-amq_article/Test-amq_article.pdfsync +3397 -0
- data/examples/latex_templates/Test-amq_article/pics/Figure2.pdf +0 -0
- data/examples/latex_templates/Test-ams_article/Test-ams_article.Rmd +215 -0
- data/examples/latex_templates/Test-ams_article/amstest.bib +436 -0
- data/examples/latex_templates/Test-asa_article/Test-asa_article.Rmd +153 -0
- data/examples/latex_templates/Test-asa_article/Test-asa_article.pdf +0 -0
- data/examples/latex_templates/Test-asa_article/agsm.bst +1353 -0
- data/examples/latex_templates/Test-asa_article/bibliography.bib +233 -0
- data/examples/latex_templates/Test-ieee_article/IEEEtran.bst +2409 -0
- data/examples/latex_templates/Test-ieee_article/IEEEtran.cls +6346 -0
- data/examples/latex_templates/Test-ieee_article/Test-ieee_article.Rmd +175 -0
- data/examples/latex_templates/Test-ieee_article/Test-ieee_article.pdf +0 -0
- data/examples/latex_templates/Test-ieee_article/mybibfile.bib +20 -0
- data/examples/latex_templates/Test-rjournal_article/RJournal.sty +335 -0
- data/examples/latex_templates/Test-rjournal_article/RJreferences.bib +18 -0
- data/examples/latex_templates/Test-rjournal_article/RJwrapper.pdf +0 -0
- data/examples/latex_templates/Test-rjournal_article/Test-rjournal_article.Rmd +52 -0
- data/examples/latex_templates/Test-springer_article/Test-springer_article.Rmd +65 -0
- data/examples/latex_templates/Test-springer_article/Test-springer_article.pdf +0 -0
- data/examples/latex_templates/Test-springer_article/bibliography.bib +26 -0
- data/examples/latex_templates/Test-springer_article/spbasic.bst +1658 -0
- data/examples/latex_templates/Test-springer_article/spmpsci.bst +1512 -0
- data/examples/latex_templates/Test-springer_article/spphys.bst +1443 -0
- data/examples/latex_templates/Test-springer_article/svglov3.clo +113 -0
- data/examples/latex_templates/Test-springer_article/svjour3.cls +1431 -0
- data/examples/rmarkdown/svm-rmarkdown-anon-ms-example/svm-rmarkdown-anon-ms-example.Rmd +73 -0
- data/examples/rmarkdown/svm-rmarkdown-anon-ms-example/svm-rmarkdown-anon-ms-example.pdf +0 -0
- data/examples/rmarkdown/svm-rmarkdown-article-example/svm-rmarkdown-article-example.Rmd +382 -0
- data/examples/rmarkdown/svm-rmarkdown-article-example/svm-rmarkdown-article-example.pdf +0 -0
- data/examples/rmarkdown/svm-rmarkdown-beamer-example/svm-rmarkdown-beamer-example.Rmd +164 -0
- data/examples/rmarkdown/svm-rmarkdown-beamer-example/svm-rmarkdown-beamer-example.pdf +0 -0
- data/examples/rmarkdown/svm-rmarkdown-cv/svm-rmarkdown-cv.Rmd +92 -0
- data/examples/rmarkdown/svm-rmarkdown-cv/svm-rmarkdown-cv.pdf +0 -0
- data/examples/rmarkdown/svm-rmarkdown-syllabus-example/attend-grade-relationships.csv +482 -0
- data/examples/rmarkdown/svm-rmarkdown-syllabus-example/svm-rmarkdown-syllabus-example.Rmd +280 -0
- data/examples/rmarkdown/svm-rmarkdown-syllabus-example/svm-rmarkdown-syllabus-example.pdf +0 -0
- data/examples/rmarkdown/svm-xaringan-example/svm-xaringan-example.Rmd +386 -0
- data/lib/R_interface/r.rb +1 -1
- data/lib/R_interface/r_libs.R +1 -1
- data/lib/R_interface/r_methods.rb +10 -0
- data/lib/R_interface/rpkg.rb +1 -0
- data/lib/R_interface/rsupport.rb +4 -6
- data/lib/gknit.rb +2 -0
- data/lib/gknit/draft.rb +105 -0
- data/lib/gknit/knitr_engine.rb +0 -33
- data/lib/util/exec_ruby.rb +1 -27
- data/specs/figures/bg.jpeg +0 -0
- data/specs/figures/bg.png +0 -0
- data/specs/figures/dose_len.png +0 -0
- data/specs/figures/no_args.jpeg +0 -0
- data/specs/figures/no_args.png +0 -0
- data/specs/figures/width_height.jpeg +0 -0
- data/specs/figures/width_height.png +0 -0
- data/specs/figures/width_height_units1.jpeg +0 -0
- data/specs/figures/width_height_units1.png +0 -0
- data/specs/figures/width_height_units2.jpeg +0 -0
- data/specs/figures/width_height_units2.png +0 -0
- data/specs/r_dataframe.spec.rb +11 -11
- data/specs/ruby_expression.spec.rb +1 -0
- data/specs/tmp.rb +41 -20
- data/version.rb +1 -1
- metadata +73 -35
- data/blogs/galaaz_ggplot/galaaz_ggplot.aux +0 -41
- data/blogs/galaaz_ggplot/galaaz_ggplot.out +0 -10
- data/blogs/galaaz_ggplot/galaaz_ggplot_files/figure-latex/midwest_rb.pdf +0 -0
- data/blogs/galaaz_ggplot/galaaz_ggplot_files/figure-latex/scatter_plot_rb.pdf +0 -0
- data/blogs/gknit/gknit.md +0 -1430
- data/blogs/gknit/gknit.tex +0 -1358
- data/blogs/manual/graph.rb +0 -29
- data/blogs/nse_dplyr/nse_dplyr.tex +0 -1373
- data/blogs/ruby_plot/ruby_plot.Rmd_external_figs +0 -662
- data/blogs/ruby_plot/ruby_plot_files/figure-html/dose_len.svg +0 -57
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facet_by_delivery.svg +0 -106
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facet_by_dose.svg +0 -110
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_by_delivery_color.svg +0 -174
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_by_delivery_color2.svg +0 -236
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_jitter.svg +0 -296
- data/blogs/ruby_plot/ruby_plot_files/figure-html/facets_with_points.svg +0 -236
- data/blogs/ruby_plot/ruby_plot_files/figure-html/final_box_plot.svg +0 -218
- data/blogs/ruby_plot/ruby_plot_files/figure-html/final_violin_plot.svg +0 -128
- data/blogs/ruby_plot/ruby_plot_files/figure-html/violin_with_jitter.svg +0 -150
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/dose_len.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facet_by_delivery.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facet_by_dose.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_by_delivery_color.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_by_delivery_color2.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_with_decorations.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_with_jitter.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/facets_with_points.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/final_box_plot.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/final_violin_plot.png +0 -0
- data/blogs/ruby_plot/ruby_plot_files/figure-latex/violin_with_jitter.png +0 -0
- data/examples/paper/paper.rb +0 -36
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 0a936fac80a3198849bf43505e3badca81025fcef2b942fabe5edc328b6d35f3
|
4
|
+
data.tar.gz: 4aa40b1d667ee45ab94ee8e9565401e718179ad261c043a2173fe50d5b97dfb2
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 34974a5d148a2f0896fa07ef26f046af1b43d1263750732d072e6614ad8f3ff32783248a02228acd9b6c0f2183ddb68c91a6dd93aebd51198c594c1f6e513298
|
7
|
+
data.tar.gz: 88ea82fcf3e298deacdae6c7305faabff38d89b41a526a8f0e528c00555190acd84006764365c0fa7e913e361f3ecaf69cdf1c00332b80d4ba7d276dad7d10fe
|
data/README.md
CHANGED
@@ -1,3 +1,28 @@
|
|
1
|
+
---
|
2
|
+
title: "Galaaz Manual"
|
3
|
+
subtitle: "How to tightly couple Ruby and R in GraalVM"
|
4
|
+
author: "Rodrigo Botafogo"
|
5
|
+
tags: [Galaaz, Ruby, R, TruffleRuby, FastR, GraalVM, ggplot2]
|
6
|
+
date: "2019"
|
7
|
+
bibliography: "/home/rbotafogo/Bibliography/stats.bib"
|
8
|
+
output:
|
9
|
+
html_document:
|
10
|
+
self_contained: true
|
11
|
+
keep_md: true
|
12
|
+
md_document:
|
13
|
+
variant: markdown_github
|
14
|
+
pdf_document:
|
15
|
+
includes:
|
16
|
+
in_header: "../../sty/galaaz.sty"
|
17
|
+
keep_tex: yes
|
18
|
+
number_sections: yes
|
19
|
+
toc: true
|
20
|
+
toc_depth: 3
|
21
|
+
fontsize: 11pt
|
22
|
+
---
|
23
|
+
|
24
|
+
|
25
|
+
|
1
26
|
# Introduction
|
2
27
|
|
3
28
|
Galaaz is a system for tightly coupling Ruby and R. Ruby is a powerful language, with a large
|
@@ -7,6 +32,92 @@ other hand, R is considered one of the most powerful languages for solving all o
|
|
7
32
|
problems. Maybe the strongest competitor to R is Python with libraries such as NumPy,
|
8
33
|
Panda, SciPy, SciKit-Learn and a couple more.
|
9
34
|
|
35
|
+
With Galaaz we do not intend to re-implement any of the scientific libraries in R, we allow
|
36
|
+
for very tight coupling between the two languages to the point that the Ruby developer does
|
37
|
+
not need to know that there is an R engine running.
|
38
|
+
|
39
|
+
According to Wikipedia "Ruby is a dynamic, interpreted, reflective, object-oriented,
|
40
|
+
general-purpose programming language. It was designed and developed in the mid-1990s by Yukihiro
|
41
|
+
"Matz" Matsumoto in Japan." It reached high popularity with the development of Ruby on Rails
|
42
|
+
(RoR) by David Heinemeier Hansson. RoR is a web application framework first released
|
43
|
+
around 2005. It makes extensive use of Ruby's metaprogramming features. With RoR,
|
44
|
+
Ruby became very popular. According to [Ruby's Tiobe index](https://www.tiobe.com/tiobe-index/ruby/)
|
45
|
+
it peeked in popularity around 2008, then declined until 2015 when it started picking up again.
|
46
|
+
At the time of this writing (November 2018), the Tiobe index puts Ruby in 16th position as
|
47
|
+
most popular language.
|
48
|
+
|
49
|
+
Python, a language similar to Ruby, ranks 4th in the index. Java, C and C++ take the
|
50
|
+
first three positions. Ruby is often criticized for its focus on web applications.
|
51
|
+
But Ruby can do [much more](https://github.com/markets/awesome-ruby) than just web applications.
|
52
|
+
Yet, for scientific computing, Ruby lags way behind Python and R. Python has
|
53
|
+
Django framework for web, NumPy for numerical arrays, Pandas for data analysis.
|
54
|
+
R is a free software environment for statistical computing and graphics with thousands
|
55
|
+
of libraries for data analysis.
|
56
|
+
|
57
|
+
Until recently, there was no real perspective for Ruby to bridge this gap.
|
58
|
+
Implementing a complete scientific computing infrastructure would take too long.
|
59
|
+
Enters [Oracle's GraalVM](https://www.graalvm.org/):
|
60
|
+
|
61
|
+
> GraalVM is a universal virtual machine for running applications written in
|
62
|
+
> JavaScript, Python 3, Ruby, R, JVM-based languages like Java, Scala, Kotlin,
|
63
|
+
> and LLVM-based languages such as C and C++.
|
64
|
+
>
|
65
|
+
> GraalVM removes the isolation between programming languages and enables
|
66
|
+
> interoperability in a shared runtime. It can run either standalone or in the
|
67
|
+
> context of OpenJDK, Node.js, Oracle Database, or MySQL.
|
68
|
+
>
|
69
|
+
> GraalVM allows you to write polyglot applications with a seamless way to pass
|
70
|
+
> values from one language to another. With GraalVM there is no copying or
|
71
|
+
> marshaling necessary as it is with other polyglot systems. This lets you
|
72
|
+
> achieve high performance when language boundaries are crossed. Most of the time
|
73
|
+
> there is no additional cost for crossing a language boundary at all.
|
74
|
+
>
|
75
|
+
> Often developers have to make uncomfortable compromises that require them
|
76
|
+
> to rewrite their software in other languages. For example:
|
77
|
+
>
|
78
|
+
> * That library is not available in my language. I need to rewrite it.
|
79
|
+
> * That language would be the perfect fit for my problem, but we cannot
|
80
|
+
> run it in our environment.
|
81
|
+
> * That problem is already solved in my language, but the language is
|
82
|
+
> too slow.
|
83
|
+
>
|
84
|
+
> With GraalVM we aim to allow developers to freely choose the right language for
|
85
|
+
> the task at hand without making compromises.
|
86
|
+
|
87
|
+
As stated above, GraalVM is a _universal_ virtual machine that allows Ruby and R (and other
|
88
|
+
languages) to run on the same environment. GraalVM allows polyglot applications to
|
89
|
+
_seamlessly_ interact with one another and pass values from one language to the other.
|
90
|
+
Although a great idea, GraalVM still requires application writers to know several languages.
|
91
|
+
To eliminate that requirement, we built Galaaz, a gem for Ruby, to tightly couple
|
92
|
+
Ruby and R and allow those languages to interact in a way that the user will be unaware
|
93
|
+
of such interaction. In other words, a Ruby programmer will be able to use all
|
94
|
+
the capabilities of R without knowing the R syntax.
|
95
|
+
|
96
|
+
Library wrapping is a usual way of bringing features from one language into another.
|
97
|
+
To improve performance, Python often wraps more efficient C libraries. For the
|
98
|
+
Python developer, the existence of such C libraries is hidden. The problem with
|
99
|
+
library wrapping is that for any new library, there is the need to handcraft a new
|
100
|
+
wrapper.
|
101
|
+
|
102
|
+
Galaaz, instead of wrapping a single C or R library, wraps the whole R language
|
103
|
+
in Ruby. Doing so, all thousands of R libraries are available immediately
|
104
|
+
to Ruby developers without any new wrapping effort.
|
105
|
+
|
106
|
+
## What does Galaaz mean
|
107
|
+
|
108
|
+
Galaaz is the Portuguese name for "Galahad". From Wikipedia:
|
109
|
+
|
110
|
+
Sir Galahad (sometimes referred to as Galeas or Galath),
|
111
|
+
in Arthurian legend, is a knight of King Arthur's Round Table and one
|
112
|
+
of the three achievers of the Holy Grail. He is the illegitimate son
|
113
|
+
of Sir Lancelot and Elaine of Corbenic, and is renowned for his
|
114
|
+
gallantry and purity as the most perfect of all knights. Emerging quite
|
115
|
+
late in the medieval Arthurian tradition, Sir Galahad first appears in the
|
116
|
+
Lancelot–Grail cycle, and his story is taken up in later works such as
|
117
|
+
the Post-Vulgate Cycle and Sir Thomas Malory's Le Morte d'Arthur.
|
118
|
+
His name should not be mistaken with Galehaut, a different knight from
|
119
|
+
Arthurian legend.
|
120
|
+
|
10
121
|
# System Compatibility
|
11
122
|
|
12
123
|
* Oracle Linux 7
|
@@ -62,7 +173,7 @@ Panda, SciPy, SciKit-Learn and a couple more.
|
|
62
173
|
> galaaz -T
|
63
174
|
|
64
175
|
Shows a list with all available executalbe tasks. To execute a task, substitute the
|
65
|
-
|
176
|
+
'rake' word in the list with 'galaaz'. For instance, the following line shows up
|
66
177
|
after 'galaaz -T'
|
67
178
|
|
68
179
|
rake master_list:scatter_plot # scatter_plot from:....
|
@@ -71,349 +182,1468 @@ Panda, SciPy, SciKit-Learn and a couple more.
|
|
71
182
|
|
72
183
|
> galaaz master_list:scatter_plot
|
73
184
|
|
74
|
-
# gKnitting a Document
|
75
|
-
|
76
|
-
This manual has been formatted usign gKnit. gKnit uses Knitr and R markdown to knit
|
77
|
-
a document in Ruby or R and output it in any of the available formats for R markdown.
|
78
|
-
gKnit runs atop of GraalVM, and Galaaz. In gKnit, Ruby variables are persisted between
|
79
|
-
chunks, making it an ideal solution for literate programming. Also, since it is based
|
80
|
-
on Galaaz, Ruby chunks can have access to R variables and Polyglot Programming with
|
81
|
-
Ruby and R is quite natural.
|
82
185
|
|
83
|
-
|
186
|
+
# Accessing R from Ruby
|
84
187
|
|
85
|
-
|
188
|
+
One of the nice aspects of Galaaz on GraalVM, is that variables and functions defined in R, can
|
189
|
+
be easily accessed from Ruby. For instance, to access the 'mtcars' data frame from R
|
190
|
+
in Ruby, we use the ':mtcar' symbol preceded by the '~' operator, thus '~:r_vec' retrieves the
|
191
|
+
value of the 'mtcars' variable.
|
86
192
|
|
87
|
-
Vectors can be thought of as contiguous cells containing data. Cells are accessed through
|
88
|
-
indexing operations such as x[5]. Galaaz has six basic (‘atomic’) vector types: logical,
|
89
|
-
integer, real, complex, string (or character) and raw. The modes and storage modes for the
|
90
|
-
different vector types are listed in the following
|
91
|
-
table.
|
92
193
|
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
| integer | numeric | integer |
|
97
|
-
| double | numeric | double |
|
98
|
-
| complex | complex | comples |
|
99
|
-
| character | character | character |
|
100
|
-
| raw | raw | raw |
|
194
|
+
```ruby
|
195
|
+
puts ~:mtcars
|
196
|
+
```
|
101
197
|
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
198
|
+
```
|
199
|
+
## mpg cyl disp hp drat wt qsec vs am gear carb
|
200
|
+
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
|
201
|
+
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
|
202
|
+
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
|
203
|
+
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
|
204
|
+
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
|
205
|
+
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
|
206
|
+
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
|
207
|
+
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
|
208
|
+
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
|
209
|
+
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
|
210
|
+
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
|
211
|
+
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
|
212
|
+
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
|
213
|
+
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
|
214
|
+
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
|
215
|
+
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
|
216
|
+
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
|
217
|
+
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
|
218
|
+
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
|
219
|
+
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
|
220
|
+
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
|
221
|
+
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
|
222
|
+
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
|
223
|
+
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
|
224
|
+
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
|
225
|
+
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
|
226
|
+
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
|
227
|
+
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
|
228
|
+
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
|
229
|
+
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
|
230
|
+
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
|
231
|
+
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
|
232
|
+
```
|
106
233
|
|
107
|
-
To
|
234
|
+
To access an R function from Ruby, the R function needs to be preceeded by 'R.' scoping.
|
235
|
+
Bellow we see and example of creating a R::Vector by calling the 'c' R function
|
108
236
|
|
109
237
|
|
110
238
|
```ruby
|
111
|
-
vec = R.c(1, 2, 3)
|
112
|
-
puts vec
|
239
|
+
puts vec = R.c(1.0, 2.0, 3.0, 4.0)
|
113
240
|
```
|
114
241
|
|
115
242
|
```
|
116
|
-
## [1] 1 2 3
|
243
|
+
## [1] 1 2 3 4
|
117
244
|
```
|
245
|
+
Note that 'vec' is an object of type R::Vector:
|
118
246
|
|
119
|
-
Lets take a look at the type, mode and storage.mode of our vector vec. In order to print
|
120
|
-
this out, we are creating a data frame 'df' and printing it out. A data frame, for those
|
121
|
-
not familiar with it, is basically a table. Here we create the data frame and add the
|
122
|
-
column name by passing named parameters for each column, such as 'typeof:', 'mode:' and
|
123
|
-
'storage__mode?'. You should also note here that the double underscore is converted to a '.'.
|
124
|
-
So, when printed 'storage\_\_mode' will actually print as 'storage.mode'.
|
125
247
|
|
126
|
-
|
127
|
-
|
248
|
+
```ruby
|
249
|
+
puts vec.class
|
250
|
+
```
|
251
|
+
|
252
|
+
```
|
253
|
+
## R::Vector
|
254
|
+
```
|
255
|
+
Every object created by a call to an R function will be of a type that inherits from
|
256
|
+
R::Object. In R, there is also a function 'class'. In order to access that function we
|
257
|
+
can call method 'rclass' in the R::Object:
|
128
258
|
|
129
259
|
|
130
260
|
```ruby
|
131
|
-
|
132
|
-
puts df
|
261
|
+
puts vec.rclass
|
133
262
|
```
|
134
263
|
|
135
264
|
```
|
136
|
-
##
|
137
|
-
## 1 integer numeric integer
|
265
|
+
## [1] "numeric"
|
138
266
|
```
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
267
|
+
When working with R::Object(s), it is possible to use the '.' operator to pipe operations.
|
268
|
+
When using '.', the object to which the '.' is applied becomes the first argument of the
|
269
|
+
corresponding R function. For instance, function 'c' in R, can be used to concatenate
|
270
|
+
two vectors or more vectors (in R, there are no scalar values, scalars are converted to
|
271
|
+
vectors of size 1. Within Galaaz, scalar parameter is converted to a size one vector):
|
144
272
|
|
145
273
|
|
146
274
|
```ruby
|
147
|
-
|
148
|
-
puts vec
|
275
|
+
puts R.c(vec, 10, 20, 30)
|
149
276
|
```
|
150
277
|
|
151
278
|
```
|
152
|
-
## [1]
|
279
|
+
## [1] 1 2 3 4 10 20 30
|
153
280
|
```
|
281
|
+
The call above to the 'c' function can also be done using '.' notation:
|
154
282
|
|
155
283
|
|
156
284
|
```ruby
|
157
|
-
|
158
|
-
outputs df.kable.kable_styling
|
285
|
+
puts vec.c(10, 20, 30)
|
159
286
|
```
|
160
287
|
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
<th style="text-align:left;"> storage.mode </th>
|
167
|
-
</tr>
|
168
|
-
</thead>
|
169
|
-
<tbody>
|
170
|
-
<tr>
|
171
|
-
<td style="text-align:left;"> double </td>
|
172
|
-
<td style="text-align:left;"> numeric </td>
|
173
|
-
<td style="text-align:left;"> double </td>
|
174
|
-
</tr>
|
175
|
-
</tbody>
|
176
|
-
</table>
|
177
|
-
|
178
|
-
In this next example we try to create a vector with a variable 'hello' that has not yet
|
179
|
-
being defined. This will raise an exception that is printed out. We get two return blocks,
|
180
|
-
the first with a message explaining what went wrong and the second with the full backtrace
|
181
|
-
of the error.
|
288
|
+
```
|
289
|
+
## [1] 1 2 3 4 10 20 30
|
290
|
+
```
|
291
|
+
We will talk about vector indexing in a latter section. But notice here that indexing
|
292
|
+
an R::Vector will return another R::Vector:
|
182
293
|
|
183
294
|
|
184
295
|
```ruby
|
185
|
-
vec
|
296
|
+
puts vec[1]
|
186
297
|
```
|
187
298
|
|
188
299
|
```
|
189
|
-
##
|
190
|
-
|
300
|
+
## [1] 1
|
301
|
+
```
|
302
|
+
Sometimes we want to index an R::Object and get back a Ruby object that is not wrapped
|
303
|
+
in an R::Object, but the native Ruby object. For this, we can index the R object with
|
304
|
+
the '>>' operator:
|
305
|
+
|
306
|
+
|
307
|
+
```ruby
|
308
|
+
puts vec >> 0
|
309
|
+
puts vec >> 2
|
191
310
|
```
|
192
311
|
|
193
312
|
```
|
194
|
-
##
|
195
|
-
##
|
196
|
-
## /home/rbotafogo/desenv/galaaz/lib/util/exec_ruby.rb:102:in `eval'
|
197
|
-
## /home/rbotafogo/desenv/galaaz/lib/util/exec_ruby.rb:102:in `exec_ruby'
|
198
|
-
## /home/rbotafogo/desenv/galaaz/lib/gknit/knitr_engine.rb:650:in `block in initialize'
|
199
|
-
## /home/rbotafogo/desenv/galaaz/lib/R_interface/ruby_callback.rb:77:in `call'
|
200
|
-
## /home/rbotafogo/desenv/galaaz/lib/R_interface/ruby_callback.rb:77:in `callback'
|
201
|
-
## (eval):3:in `function(...) {\n rb_method(...)'
|
202
|
-
## unknown.r:1:in `in_dir'
|
203
|
-
## unknown.r:1:in `block_exec:BLOCK0'
|
204
|
-
## /home/rbotafogo/lib/graalvm-ce-1.0.0-rc16/jre/languages/R/library/knitr/R/block.R:102:in `block_exec'
|
205
|
-
## /home/rbotafogo/lib/graalvm-ce-1.0.0-rc16/jre/languages/R/library/knitr/R/block.R:92:in `call_block'
|
206
|
-
## /home/rbotafogo/lib/graalvm-ce-1.0.0-rc16/jre/languages/R/library/knitr/R/block.R:6:in `process_group.block'
|
207
|
-
## /home/rbotafogo/lib/graalvm-ce-1.0.0-rc16/jre/languages/R/library/knitr/R/block.R:3:in `<no source>'
|
208
|
-
## unknown.r:1:in `withCallingHandlers'
|
209
|
-
## unknown.r:1:in `process_file'
|
210
|
-
## unknown.r:1:in `<no source>:BLOCK1'
|
211
|
-
## /home/rbotafogo/lib/graalvm-ce-1.0.0-rc16/jre/languages/R/library/knitr/R/output.R:129:in `<no source>'
|
212
|
-
## unknown.r:1:in `<no source>:BLOCK1'
|
213
|
-
## /home/rbotafogo/lib/graalvm-ce-1.0.0-rc16/jre/languages/R/library/rmarkdown/R/render.R:162:in `<no source>'
|
214
|
-
## <REPL>:5:in `<repl wrapper>'
|
215
|
-
## <REPL>:1
|
313
|
+
## 1.0
|
314
|
+
## 3.0
|
216
315
|
```
|
217
316
|
|
218
|
-
|
317
|
+
It is also possible to call an R function with named arguments, by creating the function
|
318
|
+
in Galaaz with named parameters. For instance, here is an example of creating a 'list'
|
319
|
+
with named elements:
|
219
320
|
|
220
321
|
|
221
322
|
```ruby
|
222
|
-
|
223
|
-
puts vec
|
323
|
+
puts R.list(first_name: "Rodrigo", last_name: "Botafogo")
|
224
324
|
```
|
225
325
|
|
226
326
|
```
|
227
|
-
##
|
327
|
+
## $first_name
|
328
|
+
## [1] "Rodrigo"
|
329
|
+
##
|
330
|
+
## $last_name
|
331
|
+
## [1] "Botafogo"
|
228
332
|
```
|
229
333
|
|
230
|
-
|
231
|
-
|
232
|
-
|
334
|
+
Many R functions receive another function as argument. For instance, method 'map' applies
|
335
|
+
a function to every element of a vector. With Galaaz, it is possible to pass a Proc,
|
336
|
+
Method or Lambda in place of the expected R function. In this next example, we will
|
337
|
+
add 2 to every element of our previously created vector:
|
233
338
|
|
234
339
|
|
235
340
|
```ruby
|
236
|
-
|
237
|
-
vec2 = R.c(4.0, 5.0, 6.0)
|
238
|
-
vec = R.c(vec1, vec2)
|
239
|
-
puts vec
|
341
|
+
puts vec.map { |x| x + 2 }
|
240
342
|
```
|
241
343
|
|
242
344
|
```
|
243
|
-
## [1]
|
345
|
+
## [1] 3
|
346
|
+
## [1] 4
|
347
|
+
## [1] 5
|
348
|
+
## [1] 6
|
244
349
|
```
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
350
|
+
|
351
|
+
# gKnitting a Document
|
352
|
+
|
353
|
+
This manual has been formatted usign gKnit. gKnit uses Knitr and R markdown to knit
|
354
|
+
a document in Ruby or R and output it in any of the available formats for R markdown.
|
355
|
+
gKnit runs atop of GraalVM, and Galaaz. In gKnit, Ruby variables are persisted between
|
356
|
+
chunks, making it an ideal solution for literate programming. Also, since it is based
|
357
|
+
on Galaaz, Ruby chunks can have access to R variables and Polyglot Programming with
|
358
|
+
Ruby and R is quite natural.
|
359
|
+
|
360
|
+
The idea of "literate programming" was first introduced by Donald Knuth in the
|
361
|
+
1980's [@Knuth:literate_programming].
|
362
|
+
The main intention of this approach was to develop software interspersing macro snippets,
|
363
|
+
traditional source code, and a natural language such as English in a document
|
364
|
+
that could be compiled into
|
365
|
+
executable code and at the same time easily read by a human developer. According to Knuth
|
366
|
+
"The practitioner of
|
367
|
+
literate programming can be regarded as an essayist, whose main concern is with exposition
|
368
|
+
and excellence of style."
|
369
|
+
|
370
|
+
The idea of literate programming evolved into the idea of reproducible research, in which
|
371
|
+
all the data, software code, documentation, graphics etc. needed to reproduce the research
|
372
|
+
and its reports could be included in a
|
373
|
+
single document or set of documents that when distributed to peers could be rerun generating
|
374
|
+
the same output and reports.
|
375
|
+
|
376
|
+
The R community has put a great deal of effort in reproducible research. In 2002, Sweave was
|
377
|
+
introduced and it allowed mixing R code with Latex generating high quality PDF documents. A
|
378
|
+
Sweave document could include code, the results of executing the code, graphics and text
|
379
|
+
such that it contained the whole narrative to reproduce the research. In
|
380
|
+
2012, Knitr, developed by Yihui Xie from RStudio was released to replace Sweave and to
|
381
|
+
consolidate in one single package the many extensions and add-on packages that
|
382
|
+
were necessary for Sweave.
|
383
|
+
|
384
|
+
With Knitr, __R markdown__ was also developed, an extension to the
|
385
|
+
Markdown format. With __R markdown__ and Knitr it is possible to generate reports in a multitude
|
386
|
+
of formats such as HTML, markdown, Latex, PDF, dvi, etc. __R markdown__ also allows the use of
|
387
|
+
multiple programming languages such as R, Ruby, Python, etc. in the same document.
|
388
|
+
|
389
|
+
In __R markdown__, text is interspersed with
|
390
|
+
code chunks that can be executed and both the code and its results can become
|
391
|
+
part of the final report. Although __R markdown__ allows multiple programming languages in the
|
392
|
+
same document, only R and Python (with
|
393
|
+
the reticulate package) can persist variables between chunks. For other languages, such as
|
394
|
+
Ruby, every chunk will start a new process and thus all data is lost between chunks, unless it
|
395
|
+
is somehow stored in a data file that is read by the next chunk.
|
396
|
+
|
397
|
+
Being able to persist data
|
398
|
+
between chunks is critical for literate programming otherwise the flow of the narrative is lost
|
399
|
+
by all the effort of having to save data and then reload it. Although this might, at first, seem like
|
400
|
+
a small nuisance, not being able to persist data between chunks is a major issue. For example, let's
|
401
|
+
take a look at the following simple example in which we want to show how to create a list and the
|
402
|
+
use it. Let's first assume that data cannot be persisted between chunks. In the next chunk we
|
403
|
+
create a list, then we would need to save it to file, but to save it, we need somehow to marshal the
|
404
|
+
data into a binary format:
|
251
405
|
|
252
406
|
|
253
407
|
```ruby
|
254
|
-
|
255
|
-
|
408
|
+
lst = R.list(a: 1, b: 2, c: 3)
|
409
|
+
lst.saveRDS("lst.rds")
|
410
|
+
```
|
411
|
+
then, on the next chunk, where variable 'lst' is used, we need to read back it's value
|
412
|
+
|
413
|
+
|
414
|
+
```ruby
|
415
|
+
lst = R.readRDS("lst.rds")
|
416
|
+
puts lst
|
256
417
|
```
|
257
418
|
|
258
419
|
```
|
259
|
-
##
|
420
|
+
## $a
|
421
|
+
## [1] 1
|
422
|
+
##
|
423
|
+
## $b
|
424
|
+
## [1] 2
|
425
|
+
##
|
426
|
+
## $c
|
427
|
+
## [1] 3
|
260
428
|
```
|
261
429
|
|
262
|
-
|
430
|
+
Now, any single code has dozens of variables that we might want to use and reuse between chunks.
|
431
|
+
Clearly, such an approach becomes quickly unmanageable. Probably, because of
|
432
|
+
this problem, it is very rare to see any __R markdown__ document in the Ruby community.
|
263
433
|
|
264
|
-
|
434
|
+
When variables can be used accross chunks, then no overhead is needed:
|
265
435
|
|
266
436
|
|
267
437
|
```ruby
|
268
|
-
|
438
|
+
lst = R.list(a: 1, b: 2, c: 3)
|
439
|
+
# any other code can be added here
|
440
|
+
```
|
441
|
+
|
442
|
+
|
443
|
+
```ruby
|
444
|
+
puts lst
|
269
445
|
```
|
270
446
|
|
271
447
|
```
|
272
|
-
##
|
448
|
+
## $a
|
449
|
+
## [1] 1
|
450
|
+
##
|
451
|
+
## $b
|
452
|
+
## [1] 2
|
453
|
+
##
|
454
|
+
## $c
|
455
|
+
## [1] 3
|
273
456
|
```
|
274
457
|
|
458
|
+
In the Python community, the same effort to have code and text in an integrated environment
|
459
|
+
started around the first decade of 2000. In 2006 iPython 0.7.2 was released. In 2014,
|
460
|
+
Fernando Pérez, spun off project Jupyter from iPython creating a web-based interactive
|
461
|
+
computation environment. Jupyter can now be used with many languages, including Ruby with the
|
462
|
+
iruby gem (https://github.com/SciRuby/iruby). In order to have multiple languages in a Jupyter
|
463
|
+
notebook the SoS kernel was developed (https://vatlab.github.io/sos-docs/).
|
464
|
+
|
465
|
+
## gKnit and __R markdown__
|
466
|
+
|
467
|
+
gKnit is based on knitr and __R markdown__ and can knit a document
|
468
|
+
written both in Ruby and/or R and output it in any of the available formats of __R markdown__. gKnit
|
469
|
+
allows ruby developers to do literate programming and reproducible research by allowing them to
|
470
|
+
have in a single document, text and code.
|
471
|
+
|
472
|
+
In gKnit, Ruby variables are persisted between
|
473
|
+
chunks, making it an ideal solution for literate programming in this language. Also,
|
474
|
+
since it is based on Galaaz, Ruby chunks can have access to R variables and Polyglot Programming
|
475
|
+
with Ruby and R is quite natural.
|
476
|
+
|
477
|
+
This is not a blog post on __R markdown__, and the interested user is directed to the following links
|
478
|
+
for detailed information on its capabilities and use.
|
479
|
+
|
480
|
+
* https://rmarkdown.rstudio.com/ or
|
481
|
+
* https://bookdown.org/yihui/rmarkdown/
|
482
|
+
|
483
|
+
In this post, we will describe just the main aspects of __R markdown__, so the user can start
|
484
|
+
gKnitting Ruby and R documents quickly.
|
485
|
+
|
486
|
+
## The Yaml header
|
487
|
+
|
488
|
+
An __R markdown__ document should start with a Yaml header and be stored in a file with
|
489
|
+
'.Rmd' extension. This document has the following header for gKitting an HTML document.
|
275
490
|
|
276
|
-
```ruby
|
277
|
-
puts vec1 * 5
|
278
491
|
```
|
492
|
+
---
|
493
|
+
title: "How to do reproducible research in Ruby with gKnit"
|
494
|
+
author:
|
495
|
+
- "Rodrigo Botafogo"
|
496
|
+
- "Daniel Mossé - University of Pittsburgh"
|
497
|
+
tags: [Tech, Data Science, Ruby, R, GraalVM]
|
498
|
+
date: "20/02/2019"
|
499
|
+
output:
|
500
|
+
html_document:
|
501
|
+
self_contained: true
|
502
|
+
keep_md: true
|
503
|
+
pdf_document:
|
504
|
+
includes:
|
505
|
+
in_header: ["../../sty/galaaz.sty"]
|
506
|
+
number_sections: yes
|
507
|
+
---
|
508
|
+
```
|
509
|
+
|
510
|
+
For more information on the options in the Yaml header, [check here](https://bookdown.org/yihui/rmarkdown/html-document.html).
|
511
|
+
|
512
|
+
## __R Markdown__ formatting
|
513
|
+
|
514
|
+
Document formatting can be done with simple markups such as:
|
515
|
+
|
516
|
+
## Headers
|
279
517
|
|
280
518
|
```
|
281
|
-
|
519
|
+
# Header 1
|
520
|
+
|
521
|
+
## Header 2
|
522
|
+
|
523
|
+
### Header 3
|
524
|
+
|
282
525
|
```
|
283
526
|
|
284
|
-
|
527
|
+
## Lists
|
285
528
|
|
529
|
+
```
|
530
|
+
Unordered lists:
|
286
531
|
|
287
|
-
|
288
|
-
|
289
|
-
|
532
|
+
* Item 1
|
533
|
+
* Item 2
|
534
|
+
+ Item 2a
|
535
|
+
+ Item 2b
|
290
536
|
```
|
291
537
|
|
292
538
|
```
|
293
|
-
|
539
|
+
Ordered Lists
|
540
|
+
|
541
|
+
1. Item 1
|
542
|
+
2. Item 2
|
543
|
+
3. Item 3
|
544
|
+
+ Item 3a
|
545
|
+
+ Item 3b
|
294
546
|
```
|
295
547
|
|
296
|
-
|
548
|
+
For more R markdown formatting go to https://rmarkdown.rstudio.com/authoring_basics.html.
|
297
549
|
|
298
|
-
|
550
|
+
## R chunks
|
299
551
|
|
552
|
+
Running and executing Ruby and R code is actually what really interests us is this blog.
|
553
|
+
Inserting a code chunk is done by adding code in a block delimited by three back ticks
|
554
|
+
followed by an open
|
555
|
+
curly brace ('{') followed with the engine name (r, ruby, rb, include, ...), an
|
556
|
+
any optional chunk_label and options, as shown bellow:
|
300
557
|
|
301
|
-
|
302
|
-
|
558
|
+
````
|
559
|
+
```{engine_name [chunk_label], [chunk_options]}
|
303
560
|
```
|
561
|
+
````
|
562
|
+
|
563
|
+
for instance, let's add an R chunk to the document labeled 'first_r_chunk'. This is
|
564
|
+
a very simple code just to create a variable and print it out, as follows:
|
304
565
|
|
566
|
+
````
|
567
|
+
```{r first_r_chunk}
|
568
|
+
vec <- c(1, 2, 3)
|
569
|
+
print(vec)
|
305
570
|
```
|
306
|
-
|
571
|
+
````
|
572
|
+
|
573
|
+
If this block is added to an __R markdown__ document and gKnitted the result will be:
|
574
|
+
|
575
|
+
|
576
|
+
```r
|
577
|
+
vec <- c(1, 2, 3)
|
578
|
+
print(vec)
|
307
579
|
```
|
308
580
|
|
309
|
-
|
310
|
-
1
|
581
|
+
```
|
582
|
+
## [1] 1 2 3
|
583
|
+
```
|
311
584
|
|
585
|
+
Now let's say that we want to do some analysis in the code, but just print the result and not the
|
586
|
+
code itself. For this, we need to add the option 'echo = FALSE'.
|
312
587
|
|
313
|
-
|
314
|
-
|
588
|
+
````
|
589
|
+
```{r second_r_chunk, echo = FALSE}
|
590
|
+
vec2 <- c(10, 20, 30)
|
591
|
+
vec3 <- vec * vec2
|
592
|
+
print(vec3)
|
315
593
|
```
|
594
|
+
````
|
595
|
+
Here is how this block will show up in the document. Observe that the code is not shown
|
596
|
+
and we only see the execution result in a white box
|
597
|
+
|
316
598
|
|
317
599
|
```
|
318
|
-
## [1]
|
600
|
+
## [1] 10 40 90
|
319
601
|
```
|
320
602
|
|
321
|
-
|
603
|
+
A description of the available chunk options can be found in https://yihui.name/knitr/.
|
322
604
|
|
605
|
+
Let's add another R chunk with a function definition. In this example, a vector
|
606
|
+
'r_vec' is created and
|
607
|
+
a new function 'reduce_sum' is defined. The chunk specification is
|
323
608
|
|
324
|
-
|
325
|
-
|
609
|
+
````
|
610
|
+
```{r data_creation}
|
611
|
+
r_vec <- c(1, 2, 3, 4, 5)
|
612
|
+
|
613
|
+
reduce_sum <- function(...) {
|
614
|
+
Reduce(sum, as.list(...))
|
615
|
+
}
|
326
616
|
```
|
617
|
+
````
|
618
|
+
|
619
|
+
and this is how it will look like once executed. From now on, to be concise in the
|
620
|
+
presentation we will not show chunk definitions any longer.
|
621
|
+
|
622
|
+
|
623
|
+
|
624
|
+
```r
|
625
|
+
r_vec <- c(1, 2, 3, 4, 5)
|
327
626
|
|
627
|
+
reduce_sum <- function(...) {
|
628
|
+
Reduce(sum, as.list(...))
|
629
|
+
}
|
328
630
|
```
|
329
|
-
|
631
|
+
|
632
|
+
We can, possibly in another chunk, access the vector and call the function as follows:
|
633
|
+
|
634
|
+
|
635
|
+
```r
|
636
|
+
print(r_vec)
|
330
637
|
```
|
331
638
|
|
332
|
-
|
333
|
-
|
639
|
+
```
|
640
|
+
## [1] 1 2 3 4 5
|
641
|
+
```
|
334
642
|
|
643
|
+
```r
|
644
|
+
print(reduce_sum(r_vec))
|
645
|
+
```
|
335
646
|
|
336
|
-
```ruby
|
337
|
-
puts vec4[-3]
|
338
|
-
puts vec4[-R.c(1, 3, 5, 7)]
|
339
647
|
```
|
648
|
+
## [1] 15
|
649
|
+
```
|
650
|
+
## R Graphics with ggplot
|
651
|
+
|
652
|
+
In the following chunk, we create a bubble chart in R using ggplot and include it in
|
653
|
+
this document. Note that there is no directive in the code to include the image, this
|
654
|
+
occurs automatically. The 'mpg' dataframe is natively available to R and to Galaaz as
|
655
|
+
well.
|
656
|
+
|
657
|
+
For the reader not knowledgeable of ggplot, ggplot is a graphics library based on "the
|
658
|
+
grammar of graphics" [@Wilkinson:grammar_of_graphics]. The idea of the grammar of graphics
|
659
|
+
is to build a graphics by adding layers to the plot. More information can be found in
|
660
|
+
https://towardsdatascience.com/a-comprehensive-guide-to-the-grammar-of-graphics-for-effective-visualization-of-multi-dimensional-1f92b4ed4149.
|
661
|
+
|
662
|
+
In the plot bellow the 'mpg' dataset from base R is used. "The data concerns city-cycle fuel
|
663
|
+
consumption in miles per gallon, to be predicted in terms of 3 multivalued discrete and 5
|
664
|
+
continuous attributes." (Quinlan, 1993)
|
665
|
+
|
666
|
+
First, the 'mpg' dataset if filtered to extract only cars from the following manumactures: Audi, Ford,
|
667
|
+
Honda, and Hyundai and stored in the 'mpg_select' variable. Then, the selected dataframe is passed
|
668
|
+
to the ggplot function specifying in the aesthetic method (aes) that 'displacement' (disp) should
|
669
|
+
be plotted in the 'x' axis and 'city mileage' should be on the 'y' axis. In the 'labs' layer we
|
670
|
+
pass the 'title' and 'subtitle' for the plot. To the basic plot 'g', geom\_jitter is added, that
|
671
|
+
plots cars from the same manufactures with the same color (col=manufactures) and the size of the
|
672
|
+
car point equal its high way consumption (size = hwy). Finally, a last layer is plotter containing
|
673
|
+
a linear regression line (method = "lm") for every manufacturer.
|
674
|
+
|
675
|
+
|
676
|
+
```r
|
677
|
+
# load package and data
|
678
|
+
library(ggplot2)
|
679
|
+
```
|
680
|
+
|
681
|
+
```
|
682
|
+
## Message:
|
683
|
+
## Registered S3 methods overwritten by 'ggplot2':
|
684
|
+
## method from
|
685
|
+
## [.quosures rlang
|
686
|
+
## c.quosures rlang
|
687
|
+
## print.quosures rlang
|
688
|
+
```
|
689
|
+
|
690
|
+
```r
|
691
|
+
data(mpg, package="ggplot2")
|
692
|
+
|
693
|
+
mpg_select <- mpg[mpg$manufacturer %in% c("audi", "ford", "honda", "hyundai"), ]
|
694
|
+
|
695
|
+
# Scatterplot
|
696
|
+
theme_set(theme_bw()) # pre-set the bw theme.
|
697
|
+
g <- ggplot(mpg_select, aes(displ, cty)) +
|
698
|
+
labs(subtitle="mpg: Displacement vs City Mileage",
|
699
|
+
title="Bubble chart")
|
700
|
+
|
701
|
+
g + geom_jitter(aes(col=manufacturer, size=hwy)) +
|
702
|
+
geom_smooth(aes(col=manufacturer), method="lm", se=F)
|
703
|
+
```
|
704
|
+
|
705
|
+
![](manual_files/figure-html/bubble-1.png)<!-- -->
|
706
|
+
|
707
|
+
## Ruby chunks
|
708
|
+
|
709
|
+
Including a Ruby chunk is just as easy as including an R chunk in the document: just
|
710
|
+
change the name of the engine to 'ruby'. It is also possible to pass chunk options
|
711
|
+
to the Ruby engine; however, this version does not accept all the options that are
|
712
|
+
available to R chunks. Future versions will add those options.
|
713
|
+
|
714
|
+
````
|
715
|
+
```{ruby first_ruby_chunk}
|
716
|
+
```
|
717
|
+
````
|
718
|
+
|
719
|
+
In this example, the ruby chunk is called 'first_ruby_chunk'. One important
|
720
|
+
aspect of chunk labels is that they cannot be duplicated. If a chunk label is
|
721
|
+
duplicated, gKnit will stop with an error.
|
722
|
+
|
723
|
+
In the following chunk, variable 'a', 'b' and 'c' are standard Ruby variables
|
724
|
+
and 'vec' and 'vec2' are two vectors created by calling the 'c' method on the
|
725
|
+
R module.
|
726
|
+
|
727
|
+
In Galaaz, the R module allows us to access R functions transparently. The 'c'
|
728
|
+
function in R, is a function that concatenates its arguments making a vector.
|
729
|
+
|
730
|
+
It
|
731
|
+
should be clear that there is no requirement in gknit to call or use any R
|
732
|
+
functions. gKnit will knit standard Ruby code, or even general text without
|
733
|
+
any code.
|
734
|
+
|
735
|
+
|
736
|
+
```ruby
|
737
|
+
a = [1, 2, 3]
|
738
|
+
b = "US$ 250.000"
|
739
|
+
c = "The 'outputs' function"
|
740
|
+
|
741
|
+
vec = R.c(1, 2, 3)
|
742
|
+
vec2 = R.c(10, 20, 30)
|
743
|
+
```
|
744
|
+
|
745
|
+
In the next block, variables 'a', 'vec' and 'vec2' are used and printed.
|
746
|
+
|
747
|
+
|
748
|
+
```ruby
|
749
|
+
puts a
|
750
|
+
puts vec * vec2
|
751
|
+
```
|
752
|
+
|
753
|
+
```
|
754
|
+
## 1
|
755
|
+
## 2
|
756
|
+
## 3
|
757
|
+
## [1] 10 40 90
|
758
|
+
```
|
759
|
+
|
760
|
+
Note that 'a' is a standard Ruby Array and 'vec' and 'vec2' are vectors that behave accordingly,
|
761
|
+
where multiplication works as expected.
|
762
|
+
|
763
|
+
## Inline Ruby code
|
764
|
+
|
765
|
+
When using a Ruby chunk, the code and the output are formatted in blocks as seen above.
|
766
|
+
This formatting is not always desired. Sometimes, we want to have the results of the
|
767
|
+
Ruby evaluation included in the middle of a phrase. gKnit allows adding inline Ruby code
|
768
|
+
with the 'rb' engine. The following chunk specification will
|
769
|
+
create and inline Ruby text:
|
770
|
+
|
771
|
+
````
|
772
|
+
This is some text with inline Ruby accessing variable 'b' which has value:
|
773
|
+
```{rb puts b}
|
774
|
+
```
|
775
|
+
and is followed by some other text!
|
776
|
+
````
|
777
|
+
|
778
|
+
<div style="margin-bottom:30px;">
|
779
|
+
</div>
|
780
|
+
|
781
|
+
This is some text with inline Ruby accessing variable 'b' which has value:
|
782
|
+
US$ 250.000
|
783
|
+
and is followed by some other text!
|
784
|
+
|
785
|
+
<div style="margin-bottom:30px;">
|
786
|
+
</div>
|
787
|
+
|
788
|
+
Note that it is important not to add any new line before of after the code
|
789
|
+
block if we want everything to be in only one line, resulting in the following sentence
|
790
|
+
with inline Ruby code.
|
791
|
+
|
792
|
+
|
793
|
+
### The 'outputs' function
|
794
|
+
|
795
|
+
He have previously used the standard 'puts' method in Ruby chunks in order produce
|
796
|
+
output. The result of a 'puts', as seen in all previous chunks that use it, is formatted
|
797
|
+
inside a white box that
|
798
|
+
follows the code block. Many times however, we would like to do some processing in the
|
799
|
+
Ruby chunk and have the result of this processing generate and output that is
|
800
|
+
"included" in the document as if we had typed it in __R markdown__ document.
|
801
|
+
|
802
|
+
For example, suppose we want to create a new heading in our document, but the heading
|
803
|
+
phrase is the result of some code processing: maybe it's the first line of a file we are
|
804
|
+
going to read. Method 'outputs' adds its output as if typed in the __R markdown__ document.
|
805
|
+
|
806
|
+
Take now a look at variable 'c' (it was defined in a previous block above) as
|
807
|
+
'c = "The 'outputs' function". "The 'outputs' function" is actually the name of this
|
808
|
+
section and it was created using the 'outputs' function inside a Ruby chunk.
|
809
|
+
|
810
|
+
The ruby chunk to generate this heading is:
|
811
|
+
|
812
|
+
````
|
813
|
+
```{ruby heading}
|
814
|
+
outputs "### #{c}"
|
815
|
+
```
|
816
|
+
````
|
817
|
+
|
818
|
+
The three '###' is the way we add a Heading 3 in __R markdown__.
|
819
|
+
|
820
|
+
|
821
|
+
### HTML Output from Ruby Chunks
|
822
|
+
|
823
|
+
We've just seen the use of method 'outputs' to add text to the the __R markdown__
|
824
|
+
document. This technique can also be used to add HTML code to the document. In
|
825
|
+
__R markdown__, any html code typed directly in the document will be properly rendered.
|
826
|
+
Here, for instance, is a table definition in HTML and its output in the document:
|
827
|
+
|
828
|
+
```
|
829
|
+
<table style="width:100%">
|
830
|
+
<tr>
|
831
|
+
<th>Firstname</th>
|
832
|
+
<th>Lastname</th>
|
833
|
+
<th>Age</th>
|
834
|
+
</tr>
|
835
|
+
<tr>
|
836
|
+
<td>Jill</td>
|
837
|
+
<td>Smith</td>
|
838
|
+
<td>50</td>
|
839
|
+
</tr>
|
840
|
+
<tr>
|
841
|
+
<td>Eve</td>
|
842
|
+
<td>Jackson</td>
|
843
|
+
<td>94</td>
|
844
|
+
</tr>
|
845
|
+
</table>
|
846
|
+
```
|
847
|
+
<div style="margin-bottom:30px;">
|
848
|
+
</div>
|
849
|
+
|
850
|
+
<table style="width:100%">
|
851
|
+
<tr>
|
852
|
+
<th>Firstname</th>
|
853
|
+
<th>Lastname</th>
|
854
|
+
<th>Age</th>
|
855
|
+
</tr>
|
856
|
+
<tr>
|
857
|
+
<td>Jill</td>
|
858
|
+
<td>Smith</td>
|
859
|
+
<td>50</td>
|
860
|
+
</tr>
|
861
|
+
<tr>
|
862
|
+
<td>Eve</td>
|
863
|
+
<td>Jackson</td>
|
864
|
+
<td>94</td>
|
865
|
+
</tr>
|
866
|
+
</table>
|
867
|
+
|
868
|
+
<div style="margin-bottom:30px;">
|
869
|
+
</div>
|
870
|
+
|
871
|
+
But manually creating HTML output is not always easy or desirable, specially
|
872
|
+
if we intend the document to be rendered in other formats, for example, as Latex.
|
873
|
+
Also, The above
|
874
|
+
table looks ugly. The 'kableExtra' library is a great library for
|
875
|
+
creating beautiful tables. Take a look at https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html
|
876
|
+
|
877
|
+
In the next chunk, we output the 'mtcars' dataframe from R in a nicely formatted
|
878
|
+
table. Note that we retrieve the mtcars dataframe by using '~:mtcars'.
|
879
|
+
|
880
|
+
|
881
|
+
```ruby
|
882
|
+
R.install_and_loads('kableExtra')
|
883
|
+
outputs (~:mtcars).kable.kable_styling
|
884
|
+
```
|
885
|
+
|
886
|
+
<table class="table" style="margin-left: auto; margin-right: auto;">
|
887
|
+
<thead>
|
888
|
+
<tr>
|
889
|
+
<th style="text-align:left;"> </th>
|
890
|
+
<th style="text-align:right;"> mpg </th>
|
891
|
+
<th style="text-align:right;"> cyl </th>
|
892
|
+
<th style="text-align:right;"> disp </th>
|
893
|
+
<th style="text-align:right;"> hp </th>
|
894
|
+
<th style="text-align:right;"> drat </th>
|
895
|
+
<th style="text-align:right;"> wt </th>
|
896
|
+
<th style="text-align:right;"> qsec </th>
|
897
|
+
<th style="text-align:right;"> vs </th>
|
898
|
+
<th style="text-align:right;"> am </th>
|
899
|
+
<th style="text-align:right;"> gear </th>
|
900
|
+
<th style="text-align:right;"> carb </th>
|
901
|
+
</tr>
|
902
|
+
</thead>
|
903
|
+
<tbody>
|
904
|
+
<tr>
|
905
|
+
<td style="text-align:left;"> Mazda RX4 </td>
|
906
|
+
<td style="text-align:right;"> 21.0 </td>
|
907
|
+
<td style="text-align:right;"> 6 </td>
|
908
|
+
<td style="text-align:right;"> 160.0 </td>
|
909
|
+
<td style="text-align:right;"> 110 </td>
|
910
|
+
<td style="text-align:right;"> 3.90 </td>
|
911
|
+
<td style="text-align:right;"> 2.620 </td>
|
912
|
+
<td style="text-align:right;"> 16.46 </td>
|
913
|
+
<td style="text-align:right;"> 0 </td>
|
914
|
+
<td style="text-align:right;"> 1 </td>
|
915
|
+
<td style="text-align:right;"> 4 </td>
|
916
|
+
<td style="text-align:right;"> 4 </td>
|
917
|
+
</tr>
|
918
|
+
<tr>
|
919
|
+
<td style="text-align:left;"> Mazda RX4 Wag </td>
|
920
|
+
<td style="text-align:right;"> 21.0 </td>
|
921
|
+
<td style="text-align:right;"> 6 </td>
|
922
|
+
<td style="text-align:right;"> 160.0 </td>
|
923
|
+
<td style="text-align:right;"> 110 </td>
|
924
|
+
<td style="text-align:right;"> 3.90 </td>
|
925
|
+
<td style="text-align:right;"> 2.875 </td>
|
926
|
+
<td style="text-align:right;"> 17.02 </td>
|
927
|
+
<td style="text-align:right;"> 0 </td>
|
928
|
+
<td style="text-align:right;"> 1 </td>
|
929
|
+
<td style="text-align:right;"> 4 </td>
|
930
|
+
<td style="text-align:right;"> 4 </td>
|
931
|
+
</tr>
|
932
|
+
<tr>
|
933
|
+
<td style="text-align:left;"> Datsun 710 </td>
|
934
|
+
<td style="text-align:right;"> 22.8 </td>
|
935
|
+
<td style="text-align:right;"> 4 </td>
|
936
|
+
<td style="text-align:right;"> 108.0 </td>
|
937
|
+
<td style="text-align:right;"> 93 </td>
|
938
|
+
<td style="text-align:right;"> 3.85 </td>
|
939
|
+
<td style="text-align:right;"> 2.320 </td>
|
940
|
+
<td style="text-align:right;"> 18.61 </td>
|
941
|
+
<td style="text-align:right;"> 1 </td>
|
942
|
+
<td style="text-align:right;"> 1 </td>
|
943
|
+
<td style="text-align:right;"> 4 </td>
|
944
|
+
<td style="text-align:right;"> 1 </td>
|
945
|
+
</tr>
|
946
|
+
<tr>
|
947
|
+
<td style="text-align:left;"> Hornet 4 Drive </td>
|
948
|
+
<td style="text-align:right;"> 21.4 </td>
|
949
|
+
<td style="text-align:right;"> 6 </td>
|
950
|
+
<td style="text-align:right;"> 258.0 </td>
|
951
|
+
<td style="text-align:right;"> 110 </td>
|
952
|
+
<td style="text-align:right;"> 3.08 </td>
|
953
|
+
<td style="text-align:right;"> 3.215 </td>
|
954
|
+
<td style="text-align:right;"> 19.44 </td>
|
955
|
+
<td style="text-align:right;"> 1 </td>
|
956
|
+
<td style="text-align:right;"> 0 </td>
|
957
|
+
<td style="text-align:right;"> 3 </td>
|
958
|
+
<td style="text-align:right;"> 1 </td>
|
959
|
+
</tr>
|
960
|
+
<tr>
|
961
|
+
<td style="text-align:left;"> Hornet Sportabout </td>
|
962
|
+
<td style="text-align:right;"> 18.7 </td>
|
963
|
+
<td style="text-align:right;"> 8 </td>
|
964
|
+
<td style="text-align:right;"> 360.0 </td>
|
965
|
+
<td style="text-align:right;"> 175 </td>
|
966
|
+
<td style="text-align:right;"> 3.15 </td>
|
967
|
+
<td style="text-align:right;"> 3.440 </td>
|
968
|
+
<td style="text-align:right;"> 17.02 </td>
|
969
|
+
<td style="text-align:right;"> 0 </td>
|
970
|
+
<td style="text-align:right;"> 0 </td>
|
971
|
+
<td style="text-align:right;"> 3 </td>
|
972
|
+
<td style="text-align:right;"> 2 </td>
|
973
|
+
</tr>
|
974
|
+
<tr>
|
975
|
+
<td style="text-align:left;"> Valiant </td>
|
976
|
+
<td style="text-align:right;"> 18.1 </td>
|
977
|
+
<td style="text-align:right;"> 6 </td>
|
978
|
+
<td style="text-align:right;"> 225.0 </td>
|
979
|
+
<td style="text-align:right;"> 105 </td>
|
980
|
+
<td style="text-align:right;"> 2.76 </td>
|
981
|
+
<td style="text-align:right;"> 3.460 </td>
|
982
|
+
<td style="text-align:right;"> 20.22 </td>
|
983
|
+
<td style="text-align:right;"> 1 </td>
|
984
|
+
<td style="text-align:right;"> 0 </td>
|
985
|
+
<td style="text-align:right;"> 3 </td>
|
986
|
+
<td style="text-align:right;"> 1 </td>
|
987
|
+
</tr>
|
988
|
+
<tr>
|
989
|
+
<td style="text-align:left;"> Duster 360 </td>
|
990
|
+
<td style="text-align:right;"> 14.3 </td>
|
991
|
+
<td style="text-align:right;"> 8 </td>
|
992
|
+
<td style="text-align:right;"> 360.0 </td>
|
993
|
+
<td style="text-align:right;"> 245 </td>
|
994
|
+
<td style="text-align:right;"> 3.21 </td>
|
995
|
+
<td style="text-align:right;"> 3.570 </td>
|
996
|
+
<td style="text-align:right;"> 15.84 </td>
|
997
|
+
<td style="text-align:right;"> 0 </td>
|
998
|
+
<td style="text-align:right;"> 0 </td>
|
999
|
+
<td style="text-align:right;"> 3 </td>
|
1000
|
+
<td style="text-align:right;"> 4 </td>
|
1001
|
+
</tr>
|
1002
|
+
<tr>
|
1003
|
+
<td style="text-align:left;"> Merc 240D </td>
|
1004
|
+
<td style="text-align:right;"> 24.4 </td>
|
1005
|
+
<td style="text-align:right;"> 4 </td>
|
1006
|
+
<td style="text-align:right;"> 146.7 </td>
|
1007
|
+
<td style="text-align:right;"> 62 </td>
|
1008
|
+
<td style="text-align:right;"> 3.69 </td>
|
1009
|
+
<td style="text-align:right;"> 3.190 </td>
|
1010
|
+
<td style="text-align:right;"> 20.00 </td>
|
1011
|
+
<td style="text-align:right;"> 1 </td>
|
1012
|
+
<td style="text-align:right;"> 0 </td>
|
1013
|
+
<td style="text-align:right;"> 4 </td>
|
1014
|
+
<td style="text-align:right;"> 2 </td>
|
1015
|
+
</tr>
|
1016
|
+
<tr>
|
1017
|
+
<td style="text-align:left;"> Merc 230 </td>
|
1018
|
+
<td style="text-align:right;"> 22.8 </td>
|
1019
|
+
<td style="text-align:right;"> 4 </td>
|
1020
|
+
<td style="text-align:right;"> 140.8 </td>
|
1021
|
+
<td style="text-align:right;"> 95 </td>
|
1022
|
+
<td style="text-align:right;"> 3.92 </td>
|
1023
|
+
<td style="text-align:right;"> 3.150 </td>
|
1024
|
+
<td style="text-align:right;"> 22.90 </td>
|
1025
|
+
<td style="text-align:right;"> 1 </td>
|
1026
|
+
<td style="text-align:right;"> 0 </td>
|
1027
|
+
<td style="text-align:right;"> 4 </td>
|
1028
|
+
<td style="text-align:right;"> 2 </td>
|
1029
|
+
</tr>
|
1030
|
+
<tr>
|
1031
|
+
<td style="text-align:left;"> Merc 280 </td>
|
1032
|
+
<td style="text-align:right;"> 19.2 </td>
|
1033
|
+
<td style="text-align:right;"> 6 </td>
|
1034
|
+
<td style="text-align:right;"> 167.6 </td>
|
1035
|
+
<td style="text-align:right;"> 123 </td>
|
1036
|
+
<td style="text-align:right;"> 3.92 </td>
|
1037
|
+
<td style="text-align:right;"> 3.440 </td>
|
1038
|
+
<td style="text-align:right;"> 18.30 </td>
|
1039
|
+
<td style="text-align:right;"> 1 </td>
|
1040
|
+
<td style="text-align:right;"> 0 </td>
|
1041
|
+
<td style="text-align:right;"> 4 </td>
|
1042
|
+
<td style="text-align:right;"> 4 </td>
|
1043
|
+
</tr>
|
1044
|
+
<tr>
|
1045
|
+
<td style="text-align:left;"> Merc 280C </td>
|
1046
|
+
<td style="text-align:right;"> 17.8 </td>
|
1047
|
+
<td style="text-align:right;"> 6 </td>
|
1048
|
+
<td style="text-align:right;"> 167.6 </td>
|
1049
|
+
<td style="text-align:right;"> 123 </td>
|
1050
|
+
<td style="text-align:right;"> 3.92 </td>
|
1051
|
+
<td style="text-align:right;"> 3.440 </td>
|
1052
|
+
<td style="text-align:right;"> 18.90 </td>
|
1053
|
+
<td style="text-align:right;"> 1 </td>
|
1054
|
+
<td style="text-align:right;"> 0 </td>
|
1055
|
+
<td style="text-align:right;"> 4 </td>
|
1056
|
+
<td style="text-align:right;"> 4 </td>
|
1057
|
+
</tr>
|
1058
|
+
<tr>
|
1059
|
+
<td style="text-align:left;"> Merc 450SE </td>
|
1060
|
+
<td style="text-align:right;"> 16.4 </td>
|
1061
|
+
<td style="text-align:right;"> 8 </td>
|
1062
|
+
<td style="text-align:right;"> 275.8 </td>
|
1063
|
+
<td style="text-align:right;"> 180 </td>
|
1064
|
+
<td style="text-align:right;"> 3.07 </td>
|
1065
|
+
<td style="text-align:right;"> 4.070 </td>
|
1066
|
+
<td style="text-align:right;"> 17.40 </td>
|
1067
|
+
<td style="text-align:right;"> 0 </td>
|
1068
|
+
<td style="text-align:right;"> 0 </td>
|
1069
|
+
<td style="text-align:right;"> 3 </td>
|
1070
|
+
<td style="text-align:right;"> 3 </td>
|
1071
|
+
</tr>
|
1072
|
+
<tr>
|
1073
|
+
<td style="text-align:left;"> Merc 450SL </td>
|
1074
|
+
<td style="text-align:right;"> 17.3 </td>
|
1075
|
+
<td style="text-align:right;"> 8 </td>
|
1076
|
+
<td style="text-align:right;"> 275.8 </td>
|
1077
|
+
<td style="text-align:right;"> 180 </td>
|
1078
|
+
<td style="text-align:right;"> 3.07 </td>
|
1079
|
+
<td style="text-align:right;"> 3.730 </td>
|
1080
|
+
<td style="text-align:right;"> 17.60 </td>
|
1081
|
+
<td style="text-align:right;"> 0 </td>
|
1082
|
+
<td style="text-align:right;"> 0 </td>
|
1083
|
+
<td style="text-align:right;"> 3 </td>
|
1084
|
+
<td style="text-align:right;"> 3 </td>
|
1085
|
+
</tr>
|
1086
|
+
<tr>
|
1087
|
+
<td style="text-align:left;"> Merc 450SLC </td>
|
1088
|
+
<td style="text-align:right;"> 15.2 </td>
|
1089
|
+
<td style="text-align:right;"> 8 </td>
|
1090
|
+
<td style="text-align:right;"> 275.8 </td>
|
1091
|
+
<td style="text-align:right;"> 180 </td>
|
1092
|
+
<td style="text-align:right;"> 3.07 </td>
|
1093
|
+
<td style="text-align:right;"> 3.780 </td>
|
1094
|
+
<td style="text-align:right;"> 18.00 </td>
|
1095
|
+
<td style="text-align:right;"> 0 </td>
|
1096
|
+
<td style="text-align:right;"> 0 </td>
|
1097
|
+
<td style="text-align:right;"> 3 </td>
|
1098
|
+
<td style="text-align:right;"> 3 </td>
|
1099
|
+
</tr>
|
1100
|
+
<tr>
|
1101
|
+
<td style="text-align:left;"> Cadillac Fleetwood </td>
|
1102
|
+
<td style="text-align:right;"> 10.4 </td>
|
1103
|
+
<td style="text-align:right;"> 8 </td>
|
1104
|
+
<td style="text-align:right;"> 472.0 </td>
|
1105
|
+
<td style="text-align:right;"> 205 </td>
|
1106
|
+
<td style="text-align:right;"> 2.93 </td>
|
1107
|
+
<td style="text-align:right;"> 5.250 </td>
|
1108
|
+
<td style="text-align:right;"> 17.98 </td>
|
1109
|
+
<td style="text-align:right;"> 0 </td>
|
1110
|
+
<td style="text-align:right;"> 0 </td>
|
1111
|
+
<td style="text-align:right;"> 3 </td>
|
1112
|
+
<td style="text-align:right;"> 4 </td>
|
1113
|
+
</tr>
|
1114
|
+
<tr>
|
1115
|
+
<td style="text-align:left;"> Lincoln Continental </td>
|
1116
|
+
<td style="text-align:right;"> 10.4 </td>
|
1117
|
+
<td style="text-align:right;"> 8 </td>
|
1118
|
+
<td style="text-align:right;"> 460.0 </td>
|
1119
|
+
<td style="text-align:right;"> 215 </td>
|
1120
|
+
<td style="text-align:right;"> 3.00 </td>
|
1121
|
+
<td style="text-align:right;"> 5.424 </td>
|
1122
|
+
<td style="text-align:right;"> 17.82 </td>
|
1123
|
+
<td style="text-align:right;"> 0 </td>
|
1124
|
+
<td style="text-align:right;"> 0 </td>
|
1125
|
+
<td style="text-align:right;"> 3 </td>
|
1126
|
+
<td style="text-align:right;"> 4 </td>
|
1127
|
+
</tr>
|
1128
|
+
<tr>
|
1129
|
+
<td style="text-align:left;"> Chrysler Imperial </td>
|
1130
|
+
<td style="text-align:right;"> 14.7 </td>
|
1131
|
+
<td style="text-align:right;"> 8 </td>
|
1132
|
+
<td style="text-align:right;"> 440.0 </td>
|
1133
|
+
<td style="text-align:right;"> 230 </td>
|
1134
|
+
<td style="text-align:right;"> 3.23 </td>
|
1135
|
+
<td style="text-align:right;"> 5.345 </td>
|
1136
|
+
<td style="text-align:right;"> 17.42 </td>
|
1137
|
+
<td style="text-align:right;"> 0 </td>
|
1138
|
+
<td style="text-align:right;"> 0 </td>
|
1139
|
+
<td style="text-align:right;"> 3 </td>
|
1140
|
+
<td style="text-align:right;"> 4 </td>
|
1141
|
+
</tr>
|
1142
|
+
<tr>
|
1143
|
+
<td style="text-align:left;"> Fiat 128 </td>
|
1144
|
+
<td style="text-align:right;"> 32.4 </td>
|
1145
|
+
<td style="text-align:right;"> 4 </td>
|
1146
|
+
<td style="text-align:right;"> 78.7 </td>
|
1147
|
+
<td style="text-align:right;"> 66 </td>
|
1148
|
+
<td style="text-align:right;"> 4.08 </td>
|
1149
|
+
<td style="text-align:right;"> 2.200 </td>
|
1150
|
+
<td style="text-align:right;"> 19.47 </td>
|
1151
|
+
<td style="text-align:right;"> 1 </td>
|
1152
|
+
<td style="text-align:right;"> 1 </td>
|
1153
|
+
<td style="text-align:right;"> 4 </td>
|
1154
|
+
<td style="text-align:right;"> 1 </td>
|
1155
|
+
</tr>
|
1156
|
+
<tr>
|
1157
|
+
<td style="text-align:left;"> Honda Civic </td>
|
1158
|
+
<td style="text-align:right;"> 30.4 </td>
|
1159
|
+
<td style="text-align:right;"> 4 </td>
|
1160
|
+
<td style="text-align:right;"> 75.7 </td>
|
1161
|
+
<td style="text-align:right;"> 52 </td>
|
1162
|
+
<td style="text-align:right;"> 4.93 </td>
|
1163
|
+
<td style="text-align:right;"> 1.615 </td>
|
1164
|
+
<td style="text-align:right;"> 18.52 </td>
|
1165
|
+
<td style="text-align:right;"> 1 </td>
|
1166
|
+
<td style="text-align:right;"> 1 </td>
|
1167
|
+
<td style="text-align:right;"> 4 </td>
|
1168
|
+
<td style="text-align:right;"> 2 </td>
|
1169
|
+
</tr>
|
1170
|
+
<tr>
|
1171
|
+
<td style="text-align:left;"> Toyota Corolla </td>
|
1172
|
+
<td style="text-align:right;"> 33.9 </td>
|
1173
|
+
<td style="text-align:right;"> 4 </td>
|
1174
|
+
<td style="text-align:right;"> 71.1 </td>
|
1175
|
+
<td style="text-align:right;"> 65 </td>
|
1176
|
+
<td style="text-align:right;"> 4.22 </td>
|
1177
|
+
<td style="text-align:right;"> 1.835 </td>
|
1178
|
+
<td style="text-align:right;"> 19.90 </td>
|
1179
|
+
<td style="text-align:right;"> 1 </td>
|
1180
|
+
<td style="text-align:right;"> 1 </td>
|
1181
|
+
<td style="text-align:right;"> 4 </td>
|
1182
|
+
<td style="text-align:right;"> 1 </td>
|
1183
|
+
</tr>
|
1184
|
+
<tr>
|
1185
|
+
<td style="text-align:left;"> Toyota Corona </td>
|
1186
|
+
<td style="text-align:right;"> 21.5 </td>
|
1187
|
+
<td style="text-align:right;"> 4 </td>
|
1188
|
+
<td style="text-align:right;"> 120.1 </td>
|
1189
|
+
<td style="text-align:right;"> 97 </td>
|
1190
|
+
<td style="text-align:right;"> 3.70 </td>
|
1191
|
+
<td style="text-align:right;"> 2.465 </td>
|
1192
|
+
<td style="text-align:right;"> 20.01 </td>
|
1193
|
+
<td style="text-align:right;"> 1 </td>
|
1194
|
+
<td style="text-align:right;"> 0 </td>
|
1195
|
+
<td style="text-align:right;"> 3 </td>
|
1196
|
+
<td style="text-align:right;"> 1 </td>
|
1197
|
+
</tr>
|
1198
|
+
<tr>
|
1199
|
+
<td style="text-align:left;"> Dodge Challenger </td>
|
1200
|
+
<td style="text-align:right;"> 15.5 </td>
|
1201
|
+
<td style="text-align:right;"> 8 </td>
|
1202
|
+
<td style="text-align:right;"> 318.0 </td>
|
1203
|
+
<td style="text-align:right;"> 150 </td>
|
1204
|
+
<td style="text-align:right;"> 2.76 </td>
|
1205
|
+
<td style="text-align:right;"> 3.520 </td>
|
1206
|
+
<td style="text-align:right;"> 16.87 </td>
|
1207
|
+
<td style="text-align:right;"> 0 </td>
|
1208
|
+
<td style="text-align:right;"> 0 </td>
|
1209
|
+
<td style="text-align:right;"> 3 </td>
|
1210
|
+
<td style="text-align:right;"> 2 </td>
|
1211
|
+
</tr>
|
1212
|
+
<tr>
|
1213
|
+
<td style="text-align:left;"> AMC Javelin </td>
|
1214
|
+
<td style="text-align:right;"> 15.2 </td>
|
1215
|
+
<td style="text-align:right;"> 8 </td>
|
1216
|
+
<td style="text-align:right;"> 304.0 </td>
|
1217
|
+
<td style="text-align:right;"> 150 </td>
|
1218
|
+
<td style="text-align:right;"> 3.15 </td>
|
1219
|
+
<td style="text-align:right;"> 3.435 </td>
|
1220
|
+
<td style="text-align:right;"> 17.30 </td>
|
1221
|
+
<td style="text-align:right;"> 0 </td>
|
1222
|
+
<td style="text-align:right;"> 0 </td>
|
1223
|
+
<td style="text-align:right;"> 3 </td>
|
1224
|
+
<td style="text-align:right;"> 2 </td>
|
1225
|
+
</tr>
|
1226
|
+
<tr>
|
1227
|
+
<td style="text-align:left;"> Camaro Z28 </td>
|
1228
|
+
<td style="text-align:right;"> 13.3 </td>
|
1229
|
+
<td style="text-align:right;"> 8 </td>
|
1230
|
+
<td style="text-align:right;"> 350.0 </td>
|
1231
|
+
<td style="text-align:right;"> 245 </td>
|
1232
|
+
<td style="text-align:right;"> 3.73 </td>
|
1233
|
+
<td style="text-align:right;"> 3.840 </td>
|
1234
|
+
<td style="text-align:right;"> 15.41 </td>
|
1235
|
+
<td style="text-align:right;"> 0 </td>
|
1236
|
+
<td style="text-align:right;"> 0 </td>
|
1237
|
+
<td style="text-align:right;"> 3 </td>
|
1238
|
+
<td style="text-align:right;"> 4 </td>
|
1239
|
+
</tr>
|
1240
|
+
<tr>
|
1241
|
+
<td style="text-align:left;"> Pontiac Firebird </td>
|
1242
|
+
<td style="text-align:right;"> 19.2 </td>
|
1243
|
+
<td style="text-align:right;"> 8 </td>
|
1244
|
+
<td style="text-align:right;"> 400.0 </td>
|
1245
|
+
<td style="text-align:right;"> 175 </td>
|
1246
|
+
<td style="text-align:right;"> 3.08 </td>
|
1247
|
+
<td style="text-align:right;"> 3.845 </td>
|
1248
|
+
<td style="text-align:right;"> 17.05 </td>
|
1249
|
+
<td style="text-align:right;"> 0 </td>
|
1250
|
+
<td style="text-align:right;"> 0 </td>
|
1251
|
+
<td style="text-align:right;"> 3 </td>
|
1252
|
+
<td style="text-align:right;"> 2 </td>
|
1253
|
+
</tr>
|
1254
|
+
<tr>
|
1255
|
+
<td style="text-align:left;"> Fiat X1-9 </td>
|
1256
|
+
<td style="text-align:right;"> 27.3 </td>
|
1257
|
+
<td style="text-align:right;"> 4 </td>
|
1258
|
+
<td style="text-align:right;"> 79.0 </td>
|
1259
|
+
<td style="text-align:right;"> 66 </td>
|
1260
|
+
<td style="text-align:right;"> 4.08 </td>
|
1261
|
+
<td style="text-align:right;"> 1.935 </td>
|
1262
|
+
<td style="text-align:right;"> 18.90 </td>
|
1263
|
+
<td style="text-align:right;"> 1 </td>
|
1264
|
+
<td style="text-align:right;"> 1 </td>
|
1265
|
+
<td style="text-align:right;"> 4 </td>
|
1266
|
+
<td style="text-align:right;"> 1 </td>
|
1267
|
+
</tr>
|
1268
|
+
<tr>
|
1269
|
+
<td style="text-align:left;"> Porsche 914-2 </td>
|
1270
|
+
<td style="text-align:right;"> 26.0 </td>
|
1271
|
+
<td style="text-align:right;"> 4 </td>
|
1272
|
+
<td style="text-align:right;"> 120.3 </td>
|
1273
|
+
<td style="text-align:right;"> 91 </td>
|
1274
|
+
<td style="text-align:right;"> 4.43 </td>
|
1275
|
+
<td style="text-align:right;"> 2.140 </td>
|
1276
|
+
<td style="text-align:right;"> 16.70 </td>
|
1277
|
+
<td style="text-align:right;"> 0 </td>
|
1278
|
+
<td style="text-align:right;"> 1 </td>
|
1279
|
+
<td style="text-align:right;"> 5 </td>
|
1280
|
+
<td style="text-align:right;"> 2 </td>
|
1281
|
+
</tr>
|
1282
|
+
<tr>
|
1283
|
+
<td style="text-align:left;"> Lotus Europa </td>
|
1284
|
+
<td style="text-align:right;"> 30.4 </td>
|
1285
|
+
<td style="text-align:right;"> 4 </td>
|
1286
|
+
<td style="text-align:right;"> 95.1 </td>
|
1287
|
+
<td style="text-align:right;"> 113 </td>
|
1288
|
+
<td style="text-align:right;"> 3.77 </td>
|
1289
|
+
<td style="text-align:right;"> 1.513 </td>
|
1290
|
+
<td style="text-align:right;"> 16.90 </td>
|
1291
|
+
<td style="text-align:right;"> 1 </td>
|
1292
|
+
<td style="text-align:right;"> 1 </td>
|
1293
|
+
<td style="text-align:right;"> 5 </td>
|
1294
|
+
<td style="text-align:right;"> 2 </td>
|
1295
|
+
</tr>
|
1296
|
+
<tr>
|
1297
|
+
<td style="text-align:left;"> Ford Pantera L </td>
|
1298
|
+
<td style="text-align:right;"> 15.8 </td>
|
1299
|
+
<td style="text-align:right;"> 8 </td>
|
1300
|
+
<td style="text-align:right;"> 351.0 </td>
|
1301
|
+
<td style="text-align:right;"> 264 </td>
|
1302
|
+
<td style="text-align:right;"> 4.22 </td>
|
1303
|
+
<td style="text-align:right;"> 3.170 </td>
|
1304
|
+
<td style="text-align:right;"> 14.50 </td>
|
1305
|
+
<td style="text-align:right;"> 0 </td>
|
1306
|
+
<td style="text-align:right;"> 1 </td>
|
1307
|
+
<td style="text-align:right;"> 5 </td>
|
1308
|
+
<td style="text-align:right;"> 4 </td>
|
1309
|
+
</tr>
|
1310
|
+
<tr>
|
1311
|
+
<td style="text-align:left;"> Ferrari Dino </td>
|
1312
|
+
<td style="text-align:right;"> 19.7 </td>
|
1313
|
+
<td style="text-align:right;"> 6 </td>
|
1314
|
+
<td style="text-align:right;"> 145.0 </td>
|
1315
|
+
<td style="text-align:right;"> 175 </td>
|
1316
|
+
<td style="text-align:right;"> 3.62 </td>
|
1317
|
+
<td style="text-align:right;"> 2.770 </td>
|
1318
|
+
<td style="text-align:right;"> 15.50 </td>
|
1319
|
+
<td style="text-align:right;"> 0 </td>
|
1320
|
+
<td style="text-align:right;"> 1 </td>
|
1321
|
+
<td style="text-align:right;"> 5 </td>
|
1322
|
+
<td style="text-align:right;"> 6 </td>
|
1323
|
+
</tr>
|
1324
|
+
<tr>
|
1325
|
+
<td style="text-align:left;"> Maserati Bora </td>
|
1326
|
+
<td style="text-align:right;"> 15.0 </td>
|
1327
|
+
<td style="text-align:right;"> 8 </td>
|
1328
|
+
<td style="text-align:right;"> 301.0 </td>
|
1329
|
+
<td style="text-align:right;"> 335 </td>
|
1330
|
+
<td style="text-align:right;"> 3.54 </td>
|
1331
|
+
<td style="text-align:right;"> 3.570 </td>
|
1332
|
+
<td style="text-align:right;"> 14.60 </td>
|
1333
|
+
<td style="text-align:right;"> 0 </td>
|
1334
|
+
<td style="text-align:right;"> 1 </td>
|
1335
|
+
<td style="text-align:right;"> 5 </td>
|
1336
|
+
<td style="text-align:right;"> 8 </td>
|
1337
|
+
</tr>
|
1338
|
+
<tr>
|
1339
|
+
<td style="text-align:left;"> Volvo 142E </td>
|
1340
|
+
<td style="text-align:right;"> 21.4 </td>
|
1341
|
+
<td style="text-align:right;"> 4 </td>
|
1342
|
+
<td style="text-align:right;"> 121.0 </td>
|
1343
|
+
<td style="text-align:right;"> 109 </td>
|
1344
|
+
<td style="text-align:right;"> 4.11 </td>
|
1345
|
+
<td style="text-align:right;"> 2.780 </td>
|
1346
|
+
<td style="text-align:right;"> 18.60 </td>
|
1347
|
+
<td style="text-align:right;"> 1 </td>
|
1348
|
+
<td style="text-align:right;"> 1 </td>
|
1349
|
+
<td style="text-align:right;"> 4 </td>
|
1350
|
+
<td style="text-align:right;"> 2 </td>
|
1351
|
+
</tr>
|
1352
|
+
</tbody>
|
1353
|
+
</table>
|
340
1354
|
|
341
|
-
|
342
|
-
## [1] 11 22 14 25 36 17 28 39
|
343
|
-
## [1] 22 14 36 28 39
|
344
|
-
```
|
1355
|
+
## Including Ruby files in a chunk
|
345
1356
|
|
346
|
-
|
1357
|
+
R is a language that was created to be easy and fast for statisticians to use. As far
|
1358
|
+
as I know, it was not a
|
1359
|
+
language to be used for developing large systems. Of course, there are large systems and
|
1360
|
+
libraries in R, but the focus of the language is for developing statistical models and
|
1361
|
+
distribute that to peers.
|
347
1362
|
|
1363
|
+
Ruby on the other hand, is a language for large software development. Systems written in
|
1364
|
+
Ruby will have dozens, hundreds or even thousands of files. To document a
|
1365
|
+
large system with literate programming, we cannot expect the developer to add all the
|
1366
|
+
files in a single '.Rmd' file. gKnit provides the 'include' chunk engine to include
|
1367
|
+
a Ruby file as if it had being typed in the '.Rmd' file.
|
348
1368
|
|
349
|
-
|
350
|
-
|
351
|
-
|
1369
|
+
To include a file, the following chunk should be created, where <filename> is the name of
|
1370
|
+
the file to be included and where the extension, if it is '.rb', does not need to be added.
|
1371
|
+
If the 'relative' option is not included, then it is treated as TRUE. When 'relative' is
|
1372
|
+
true, ruby's 'require\_relative' semantics is used to load the file, when false, Ruby's
|
1373
|
+
\$LOAD_PATH is searched to find the file and it is 'require'd.
|
352
1374
|
|
1375
|
+
````
|
1376
|
+
```{include <filename>, relative = <TRUE/FALSE>}
|
353
1377
|
```
|
354
|
-
|
355
|
-
```
|
356
|
-
|
357
|
-
It is also possible to index a vector by range:
|
1378
|
+
````
|
358
1379
|
|
1380
|
+
Bellow we include file 'model.rb', which is in the same directory of this blog.
|
1381
|
+
This code uses R 'caret' package to split a dataset in a train and test sets.
|
1382
|
+
The 'caret' package is a very important a useful package for doing Data Analysis,
|
1383
|
+
it has hundreds of functions for all steps of the Data Analysis workflow. To
|
1384
|
+
use 'caret' just to split a dataset is like using the proverbial cannon to
|
1385
|
+
kill the fly. We use it here only to show that integrating Ruby and R and
|
1386
|
+
using even a very complex package as 'caret' is trivial with Galaaz.
|
359
1387
|
|
360
|
-
|
361
|
-
|
362
|
-
|
1388
|
+
A word of advice: the 'caret' package has lots of dependencies and installing
|
1389
|
+
it in a Linux system is a time consuming operation. Method 'R.install_and_loads'
|
1390
|
+
will install the package if it is not already installed and can take a while.
|
363
1391
|
|
1392
|
+
````
|
1393
|
+
```{include model}
|
364
1394
|
```
|
365
|
-
|
366
|
-
```
|
367
|
-
|
368
|
-
Elements in a vector can be named using the 'names' attribute of a vector:
|
369
|
-
|
1395
|
+
````
|
370
1396
|
|
371
|
-
```ruby
|
372
|
-
full_name = R.c("Rodrigo", "A", "Botafogo")
|
373
|
-
full_name.names = R.c("First", "Middle", "Last")
|
374
|
-
puts full_name
|
375
|
-
```
|
376
1397
|
|
377
|
-
```
|
378
|
-
|
379
|
-
## "Rodrigo" "A" "Botafogo"
|
380
|
-
```
|
1398
|
+
```include
|
1399
|
+
require 'galaaz'
|
381
1400
|
|
382
|
-
|
1401
|
+
# Loads the R 'caret' package. If not present, installs it
|
1402
|
+
R.install_and_loads 'caret'
|
383
1403
|
|
1404
|
+
class Model
|
1405
|
+
|
1406
|
+
attr_reader :data
|
1407
|
+
attr_reader :test
|
1408
|
+
attr_reader :train
|
384
1409
|
|
385
|
-
|
386
|
-
|
387
|
-
|
388
|
-
|
1410
|
+
#==========================================================
|
1411
|
+
#
|
1412
|
+
#==========================================================
|
1413
|
+
|
1414
|
+
def initialize(data, percent_train:, seed: 123)
|
1415
|
+
|
1416
|
+
R.set__seed(seed)
|
1417
|
+
@data = data
|
1418
|
+
@percent_train = percent_train
|
1419
|
+
@seed = seed
|
1420
|
+
|
1421
|
+
end
|
1422
|
+
|
1423
|
+
#==========================================================
|
1424
|
+
#
|
1425
|
+
#==========================================================
|
1426
|
+
|
1427
|
+
def partition(field)
|
1428
|
+
|
1429
|
+
train_index =
|
1430
|
+
R.createDataPartition(@data.send(field), p: @percet_train,
|
1431
|
+
list: false, times: 1)
|
1432
|
+
@train = @data[train_index, :all]
|
1433
|
+
@test = @data[-train_index, :all]
|
1434
|
+
|
1435
|
+
end
|
1436
|
+
|
1437
|
+
end
|
389
1438
|
|
390
1439
|
```
|
391
|
-
## First Middle Last
|
392
|
-
## "Rodrigo" "A" "Botafogo"
|
393
|
-
```
|
394
|
-
|
395
|
-
## Extracting Native Ruby Types from a Vector
|
396
|
-
|
397
|
-
Vectors created with 'R.c' are of class R::Vector. You might have noticed that when indexing a
|
398
|
-
vector, a new vector is returned, even if this vector has one single element. In order to use
|
399
|
-
R::Vector with other ruby classes it might be necessary to extract the actual Ruby native type
|
400
|
-
from the vector. In order to do this extraction the '>>' operator is used.
|
401
1440
|
|
402
1441
|
|
403
1442
|
```ruby
|
404
|
-
|
405
|
-
|
406
|
-
|
1443
|
+
mtcars = ~:mtcars
|
1444
|
+
model = Model.new(mtcars, percent_train: 0.8)
|
1445
|
+
model.partition(:mpg)
|
1446
|
+
puts model.train.head
|
1447
|
+
puts model.test.head
|
1448
|
+
```
|
1449
|
+
|
1450
|
+
```
|
1451
|
+
## mpg cyl disp hp drat wt qsec vs am gear carb
|
1452
|
+
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
|
1453
|
+
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
|
1454
|
+
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
|
1455
|
+
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
|
1456
|
+
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
|
1457
|
+
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
|
1458
|
+
## mpg cyl disp hp drat wt qsec vs am gear carb
|
1459
|
+
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
|
1460
|
+
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
|
1461
|
+
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
|
1462
|
+
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
|
1463
|
+
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
|
1464
|
+
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
|
1465
|
+
```
|
1466
|
+
|
1467
|
+
## Documenting Gems
|
1468
|
+
|
1469
|
+
gKnit also allows developers to document and load files that are not in the same directory
|
1470
|
+
of the '.Rmd' file.
|
1471
|
+
|
1472
|
+
Here is an example of loading the 'find.rb' file from TruffleRuby. In this example, relative
|
1473
|
+
is set to FALSE, so Ruby will look for the file in its $LOAD\_PATH, and the user does not
|
1474
|
+
need to no it's directory.
|
1475
|
+
|
1476
|
+
````
|
1477
|
+
```{include find, relative = FALSE}
|
1478
|
+
```
|
1479
|
+
````
|
1480
|
+
|
1481
|
+
|
1482
|
+
```include
|
1483
|
+
# frozen_string_literal: true
|
1484
|
+
#
|
1485
|
+
# find.rb: the Find module for processing all files under a given directory.
|
1486
|
+
#
|
1487
|
+
|
1488
|
+
#
|
1489
|
+
# The +Find+ module supports the top-down traversal of a set of file paths.
|
1490
|
+
#
|
1491
|
+
# For example, to total the size of all files under your home directory,
|
1492
|
+
# ignoring anything in a "dot" directory (e.g. $HOME/.ssh):
|
1493
|
+
#
|
1494
|
+
# require 'find'
|
1495
|
+
#
|
1496
|
+
# total_size = 0
|
1497
|
+
#
|
1498
|
+
# Find.find(ENV["HOME"]) do |path|
|
1499
|
+
# if FileTest.directory?(path)
|
1500
|
+
# if File.basename(path)[0] == ?.
|
1501
|
+
# Find.prune # Don't look any further into this directory.
|
1502
|
+
# else
|
1503
|
+
# next
|
1504
|
+
# end
|
1505
|
+
# else
|
1506
|
+
# total_size += FileTest.size(path)
|
1507
|
+
# end
|
1508
|
+
# end
|
1509
|
+
#
|
1510
|
+
module Find
|
1511
|
+
|
1512
|
+
#
|
1513
|
+
# Calls the associated block with the name of every file and directory listed
|
1514
|
+
# as arguments, then recursively on their subdirectories, and so on.
|
1515
|
+
#
|
1516
|
+
# Returns an enumerator if no block is given.
|
1517
|
+
#
|
1518
|
+
# See the +Find+ module documentation for an example.
|
1519
|
+
#
|
1520
|
+
def find(*paths, ignore_error: true) # :yield: path
|
1521
|
+
block_given? or return enum_for(__method__, *paths, ignore_error: ignore_error)
|
1522
|
+
|
1523
|
+
fs_encoding = Encoding.find("filesystem")
|
1524
|
+
|
1525
|
+
paths.collect!{|d| raise Errno::ENOENT, d unless File.exist?(d); d.dup}.each do |path|
|
1526
|
+
path = path.to_path if path.respond_to? :to_path
|
1527
|
+
enc = path.encoding == Encoding::US_ASCII ? fs_encoding : path.encoding
|
1528
|
+
ps = [path]
|
1529
|
+
while file = ps.shift
|
1530
|
+
catch(:prune) do
|
1531
|
+
yield file.dup.taint
|
1532
|
+
begin
|
1533
|
+
s = File.lstat(file)
|
1534
|
+
rescue Errno::ENOENT, Errno::EACCES, Errno::ENOTDIR, Errno::ELOOP, Errno::ENAMETOOLONG
|
1535
|
+
raise unless ignore_error
|
1536
|
+
next
|
1537
|
+
end
|
1538
|
+
if s.directory? then
|
1539
|
+
begin
|
1540
|
+
fs = Dir.children(file, encoding: enc)
|
1541
|
+
rescue Errno::ENOENT, Errno::EACCES, Errno::ENOTDIR, Errno::ELOOP, Errno::ENAMETOOLONG
|
1542
|
+
raise unless ignore_error
|
1543
|
+
next
|
1544
|
+
end
|
1545
|
+
fs.sort!
|
1546
|
+
fs.reverse_each {|f|
|
1547
|
+
f = File.join(file, f)
|
1548
|
+
ps.unshift f.untaint
|
1549
|
+
}
|
1550
|
+
end
|
1551
|
+
end
|
1552
|
+
end
|
1553
|
+
end
|
1554
|
+
nil
|
1555
|
+
end
|
1556
|
+
|
1557
|
+
#
|
1558
|
+
# Skips the current file or directory, restarting the loop with the next
|
1559
|
+
# entry. If the current file is a directory, that directory will not be
|
1560
|
+
# recursively entered. Meaningful only within the block associated with
|
1561
|
+
# Find::find.
|
1562
|
+
#
|
1563
|
+
# See the +Find+ module documentation for an example.
|
1564
|
+
#
|
1565
|
+
def prune
|
1566
|
+
throw :prune
|
1567
|
+
end
|
1568
|
+
|
1569
|
+
module_function :find, :prune
|
1570
|
+
end
|
407
1571
|
```
|
408
1572
|
|
409
|
-
|
410
|
-
|
411
|
-
|
412
|
-
|
1573
|
+
## Converting to PDF
|
1574
|
+
|
1575
|
+
One of the beauties of knitr is that the same input can be converted to many different outputs.
|
1576
|
+
One very useful format, is, of course, PDF. In order to converted an __R markdown__ file to PDF
|
1577
|
+
it is necessary to have LaTeX installed on the system. We will not explain here how to
|
1578
|
+
install LaTeX as there are plenty of documents on the web showing how to proceed.
|
1579
|
+
|
1580
|
+
gKnit comes with a simple LaTeX style file for gknitting this blog as a PDF document. Here is
|
1581
|
+
the Yaml header to generate this blog in PDF format instead of HTML:
|
1582
|
+
|
1583
|
+
```
|
1584
|
+
---
|
1585
|
+
title: "gKnit - Ruby and R Knitting with Galaaz in GraalVM"
|
1586
|
+
author: "Rodrigo Botafogo"
|
1587
|
+
tags: [Galaaz, Ruby, R, TruffleRuby, FastR, GraalVM, knitr, gknit]
|
1588
|
+
date: "29 October 2018"
|
1589
|
+
output:
|
1590
|
+
pdf\_document:
|
1591
|
+
includes:
|
1592
|
+
in\_header: ["../../sty/galaaz.sty"]
|
1593
|
+
number\_sections: yes
|
1594
|
+
---
|
1595
|
+
```
|
1596
|
+
|
1597
|
+
## Template based documents generation
|
1598
|
+
|
1599
|
+
When a document is converted to PDF it follows a certain convertion template. We've seen above
|
1600
|
+
the use of 'galaaz.sty' as a basic template to generate a PDF document. Using the
|
1601
|
+
'gknit-draft' app that comes with Galaaz, the same .Rmd file can be compiled to different
|
1602
|
+
looking PDF documents. Galaaz automatically loads the 'rticles' R package that comes with
|
1603
|
+
templates for the following journals with the respective template name:
|
1604
|
+
|
1605
|
+
* ACM articles: acm_article
|
1606
|
+
* ACS articles: acs_article
|
1607
|
+
* AEA journal submissions: aea_article
|
1608
|
+
* AGU journal submissions: ????
|
1609
|
+
* AMS articles: ams_article
|
1610
|
+
* American Statistical Association: asa_article
|
1611
|
+
* Biometrics articles: biometrics_article
|
1612
|
+
* Bulletin de l'AMQ journal submissions: amq_article
|
1613
|
+
* CTeX documents: ctex
|
1614
|
+
* Elsevier journal submissions: elsevier_article
|
1615
|
+
* IEEE Transaction journal submissions: ieee_article
|
1616
|
+
* JSS articles: jss_article
|
1617
|
+
* MDPI journal submissions: mdpi_article
|
1618
|
+
* Monthly Notices of the Royal Astronomical Society articles: mnras_article
|
1619
|
+
* NNRAS journal submissions: nmras_article
|
1620
|
+
* PeerJ articles: peerj_article
|
1621
|
+
* Royal Society Open Science journal submissions: rsos_article
|
1622
|
+
* Royal Statistical Society: rss_article
|
1623
|
+
* Sage journal submissions: sage_article
|
1624
|
+
* Springer journal submissions: springer_article
|
1625
|
+
* Statistics in Medicine journal submissions: sim_article
|
1626
|
+
* Copernicus Publications journal submissions: copernicus_article
|
1627
|
+
* The R Journal articles: rjournal_article
|
1628
|
+
* Frontiers articles: ???
|
1629
|
+
* Taylor & Francis articles: ???
|
1630
|
+
* Bulletin De L'AMQ: amq_article
|
1631
|
+
* PLOS journal: plos_article
|
1632
|
+
* Proceedings of the National Academy of Sciences of the USA: pnas_article
|
1633
|
+
|
1634
|
+
In order to create a document with one of those templates, use the following command:
|
1635
|
+
|
1636
|
+
```
|
1637
|
+
gknit-draft --filename <my_document> --template <template> --package <package>
|
1638
|
+
--create_dir
|
1639
|
+
```
|
1640
|
+
So, in order to create a template for writing an R Journal, use:
|
1641
|
+
|
1642
|
+
```
|
1643
|
+
gknit-draft --filename my_r_article --template rjournal_article --package rticles
|
1644
|
+
--create_dir
|
413
1645
|
```
|
414
1646
|
|
415
|
-
Note that indexing with '>>' starts at 0 and not at 1, also, we cannot do negative indexing.
|
416
|
-
|
417
1647
|
# Accessing R variables
|
418
1648
|
|
419
1649
|
Galaaz allows Ruby to access variables created in R. For example, the 'mtcars' data set is
|
@@ -896,7 +2126,338 @@ outputs (~:mtcars).kable.kable_styling
|
|
896
2126
|
</tbody>
|
897
2127
|
</table>
|
898
2128
|
|
899
|
-
#
|
2129
|
+
# Basic Data Types
|
2130
|
+
|
2131
|
+
## Vector
|
2132
|
+
|
2133
|
+
Vectors can be thought of as contiguous cells containing data. Cells are accessed through
|
2134
|
+
indexing operations such as x[5]. Galaaz has six basic (‘atomic’) vector types: logical,
|
2135
|
+
integer, real, complex, string (or character) and raw. The modes and storage modes for the
|
2136
|
+
different vector types are listed in the following
|
2137
|
+
table.
|
2138
|
+
|
2139
|
+
| typeof | mode | storage.mode |
|
2140
|
+
|-----------|:---------:|-------------:|
|
2141
|
+
| logical | logical | logical |
|
2142
|
+
| integer | numeric | integer |
|
2143
|
+
| double | numeric | double |
|
2144
|
+
| complex | complex | comples |
|
2145
|
+
| character | character | character |
|
2146
|
+
| raw | raw | raw |
|
2147
|
+
|
2148
|
+
Single numbers, such as 4.2, and strings, such as "four point two" are still vectors, of length
|
2149
|
+
1; there are no more basic types. Vectors with length zero are possible (and useful).
|
2150
|
+
String vectors have mode and storage mode "character". A single element of a character
|
2151
|
+
vector is often referred to as a character string.
|
2152
|
+
|
2153
|
+
To create a vector the 'c' (concatenate) method from the 'R' module should be used:
|
2154
|
+
|
2155
|
+
|
2156
|
+
```ruby
|
2157
|
+
vec = R.c(1, 2, 3)
|
2158
|
+
puts vec
|
2159
|
+
```
|
2160
|
+
|
2161
|
+
```
|
2162
|
+
## [1] 1 2 3
|
2163
|
+
```
|
2164
|
+
|
2165
|
+
Lets take a look at the type, mode and storage.mode of our vector vec. In order to print
|
2166
|
+
this out, we are creating a data frame 'df' and printing it out. A data frame, for those
|
2167
|
+
not familiar with it, is basically a table. Here we create the data frame and add the
|
2168
|
+
column name by passing named parameters for each column, such as 'typeof:', 'mode:' and
|
2169
|
+
'storage__mode?'. You should also note here that the double underscore is converted to a '.'.
|
2170
|
+
So, when printed 'storage\_\_mode' will actually print as 'storage.mode'.
|
2171
|
+
|
2172
|
+
Data frames will later be more carefully described. In R, the method used to create a
|
2173
|
+
data frame is 'data.frame', in Galaaz we use 'data\_\_frame'.
|
2174
|
+
|
2175
|
+
|
2176
|
+
```ruby
|
2177
|
+
df = R.data__frame(typeof: vec.typeof, mode: vec.mode, storage__mode: vec.storage__mode)
|
2178
|
+
puts df
|
2179
|
+
```
|
2180
|
+
|
2181
|
+
```
|
2182
|
+
## typeof mode storage.mode
|
2183
|
+
## 1 integer numeric integer
|
2184
|
+
```
|
2185
|
+
|
2186
|
+
If you want to create a vector with floating point numbers, then we need at least one of the
|
2187
|
+
vector's element to be a float, such as 1.0. R users should be careful, since in R a number
|
2188
|
+
like '1' is converted to float and to have an integer the R developer will use '1L'. Galaaz
|
2189
|
+
follows normal Ruby rules and the number 1 is an integer and 1.0 is a float.
|
2190
|
+
|
2191
|
+
|
2192
|
+
```ruby
|
2193
|
+
vec = R.c(1.0, 2, 3)
|
2194
|
+
puts vec
|
2195
|
+
```
|
2196
|
+
|
2197
|
+
```
|
2198
|
+
## [1] 1 2 3
|
2199
|
+
```
|
2200
|
+
|
2201
|
+
|
2202
|
+
```ruby
|
2203
|
+
df = R.data__frame(typeof: vec.typeof, mode: vec.mode, storage__mode: vec.storage__mode)
|
2204
|
+
outputs df.kable.kable_styling
|
2205
|
+
```
|
2206
|
+
|
2207
|
+
<table class="table" style="margin-left: auto; margin-right: auto;">
|
2208
|
+
<thead>
|
2209
|
+
<tr>
|
2210
|
+
<th style="text-align:left;"> typeof </th>
|
2211
|
+
<th style="text-align:left;"> mode </th>
|
2212
|
+
<th style="text-align:left;"> storage.mode </th>
|
2213
|
+
</tr>
|
2214
|
+
</thead>
|
2215
|
+
<tbody>
|
2216
|
+
<tr>
|
2217
|
+
<td style="text-align:left;"> double </td>
|
2218
|
+
<td style="text-align:left;"> numeric </td>
|
2219
|
+
<td style="text-align:left;"> double </td>
|
2220
|
+
</tr>
|
2221
|
+
</tbody>
|
2222
|
+
</table>
|
2223
|
+
|
2224
|
+
In this next example we try to create a vector with a variable 'hello' that has not yet
|
2225
|
+
being defined. This will raise an exception that is printed out. We get two return blocks,
|
2226
|
+
the first with a message explaining what went wrong and the second with the full backtrace
|
2227
|
+
of the error.
|
2228
|
+
|
2229
|
+
|
2230
|
+
```ruby
|
2231
|
+
vec = R.c(1, hello, 5)
|
2232
|
+
```
|
2233
|
+
|
2234
|
+
```
|
2235
|
+
## Message:
|
2236
|
+
## undefined local variable or method `hello' for #<RC:0x3d8 @out_list=nil>:RC
|
2237
|
+
```
|
2238
|
+
|
2239
|
+
```
|
2240
|
+
## Message:
|
2241
|
+
## /home/rbotafogo/desenv/galaaz/lib/util/exec_ruby.rb:103:in `get_binding'
|
2242
|
+
## /home/rbotafogo/desenv/galaaz/lib/util/exec_ruby.rb:102:in `eval'
|
2243
|
+
## /home/rbotafogo/desenv/galaaz/lib/util/exec_ruby.rb:102:in `exec_ruby'
|
2244
|
+
## /home/rbotafogo/desenv/galaaz/lib/gknit/knitr_engine.rb:650:in `block in initialize'
|
2245
|
+
## /home/rbotafogo/desenv/galaaz/lib/R_interface/ruby_callback.rb:77:in `call'
|
2246
|
+
## /home/rbotafogo/desenv/galaaz/lib/R_interface/ruby_callback.rb:77:in `callback'
|
2247
|
+
## (eval):3:in `function(...) {\n rb_method(...)'
|
2248
|
+
## unknown.r:1:in `in_dir'
|
2249
|
+
## unknown.r:1:in `block_exec'
|
2250
|
+
## /usr/local/lib/graalvm-ce-java11-20.0.0/languages/R/library/knitr/R/block.R:92:in `call_block'
|
2251
|
+
## /usr/local/lib/graalvm-ce-java11-20.0.0/languages/R/library/knitr/R/block.R:6:in `process_group.block'
|
2252
|
+
## /usr/local/lib/graalvm-ce-java11-20.0.0/languages/R/library/knitr/R/block.R:3:in `<no source>'
|
2253
|
+
## unknown.r:1:in `withCallingHandlers'
|
2254
|
+
## unknown.r:1:in `process_file'
|
2255
|
+
## unknown.r:1:in `<no source>'
|
2256
|
+
## unknown.r:1:in `<no source>'
|
2257
|
+
## <REPL>:4:in `<repl wrapper>'
|
2258
|
+
## <REPL>:1
|
2259
|
+
```
|
2260
|
+
|
2261
|
+
Here is a vector with logical values
|
2262
|
+
|
2263
|
+
|
2264
|
+
```ruby
|
2265
|
+
vec = R.c(true, true, false, false, true)
|
2266
|
+
puts vec
|
2267
|
+
```
|
2268
|
+
|
2269
|
+
```
|
2270
|
+
## [1] TRUE TRUE FALSE FALSE TRUE
|
2271
|
+
```
|
2272
|
+
|
2273
|
+
### Combining Vectors
|
2274
|
+
|
2275
|
+
The 'c' functions used to create vectors can also be used to combine two vectors:
|
2276
|
+
|
2277
|
+
|
2278
|
+
```ruby
|
2279
|
+
vec1 = R.c(10.0, 20.0, 30.0)
|
2280
|
+
vec2 = R.c(4.0, 5.0, 6.0)
|
2281
|
+
vec = R.c(vec1, vec2)
|
2282
|
+
puts vec
|
2283
|
+
```
|
2284
|
+
|
2285
|
+
```
|
2286
|
+
## [1] 10 20 30 4 5 6
|
2287
|
+
```
|
2288
|
+
In galaaz, methods can be chainned (somewhat like the pipe operator in R %>%, but more generic).
|
2289
|
+
In this next example, method 'c' is chainned after 'vec1'. This also looks like 'c' is a
|
2290
|
+
method of the vector, but in reallity, this is actually closer to the pipe operator. When
|
2291
|
+
Galaaz identifies that 'c' is not a method of 'vec' it actually tries to call 'R.c' with
|
2292
|
+
'vec1' as the first argument concatenated with all the other available arguments. The code
|
2293
|
+
bellow is automatically converted to the code above.
|
2294
|
+
|
2295
|
+
|
2296
|
+
```ruby
|
2297
|
+
vec = vec1.c(vec2)
|
2298
|
+
puts vec
|
2299
|
+
```
|
2300
|
+
|
2301
|
+
```
|
2302
|
+
## [1] 10 20 30 4 5 6
|
2303
|
+
```
|
2304
|
+
|
2305
|
+
### Vector Arithmetic
|
2306
|
+
|
2307
|
+
Arithmetic operations on vectors are performed element by element:
|
2308
|
+
|
2309
|
+
|
2310
|
+
```ruby
|
2311
|
+
puts vec1 + vec2
|
2312
|
+
```
|
2313
|
+
|
2314
|
+
```
|
2315
|
+
## [1] 14 25 36
|
2316
|
+
```
|
2317
|
+
|
2318
|
+
|
2319
|
+
```ruby
|
2320
|
+
puts vec1 * 5
|
2321
|
+
```
|
2322
|
+
|
2323
|
+
```
|
2324
|
+
## [1] 50 100 150
|
2325
|
+
```
|
2326
|
+
|
2327
|
+
When vectors have different length, a recycling rule is applied to the shorter vector:
|
2328
|
+
|
2329
|
+
|
2330
|
+
```ruby
|
2331
|
+
vec3 = R.c(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)
|
2332
|
+
puts vec4 = vec1 + vec3
|
2333
|
+
```
|
2334
|
+
|
2335
|
+
```
|
2336
|
+
## [1] 11 22 33 14 25 36 17 28 39
|
2337
|
+
```
|
2338
|
+
|
2339
|
+
### Vector Indexing
|
2340
|
+
|
2341
|
+
Vectors can be indexed by using the '[]' operator:
|
2342
|
+
|
2343
|
+
|
2344
|
+
```ruby
|
2345
|
+
puts vec4[3]
|
2346
|
+
```
|
2347
|
+
|
2348
|
+
```
|
2349
|
+
## [1] 33
|
2350
|
+
```
|
2351
|
+
|
2352
|
+
We can also index a vector with another vector. For example, in the code bellow, we take elements
|
2353
|
+
1, 3, 5, and 7 from vec3:
|
2354
|
+
|
2355
|
+
|
2356
|
+
```ruby
|
2357
|
+
puts vec4[R.c(1, 3, 5, 7)]
|
2358
|
+
```
|
2359
|
+
|
2360
|
+
```
|
2361
|
+
## [1] 11 33 25 17
|
2362
|
+
```
|
2363
|
+
|
2364
|
+
Repeating an index and having indices out of order is valid code:
|
2365
|
+
|
2366
|
+
|
2367
|
+
```ruby
|
2368
|
+
puts vec4[R.c(1, 3, 3, 1)]
|
2369
|
+
```
|
2370
|
+
|
2371
|
+
```
|
2372
|
+
## [1] 11 33 33 11
|
2373
|
+
```
|
2374
|
+
|
2375
|
+
It is also possible to index a vector with a negative number or negative vector. In these cases
|
2376
|
+
the indexed values are not returned:
|
2377
|
+
|
2378
|
+
|
2379
|
+
```ruby
|
2380
|
+
puts vec4[-3]
|
2381
|
+
puts vec4[-R.c(1, 3, 5, 7)]
|
2382
|
+
```
|
2383
|
+
|
2384
|
+
```
|
2385
|
+
## [1] 11 22 14 25 36 17 28 39
|
2386
|
+
## [1] 22 14 36 28 39
|
2387
|
+
```
|
2388
|
+
|
2389
|
+
If an index is out of range, a missing value (NA) will be reported.
|
2390
|
+
|
2391
|
+
|
2392
|
+
```ruby
|
2393
|
+
puts vec4[30]
|
2394
|
+
```
|
2395
|
+
|
2396
|
+
```
|
2397
|
+
## [1] NA
|
2398
|
+
```
|
2399
|
+
|
2400
|
+
It is also possible to index a vector by range:
|
2401
|
+
|
2402
|
+
|
2403
|
+
```ruby
|
2404
|
+
puts vec4[(2..5)]
|
2405
|
+
```
|
2406
|
+
|
2407
|
+
```
|
2408
|
+
## [1] 22 33 14 25
|
2409
|
+
```
|
2410
|
+
|
2411
|
+
Elements in a vector can be named using the 'names' attribute of a vector:
|
2412
|
+
|
2413
|
+
|
2414
|
+
```ruby
|
2415
|
+
full_name = R.c("Rodrigo", "A", "Botafogo")
|
2416
|
+
full_name.names = R.c("First", "Middle", "Last")
|
2417
|
+
puts full_name
|
2418
|
+
```
|
2419
|
+
|
2420
|
+
```
|
2421
|
+
## First Middle Last
|
2422
|
+
## "Rodrigo" "A" "Botafogo"
|
2423
|
+
```
|
2424
|
+
|
2425
|
+
Or it can also be named by using the 'c' function with named paramenters:
|
2426
|
+
|
2427
|
+
|
2428
|
+
```ruby
|
2429
|
+
full_name = R.c(First: "Rodrigo", Middle: "A", Last: "Botafogo")
|
2430
|
+
puts full_name
|
2431
|
+
```
|
2432
|
+
|
2433
|
+
```
|
2434
|
+
## First Middle Last
|
2435
|
+
## "Rodrigo" "A" "Botafogo"
|
2436
|
+
```
|
2437
|
+
|
2438
|
+
### Extracting Native Ruby Types from a Vector
|
2439
|
+
|
2440
|
+
Vectors created with 'R.c' are of class R::Vector. You might have noticed that when indexing a
|
2441
|
+
vector, a new vector is returned, even if this vector has one single element. In order to use
|
2442
|
+
R::Vector with other ruby classes it might be necessary to extract the actual Ruby native type
|
2443
|
+
from the vector. In order to do this extraction the '>>' operator is used.
|
2444
|
+
|
2445
|
+
|
2446
|
+
```ruby
|
2447
|
+
puts vec4
|
2448
|
+
puts vec4 >> 0
|
2449
|
+
puts vec4 >> 4
|
2450
|
+
```
|
2451
|
+
|
2452
|
+
```
|
2453
|
+
## [1] 11 22 33 14 25 36 17 28 39
|
2454
|
+
## 11.0
|
2455
|
+
## 25.0
|
2456
|
+
```
|
2457
|
+
|
2458
|
+
Note that indexing with '>>' starts at 0 and not at 1, also, we cannot do negative indexing.
|
2459
|
+
|
2460
|
+
## Matrix
|
900
2461
|
|
901
2462
|
A matrix is a collection of elements organized as a two dimensional table. A matrix can be
|
902
2463
|
created by the 'matrix' function:
|
@@ -936,7 +2497,7 @@ puts mat_row
|
|
936
2497
|
## [3,] 7 8 9
|
937
2498
|
```
|
938
2499
|
|
939
|
-
|
2500
|
+
### Indexing a Matrix
|
940
2501
|
|
941
2502
|
A matrix can be indexed by [row, column]:
|
942
2503
|
|
@@ -1008,7 +2569,7 @@ puts mat_row.cbind(mat)
|
|
1008
2569
|
## [3,] 7 8 9 3 6 9
|
1009
2570
|
```
|
1010
2571
|
|
1011
|
-
|
2572
|
+
## List
|
1012
2573
|
|
1013
2574
|
A list is a data structure that can contain sublists of different types, while vector and matrix
|
1014
2575
|
can only hold one type of element.
|
@@ -1036,7 +2597,7 @@ puts lst
|
|
1036
2597
|
Note that 'lst' elements are named elements.
|
1037
2598
|
|
1038
2599
|
|
1039
|
-
|
2600
|
+
### List Indexing
|
1040
2601
|
|
1041
2602
|
List indexing, also called slicing, is done using the '[]' operator and the '[[]]' operator. Let's
|
1042
2603
|
first start with the '[]' operator. The list above has three sublist indexing with '[]' will
|
@@ -1082,7 +2643,7 @@ then the first element of the vector was extracted (note that vectors also accep
|
|
1082
2643
|
operator) and then the vector was indexed by its first element, extracting the native Ruby type.
|
1083
2644
|
|
1084
2645
|
|
1085
|
-
|
2646
|
+
## Data Frame
|
1086
2647
|
|
1087
2648
|
A data frame is a table like structure in which each column has the same number of
|
1088
2649
|
rows. Data frames are the basic structure for storing data for data analysis. We have already
|
@@ -1105,7 +2666,7 @@ puts df
|
|
1105
2666
|
## 3 2012 2000
|
1106
2667
|
```
|
1107
2668
|
|
1108
|
-
|
2669
|
+
### Data Frame Indexing
|
1109
2670
|
|
1110
2671
|
A data frame can be indexed the same way as a matrix, by using '[row, column]', where row and
|
1111
2672
|
column can either be a numeric or the name of the row or column
|
@@ -1325,13 +2886,6 @@ symbolic notation as otherwise, we end up writing invalid expressions such as
|
|
1325
2886
|
exp_wrong = (:a + :b) == :z
|
1326
2887
|
puts exp_wrong
|
1327
2888
|
```
|
1328
|
-
|
1329
|
-
```
|
1330
|
-
## Message:
|
1331
|
-
## Error in function (x, y, num.eq = TRUE, single.NA = TRUE, attrib.as.set = TRUE, :
|
1332
|
-
## object 'a' not found (RError)
|
1333
|
-
## Translated to internal error
|
1334
|
-
```
|
1335
2889
|
and it might be difficult to understand what is going on here. The problem lies with the fact that
|
1336
2890
|
when using '==' we are comparing expression (:a + :b) to expression :z with '=='. When the
|
1337
2891
|
comparison is executed, the system tries to evaluate :a, :b and :z, and those symbols at
|
@@ -1423,11 +2977,15 @@ Galaaz.
|
|
1423
2977
|
|
1424
2978
|
For these
|
1425
2979
|
examples, we will investigate the nycflights13 data set available on the package by the
|
1426
|
-
same name. We use function 'R.
|
2980
|
+
same name. We use function 'R.install\_and\_loads' that checks if the library is available
|
1427
2981
|
locally, and if not, installs it. This data frame contains all 336,776 flights that
|
1428
2982
|
departed from New York City in 2013. The data comes from the US Bureau of
|
1429
2983
|
Transportation Statistics.
|
1430
2984
|
|
2985
|
+
Dplyr uses 'tibbles' in place of data frames; unfortunately, tibbles do not print yet properly in
|
2986
|
+
Galaaz due to a bug in fastR. In order to print a tibble we need to convert it to a data frame
|
2987
|
+
using the 'as\_\_data__frame' method.
|
2988
|
+
|
1431
2989
|
|
1432
2990
|
```ruby
|
1433
2991
|
R.install_and_loads('nycflights13')
|
@@ -1437,31 +2995,23 @@ R.library('dplyr')
|
|
1437
2995
|
|
1438
2996
|
```ruby
|
1439
2997
|
flights = ~:flights
|
1440
|
-
puts flights.head
|
1441
|
-
```
|
1442
|
-
|
1443
|
-
```
|
1444
|
-
##
|
1445
|
-
##
|
1446
|
-
##
|
1447
|
-
##
|
1448
|
-
##
|
1449
|
-
##
|
1450
|
-
##
|
1451
|
-
##
|
1452
|
-
## 1
|
1453
|
-
##
|
1454
|
-
##
|
1455
|
-
##
|
1456
|
-
##
|
1457
|
-
## 6 12 UA 1696 N39463 EWR ORD 150 719 5
|
1458
|
-
## minute time_hour
|
1459
|
-
## 1 15 2013-01-01 05:00:00
|
1460
|
-
## 2 29 2013-01-01 05:00:00
|
1461
|
-
## 3 40 2013-01-01 05:00:00
|
1462
|
-
## 4 45 2013-01-01 05:00:00
|
1463
|
-
## 5 0 2013-01-01 06:00:00
|
1464
|
-
## 6 58 2013-01-01 05:00:00
|
2998
|
+
puts flights.head
|
2999
|
+
```
|
3000
|
+
|
3001
|
+
```
|
3002
|
+
## # A tibble: 6 x 19
|
3003
|
+
## year month day dep_time sched_dep_time dep_delay arr_time
|
3004
|
+
## <int> <int> <int> <int> <int> <dbl> <int>
|
3005
|
+
## 1 2013 1 1 517 515 2 830
|
3006
|
+
## 2 2013 1 1 533 529 4 850
|
3007
|
+
## 3 2013 1 1 542 540 2 923
|
3008
|
+
## 4 2013 1 1 544 545 -1 1004
|
3009
|
+
## 5 2013 1 1 554 600 -6 812
|
3010
|
+
## 6 2013 1 1 554 558 -4 740
|
3011
|
+
## # … with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
|
3012
|
+
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
|
3013
|
+
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
|
3014
|
+
## # time_hour <dttm>
|
1465
3015
|
```
|
1466
3016
|
|
1467
3017
|
## Filtering rows with Filter
|
@@ -1471,31 +3021,23 @@ the first :month.eq 1
|
|
1471
3021
|
|
1472
3022
|
|
1473
3023
|
```ruby
|
1474
|
-
puts flights.filter((:month.eq 1), (:day.eq 1)).head
|
3024
|
+
puts flights.filter((:month.eq 1), (:day.eq 1)).head
|
1475
3025
|
```
|
1476
3026
|
|
1477
3027
|
```
|
1478
|
-
##
|
1479
|
-
##
|
1480
|
-
##
|
1481
|
-
##
|
1482
|
-
##
|
1483
|
-
##
|
1484
|
-
##
|
1485
|
-
##
|
1486
|
-
## 1
|
1487
|
-
##
|
1488
|
-
##
|
1489
|
-
##
|
1490
|
-
##
|
1491
|
-
## 6 12 UA 1696 N39463 EWR ORD 150 719 5
|
1492
|
-
## minute time_hour
|
1493
|
-
## 1 15 2013-01-01 05:00:00
|
1494
|
-
## 2 29 2013-01-01 05:00:00
|
1495
|
-
## 3 40 2013-01-01 05:00:00
|
1496
|
-
## 4 45 2013-01-01 05:00:00
|
1497
|
-
## 5 0 2013-01-01 06:00:00
|
1498
|
-
## 6 58 2013-01-01 05:00:00
|
3028
|
+
## # A tibble: 6 x 19
|
3029
|
+
## year month day dep_time sched_dep_time dep_delay arr_time
|
3030
|
+
## <int> <int> <int> <int> <int> <dbl> <int>
|
3031
|
+
## 1 2013 1 1 517 515 2 830
|
3032
|
+
## 2 2013 1 1 533 529 4 850
|
3033
|
+
## 3 2013 1 1 542 540 2 923
|
3034
|
+
## 4 2013 1 1 544 545 -1 1004
|
3035
|
+
## 5 2013 1 1 554 600 -6 812
|
3036
|
+
## 6 2013 1 1 554 558 -4 740
|
3037
|
+
## # … with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
|
3038
|
+
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
|
3039
|
+
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
|
3040
|
+
## # time_hour <dttm>
|
1499
3041
|
```
|
1500
3042
|
|
1501
3043
|
## Logical Operators
|
@@ -1504,31 +3046,23 @@ All flights that departed in November of December
|
|
1504
3046
|
|
1505
3047
|
|
1506
3048
|
```ruby
|
1507
|
-
puts flights.filter((:month.eq 11) | (:month.eq 12)).head
|
3049
|
+
puts flights.filter((:month.eq 11) | (:month.eq 12)).head
|
1508
3050
|
```
|
1509
3051
|
|
1510
3052
|
```
|
1511
|
-
##
|
1512
|
-
##
|
1513
|
-
##
|
1514
|
-
##
|
1515
|
-
##
|
1516
|
-
##
|
1517
|
-
##
|
1518
|
-
##
|
1519
|
-
##
|
1520
|
-
##
|
1521
|
-
##
|
1522
|
-
##
|
1523
|
-
##
|
1524
|
-
## 6 -11 UA 303 N595UA JFK SFO 359 2586 6
|
1525
|
-
## minute time_hour
|
1526
|
-
## 1 59 2013-11-01 23:00:00
|
1527
|
-
## 2 50 2013-11-01 22:00:00
|
1528
|
-
## 3 0 2013-11-01 05:00:00
|
1529
|
-
## 4 45 2013-11-01 05:00:00
|
1530
|
-
## 5 45 2013-11-01 05:00:00
|
1531
|
-
## 6 0 2013-11-01 06:00:00
|
3053
|
+
## # A tibble: 6 x 19
|
3054
|
+
## year month day dep_time sched_dep_time dep_delay arr_time
|
3055
|
+
## <int> <int> <int> <int> <int> <dbl> <int>
|
3056
|
+
## 1 2013 11 1 5 2359 6 352
|
3057
|
+
## 2 2013 11 1 35 2250 105 123
|
3058
|
+
## 3 2013 11 1 455 500 -5 641
|
3059
|
+
## 4 2013 11 1 539 545 -6 856
|
3060
|
+
## 5 2013 11 1 542 545 -3 831
|
3061
|
+
## 6 2013 11 1 549 600 -11 912
|
3062
|
+
## # … with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
|
3063
|
+
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
|
3064
|
+
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
|
3065
|
+
## # time_hour <dttm>
|
1532
3066
|
```
|
1533
3067
|
|
1534
3068
|
The same as above, but using the 'in' operator. In R, it is possible to define many operators
|
@@ -1538,31 +3072,23 @@ symbol, in this case ':in' and the second argument is the vector:
|
|
1538
3072
|
|
1539
3073
|
|
1540
3074
|
```ruby
|
1541
|
-
puts flights.filter(:month._ :in, R.c(11, 12)).head
|
3075
|
+
puts flights.filter(:month._ :in, R.c(11, 12)).head
|
1542
3076
|
```
|
1543
3077
|
|
1544
3078
|
```
|
1545
|
-
##
|
1546
|
-
##
|
1547
|
-
##
|
1548
|
-
##
|
1549
|
-
##
|
1550
|
-
##
|
1551
|
-
##
|
1552
|
-
##
|
1553
|
-
##
|
1554
|
-
##
|
1555
|
-
##
|
1556
|
-
##
|
1557
|
-
##
|
1558
|
-
## 6 -11 UA 303 N595UA JFK SFO 359 2586 6
|
1559
|
-
## minute time_hour
|
1560
|
-
## 1 59 2013-11-01 23:00:00
|
1561
|
-
## 2 50 2013-11-01 22:00:00
|
1562
|
-
## 3 0 2013-11-01 05:00:00
|
1563
|
-
## 4 45 2013-11-01 05:00:00
|
1564
|
-
## 5 45 2013-11-01 05:00:00
|
1565
|
-
## 6 0 2013-11-01 06:00:00
|
3079
|
+
## # A tibble: 6 x 19
|
3080
|
+
## year month day dep_time sched_dep_time dep_delay arr_time
|
3081
|
+
## <int> <int> <int> <int> <int> <dbl> <int>
|
3082
|
+
## 1 2013 11 1 5 2359 6 352
|
3083
|
+
## 2 2013 11 1 35 2250 105 123
|
3084
|
+
## 3 2013 11 1 455 500 -5 641
|
3085
|
+
## 4 2013 11 1 539 545 -6 856
|
3086
|
+
## 5 2013 11 1 542 545 -3 831
|
3087
|
+
## 6 2013 11 1 549 600 -11 912
|
3088
|
+
## # … with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
|
3089
|
+
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
|
3090
|
+
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
|
3091
|
+
## # time_hour <dttm>
|
1566
3092
|
```
|
1567
3093
|
|
1568
3094
|
## Filtering with NA (Not Available)
|
@@ -1575,14 +3101,16 @@ what is obtained from data frame.
|
|
1575
3101
|
|
1576
3102
|
```ruby
|
1577
3103
|
df = R.tibble(x: R.c(1, R::NA, 3))
|
1578
|
-
puts df
|
3104
|
+
puts df
|
1579
3105
|
```
|
1580
3106
|
|
1581
3107
|
```
|
1582
|
-
##
|
1583
|
-
##
|
1584
|
-
##
|
1585
|
-
##
|
3108
|
+
## # A tibble: 3 x 1
|
3109
|
+
## x
|
3110
|
+
## <int>
|
3111
|
+
## 1 1
|
3112
|
+
## 2
|
3113
|
+
## 3 3
|
1586
3114
|
```
|
1587
3115
|
|
1588
3116
|
Now filtering by :x > 1 shows all lines that satisfy this condition, where the row with R:NA does
|
@@ -1590,25 +3118,29 @@ not.
|
|
1590
3118
|
|
1591
3119
|
|
1592
3120
|
```ruby
|
1593
|
-
puts df.filter(:x > 1)
|
3121
|
+
puts df.filter(:x > 1)
|
1594
3122
|
```
|
1595
3123
|
|
1596
3124
|
```
|
1597
|
-
##
|
1598
|
-
##
|
3125
|
+
## # A tibble: 1 x 1
|
3126
|
+
## x
|
3127
|
+
## <int>
|
3128
|
+
## 1 3
|
1599
3129
|
```
|
1600
3130
|
|
1601
3131
|
To match an NA use method 'is__na'
|
1602
3132
|
|
1603
3133
|
|
1604
3134
|
```ruby
|
1605
|
-
puts df.filter((:x.is__na) | (:x > 1))
|
3135
|
+
puts df.filter((:x.is__na) | (:x > 1))
|
1606
3136
|
```
|
1607
3137
|
|
1608
3138
|
```
|
1609
|
-
##
|
1610
|
-
##
|
1611
|
-
##
|
3139
|
+
## # A tibble: 2 x 1
|
3140
|
+
## x
|
3141
|
+
## <int>
|
3142
|
+
## 1
|
3143
|
+
## 2 3
|
1612
3144
|
```
|
1613
3145
|
|
1614
3146
|
## Arrange Rows with arrange
|
@@ -1617,62 +3149,46 @@ Arrange reorders the rows of a data frame by the given arguments.
|
|
1617
3149
|
|
1618
3150
|
|
1619
3151
|
```ruby
|
1620
|
-
puts flights.arrange(:year, :month, :day).head
|
3152
|
+
puts flights.arrange(:year, :month, :day).head
|
1621
3153
|
```
|
1622
3154
|
|
1623
3155
|
```
|
1624
|
-
##
|
1625
|
-
##
|
1626
|
-
##
|
1627
|
-
##
|
1628
|
-
##
|
1629
|
-
##
|
1630
|
-
##
|
1631
|
-
##
|
1632
|
-
## 1
|
1633
|
-
##
|
1634
|
-
##
|
1635
|
-
##
|
1636
|
-
##
|
1637
|
-
## 6 12 UA 1696 N39463 EWR ORD 150 719 5
|
1638
|
-
## minute time_hour
|
1639
|
-
## 1 15 2013-01-01 05:00:00
|
1640
|
-
## 2 29 2013-01-01 05:00:00
|
1641
|
-
## 3 40 2013-01-01 05:00:00
|
1642
|
-
## 4 45 2013-01-01 05:00:00
|
1643
|
-
## 5 0 2013-01-01 06:00:00
|
1644
|
-
## 6 58 2013-01-01 05:00:00
|
3156
|
+
## # A tibble: 6 x 19
|
3157
|
+
## year month day dep_time sched_dep_time dep_delay arr_time
|
3158
|
+
## <int> <int> <int> <int> <int> <dbl> <int>
|
3159
|
+
## 1 2013 1 1 517 515 2 830
|
3160
|
+
## 2 2013 1 1 533 529 4 850
|
3161
|
+
## 3 2013 1 1 542 540 2 923
|
3162
|
+
## 4 2013 1 1 544 545 -1 1004
|
3163
|
+
## 5 2013 1 1 554 600 -6 812
|
3164
|
+
## 6 2013 1 1 554 558 -4 740
|
3165
|
+
## # … with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
|
3166
|
+
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
|
3167
|
+
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
|
3168
|
+
## # time_hour <dttm>
|
1645
3169
|
```
|
1646
3170
|
|
1647
3171
|
To arrange in descending order, use function 'desc'
|
1648
3172
|
|
1649
3173
|
|
1650
3174
|
```ruby
|
1651
|
-
puts flights.arrange(:dep_delay.desc).head
|
3175
|
+
puts flights.arrange(:dep_delay.desc).head
|
1652
3176
|
```
|
1653
3177
|
|
1654
3178
|
```
|
1655
|
-
##
|
1656
|
-
##
|
1657
|
-
##
|
1658
|
-
##
|
1659
|
-
##
|
1660
|
-
##
|
1661
|
-
##
|
1662
|
-
##
|
1663
|
-
##
|
1664
|
-
##
|
1665
|
-
##
|
1666
|
-
##
|
1667
|
-
##
|
1668
|
-
## 6 931 DL 2391 N959DL JFK TPA 139 1005 19
|
1669
|
-
## minute time_hour
|
1670
|
-
## 1 0 2013-01-09 09:00:00
|
1671
|
-
## 2 35 2013-06-15 19:00:00
|
1672
|
-
## 3 35 2013-01-10 16:00:00
|
1673
|
-
## 4 45 2013-09-20 18:00:00
|
1674
|
-
## 5 0 2013-07-22 16:00:00
|
1675
|
-
## 6 0 2013-04-10 19:00:00
|
3179
|
+
## # A tibble: 6 x 19
|
3180
|
+
## year month day dep_time sched_dep_time dep_delay arr_time
|
3181
|
+
## <int> <int> <int> <int> <int> <dbl> <int>
|
3182
|
+
## 1 2013 1 9 641 900 1301 1242
|
3183
|
+
## 2 2013 6 15 1432 1935 1137 1607
|
3184
|
+
## 3 2013 1 10 1121 1635 1126 1239
|
3185
|
+
## 4 2013 9 20 1139 1845 1014 1457
|
3186
|
+
## 5 2013 7 22 845 1600 1005 1044
|
3187
|
+
## 6 2013 4 10 1100 1900 960 1342
|
3188
|
+
## # … with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
|
3189
|
+
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
|
3190
|
+
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
|
3191
|
+
## # time_hour <dttm>
|
1676
3192
|
```
|
1677
3193
|
|
1678
3194
|
## Selecting columns
|
@@ -1681,45 +3197,51 @@ To select specific columns from a dataset we use function 'select':
|
|
1681
3197
|
|
1682
3198
|
|
1683
3199
|
```ruby
|
1684
|
-
puts flights.select(:year, :month, :day).head
|
3200
|
+
puts flights.select(:year, :month, :day).head
|
1685
3201
|
```
|
1686
3202
|
|
1687
3203
|
```
|
1688
|
-
##
|
1689
|
-
##
|
1690
|
-
##
|
1691
|
-
##
|
1692
|
-
##
|
1693
|
-
##
|
1694
|
-
##
|
3204
|
+
## # A tibble: 6 x 3
|
3205
|
+
## year month day
|
3206
|
+
## <int> <int> <int>
|
3207
|
+
## 1 2013 1 1
|
3208
|
+
## 2 2013 1 1
|
3209
|
+
## 3 2013 1 1
|
3210
|
+
## 4 2013 1 1
|
3211
|
+
## 5 2013 1 1
|
3212
|
+
## 6 2013 1 1
|
1695
3213
|
```
|
1696
3214
|
|
1697
3215
|
It is also possible to select column in a given range
|
1698
3216
|
|
1699
3217
|
|
1700
3218
|
```ruby
|
1701
|
-
puts flights.select(:year.up_to :day).head
|
3219
|
+
puts flights.select(:year.up_to :day).head
|
1702
3220
|
```
|
1703
3221
|
|
1704
3222
|
```
|
1705
|
-
##
|
1706
|
-
##
|
1707
|
-
##
|
1708
|
-
##
|
1709
|
-
##
|
1710
|
-
##
|
1711
|
-
##
|
3223
|
+
## # A tibble: 6 x 3
|
3224
|
+
## year month day
|
3225
|
+
## <int> <int> <int>
|
3226
|
+
## 1 2013 1 1
|
3227
|
+
## 2 2013 1 1
|
3228
|
+
## 3 2013 1 1
|
3229
|
+
## 4 2013 1 1
|
3230
|
+
## 5 2013 1 1
|
3231
|
+
## 6 2013 1 1
|
1712
3232
|
```
|
1713
3233
|
|
1714
3234
|
Select all columns that start with a given name sequence
|
1715
3235
|
|
1716
3236
|
|
1717
3237
|
```ruby
|
1718
|
-
puts flights.select(E.starts_with('arr')).head
|
3238
|
+
puts flights.select(E.starts_with('arr')).head
|
1719
3239
|
```
|
1720
3240
|
|
1721
3241
|
```
|
3242
|
+
## # A tibble: 6 x 2
|
1722
3243
|
## arr_time arr_delay
|
3244
|
+
## <int> <dbl>
|
1723
3245
|
## 1 830 11
|
1724
3246
|
## 2 850 20
|
1725
3247
|
## 3 923 33
|
@@ -1743,31 +3265,23 @@ A helper function that comes in handy when we just want to rearrange column orde
|
|
1743
3265
|
|
1744
3266
|
|
1745
3267
|
```ruby
|
1746
|
-
puts flights.select(:year, :month, :day, E.everything).head
|
3268
|
+
puts flights.select(:year, :month, :day, E.everything).head
|
1747
3269
|
```
|
1748
3270
|
|
1749
3271
|
```
|
1750
|
-
##
|
1751
|
-
##
|
1752
|
-
##
|
1753
|
-
##
|
1754
|
-
##
|
1755
|
-
##
|
1756
|
-
##
|
1757
|
-
##
|
1758
|
-
## 1
|
1759
|
-
##
|
1760
|
-
##
|
1761
|
-
##
|
1762
|
-
##
|
1763
|
-
## 6 12 UA 1696 N39463 EWR ORD 150 719 5
|
1764
|
-
## minute time_hour
|
1765
|
-
## 1 15 2013-01-01 05:00:00
|
1766
|
-
## 2 29 2013-01-01 05:00:00
|
1767
|
-
## 3 40 2013-01-01 05:00:00
|
1768
|
-
## 4 45 2013-01-01 05:00:00
|
1769
|
-
## 5 0 2013-01-01 06:00:00
|
1770
|
-
## 6 58 2013-01-01 05:00:00
|
3272
|
+
## # A tibble: 6 x 19
|
3273
|
+
## year month day dep_time sched_dep_time dep_delay arr_time
|
3274
|
+
## <int> <int> <int> <int> <int> <dbl> <int>
|
3275
|
+
## 1 2013 1 1 517 515 2 830
|
3276
|
+
## 2 2013 1 1 533 529 4 850
|
3277
|
+
## 3 2013 1 1 542 540 2 923
|
3278
|
+
## 4 2013 1 1 544 545 -1 1004
|
3279
|
+
## 5 2013 1 1 554 600 -6 812
|
3280
|
+
## 6 2013 1 1 554 558 -4 740
|
3281
|
+
## # … with 12 more variables: sched_arr_time <int>, arr_delay <dbl>,
|
3282
|
+
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
|
3283
|
+
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
|
3284
|
+
## # time_hour <dttm>
|
1771
3285
|
```
|
1772
3286
|
|
1773
3287
|
## Add variables to a dataframe with 'mutate'
|
@@ -1780,17 +3294,19 @@ flights_sm = flights.
|
|
1780
3294
|
:distance,
|
1781
3295
|
:air_time)
|
1782
3296
|
|
1783
|
-
puts flights_sm.head
|
3297
|
+
puts flights_sm.head
|
1784
3298
|
```
|
1785
3299
|
|
1786
3300
|
```
|
1787
|
-
##
|
1788
|
-
##
|
1789
|
-
##
|
1790
|
-
##
|
1791
|
-
##
|
1792
|
-
##
|
1793
|
-
##
|
3301
|
+
## # A tibble: 6 x 7
|
3302
|
+
## year month day dep_delay arr_delay distance air_time
|
3303
|
+
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl>
|
3304
|
+
## 1 2013 1 1 2 11 1400 227
|
3305
|
+
## 2 2013 1 1 4 20 1416 227
|
3306
|
+
## 3 2013 1 1 2 33 1089 160
|
3307
|
+
## 4 2013 1 1 -1 -18 1576 183
|
3308
|
+
## 5 2013 1 1 -6 -25 762 116
|
3309
|
+
## 6 2013 1 1 -4 12 719 150
|
1794
3310
|
```
|
1795
3311
|
|
1796
3312
|
|
@@ -1798,17 +3314,19 @@ puts flights_sm.head.as__data__frame
|
|
1798
3314
|
flights_sm = flights_sm.
|
1799
3315
|
mutate(gain: :dep_delay - :arr_delay,
|
1800
3316
|
speed: :distance / :air_time * 60)
|
1801
|
-
puts flights_sm.head
|
3317
|
+
puts flights_sm.head
|
1802
3318
|
```
|
1803
3319
|
|
1804
3320
|
```
|
1805
|
-
##
|
1806
|
-
##
|
1807
|
-
##
|
1808
|
-
##
|
1809
|
-
##
|
1810
|
-
##
|
1811
|
-
##
|
3321
|
+
## # A tibble: 6 x 9
|
3322
|
+
## year month day dep_delay arr_delay distance air_time gain speed
|
3323
|
+
## <int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
|
3324
|
+
## 1 2013 1 1 2 11 1400 227 -9 370.
|
3325
|
+
## 2 2013 1 1 4 20 1416 227 -16 374.
|
3326
|
+
## 3 2013 1 1 2 33 1089 160 -31 408.
|
3327
|
+
## 4 2013 1 1 -1 -18 1576 183 17 517.
|
3328
|
+
## 5 2013 1 1 -6 -25 762 116 19 394.
|
3329
|
+
## 6 2013 1 1 -4 12 719 150 -16 288.
|
1812
3330
|
```
|
1813
3331
|
|
1814
3332
|
## Summarising data
|
@@ -1818,12 +3336,14 @@ a single value is obtained from the data frame:
|
|
1818
3336
|
|
1819
3337
|
|
1820
3338
|
```ruby
|
1821
|
-
puts flights.summarise(delay: E.mean(:dep_delay, na__rm: true))
|
3339
|
+
puts flights.summarise(delay: E.mean(:dep_delay, na__rm: true))
|
1822
3340
|
```
|
1823
3341
|
|
1824
3342
|
```
|
1825
|
-
##
|
1826
|
-
##
|
3343
|
+
## # A tibble: 1 x 1
|
3344
|
+
## delay
|
3345
|
+
## <dbl>
|
3346
|
+
## 1 12.6
|
1827
3347
|
```
|
1828
3348
|
|
1829
3349
|
When a data frame is groupe with 'group_by' summaries apply to the given group:
|
@@ -1831,17 +3351,20 @@ When a data frame is groupe with 'group_by' summaries apply to the given group:
|
|
1831
3351
|
|
1832
3352
|
```ruby
|
1833
3353
|
by_day = flights.group_by(:year, :month, :day)
|
1834
|
-
puts by_day.summarise(delay: :dep_delay.mean(na__rm: true)).head
|
3354
|
+
puts by_day.summarise(delay: :dep_delay.mean(na__rm: true)).head
|
1835
3355
|
```
|
1836
3356
|
|
1837
3357
|
```
|
1838
|
-
##
|
1839
|
-
##
|
1840
|
-
##
|
1841
|
-
##
|
1842
|
-
##
|
1843
|
-
##
|
1844
|
-
##
|
3358
|
+
## # A tibble: 6 x 4
|
3359
|
+
## # Groups: year, month [1]
|
3360
|
+
## year month day delay
|
3361
|
+
## * <int> <int> <int> <dbl>
|
3362
|
+
## 1 2013 1 1 11.5
|
3363
|
+
## 2 2013 1 2 13.9
|
3364
|
+
## 3 2013 1 3 11.0
|
3365
|
+
## 4 2013 1 4 8.95
|
3366
|
+
## 5 2013 1 5 5.73
|
3367
|
+
## 6 2013 1 6 7.15
|
1845
3368
|
```
|
1846
3369
|
|
1847
3370
|
Next we put many operations together by pipping them one after the other:
|
@@ -1856,17 +3379,19 @@ delays = flights.
|
|
1856
3379
|
delay: :arr_delay.mean(na__rm: true)).
|
1857
3380
|
filter(:count > 20, :dest != "NHL")
|
1858
3381
|
|
1859
|
-
puts delays.
|
3382
|
+
puts delays.head
|
1860
3383
|
```
|
1861
3384
|
|
1862
3385
|
```
|
1863
|
-
##
|
1864
|
-
##
|
1865
|
-
##
|
1866
|
-
##
|
1867
|
-
##
|
1868
|
-
##
|
1869
|
-
##
|
3386
|
+
## # A tibble: 6 x 4
|
3387
|
+
## dest count dist delay
|
3388
|
+
## <chr> <int> <dbl> <dbl>
|
3389
|
+
## 1 ABQ 254 1826 4.38
|
3390
|
+
## 2 ACK 265 199 4.85
|
3391
|
+
## 3 ALB 439 143 14.4
|
3392
|
+
## 4 ATL 17215 757. 11.3
|
3393
|
+
## 5 AUS 2439 1514. 6.02
|
3394
|
+
## 6 AVL 275 584. 8.00
|
1870
3395
|
```
|
1871
3396
|
|
1872
3397
|
# Using Data Table
|
@@ -2088,7 +3613,7 @@ puts mtcars.ggplot(E.aes(x: :car_name, y: :mpg_z, label: :mpg_z)) +
|
|
2088
3613
|
```
|
2089
3614
|
|
2090
3615
|
|
2091
|
-
![](
|
3616
|
+
![](manual_files/figure-html/diverging_bar.png)<!-- -->
|
2092
3617
|
|
2093
3618
|
# Coding with Tidyverse
|
2094
3619
|
|
@@ -2266,11 +3791,11 @@ as.data.frame(df)
|
|
2266
3791
|
|
2267
3792
|
```
|
2268
3793
|
## g1 g2 a b
|
2269
|
-
## 1 1 1
|
2270
|
-
## 2 1 2
|
2271
|
-
## 3 2 1 5
|
2272
|
-
## 4 2 2
|
2273
|
-
## 5 2 1 1
|
3794
|
+
## 1 1 1 3 3
|
3795
|
+
## 2 1 2 2 1
|
3796
|
+
## 3 2 1 5 2
|
3797
|
+
## 4 2 2 4 5
|
3798
|
+
## 5 2 1 1 4
|
2274
3799
|
```
|
2275
3800
|
|
2276
3801
|
```r
|
@@ -2282,9 +3807,9 @@ as.data.frame(d2)
|
|
2282
3807
|
```
|
2283
3808
|
|
2284
3809
|
```
|
2285
|
-
## g1
|
2286
|
-
## 1 1
|
2287
|
-
## 2 2 3
|
3810
|
+
## g1 a
|
3811
|
+
## 1 1 2.500000
|
3812
|
+
## 2 2 3.333333
|
2288
3813
|
```
|
2289
3814
|
|
2290
3815
|
```r
|
@@ -2296,9 +3821,9 @@ as.data.frame(d2)
|
|
2296
3821
|
```
|
2297
3822
|
|
2298
3823
|
```
|
2299
|
-
## g2
|
2300
|
-
## 1 1
|
2301
|
-
## 2 2 3
|
3824
|
+
## g2 a
|
3825
|
+
## 1 1 3
|
3826
|
+
## 2 2 3
|
2302
3827
|
```
|
2303
3828
|
|
2304
3829
|
As shown by Hardley, one might expect this function to do the trick:
|
@@ -2330,11 +3855,11 @@ puts ~:df
|
|
2330
3855
|
|
2331
3856
|
```
|
2332
3857
|
## g1 g2 a b
|
2333
|
-
## 1 1 1
|
2334
|
-
## 2 1 2
|
2335
|
-
## 3 2 1 5
|
2336
|
-
## 4 2 2
|
2337
|
-
## 5 2 1 1
|
3858
|
+
## 1 1 1 3 3
|
3859
|
+
## 2 1 2 2 1
|
3860
|
+
## 3 2 1 5 2
|
3861
|
+
## 4 2 2 4 5
|
3862
|
+
## 5 2 1 1 4
|
2338
3863
|
```
|
2339
3864
|
|
2340
3865
|
We then create the 'my_summarize' method and call it passing the R data frame and
|
@@ -2347,26 +3872,30 @@ def my_summarize(df, group_var)
|
|
2347
3872
|
summarize(a: :a.mean)
|
2348
3873
|
end
|
2349
3874
|
|
2350
|
-
puts my_summarize(:df, :g1)
|
3875
|
+
puts my_summarize(:df, :g1)
|
2351
3876
|
```
|
2352
3877
|
|
2353
3878
|
```
|
2354
|
-
##
|
2355
|
-
##
|
2356
|
-
##
|
3879
|
+
## # A tibble: 2 x 2
|
3880
|
+
## g1 a
|
3881
|
+
## <dbl> <dbl>
|
3882
|
+
## 1 1 2.5
|
3883
|
+
## 2 2 3.33
|
2357
3884
|
```
|
2358
3885
|
|
2359
3886
|
It works!!! Well, let's make sure this was not just some coincidence
|
2360
3887
|
|
2361
3888
|
|
2362
3889
|
```ruby
|
2363
|
-
puts my_summarize(:df, :g2)
|
3890
|
+
puts my_summarize(:df, :g2)
|
2364
3891
|
```
|
2365
3892
|
|
2366
3893
|
```
|
2367
|
-
##
|
2368
|
-
##
|
2369
|
-
##
|
3894
|
+
## # A tibble: 2 x 2
|
3895
|
+
## g2 a
|
3896
|
+
## <dbl> <dbl>
|
3897
|
+
## 1 1 3
|
3898
|
+
## 2 2 3
|
2370
3899
|
```
|
2371
3900
|
|
2372
3901
|
Great, everything is fine! No magic, no new functions, no complexities, just normal, standard Ruby
|
@@ -2474,18 +4003,18 @@ puts my_mutate((~:df), :b)
|
|
2474
4003
|
|
2475
4004
|
```
|
2476
4005
|
## g1 g2 a b mean_a sum_a
|
2477
|
-
## 1 1 1
|
2478
|
-
## 2 1 2
|
2479
|
-
## 3 2 1 5
|
2480
|
-
## 4 2 2
|
2481
|
-
## 5 2 1 1
|
4006
|
+
## 1 1 1 3 3 3 15
|
4007
|
+
## 2 1 2 2 1 3 15
|
4008
|
+
## 3 2 1 5 2 3 15
|
4009
|
+
## 4 2 2 4 5 3 15
|
4010
|
+
## 5 2 1 1 4 3 15
|
2482
4011
|
##
|
2483
4012
|
## g1 g2 a b mean_b sum_b
|
2484
|
-
## 1 1 1
|
2485
|
-
## 2 1 2
|
2486
|
-
## 3 2 1 5
|
2487
|
-
## 4 2 2
|
2488
|
-
## 5 2 1 1
|
4013
|
+
## 1 1 1 3 3 3 15
|
4014
|
+
## 2 1 2 2 1 3 15
|
4015
|
+
## 3 2 1 5 2 3 15
|
4016
|
+
## 4 2 2 4 5 3 15
|
4017
|
+
## 5 2 1 1 4 3 15
|
2489
4018
|
```
|
2490
4019
|
It really seems that "Non Standard Evaluation" is actually quite standard in Galaaz! But, you
|
2491
4020
|
might have noticed a small change in the way the arguments to the mutate method were called.
|
@@ -2510,15 +4039,18 @@ def my_summarise3(df, *group_vars)
|
|
2510
4039
|
summarise(a: E.mean(:a))
|
2511
4040
|
end
|
2512
4041
|
|
2513
|
-
puts my_summarise3((~:df), :g1, :g2)
|
4042
|
+
puts my_summarise3((~:df), :g1, :g2)
|
2514
4043
|
```
|
2515
4044
|
|
2516
4045
|
```
|
2517
|
-
##
|
2518
|
-
##
|
2519
|
-
##
|
2520
|
-
##
|
2521
|
-
##
|
4046
|
+
## # A tibble: 4 x 3
|
4047
|
+
## # Groups: g1 [?]
|
4048
|
+
## g1 g2 a
|
4049
|
+
## <dbl> <dbl> <dbl>
|
4050
|
+
## 1 1 1 3
|
4051
|
+
## 2 1 2 2
|
4052
|
+
## 3 2 1 3
|
4053
|
+
## 4 2 2 4
|
2522
4054
|
```
|
2523
4055
|
|
2524
4056
|
## Why does R require NSE and Galaaz does not?
|
@@ -2570,38 +4102,21 @@ features of characters in the Starwars movies:
|
|
2570
4102
|
|
2571
4103
|
|
2572
4104
|
```ruby
|
2573
|
-
puts (~:starwars).head
|
2574
|
-
```
|
2575
|
-
|
2576
|
-
```
|
2577
|
-
##
|
2578
|
-
##
|
2579
|
-
##
|
2580
|
-
##
|
2581
|
-
##
|
2582
|
-
##
|
2583
|
-
##
|
2584
|
-
##
|
2585
|
-
##
|
2586
|
-
##
|
2587
|
-
##
|
2588
|
-
## 4 male Tatooine Human
|
2589
|
-
## 5 female Alderaan Human
|
2590
|
-
## 6 male Tatooine Human
|
2591
|
-
## films
|
2592
|
-
## 1 Revenge of the Sith, Return of the Jedi, The Empire Strikes Back, A New Hope, The Force Awakens
|
2593
|
-
## 2 Attack of the Clones, The Phantom Menace, Revenge of the Sith, Return of the Jedi, The Empire Strikes Back, A New Hope
|
2594
|
-
## 3 Attack of the Clones, The Phantom Menace, Revenge of the Sith, Return of the Jedi, The Empire Strikes Back, A New Hope, The Force Awakens
|
2595
|
-
## 4 Revenge of the Sith, Return of the Jedi, The Empire Strikes Back, A New Hope
|
2596
|
-
## 5 Revenge of the Sith, Return of the Jedi, The Empire Strikes Back, A New Hope, The Force Awakens
|
2597
|
-
## 6 Attack of the Clones, Revenge of the Sith, A New Hope
|
2598
|
-
## vehicles starships
|
2599
|
-
## 1 Snowspeeder, Imperial Speeder Bike X-wing, Imperial shuttle
|
2600
|
-
## 2
|
2601
|
-
## 3
|
2602
|
-
## 4 TIE Advanced x1
|
2603
|
-
## 5 Imperial Speeder Bike
|
2604
|
-
## 6
|
4105
|
+
puts (~:starwars).head
|
4106
|
+
```
|
4107
|
+
|
4108
|
+
```
|
4109
|
+
## # A tibble: 6 x 13
|
4110
|
+
## name height mass hair_color skin_color eye_color birth_year gender
|
4111
|
+
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr>
|
4112
|
+
## 1 Luke… 172 77 blond fair blue 19 male
|
4113
|
+
## 2 C-3PO 167 75 <NA> gold yellow 112 <NA>
|
4114
|
+
## 3 R2-D2 96 32 <NA> white, bl… red 33 <NA>
|
4115
|
+
## 4 Dart… 202 136 none white yellow 41.9 male
|
4116
|
+
## 5 Leia… 150 49 brown light brown 19 female
|
4117
|
+
## 6 Owen… 178 120 brown, gr… light blue 52 male
|
4118
|
+
## # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
|
4119
|
+
## # vehicles <list>, starships <list>
|
2605
4120
|
```
|
2606
4121
|
The grouped_mean function bellow will receive a grouping variable and calculate summaries for
|
2607
4122
|
the value\_variables given:
|
@@ -2653,26 +4168,28 @@ def grouped_mean(data, grouping_variables, value_variables)
|
|
2653
4168
|
rename_at(value_variables, E.funs(E.paste0("mean_", value_variables)))
|
2654
4169
|
end
|
2655
4170
|
|
2656
|
-
puts grouped_mean((~:starwars), "eye_color", E.c("mass", "birth_year"))
|
4171
|
+
puts grouped_mean((~:starwars), "eye_color", E.c("mass", "birth_year"))
|
2657
4172
|
```
|
2658
4173
|
|
2659
4174
|
```
|
2660
|
-
##
|
2661
|
-
##
|
2662
|
-
##
|
2663
|
-
## 3
|
2664
|
-
##
|
2665
|
-
##
|
2666
|
-
##
|
2667
|
-
##
|
2668
|
-
##
|
2669
|
-
##
|
2670
|
-
##
|
2671
|
-
##
|
2672
|
-
##
|
2673
|
-
##
|
2674
|
-
##
|
2675
|
-
##
|
4175
|
+
## # A tibble: 15 x 4
|
4176
|
+
## eye_color mean_mass mean_birth_year count
|
4177
|
+
## <chr> <dbl> <dbl> <dbl>
|
4178
|
+
## 1 black 76.3 33 10
|
4179
|
+
## 2 blue 86.5 67.1 19
|
4180
|
+
## 3 blue-gray 77 57 1
|
4181
|
+
## 4 brown 66.1 109. 21
|
4182
|
+
## 5 dark NaN NaN 1
|
4183
|
+
## 6 gold NaN NaN 1
|
4184
|
+
## 7 green, yellow 159 NaN 1
|
4185
|
+
## 8 hazel 66 34.5 3
|
4186
|
+
## 9 orange 282. 231 8
|
4187
|
+
## 10 pink NaN NaN 1
|
4188
|
+
## 11 red 81.4 33.7 5
|
4189
|
+
## 12 red, blue NaN NaN 1
|
4190
|
+
## 13 unknown 31.5 NaN 3
|
4191
|
+
## 14 white 48 NaN 1
|
4192
|
+
## 15 yellow 81.1 76.4 11
|
2676
4193
|
```
|
2677
4194
|
|
2678
4195
|
|
@@ -2681,7 +4198,6 @@ puts grouped_mean((~:starwars), "eye_color", E.c("mass", "birth_year")).as__data
|
|
2681
4198
|
|
2682
4199
|
# Contributing
|
2683
4200
|
|
2684
|
-
|
2685
4201
|
* Fork it
|
2686
4202
|
* Create your feature branch (git checkout -b my-new-feature)
|
2687
4203
|
* Write Tests!
|
@@ -2689,3 +4205,4 @@ puts grouped_mean((~:starwars), "eye_color", E.c("mass", "birth_year")).as__data
|
|
2689
4205
|
* Push to the branch (git push origin my-new-feature)
|
2690
4206
|
* Create new Pull Request
|
2691
4207
|
|
4208
|
+
# References
|