euler-manager 0.0.6 → 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (303) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +13 -0
  3. data/data/images/sod_13.gif +4 -0
  4. data/data/problems/100.yml +1 -1
  5. data/data/problems/101.yml +16 -16
  6. data/data/problems/102.yml +2 -3
  7. data/data/problems/103.yml +16 -16
  8. data/data/problems/105.yml +2 -2
  9. data/data/problems/106.yml +2 -2
  10. data/data/problems/107.yml +15 -15
  11. data/data/problems/108.yml +13 -16
  12. data/data/problems/109.yml +16 -17
  13. data/data/problems/11.yml +22 -23
  14. data/data/problems/110.yml +9 -10
  15. data/data/problems/114.yml +30 -41
  16. data/data/problems/116.yml +19 -25
  17. data/data/problems/117.yml +24 -33
  18. data/data/problems/120.yml +3 -3
  19. data/data/problems/122.yml +18 -20
  20. data/data/problems/123.yml +2 -2
  21. data/data/problems/124.yml +18 -23
  22. data/data/problems/126.yml +10 -11
  23. data/data/problems/127.yml +7 -7
  24. data/data/problems/128.yml +1 -1
  25. data/data/problems/130.yml +6 -7
  26. data/data/problems/131.yml +1 -1
  27. data/data/problems/132.yml +1 -1
  28. data/data/problems/134.yml +2 -2
  29. data/data/problems/135.yml +2 -2
  30. data/data/problems/136.yml +2 -2
  31. data/data/problems/137.yml +4 -4
  32. data/data/problems/138.yml +4 -4
  33. data/data/problems/139.yml +1 -1
  34. data/data/problems/14.yml +12 -13
  35. data/data/problems/140.yml +3 -3
  36. data/data/problems/142.yml +1 -1
  37. data/data/problems/143.yml +2 -2
  38. data/data/problems/144.yml +3 -3
  39. data/data/problems/147.yml +1 -1
  40. data/data/problems/149.yml +11 -13
  41. data/data/problems/15.yml +3 -3
  42. data/data/problems/150.yml +8 -8
  43. data/data/problems/151.yml +1 -1
  44. data/data/problems/152.yml +1 -1
  45. data/data/problems/153.yml +24 -26
  46. data/data/problems/154.yml +10 -9
  47. data/data/problems/155.yml +3 -3
  48. data/data/problems/156.yml +7 -8
  49. data/data/problems/157.yml +3 -4
  50. data/data/problems/158.yml +4 -5
  51. data/data/problems/159.yml +3 -3
  52. data/data/problems/161.yml +5 -4
  53. data/data/problems/163.yml +10 -10
  54. data/data/problems/165.yml +1 -1
  55. data/data/problems/166.yml +7 -7
  56. data/data/problems/167.yml +3 -4
  57. data/data/problems/168.yml +5 -5
  58. data/data/problems/170.yml +2 -2
  59. data/data/problems/171.yml +3 -3
  60. data/data/problems/173.yml +1 -1
  61. data/data/problems/174.yml +3 -3
  62. data/data/problems/175.yml +4 -4
  63. data/data/problems/177.yml +1 -1
  64. data/data/problems/179.yml +1 -1
  65. data/data/problems/180.yml +8 -9
  66. data/data/problems/182.yml +22 -24
  67. data/data/problems/183.yml +14 -15
  68. data/data/problems/184.yml +2 -2
  69. data/data/problems/186.yml +10 -11
  70. data/data/problems/187.yml +6 -8
  71. data/data/problems/189.yml +10 -9
  72. data/data/problems/190.yml +1 -1
  73. data/data/problems/192.yml +11 -12
  74. data/data/problems/194.yml +8 -8
  75. data/data/problems/195.yml +2 -2
  76. data/data/problems/197.yml +5 -6
  77. data/data/problems/198.yml +11 -12
  78. data/data/problems/199.yml +7 -7
  79. data/data/problems/20.yml +8 -10
  80. data/data/problems/202.yml +1 -1
  81. data/data/problems/207.yml +4 -4
  82. data/data/problems/208.yml +4 -5
  83. data/data/problems/21.yml +5 -6
  84. data/data/problems/210.yml +4 -5
  85. data/data/problems/211.yml +1 -1
  86. data/data/problems/212.yml +22 -26
  87. data/data/problems/213.yml +5 -6
  88. data/data/problems/214.yml +8 -9
  89. data/data/problems/215.yml +4 -4
  90. data/data/problems/216.yml +5 -5
  91. data/data/problems/217.yml +8 -10
  92. data/data/problems/218.yml +1 -1
  93. data/data/problems/22.yml +1 -1
  94. data/data/problems/220.yml +15 -15
  95. data/data/problems/221.yml +4 -5
  96. data/data/problems/223.yml +5 -6
  97. data/data/problems/224.yml +5 -6
  98. data/data/problems/226.yml +8 -8
  99. data/data/problems/228.yml +4 -5
  100. data/data/problems/229.yml +16 -16
  101. data/data/problems/230.yml +4 -4
  102. data/data/problems/231.yml +4 -5
  103. data/data/problems/233.yml +1 -1
  104. data/data/problems/234.yml +9 -10
  105. data/data/problems/236.yml +4 -4
  106. data/data/problems/237.yml +3 -3
  107. data/data/problems/238.yml +3 -4
  108. data/data/problems/241.yml +4 -4
  109. data/data/problems/242.yml +2 -2
  110. data/data/problems/243.yml +12 -12
  111. data/data/problems/244.yml +10 -11
  112. data/data/problems/245.yml +14 -15
  113. data/data/problems/246.yml +10 -9
  114. data/data/problems/247.yml +12 -13
  115. data/data/problems/251.yml +3 -3
  116. data/data/problems/252.yml +6 -7
  117. data/data/problems/254.yml +2 -2
  118. data/data/problems/255.yml +35 -36
  119. data/data/problems/256.yml +16 -20
  120. data/data/problems/257.yml +9 -9
  121. data/data/problems/258.yml +5 -6
  122. data/data/problems/26.yml +1 -1
  123. data/data/problems/260.yml +6 -8
  124. data/data/problems/261.yml +6 -7
  125. data/data/problems/262.yml +1 -1
  126. data/data/problems/264.yml +10 -11
  127. data/data/problems/265.yml +1 -1
  128. data/data/problems/27.yml +10 -11
  129. data/data/problems/270.yml +3 -3
  130. data/data/problems/271.yml +5 -6
  131. data/data/problems/272.yml +6 -7
  132. data/data/problems/273.yml +3 -3
  133. data/data/problems/274.yml +15 -15
  134. data/data/problems/275.yml +3 -3
  135. data/data/problems/276.yml +3 -3
  136. data/data/problems/277.yml +3 -3
  137. data/data/problems/278.yml +15 -17
  138. data/data/problems/281.yml +4 -4
  139. data/data/problems/282.yml +2 -2
  140. data/data/problems/284.yml +7 -8
  141. data/data/problems/287.yml +18 -17
  142. data/data/problems/288.yml +1 -1
  143. data/data/problems/289.yml +1 -1
  144. data/data/problems/29.yml +12 -13
  145. data/data/problems/290.yml +1 -1
  146. data/data/problems/291.yml +3 -3
  147. data/data/problems/292.yml +1 -1
  148. data/data/problems/293.yml +7 -7
  149. data/data/problems/295.yml +8 -8
  150. data/data/problems/296.yml +4 -5
  151. data/data/problems/297.yml +4 -5
  152. data/data/problems/299.yml +11 -12
  153. data/data/problems/300.yml +10 -9
  154. data/data/problems/301.yml +2 -2
  155. data/data/problems/303.yml +3 -3
  156. data/data/problems/304.yml +6 -7
  157. data/data/problems/305.yml +3 -2
  158. data/data/problems/306.yml +8 -11
  159. data/data/problems/307.yml +2 -3
  160. data/data/problems/309.yml +8 -8
  161. data/data/problems/31.yml +1 -1
  162. data/data/problems/310.yml +6 -7
  163. data/data/problems/311.yml +11 -11
  164. data/data/problems/312.yml +5 -5
  165. data/data/problems/313.yml +4 -4
  166. data/data/problems/314.yml +4 -5
  167. data/data/problems/315.yml +26 -27
  168. data/data/problems/316.yml +2 -4
  169. data/data/problems/318.yml +27 -34
  170. data/data/problems/319.yml +11 -12
  171. data/data/problems/32.yml +1 -1
  172. data/data/problems/320.yml +1 -1
  173. data/data/problems/321.yml +3 -3
  174. data/data/problems/322.yml +4 -4
  175. data/data/problems/323.yml +7 -8
  176. data/data/problems/324.yml +8 -9
  177. data/data/problems/325.yml +1 -1
  178. data/data/problems/326.yml +2 -2
  179. data/data/problems/327.yml +27 -29
  180. data/data/problems/328.yml +2 -2
  181. data/data/problems/330.yml +13 -14
  182. data/data/problems/331.yml +12 -12
  183. data/data/problems/332.yml +10 -9
  184. data/data/problems/333.yml +15 -16
  185. data/data/problems/334.yml +14 -14
  186. data/data/problems/335.yml +2 -2
  187. data/data/problems/336.yml +5 -4
  188. data/data/problems/337.yml +7 -7
  189. data/data/problems/338.yml +21 -24
  190. data/data/problems/340.yml +6 -7
  191. data/data/problems/341.yml +3 -5
  192. data/data/problems/342.yml +6 -7
  193. data/data/problems/343.yml +8 -12
  194. data/data/problems/344.yml +1 -1
  195. data/data/problems/347.yml +8 -8
  196. data/data/problems/350.yml +5 -5
  197. data/data/problems/351.yml +1 -1
  198. data/data/problems/352.yml +25 -26
  199. data/data/problems/353.yml +1 -1
  200. data/data/problems/354.yml +6 -6
  201. data/data/problems/356.yml +2 -3
  202. data/data/problems/358.yml +13 -14
  203. data/data/problems/359.yml +1 -1
  204. data/data/problems/361.yml +2 -1
  205. data/data/problems/362.yml +11 -13
  206. data/data/problems/363.yml +6 -6
  207. data/data/problems/364.yml +3 -3
  208. data/data/problems/365.yml +2 -2
  209. data/data/problems/366.yml +4 -5
  210. data/data/problems/369.yml +1 -1
  211. data/data/problems/370.yml +3 -3
  212. data/data/problems/372.yml +6 -8
  213. data/data/problems/374.yml +5 -7
  214. data/data/problems/375.yml +5 -6
  215. data/data/problems/377.yml +2 -2
  216. data/data/problems/378.yml +2 -2
  217. data/data/problems/379.yml +7 -8
  218. data/data/problems/38.yml +9 -9
  219. data/data/problems/380.yml +12 -15
  220. data/data/problems/381.yml +8 -11
  221. data/data/problems/382.yml +6 -6
  222. data/data/problems/383.yml +4 -4
  223. data/data/problems/384.yml +7 -8
  224. data/data/problems/385.yml +8 -8
  225. data/data/problems/386.yml +2 -2
  226. data/data/problems/388.yml +5 -6
  227. data/data/problems/39.yml +1 -1
  228. data/data/problems/390.yml +4 -6
  229. data/data/problems/391.yml +11 -12
  230. data/data/problems/392.yml +1 -1
  231. data/data/problems/393.yml +2 -2
  232. data/data/problems/394.yml +6 -7
  233. data/data/problems/395.yml +5 -5
  234. data/data/problems/396.yml +15 -17
  235. data/data/problems/397.yml +5 -8
  236. data/data/problems/4.yml +1 -1
  237. data/data/problems/40.yml +1 -1
  238. data/data/problems/400.yml +5 -6
  239. data/data/problems/401.yml +2 -2
  240. data/data/problems/402.yml +7 -8
  241. data/data/problems/403.yml +9 -10
  242. data/data/problems/404.yml +5 -6
  243. data/data/problems/405.yml +7 -7
  244. data/data/problems/406.yml +8 -10
  245. data/data/problems/407.yml +9 -9
  246. data/data/problems/410.yml +5 -6
  247. data/data/problems/411.yml +11 -12
  248. data/data/problems/412.yml +9 -9
  249. data/data/problems/414.yml +13 -15
  250. data/data/problems/415.yml +2 -2
  251. data/data/problems/417.yml +4 -5
  252. data/data/problems/418.yml +7 -8
  253. data/data/problems/419.yml +8 -8
  254. data/data/problems/420.yml +5 -5
  255. data/data/problems/421.yml +11 -12
  256. data/data/problems/422.yml +9 -9
  257. data/data/problems/423.yml +5 -7
  258. data/data/problems/424.yml +8 -9
  259. data/data/problems/425.yml +2 -3
  260. data/data/problems/426.yml +3 -3
  261. data/data/problems/427.yml +8 -8
  262. data/data/problems/428.yml +16 -19
  263. data/data/problems/430.yml +4 -5
  264. data/data/problems/44.yml +3 -3
  265. data/data/problems/45.yml +2 -2
  266. data/data/problems/46.yml +8 -8
  267. data/data/problems/47.yml +6 -10
  268. data/data/problems/53.yml +8 -9
  269. data/data/problems/56.yml +1 -1
  270. data/data/problems/57.yml +5 -5
  271. data/data/problems/58.yml +1 -1
  272. data/data/problems/6.yml +1 -1
  273. data/data/problems/61.yml +4 -4
  274. data/data/problems/64.yml +39 -46
  275. data/data/problems/65.yml +13 -14
  276. data/data/problems/66.yml +10 -10
  277. data/data/problems/68.yml +4 -5
  278. data/data/problems/69.yml +2 -2
  279. data/data/problems/70.yml +3 -4
  280. data/data/problems/71.yml +3 -3
  281. data/data/problems/72.yml +3 -3
  282. data/data/problems/73.yml +3 -3
  283. data/data/problems/74.yml +15 -22
  284. data/data/problems/75.yml +1 -1
  285. data/data/problems/8.yml +14 -14
  286. data/data/problems/81.yml +7 -7
  287. data/data/problems/82.yml +4 -4
  288. data/data/problems/83.yml +4 -4
  289. data/data/problems/85.yml +1 -1
  290. data/data/problems/86.yml +8 -8
  291. data/data/problems/88.yml +22 -27
  292. data/data/problems/9.yml +6 -6
  293. data/data/problems/90.yml +13 -13
  294. data/data/problems/91.yml +8 -8
  295. data/data/problems/92.yml +7 -9
  296. data/data/problems/93.yml +9 -10
  297. data/data/problems/95.yml +1 -1
  298. data/data/problems/96.yml +17 -17
  299. data/data/problems/97.yml +2 -2
  300. data/data/problems/99.yml +2 -2
  301. data/lib/euler/problem.rb +6 -1
  302. data/lib/euler/version.rb +1 -1
  303. metadata +2 -2
@@ -3,24 +3,25 @@
3
3
  :name: Quadtree encoding (a simple compression algorithm)
4
4
  :url: http://projecteuler.net/problem=287
5
5
  :content: "The quadtree encoding allows us to describe a 2<sup><var>N</var></sup>
6
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2<sup><var>N</var></sup>
7
- black and white image as a sequence of bits (0 and 1). Those sequences are to be
8
- read from left to right like this:\n\n- the first bit deals with the complete 2<sup><var>N</var></sup>
9
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2<sup><var>N</var></sup>
10
- region;\n- \"0\" denotes a split:\r \nthe current 2<sup><var>n</var></sup> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2<sup><var>n</var></sup>
11
- region is divided into 4 sub-regions of dimension 2<sup><var>n</var>-1</sup> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2<sup><var>n</var>-1</sup>,
12
- \ \n\rthe next bits contains the description of the top left, top right, bottom
13
- left and bottom right sub-regions - in that order;\n- \"10\" indicates that the
14
- current region contains only black pixels;\n- \"11\" indicates that the current
15
- region contains only white pixels.\n\nConsider the following 4 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)4
16
- image (colored marks denote places where a split can occur):\n\n ![](/home/will/src/euler-manager/config/../data/images/p_287_quadtree.gif)\n\nThis
6
+ ![×]({{ images_dir }}/symbol_times.gif)2<sup><var>N</var></sup> black and white
7
+ image as a sequence of bits (0 and 1). Those sequences are to be read from left
8
+ to right like this:\n\n- the first bit deals with the complete 2<sup><var>N</var></sup>
9
+ ![×]({{ images_dir }}/symbol_times.gif)2<sup><var>N</var></sup> region;\n- \"0\"
10
+ denotes a split:\r \nthe current 2<sup><var>n</var></sup> ![×]({{ images_dir }}/symbol_times.gif)2<sup><var>n</var></sup>
11
+ region is divided into 4 sub-regions of dimension 2<sup><var>n</var>-1</sup> ![×]({{
12
+ images_dir }}/symbol_times.gif)2<sup><var>n</var>-1</sup>, \n\rthe next bits contains
13
+ the description of the top left, top right, bottom left and bottom right sub-regions
14
+ - in that order;\n- \"10\" indicates that the current region contains only black
15
+ pixels;\n- \"11\" indicates that the current region contains only white pixels.\n\nConsider
16
+ the following 4 ![×]({{ images_dir }}/symbol_times.gif)4 image (colored marks denote
17
+ places where a split can occur):\n\n ![]({{ images_dir }}/p_287_quadtree.gif)\n\nThis
17
18
  image can be described by several sequences, for example :<bp></bp>\r\" **0****
18
19
  0 **10101010** 0 **1011111011** 0**10101010\", of length 30, or \n\r\" **0** 10
19
20
  **0** 101111101110\", of length 16, which is the minimal sequence for this image.\n\nFor
20
21
  a positive integer <var>N</var>, define <var>D<sub>N</sub></var> as the 2<sup><var>N</var></sup>
21
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2<sup><var>N</var></sup>
22
- image with the following coloring scheme:\n\n- the pixel with coordinates <var>x</var> = 0,
23
- <var>y</var> = 0 corresponds to the bottom left pixel,\n- if (<var>x</var> - 2<sup><var>N</var>-1</sup>)<sup>2</sup> + (<var>y</var> - 2<sup><var>N</var>-1</sup>)<sup>2</sup> 
24
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 2<sup>2<var>N</var>-2</sup>
25
- then the pixel is black,\n- otherwise the pixel is white.\n\nWhat is the length
26
- of the minimal sequence describing <var>D</var><sub>24</sub> ?\n\n"
22
+ ![×]({{ images_dir }}/symbol_times.gif)2<sup><var>N</var></sup> image with the following
23
+ coloring scheme:\n\n- the pixel with coordinates <var>x</var> = 0, <var>y</var> = 0
24
+ corresponds to the bottom left pixel,\n- if (<var>x</var> - 2<sup><var>N</var>-1</sup>)<sup>2</sup> + (<var>y</var> - 2<sup><var>N</var>-1</sup>)<sup>2</sup> 
25
+ ![≤]({{ images_dir }}/symbol_le.gif) 2<sup>2<var>N</var>-2</sup> then the pixel
26
+ is black,\n- otherwise the pixel is white.\n\nWhat is the length of the minimal
27
+ sequence describing <var>D</var><sub>24</sub> ?\n\n"
@@ -3,7 +3,7 @@
3
3
  :name: An enormous factorial
4
4
  :url: http://projecteuler.net/problem=288
5
5
  :content: "For any prime <var>p</var> the number N(<var>p</var>,<var>q</var>) is defined
6
- by\rN(<var>p</var>,<var>q</var>) = ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)<sub><var>n</var>=0
6
+ by\rN(<var>p</var>,<var>q</var>) = ![∑]({{ images_dir }}/symbol_sum.gif)<sub><var>n</var>=0
7
7
  to <var>q</var></sub> T<sub><var>n</var></sub>\\*<var>p</var><sup><var>n</var></sup>
8
8
  \ \n with T<sub><var>n</var></sub> generated by the following random number generator:\n\nS<sub>0</sub>
9
9
  = 290797 \n\rS<sub><var>n</var>+1</sub> = S<sub><var>n</var></sub><sup>2</sup>
@@ -12,7 +12,7 @@
12
12
  are possible on E(<var>m</var>,<var>n</var>), but we are only interested in those
13
13
  which are not self-crossing: \rA non-crossing path just touches itself at lattice
14
14
  points, but it never crosses itself.\n\nThe image below shows E(3,3) and an example
15
- of an Eulerian non-crossing path.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_289_euler.gif)\n\nLet
15
+ of an Eulerian non-crossing path.\n\n ![]({{ images_dir }}/p_289_euler.gif)\n\nLet
16
16
  L(<var>m</var>,<var>n</var>) be the number of Eulerian non-crossing paths on E(<var>m</var>,<var>n</var>).
17
17
  \ \n\rFor example, L(1,2) = 2, L(2,2) = 37 and L(3,3) = 104290.\n\nFind L(6,10)
18
18
  mod 10<sup>10</sup>.\n\n"
data/data/problems/29.yml CHANGED
@@ -2,16 +2,15 @@
2
2
  :id: 29
3
3
  :name: Distinct powers
4
4
  :url: http://projecteuler.net/problem=29
5
- :content: "Consider all integer combinations of _a_<sup><i>b</i></sup> for 2 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
6
- _a_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 5 and
7
- 2 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) _b_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
8
- 5:\n\n> 2<sup>2</sup>=4, 2<sup>3</sup>=8, 2<sup>4</sup>=16, 2<sup>5</sup>=32 \n>
9
- 3<sup>2</sup>=9, 3<sup>3</sup>=27, 3<sup>4</sup>=81, 3<sup>5</sup>=243 \n> 4<sup>2</sup>=16,
10
- 4<sup>3</sup>=64, 4<sup>4</sup>=256, 4<sup>5</sup>=1024 \n> 5<sup>2</sup>=25, 5<sup>3</sup>=125,
11
- 5<sup>4</sup>=625, 5<sup>5</sup>=3125\n\nIf they are then placed in numerical order,
12
- with any repeats removed, we get the following sequence of 15 distinct terms:\n\n4,
13
- 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125\n\nHow many distinct
14
- terms are in the sequence generated by _a_<sup><i>b</i></sup> for 2 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
15
- _a_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 100 and
16
- 2 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) _b_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
17
- 100?\n\n"
5
+ :content: "Consider all integer combinations of _a_<sup><i>b</i></sup> for 2 ![≤]({{
6
+ images_dir }}/symbol_le.gif) _a_ ![≤]({{ images_dir }}/symbol_le.gif) 5 and 2 ![≤]({{
7
+ images_dir }}/symbol_le.gif) _b_ ![≤]({{ images_dir }}/symbol_le.gif) 5:\n\n> 2<sup>2</sup>=4,
8
+ 2<sup>3</sup>=8, 2<sup>4</sup>=16, 2<sup>5</sup>=32 \n> 3<sup>2</sup>=9, 3<sup>3</sup>=27,
9
+ 3<sup>4</sup>=81, 3<sup>5</sup>=243 \n> 4<sup>2</sup>=16, 4<sup>3</sup>=64, 4<sup>4</sup>=256,
10
+ 4<sup>5</sup>=1024 \n> 5<sup>2</sup>=25, 5<sup>3</sup>=125, 5<sup>4</sup>=625,
11
+ 5<sup>5</sup>=3125\n\nIf they are then placed in numerical order, with any repeats
12
+ removed, we get the following sequence of 15 distinct terms:\n\n4, 8, 9, 16, 25,
13
+ 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125\n\nHow many distinct terms are in
14
+ the sequence generated by _a_<sup><i>b</i></sup> for 2 ![≤]({{ images_dir }}/symbol_le.gif)
15
+ _a_ ![≤]({{ images_dir }}/symbol_le.gif) 100 and 2 ![≤]({{ images_dir }}/symbol_le.gif)
16
+ _b_ ![≤]({{ images_dir }}/symbol_le.gif) 100?\n\n"
@@ -3,5 +3,5 @@
3
3
  :name: Digital Signature
4
4
  :url: http://projecteuler.net/problem=290
5
5
  :content: |+
6
- How many integers 0 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>n</var> &lt 10<sup>18</sup> have the property that the sum of the digits of <var>n</var> equals the sum of digits of 137<var>n</var>?
6
+ How many integers 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var> &lt 10<sup>18</sup> have the property that the sum of the digits of <var>n</var> equals the sum of digits of 137<var>n</var>?
7
7
 
@@ -2,6 +2,6 @@
2
2
  :id: 291
3
3
  :name: Panaitopol Primes
4
4
  :url: http://projecteuler.net/problem=291
5
- :content: "A prime number <var>p</var> is called a Panaitopol prime if ![](/home/will/src/euler-manager/config/../data/images/p_291_formula.gif)
6
- for some positive integers \n <var>x</var> and <var>y</var>.\n\nFind how many Panaitopol
7
- primes are less than 5 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)10<sup>15</sup>.\n\n"
5
+ :content: "A prime number <var>p</var> is called a Panaitopol prime if ![]({{ images_dir
6
+ }}/p_291_formula.gif) for some positive integers \n <var>x</var> and <var>y</var>.\n\nFind
7
+ how many Panaitopol primes are less than 5 ![×]({{ images_dir }}/symbol_times.gif)10<sup>15</sup>.\n\n"
@@ -6,7 +6,7 @@
6
6
  the following properties:\n\n- there are at least three vertices,\n- no three vertices
7
7
  are aligned,\n- each vertex has **integer coordinates** ,\n- each edge has **integer
8
8
  length** .\n\nFor a given integer <var>n</var>, define P(<var>n</var>) as the number
9
- of distinct pythagorean polygons for which the perimeter is ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>n</var>.
9
+ of distinct pythagorean polygons for which the perimeter is ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var>.
10
10
  \ \n\rPythagorean polygons should be considered distinct as long as none is a translation
11
11
  of another.\n\nYou are given that P(4) = 1, P(30) = 3655 and P(60) = 891045. \n\rFind
12
12
  P(120).\n\n"
@@ -5,10 +5,10 @@
5
5
  :content: "An even positive integer N will be called admissible, if it is a power
6
6
  of 2 or its distinct prime factors are consecutive primes. \n\rThe first twelve
7
7
  admissible numbers are 2,4,6,8,12,16,18,24,30,32,36,48.\n\nIf N is admissible, the
8
- smallest integer M ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
9
- 1 such that N+M is prime, will be called the pseudo-Fortunate number for N.\n\nFor
10
- example, N=630 is admissible since it is even and its distinct prime factors are
11
- the consecutive primes 2,3,5 and 7. \n \rThe next prime number after 631 is 641;
12
- hence, the pseudo-Fortunate number for 630 is M=11. \n\rIt can also be seen that
13
- the pseudo-Fortunate number for 16 is 3.\n\nFind the sum of all distinct pseudo-Fortunate
14
- numbers for admissible numbers N less than 10<sup>9</sup>.\n\n"
8
+ smallest integer M ![>]({{ images_dir }}/symbol_gt.gif) 1 such that N+M is prime,
9
+ will be called the pseudo-Fortunate number for N.\n\nFor example, N=630 is admissible
10
+ since it is even and its distinct prime factors are the consecutive primes 2,3,5
11
+ and 7. \n \rThe next prime number after 631 is 641; hence, the pseudo-Fortunate
12
+ number for 630 is M=11. \n\rIt can also be seen that the pseudo-Fortunate number
13
+ for 16 is 3.\n\nFind the sum of all distinct pseudo-Fortunate numbers for admissible
14
+ numbers N less than 10<sup>9</sup>.\n\n"
@@ -9,13 +9,13 @@
9
9
  <var>x</var><sup>2</sup>+<var>y</var><sup>2</sup>=25 \n\rC<sub>1</sub>: (<var>x</var>+4)<sup>2</sup>+(<var>y</var>-4)<sup>2</sup>=1
10
10
  \ \n\rC<sub>2</sub>: (<var>x</var>-12)<sup>2</sup>+(<var>y</var>-4)<sup>2</sup>=65\n\nThe
11
11
  circles C<sub>0</sub>, C<sub>1</sub> and C<sub>2</sub> are drawn in the picture
12
- below.\n\n ![](/home/will/src/euler-manager/config/../data/images/p295_lenticular.gif)\n\nC<sub>0</sub>
13
- and C<sub>1</sub> form a lenticular hole, as well as C<sub>0</sub> and C<sub>2</sub>.\n\nWe
14
- call an ordered pair of positive real numbers (r<sub>1</sub>, r<sub>2</sub>) a _lenticular
12
+ below.\n\n ![]({{ images_dir }}/p295_lenticular.gif)\n\nC<sub>0</sub> and C<sub>1</sub>
13
+ form a lenticular hole, as well as C<sub>0</sub> and C<sub>2</sub>.\n\nWe call an
14
+ ordered pair of positive real numbers (r<sub>1</sub>, r<sub>2</sub>) a _lenticular
15
15
  pair_ if there exist two circles with radii r<sub>1</sub> and r<sub>2</sub> that
16
- form a lenticular hole.\rWe can verify that (1, 5) and (5, ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)65)
16
+ form a lenticular hole.\rWe can verify that (1, 5) and (5, ![√]({{ images_dir }}/symbol_radic.gif)65)
17
17
  are the lenticular pairs of the example above.\n\nLet L(N) be the number of **distinct**
18
- lenticular pairs (r<sub>1</sub>, r<sub>2</sub>) for which 0 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
19
- r<sub>1</sub> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
20
- r<sub>2</sub> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
21
- N. \n\rWe can verify that L(10) = 30 and L(100) = 3442.\n\nFind L(100 000).\n\n"
18
+ lenticular pairs (r<sub>1</sub>, r<sub>2</sub>) for which 0 ![<]({{ images_dir }}/symbol_lt.gif)
19
+ r<sub>1</sub> ![≤]({{ images_dir }}/symbol_le.gif) r<sub>2</sub> ![≤]({{ images_dir
20
+ }}/symbol_le.gif) N. \n\rWe can verify that L(10) = 30 and L(100) = 3442.\n\nFind
21
+ L(100 000).\n\n"
@@ -2,12 +2,11 @@
2
2
  :id: 296
3
3
  :name: Angular Bisector and Tangent
4
4
  :url: http://projecteuler.net/problem=296
5
- :content: "Given is an integer sided triangle <var>ABC</var> with <var>BC</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
6
- <var>AC</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
5
+ :content: "Given is an integer sided triangle <var>ABC</var> with <var>BC</var> ![≤]({{
6
+ images_dir }}/symbol_le.gif) <var>AC</var> ![≤]({{ images_dir }}/symbol_le.gif)
7
7
  <var>AB</var>. \n<var>k</var> is the angular bisector of angle <var>ACB</var>.
8
8
  \ \n <var>m</var> is the tangent at <var>C</var> to the circumscribed circle of
9
9
  <var>ABC</var>. \n <var>n</var> is a line parallel to <var>m</var> through <var>B</var>.
10
10
  \ \n\rThe intersection of <var>n</var> and <var>k</var> is called <var>E</var>.\n\n
11
- ![](/home/will/src/euler-manager/config/../data/images/p296_bisector.gif)\n\nHow
12
- many triangles <var>ABC</var> with a perimeter not exceeding 100 000 exist such
13
- that <var>BE</var> has integral length?\n\n"
11
+ ![]({{ images_dir }}/p296_bisector.gif)\n\nHow many triangles <var>ABC</var> with
12
+ a perimeter not exceeding 100 000 exist such that <var>BE</var> has integral length?\n\n"
@@ -9,8 +9,7 @@
9
9
  a sum is called the **Zeckendorf representation** of the number.\n\nFor any integer
10
10
  <var>n</var>>0, let <var>z</var>(<var>n</var>) be the number of terms in the Zeckendorf
11
11
  representation of <var>n</var>. \n\rThus, <var>z</var>(5) = 1, <var>z</var>(14) = 2,
12
- <var>z</var>(100) = 3 etc. \n\rAlso, for 0 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)<var>n</var>
13
- ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)10<sup>6</sup>,
14
- ∑ <var>z</var>(<var>n</var>) = 7894453.\n\nFind ∑ <var>z</var>(<var>n</var>) for
15
- 0 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)<var>n</var>
16
- ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)10<sup>17</sup>.\n\n"
12
+ <var>z</var>(100) = 3 etc. \n\rAlso, for 0 ![<]({{ images_dir }}/symbol_lt.gif)<var>n</var>
13
+ ![<]({{ images_dir }}/symbol_lt.gif)10<sup>6</sup>, ∑ <var>z</var>(<var>n</var>) = 7894453.\n\nFind
14
+ ∑ <var>z</var>(<var>n</var>) for 0 ![<]({{ images_dir }}/symbol_lt.gif)<var>n</var>
15
+ ![<]({{ images_dir }}/symbol_lt.gif)10<sup>17</sup>.\n\n"
@@ -3,23 +3,22 @@
3
3
  :name: Three similar triangles
4
4
  :url: http://projecteuler.net/problem=299
5
5
  :content: "Four points with integer coordinates are selected: \nA(<var>a</var>, 0),
6
- B(<var>b</var>, 0), C(0, <var>c</var>) and D(0, <var>d</var>), \rwith 0  ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) <var>a</var> 
7
- ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) <var>b</var>
8
- and 0  ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) <var>c</var> 
9
- ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) <var>d</var>.
6
+ B(<var>b</var>, 0), C(0, <var>c</var>) and D(0, <var>d</var>), \rwith 0  ![<]({{
7
+ images_dir }}/symbol_lt.gif) <var>a</var>  ![<]({{ images_dir }}/symbol_lt.gif) <var>b</var>
8
+ and 0  ![<]({{ images_dir }}/symbol_lt.gif) <var>c</var>  ![<]({{ images_dir }}/symbol_lt.gif) <var>d</var>.
10
9
  \ \n\rPoint P, also with integer coordinates, is chosen on the line AC so that the
11
10
  three triangles ABP, CDP and BDP are all <dfn title=\"Have equal angles\">similar</dfn>.\n\n
12
- ![](/home/will/src/euler-manager/config/../data/images/p_299_ThreeSimTri.gif)\n\nIt
13
- is easy to prove that the three triangles can be similar, only if <var>a</var>=<var>c</var>.\n\nSo,
14
- given that <var>a</var>=<var>c</var>, we are looking for triplets (<var>a</var>,<var>b</var>,<var>d</var>)
15
- such that at least one point P (with integer coordinates) exists on AC, making the
16
- three triangles ABP, CDP and BDP all similar.\n\nFor example, if (<var>a</var>,<var>b</var>,<var>d</var>)=(2,3,4),
11
+ ![]({{ images_dir }}/p_299_ThreeSimTri.gif)\n\nIt is easy to prove that the three
12
+ triangles can be similar, only if <var>a</var>=<var>c</var>.\n\nSo, given that <var>a</var>=<var>c</var>,
13
+ we are looking for triplets (<var>a</var>,<var>b</var>,<var>d</var>) such that at
14
+ least one point P (with integer coordinates) exists on AC, making the three triangles
15
+ ABP, CDP and BDP all similar.\n\nFor example, if (<var>a</var>,<var>b</var>,<var>d</var>)=(2,3,4),
17
16
  it can be easily verified that point P(1,1) satisfies the above condition. \rNote
18
17
  that the triplets (2,3,4) and (2,4,3) are considered as distinct, although point
19
- P(1,1) is common for both.\n\nIf <var>b</var>+<var>d</var>  ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 100,
18
+ P(1,1) is common for both.\n\nIf <var>b</var>+<var>d</var>  ![<]({{ images_dir }}/symbol_lt.gif) 100,
20
19
  there are 92 distinct triplets (<var>a</var>,<var>b</var>,<var>d</var>) such that
21
- point P exists. \n\rIf <var>b</var>+<var>d</var>  ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 100
20
+ point P exists. \n\rIf <var>b</var>+<var>d</var>  ![<]({{ images_dir }}/symbol_lt.gif) 100
22
21
  000, there are 320471 distinct triplets (<var>a</var>,<var>b</var>,<var>d</var>)
23
- such that point P exists.\n\nIf <var>b</var>+<var>d</var>  ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 100
22
+ such that point P exists.\n\nIf <var>b</var>+<var>d</var>  ![<]({{ images_dir }}/symbol_lt.gif) 100
24
23
  000 000, how many distinct triplets (<var>a</var>,<var>b</var>,<var>d</var>) are
25
24
  there such that point P exists?\n\n"
@@ -12,12 +12,13 @@
12
12
  in the inner part, with the P-elements on the outside. \n\rNatural proteins are
13
13
  folded in three dimensions of course, but we will only consider protein folding
14
14
  in <u>two dimensions</u>.\n\nThe figure below shows two possible ways that our example
15
- protein could be folded (H-H contact points are shown with red dots).\n\n ![](/home/will/src/euler-manager/config/../data/images/p_300_protein.gif)\n\nThe
16
- folding on the left has only six H-H contact points, thus it would never occur naturally.
17
- \ \n\rOn the other hand, the folding on the right has nine H-H contact points, which
18
- is optimal for this string.\n\nAssuming that H and P elements are equally likely
19
- to occur in any position along the string, the average number of H-H contact points
20
- in an optimal folding of a random protein string of length 8 turns out to be 850 / 2<sup>8</sup>=3.3203125.\n\nWhat
21
- is the average number of H-H contact points in an optimal folding of a random protein
22
- string of length 15? \n\rGive your answer using as many decimal places as necessary
23
- for an exact result.\n\n"
15
+ protein could be folded (H-H contact points are shown with red dots).\n\n ![]({{
16
+ images_dir }}/p_300_protein.gif)\n\nThe folding on the left has only six H-H contact
17
+ points, thus it would never occur naturally. \n\rOn the other hand, the folding
18
+ on the right has nine H-H contact points, which is optimal for this string.\n\nAssuming
19
+ that H and P elements are equally likely to occur in any position along the string,
20
+ the average number of H-H contact points in an optimal folding of a random protein
21
+ string of length 8 turns out to be 850 / 2<sup>8</sup>=3.3203125.\n\nWhat is the
22
+ average number of H-H contact points in an optimal folding of a random protein string
23
+ of length 15? \n\rGive your answer using as many decimal places as necessary for
24
+ an exact result.\n\n"
@@ -19,5 +19,5 @@
19
19
  stones remain; so the current player loses. To illustrate: \n\r- current player
20
20
  moves to (1,2,1) \n\r- opponent moves to (1,0,1) \n\r- current player moves to
21
21
  (0,0,1) \n\r- opponent moves to (0,0,0), and so wins.\n\nFor how many positive
22
- integers <var>n</var>  ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 2<sup>30</sup>
23
- does <var>X</var>(<var>n</var>,2<var>n</var>,3<var>n</var>) = 0 ?\n\n"
22
+ integers <var>n</var>  ![≤]({{ images_dir }}/symbol_le.gif) 2<sup>30</sup> does
23
+ <var>X</var>(<var>n</var>,2<var>n</var>,3<var>n</var>) = 0 ?\n\n"
@@ -3,11 +3,11 @@
3
3
  :name: Multiples with small digits
4
4
  :url: http://projecteuler.net/problem=303
5
5
  :content: |+
6
- For a positive integer <var>n</var>, define <var>f</var>(<var>n</var>) as the least positive multiple of <var>n</var> that, written in base 10, uses only digits ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 2.
6
+ For a positive integer <var>n</var>, define <var>f</var>(<var>n</var>) as the least positive multiple of <var>n</var> that, written in base 10, uses only digits ![≤]({{ images_dir }}/symbol_le.gif) 2.
7
7
 
8
8
  Thus <var>f</var>(2)=2, <var>f</var>(3)=12, <var>f</var>(7)=21, <var>f</var>(42)=210, <var>f</var>(89)=1121222.
9
9
 
10
- Also, ![](/home/will/src/euler-manager/config/../data/images/p303_formula100.gif).
10
+ Also, ![]({{ images_dir }}/p303_formula100.gif).
11
11
 
12
- Find ![](/home/will/src/euler-manager/config/../data/images/p303_formula10000.gif).
12
+ Find ![]({{ images_dir }}/p303_formula10000.gif).
13
13
 
@@ -3,12 +3,11 @@
3
3
  :name: Primonacci
4
4
  :url: http://projecteuler.net/problem=304
5
5
  :content: "For any positive integer <var>n</var> the function next\\_prime(<var>n</var>)
6
- returns the smallest prime p \n such that p ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)<var>n</var>.\n\nThe
6
+ returns the smallest prime p \n such that p ![>]({{ images_dir }}/symbol_gt.gif)<var>n</var>.\n\nThe
7
7
  sequence a(<var>n</var>) is defined by: \n\ra(1)=next\\_prime(10<sup>14</sup>)
8
- and a(<var>n</var>)=next\\_prime(a(<var>n</var>-1)) for n ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)1.\n\nThe
8
+ and a(<var>n</var>)=next\\_prime(a(<var>n</var>-1)) for n ![>]({{ images_dir }}/symbol_gt.gif)1.\n\nThe
9
9
  fibonacci sequence f(<var>n</var>) is defined by:\rf(0)=0, f(1)=1 and f(<var>n</var>)=f(<var>n</var>-1)+f(<var>n</var>-2)
10
- for <var>n</var> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)1.\n\nThe
11
- sequence b(<var>n</var>) is defined as f(a(<var>n</var>)).\n\nFind ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)b(<var>n</var>)
12
- for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)<var>n</var>
13
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)100 000. \rGive
14
- your answer mod 1234567891011.\n\n"
10
+ for <var>n</var> ![>]({{ images_dir }}/symbol_gt.gif)1.\n\nThe sequence b(<var>n</var>)
11
+ is defined as f(a(<var>n</var>)).\n\nFind ![∑]({{ images_dir }}/symbol_sum.gif)b(<var>n</var>)
12
+ for 1 ![≤]({{ images_dir }}/symbol_le.gif)<var>n</var> ![≤]({{ images_dir }}/symbol_le.gif)100
13
+ 000. \rGive your answer mod 1234567891011.\n\n"
@@ -6,5 +6,6 @@
6
6
  positive integers (starting from 1) written down in base 10. \n \rThus, S = 1234567891011121314151617181920212223242...\n\nIt's
7
7
  easy to see that any number will show up an infinite number of times in S.\n\nLet's
8
8
  call f(n) the starting position of the n<sup>th</sup> occurrence of n in S. \n
9
- \rFor example, f(1)=1, f(5)=81, f(12)=271 and f(7780)=111111365.\n\nFind ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)f(3<sup>k</sup>)
10
- for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)k ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)13.\n\n"
9
+ \rFor example, f(1)=1, f(5)=81, f(12)=271 and f(7780)=111111365.\n\nFind ![∑]({{
10
+ images_dir }}/symbol_sum.gif)f(3<sup>k</sup>) for 1 ![≤]({{ images_dir }}/symbol_le.gif)k
11
+ ![≤]({{ images_dir }}/symbol_le.gif)13.\n\n"
@@ -12,14 +12,11 @@
12
12
  loses.\n- If <var>n</var> = 4, there are three valid moves for the first player;
13
13
  she can win the game by painting the two middle squares.\n- If <var>n</var> = 5,
14
14
  there are four valid moves for the first player (shown below in red); but no matter
15
- what she does, the second player (blue) wins.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_306_pstrip.gif)\n\nSo,
16
- for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>n</var>
17
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 5, there
18
- are 3 values of <var>n</var> for which the first player can force a win. \n\rSimilarly,
19
- for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>n</var>
20
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 50, there
21
- are 40 values of <var>n</var> for which the first player can force a win.\n\nFor
22
- 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>n</var>
23
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 1 000 000,
24
- how many values of <var>n</var> are there for which the first player can force a
25
- win?\n\n"
15
+ what she does, the second player (blue) wins.\n\n ![]({{ images_dir }}/p_306_pstrip.gif)\n\nSo,
16
+ for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif)
17
+ 5, there are 3 values of <var>n</var> for which the first player can force a win.
18
+ \ \n\rSimilarly, for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var> ![≤]({{
19
+ images_dir }}/symbol_le.gif) 50, there are 40 values of <var>n</var> for which the
20
+ first player can force a win.\n\nFor 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var>
21
+ ![≤]({{ images_dir }}/symbol_le.gif) 1 000 000, how many values of <var>n</var>
22
+ are there for which the first player can force a win?\n\n"
@@ -6,6 +6,5 @@
6
6
  chips produced by a factory (any number of defects may be found on a chip and each
7
7
  defect is independent of the other defects).\n\nLet p(<var>k,n</var>) represent
8
8
  the probability that there is a chip with at least 3 defects. \n\rFor instance
9
- p(3,7) ![≈](/home/will/src/euler-manager/config/../data/images/symbol_asymp.gif)
10
- 0.0204081633.\n\nFind p(20 000, 1 000 000) and give your answer rounded to 10 decimal
11
- places in the form 0.abcdefghij\n\n"
9
+ p(3,7) ![≈]({{ images_dir }}/symbol_asymp.gif) 0.0204081633.\n\nFind p(20 000, 1
10
+ 000 000) and give your answer rounded to 10 decimal places in the form 0.abcdefghij\n\n"
@@ -6,11 +6,11 @@
6
6
  and <var>y</var> of two ladders resting on the opposite walls of a narrow, level
7
7
  street. We are also given the height <var>h</var> above the street where the two
8
8
  ladders cross and we are asked to find the width of the street (<var>w</var>).\n\n
9
- ![](/home/will/src/euler-manager/config/../data/images/p_309_ladders.gif)\n\nHere,
10
- we are only concerned with instances where all four variables are positive integers.
11
- \ \n\rFor example, if <var>x</var> = 70, <var>y</var> = 119 and <var>h</var> = 30,
12
- we can calculate that <var>w</var> = 56.\n\nIn fact, for integer values <var>x</var>,
13
- <var>y</var>, <var>h</var> and 0 x y x,<var>y</var>,<var>h</var>) producing integer
14
- solutions for <var>w</var>: \n\r(70, 119, 30), (74, 182, 21), (87, 105, 35), (100,
15
- 116, 35) and (119, 175, 40).\n\nFor integer values <var>x</var>, <var>y</var>, <var>h</var>
16
- and 0 x y x,<var>y</var>,<var>h</var>) produce integer solutions for <var>w</var>?\n\n"
9
+ ![]({{ images_dir }}/p_309_ladders.gif)\n\nHere, we are only concerned with instances
10
+ where all four variables are positive integers. \n\rFor example, if <var>x</var>
11
+ = 70, <var>y</var> = 119 and <var>h</var> = 30, we can calculate that <var>w</var>
12
+ = 56.\n\nIn fact, for integer values <var>x</var>, <var>y</var>, <var>h</var> and
13
+ 0 x y x,<var>y</var>,<var>h</var>) producing integer solutions for <var>w</var>:
14
+ \ \n\r(70, 119, 30), (74, 182, 21), (87, 105, 35), (100, 116, 35) and (119, 175,
15
+ 40).\n\nFor integer values <var>x</var>, <var>y</var>, <var>h</var> and 0 x y x,<var>y</var>,<var>h</var>)
16
+ produce integer solutions for <var>w</var>?\n\n"
data/data/problems/31.yml CHANGED
@@ -9,7 +9,7 @@
9
9
 
10
10
  It is possible to make £2 in the following way:
11
11
 
12
- > 1 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)£1 + 1 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)50p + 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)20p + 1 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)5p + 1 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2p + 3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)1p
12
+ > 1 ![×]({{ images_dir }}/symbol_times.gif)£1 + 1 ![×]({{ images_dir }}/symbol_times.gif)50p + 2 ![×]({{ images_dir }}/symbol_times.gif)20p + 1 ![×]({{ images_dir }}/symbol_times.gif)5p + 1 ![×]({{ images_dir }}/symbol_times.gif)2p + 3 ![×]({{ images_dir }}/symbol_times.gif)1p
13
13
 
14
14
  How many different ways can £2 be made using any number of coins?
15
15
 
@@ -5,10 +5,9 @@
5
5
  :content: "Alice and Bob play the game Nim Square. \n\rNim Square is just like ordinary
6
6
  three-heap normal play Nim, but the players may only remove a square number of stones
7
7
  from a heap. \n\rThe number of stones in the three heaps is represented by the
8
- ordered triple (a,b,c). \n\rIf 0 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)a
9
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)b ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)c
10
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)29 then the
11
- number of losing positions for the next player is 1160.\n\nFind the number of losing
12
- positions for the next player if 0 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)a
13
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)b ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)c
14
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)100 000.\n\n"
8
+ ordered triple (a,b,c). \n\rIf 0 ![≤]({{ images_dir }}/symbol_le.gif)a ![≤]({{
9
+ images_dir }}/symbol_le.gif)b ![≤]({{ images_dir }}/symbol_le.gif)c ![≤]({{ images_dir
10
+ }}/symbol_le.gif)29 then the number of losing positions for the next player is 1160.\n\nFind
11
+ the number of losing positions for the next player if 0 ![≤]({{ images_dir }}/symbol_le.gif)a
12
+ ![≤]({{ images_dir }}/symbol_le.gif)b ![≤]({{ images_dir }}/symbol_le.gif)c ![≤]({{
13
+ images_dir }}/symbol_le.gif)100 000.\n\n"
@@ -2,14 +2,14 @@
2
2
  :id: 311
3
3
  :name: Biclinic Integral Quadrilaterals
4
4
  :url: http://projecteuler.net/problem=311
5
- :content: "ABCD is a convex, integer sided quadrilateral with 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
6
- AB ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) BC ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
7
- CD ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) AD. \n\rBD
8
- has integer length. O is the midpoint of BD. AO has integer length. \n\rWe'll call
9
- ABCD a _biclinic integral quadrilateral_ if AO = CO ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
10
- BO = DO.\n\nFor example, the following quadrilateral is a biclinic integral quadrilateral:
11
- \ \n\rAB = 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_311_biclinic.gif)\n\nLet
12
- B(<var>N</var>) be the number of distinct biclinic integral quadrilaterals ABCD
13
- that satisfy AB<sup>2</sup>+BC<sup>2</sup>+CD<sup>2</sup>+AD<sup>2</sup> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
14
- <var>N</var>. \n\rWe can verify that B(10 000) = 49 and B(1 000 000) = 38239.\n\nFind
15
- B(10 000 000 000).\n\n"
5
+ :content: "ABCD is a convex, integer sided quadrilateral with 1 ![≤]({{ images_dir
6
+ }}/symbol_le.gif) AB ![<]({{ images_dir }}/symbol_lt.gif) BC ![<]({{ images_dir
7
+ }}/symbol_lt.gif) CD ![<]({{ images_dir }}/symbol_lt.gif) AD. \n\rBD has integer
8
+ length. O is the midpoint of BD. AO has integer length. \n\rWe'll call ABCD a _biclinic
9
+ integral quadrilateral_ if AO = CO ![≤]({{ images_dir }}/symbol_le.gif) BO = DO.\n\nFor
10
+ example, the following quadrilateral is a biclinic integral quadrilateral: \n\rAB
11
+ = 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23.\n\n ![]({{ images_dir
12
+ }}/p_311_biclinic.gif)\n\nLet B(<var>N</var>) be the number of distinct biclinic
13
+ integral quadrilaterals ABCD that satisfy AB<sup>2</sup>+BC<sup>2</sup>+CD<sup>2</sup>+AD<sup>2</sup>
14
+ ![≤]({{ images_dir }}/symbol_le.gif) <var>N</var>. \n\rWe can verify that B(10
15
+ 000) = 49 and B(1 000 000) = 38239.\n\nFind B(10 000 000 000).\n\n"
@@ -5,10 +5,10 @@
5
5
  :content: "- A **Sierpiński graph** of order-1 (<var>S</var><sub>1</sub>) is an equilateral
6
6
  triangle. \n\r- <var>S</var><sub><var>n</var>+1</sub> is obtained from <var>S</var><sub><var>n</var></sub>
7
7
  by positioning three copies of <var>S</var><sub><var>n</var></sub> so that every
8
- pair of copies has one common corner.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_312_sierpinskyAt.gif)\n\nLet
8
+ pair of copies has one common corner.\n\n ![]({{ images_dir }}/p_312_sierpinskyAt.gif)\n\nLet
9
9
  C(<var>n</var>) be the number of cycles that pass exactly once through all the vertices
10
10
  of <var>S</var><sub><var>n</var></sub>. \n\rFor example, C(3) = 8 because eight
11
- such cycles can be drawn on <var>S</var><sub>3</sub>, as shown below:\n\n ![](/home/will/src/euler-manager/config/../data/images/p_312_sierpinsky8t.gif)\n\nIt
12
- can also be verified that : \n\rC(1) = C(2) = 1 \n\rC(5) = 71328803586048 \n\rC(10
13
- 000) mod 10<sup>8</sup> = 37652224 \n\rC(10 000) mod 13<sup>8</sup> = 617720485\n\nFind
14
- C(C(C(10 000))) mod 13<sup>8</sup>.\n\n"
11
+ such cycles can be drawn on <var>S</var><sub>3</sub>, as shown below:\n\n ![]({{
12
+ images_dir }}/p_312_sierpinsky8t.gif)\n\nIt can also be verified that : \n\rC(1)
13
+ = C(2) = 1 \n\rC(5) = 71328803586048 \n\rC(10 000) mod 10<sup>8</sup> = 37652224
14
+ \ \n\rC(10 000) mod 13<sup>8</sup> = 617720485\n\nFind C(C(C(10 000))) mod 13<sup>8</sup>.\n\n"
@@ -5,13 +5,13 @@
5
5
  :content: |+
6
6
  In a sliding game a counter may slide horizontally or vertically into an empty space. The objective of the game is to move the red counter from the top left corner of a grid to the bottom right corner; the space always starts in the bottom right corner. For example, the following sequence of pictures show how the game can be completed in five moves on a 2 by 2 grid.
7
7
 
8
- ![](/home/will/src/euler-manager/config/../data/images/p_313_sliding_game_1.gif)
8
+ ![]({{ images_dir }}/p_313_sliding_game_1.gif)
9
9
 
10
10
  Let S(m,n) represent the minimum number of moves to complete the game on an m by n grid. For example, it can be verified that S(5,4) = 25.
11
11
 
12
- ![](/home/will/src/euler-manager/config/../data/images/p_313_sliding_game_2.gif)
12
+ ![]({{ images_dir }}/p_313_sliding_game_2.gif)
13
13
 
14
- There are exactly 5482 grids for which S(m,n) = p<sup>2</sup>, where p ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 100 is prime.
14
+ There are exactly 5482 grids for which S(m,n) = p<sup>2</sup>, where p ![<]({{ images_dir }}/symbol_lt.gif) 100 is prime.
15
15
 
16
- How many grids does S(m,n) = p<sup>2</sup>, where p ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 10<sup>6</sup> is prime?
16
+ How many grids does S(m,n) = p<sup>2</sup>, where p ![<]({{ images_dir }}/symbol_lt.gif) 10<sup>6</sup> is prime?
17
17
 
@@ -18,10 +18,9 @@
18
18
  inside the square area touching the four sides the area will be equal to π\\*250<sup>2</sup>
19
19
  m<sup>2</sup> and the perimeter will be π\\*500 m, so the enclosed-area/wall-length
20
20
  ratio will also be 125.\n\nHowever, if you cut off from the square four triangles
21
- with sides 75 m, 75 m and 75 ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)2
22
- m the total area becomes 238750 m<sup>2</sup> and the perimeter becomes 1400+300
23
- ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)2 m. So
24
- this gives an enclosed-area/wall-length ratio of 130.87, which is significantly
25
- better.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_314_landgrab.gif)\n\nFind
21
+ with sides 75 m, 75 m and 75 ![√]({{ images_dir }}/symbol_radic.gif)2 m the total
22
+ area becomes 238750 m<sup>2</sup> and the perimeter becomes 1400+300 ![√]({{ images_dir
23
+ }}/symbol_radic.gif)2 m. So this gives an enclosed-area/wall-length ratio of 130.87,
24
+ which is significantly better.\n\n ![]({{ images_dir }}/p_314_landgrab.gif)\n\nFind
26
25
  the maximum enclosed-area/wall-length ratio. \n\rGive your answer rounded to 8
27
26
  places behind the decimal point in the form abc.defghijk.\n\n"