euler-manager 0.0.6 → 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +13 -0
- data/data/images/sod_13.gif +4 -0
- data/data/problems/100.yml +1 -1
- data/data/problems/101.yml +16 -16
- data/data/problems/102.yml +2 -3
- data/data/problems/103.yml +16 -16
- data/data/problems/105.yml +2 -2
- data/data/problems/106.yml +2 -2
- data/data/problems/107.yml +15 -15
- data/data/problems/108.yml +13 -16
- data/data/problems/109.yml +16 -17
- data/data/problems/11.yml +22 -23
- data/data/problems/110.yml +9 -10
- data/data/problems/114.yml +30 -41
- data/data/problems/116.yml +19 -25
- data/data/problems/117.yml +24 -33
- data/data/problems/120.yml +3 -3
- data/data/problems/122.yml +18 -20
- data/data/problems/123.yml +2 -2
- data/data/problems/124.yml +18 -23
- data/data/problems/126.yml +10 -11
- data/data/problems/127.yml +7 -7
- data/data/problems/128.yml +1 -1
- data/data/problems/130.yml +6 -7
- data/data/problems/131.yml +1 -1
- data/data/problems/132.yml +1 -1
- data/data/problems/134.yml +2 -2
- data/data/problems/135.yml +2 -2
- data/data/problems/136.yml +2 -2
- data/data/problems/137.yml +4 -4
- data/data/problems/138.yml +4 -4
- data/data/problems/139.yml +1 -1
- data/data/problems/14.yml +12 -13
- data/data/problems/140.yml +3 -3
- data/data/problems/142.yml +1 -1
- data/data/problems/143.yml +2 -2
- data/data/problems/144.yml +3 -3
- data/data/problems/147.yml +1 -1
- data/data/problems/149.yml +11 -13
- data/data/problems/15.yml +3 -3
- data/data/problems/150.yml +8 -8
- data/data/problems/151.yml +1 -1
- data/data/problems/152.yml +1 -1
- data/data/problems/153.yml +24 -26
- data/data/problems/154.yml +10 -9
- data/data/problems/155.yml +3 -3
- data/data/problems/156.yml +7 -8
- data/data/problems/157.yml +3 -4
- data/data/problems/158.yml +4 -5
- data/data/problems/159.yml +3 -3
- data/data/problems/161.yml +5 -4
- data/data/problems/163.yml +10 -10
- data/data/problems/165.yml +1 -1
- data/data/problems/166.yml +7 -7
- data/data/problems/167.yml +3 -4
- data/data/problems/168.yml +5 -5
- data/data/problems/170.yml +2 -2
- data/data/problems/171.yml +3 -3
- data/data/problems/173.yml +1 -1
- data/data/problems/174.yml +3 -3
- data/data/problems/175.yml +4 -4
- data/data/problems/177.yml +1 -1
- data/data/problems/179.yml +1 -1
- data/data/problems/180.yml +8 -9
- data/data/problems/182.yml +22 -24
- data/data/problems/183.yml +14 -15
- data/data/problems/184.yml +2 -2
- data/data/problems/186.yml +10 -11
- data/data/problems/187.yml +6 -8
- data/data/problems/189.yml +10 -9
- data/data/problems/190.yml +1 -1
- data/data/problems/192.yml +11 -12
- data/data/problems/194.yml +8 -8
- data/data/problems/195.yml +2 -2
- data/data/problems/197.yml +5 -6
- data/data/problems/198.yml +11 -12
- data/data/problems/199.yml +7 -7
- data/data/problems/20.yml +8 -10
- data/data/problems/202.yml +1 -1
- data/data/problems/207.yml +4 -4
- data/data/problems/208.yml +4 -5
- data/data/problems/21.yml +5 -6
- data/data/problems/210.yml +4 -5
- data/data/problems/211.yml +1 -1
- data/data/problems/212.yml +22 -26
- data/data/problems/213.yml +5 -6
- data/data/problems/214.yml +8 -9
- data/data/problems/215.yml +4 -4
- data/data/problems/216.yml +5 -5
- data/data/problems/217.yml +8 -10
- data/data/problems/218.yml +1 -1
- data/data/problems/22.yml +1 -1
- data/data/problems/220.yml +15 -15
- data/data/problems/221.yml +4 -5
- data/data/problems/223.yml +5 -6
- data/data/problems/224.yml +5 -6
- data/data/problems/226.yml +8 -8
- data/data/problems/228.yml +4 -5
- data/data/problems/229.yml +16 -16
- data/data/problems/230.yml +4 -4
- data/data/problems/231.yml +4 -5
- data/data/problems/233.yml +1 -1
- data/data/problems/234.yml +9 -10
- data/data/problems/236.yml +4 -4
- data/data/problems/237.yml +3 -3
- data/data/problems/238.yml +3 -4
- data/data/problems/241.yml +4 -4
- data/data/problems/242.yml +2 -2
- data/data/problems/243.yml +12 -12
- data/data/problems/244.yml +10 -11
- data/data/problems/245.yml +14 -15
- data/data/problems/246.yml +10 -9
- data/data/problems/247.yml +12 -13
- data/data/problems/251.yml +3 -3
- data/data/problems/252.yml +6 -7
- data/data/problems/254.yml +2 -2
- data/data/problems/255.yml +35 -36
- data/data/problems/256.yml +16 -20
- data/data/problems/257.yml +9 -9
- data/data/problems/258.yml +5 -6
- data/data/problems/26.yml +1 -1
- data/data/problems/260.yml +6 -8
- data/data/problems/261.yml +6 -7
- data/data/problems/262.yml +1 -1
- data/data/problems/264.yml +10 -11
- data/data/problems/265.yml +1 -1
- data/data/problems/27.yml +10 -11
- data/data/problems/270.yml +3 -3
- data/data/problems/271.yml +5 -6
- data/data/problems/272.yml +6 -7
- data/data/problems/273.yml +3 -3
- data/data/problems/274.yml +15 -15
- data/data/problems/275.yml +3 -3
- data/data/problems/276.yml +3 -3
- data/data/problems/277.yml +3 -3
- data/data/problems/278.yml +15 -17
- data/data/problems/281.yml +4 -4
- data/data/problems/282.yml +2 -2
- data/data/problems/284.yml +7 -8
- data/data/problems/287.yml +18 -17
- data/data/problems/288.yml +1 -1
- data/data/problems/289.yml +1 -1
- data/data/problems/29.yml +12 -13
- data/data/problems/290.yml +1 -1
- data/data/problems/291.yml +3 -3
- data/data/problems/292.yml +1 -1
- data/data/problems/293.yml +7 -7
- data/data/problems/295.yml +8 -8
- data/data/problems/296.yml +4 -5
- data/data/problems/297.yml +4 -5
- data/data/problems/299.yml +11 -12
- data/data/problems/300.yml +10 -9
- data/data/problems/301.yml +2 -2
- data/data/problems/303.yml +3 -3
- data/data/problems/304.yml +6 -7
- data/data/problems/305.yml +3 -2
- data/data/problems/306.yml +8 -11
- data/data/problems/307.yml +2 -3
- data/data/problems/309.yml +8 -8
- data/data/problems/31.yml +1 -1
- data/data/problems/310.yml +6 -7
- data/data/problems/311.yml +11 -11
- data/data/problems/312.yml +5 -5
- data/data/problems/313.yml +4 -4
- data/data/problems/314.yml +4 -5
- data/data/problems/315.yml +26 -27
- data/data/problems/316.yml +2 -4
- data/data/problems/318.yml +27 -34
- data/data/problems/319.yml +11 -12
- data/data/problems/32.yml +1 -1
- data/data/problems/320.yml +1 -1
- data/data/problems/321.yml +3 -3
- data/data/problems/322.yml +4 -4
- data/data/problems/323.yml +7 -8
- data/data/problems/324.yml +8 -9
- data/data/problems/325.yml +1 -1
- data/data/problems/326.yml +2 -2
- data/data/problems/327.yml +27 -29
- data/data/problems/328.yml +2 -2
- data/data/problems/330.yml +13 -14
- data/data/problems/331.yml +12 -12
- data/data/problems/332.yml +10 -9
- data/data/problems/333.yml +15 -16
- data/data/problems/334.yml +14 -14
- data/data/problems/335.yml +2 -2
- data/data/problems/336.yml +5 -4
- data/data/problems/337.yml +7 -7
- data/data/problems/338.yml +21 -24
- data/data/problems/340.yml +6 -7
- data/data/problems/341.yml +3 -5
- data/data/problems/342.yml +6 -7
- data/data/problems/343.yml +8 -12
- data/data/problems/344.yml +1 -1
- data/data/problems/347.yml +8 -8
- data/data/problems/350.yml +5 -5
- data/data/problems/351.yml +1 -1
- data/data/problems/352.yml +25 -26
- data/data/problems/353.yml +1 -1
- data/data/problems/354.yml +6 -6
- data/data/problems/356.yml +2 -3
- data/data/problems/358.yml +13 -14
- data/data/problems/359.yml +1 -1
- data/data/problems/361.yml +2 -1
- data/data/problems/362.yml +11 -13
- data/data/problems/363.yml +6 -6
- data/data/problems/364.yml +3 -3
- data/data/problems/365.yml +2 -2
- data/data/problems/366.yml +4 -5
- data/data/problems/369.yml +1 -1
- data/data/problems/370.yml +3 -3
- data/data/problems/372.yml +6 -8
- data/data/problems/374.yml +5 -7
- data/data/problems/375.yml +5 -6
- data/data/problems/377.yml +2 -2
- data/data/problems/378.yml +2 -2
- data/data/problems/379.yml +7 -8
- data/data/problems/38.yml +9 -9
- data/data/problems/380.yml +12 -15
- data/data/problems/381.yml +8 -11
- data/data/problems/382.yml +6 -6
- data/data/problems/383.yml +4 -4
- data/data/problems/384.yml +7 -8
- data/data/problems/385.yml +8 -8
- data/data/problems/386.yml +2 -2
- data/data/problems/388.yml +5 -6
- data/data/problems/39.yml +1 -1
- data/data/problems/390.yml +4 -6
- data/data/problems/391.yml +11 -12
- data/data/problems/392.yml +1 -1
- data/data/problems/393.yml +2 -2
- data/data/problems/394.yml +6 -7
- data/data/problems/395.yml +5 -5
- data/data/problems/396.yml +15 -17
- data/data/problems/397.yml +5 -8
- data/data/problems/4.yml +1 -1
- data/data/problems/40.yml +1 -1
- data/data/problems/400.yml +5 -6
- data/data/problems/401.yml +2 -2
- data/data/problems/402.yml +7 -8
- data/data/problems/403.yml +9 -10
- data/data/problems/404.yml +5 -6
- data/data/problems/405.yml +7 -7
- data/data/problems/406.yml +8 -10
- data/data/problems/407.yml +9 -9
- data/data/problems/410.yml +5 -6
- data/data/problems/411.yml +11 -12
- data/data/problems/412.yml +9 -9
- data/data/problems/414.yml +13 -15
- data/data/problems/415.yml +2 -2
- data/data/problems/417.yml +4 -5
- data/data/problems/418.yml +7 -8
- data/data/problems/419.yml +8 -8
- data/data/problems/420.yml +5 -5
- data/data/problems/421.yml +11 -12
- data/data/problems/422.yml +9 -9
- data/data/problems/423.yml +5 -7
- data/data/problems/424.yml +8 -9
- data/data/problems/425.yml +2 -3
- data/data/problems/426.yml +3 -3
- data/data/problems/427.yml +8 -8
- data/data/problems/428.yml +16 -19
- data/data/problems/430.yml +4 -5
- data/data/problems/44.yml +3 -3
- data/data/problems/45.yml +2 -2
- data/data/problems/46.yml +8 -8
- data/data/problems/47.yml +6 -10
- data/data/problems/53.yml +8 -9
- data/data/problems/56.yml +1 -1
- data/data/problems/57.yml +5 -5
- data/data/problems/58.yml +1 -1
- data/data/problems/6.yml +1 -1
- data/data/problems/61.yml +4 -4
- data/data/problems/64.yml +39 -46
- data/data/problems/65.yml +13 -14
- data/data/problems/66.yml +10 -10
- data/data/problems/68.yml +4 -5
- data/data/problems/69.yml +2 -2
- data/data/problems/70.yml +3 -4
- data/data/problems/71.yml +3 -3
- data/data/problems/72.yml +3 -3
- data/data/problems/73.yml +3 -3
- data/data/problems/74.yml +15 -22
- data/data/problems/75.yml +1 -1
- data/data/problems/8.yml +14 -14
- data/data/problems/81.yml +7 -7
- data/data/problems/82.yml +4 -4
- data/data/problems/83.yml +4 -4
- data/data/problems/85.yml +1 -1
- data/data/problems/86.yml +8 -8
- data/data/problems/88.yml +22 -27
- data/data/problems/9.yml +6 -6
- data/data/problems/90.yml +13 -13
- data/data/problems/91.yml +8 -8
- data/data/problems/92.yml +7 -9
- data/data/problems/93.yml +9 -10
- data/data/problems/95.yml +1 -1
- data/data/problems/96.yml +17 -17
- data/data/problems/97.yml +2 -2
- data/data/problems/99.yml +2 -2
- data/lib/euler/problem.rb +6 -1
- data/lib/euler/version.rb +1 -1
- metadata +2 -2
data/data/problems/287.yml
CHANGED
@@ -3,24 +3,25 @@
|
|
3
3
|
:name: Quadtree encoding (a simple compression algorithm)
|
4
4
|
:url: http://projecteuler.net/problem=287
|
5
5
|
:content: "The quadtree encoding allows us to describe a 2<sup><var>N</var></sup>
|
6
|
-
2<sup><var>N</var></sup> black and white
|
7
|
+
image as a sequence of bits (0 and 1). Those sequences are to be read from left
|
8
|
+
to right like this:\n\n- the first bit deals with the complete 2<sup><var>N</var></sup>
|
9
|
+
2<sup><var>N</var></sup> region;\n- \"0\"
|
10
|
+
denotes a split:\r \nthe current 2<sup><var>n</var></sup> 2<sup><var>n</var></sup>
|
11
|
+
region is divided into 4 sub-regions of dimension 2<sup><var>n</var>-1</sup> 2<sup><var>n</var>-1</sup>, \n\rthe next bits contains
|
13
|
+
the description of the top left, top right, bottom left and bottom right sub-regions
|
14
|
+
- in that order;\n- \"10\" indicates that the current region contains only black
|
15
|
+
pixels;\n- \"11\" indicates that the current region contains only white pixels.\n\nConsider
|
16
|
+
the following 4 4 image (colored marks denote
|
17
|
+
places where a split can occur):\n\n \n\nThis
|
17
18
|
image can be described by several sequences, for example :<bp></bp>\r\" **0****
|
18
19
|
0 **10101010** 0 **1011111011** 0**10101010\", of length 30, or \n\r\" **0** 10
|
19
20
|
**0** 101111101110\", of length 16, which is the minimal sequence for this image.\n\nFor
|
20
21
|
a positive integer <var>N</var>, define <var>D<sub>N</sub></var> as the 2<sup><var>N</var></sup>
|
21
|
-
2<sup><var>N</var></sup> image with the following
|
23
|
+
coloring scheme:\n\n- the pixel with coordinates <var>x</var> = 0, <var>y</var> = 0
|
24
|
+
corresponds to the bottom left pixel,\n- if (<var>x</var> - 2<sup><var>N</var>-1</sup>)<sup>2</sup> + (<var>y</var> - 2<sup><var>N</var>-1</sup>)<sup>2</sup>
|
25
|
+
 2<sup>2<var>N</var>-2</sup> then the pixel
|
26
|
+
is black,\n- otherwise the pixel is white.\n\nWhat is the length of the minimal
|
27
|
+
sequence describing <var>D</var><sub>24</sub> ?\n\n"
|
data/data/problems/288.yml
CHANGED
@@ -3,7 +3,7 @@
|
|
3
3
|
:name: An enormous factorial
|
4
4
|
:url: http://projecteuler.net/problem=288
|
5
5
|
:content: "For any prime <var>p</var> the number N(<var>p</var>,<var>q</var>) is defined
|
6
|
-
by\rN(<var>p</var>,<var>q</var>) =  = <sub><var>n</var>=0
|
7
7
|
to <var>q</var></sub> T<sub><var>n</var></sub>\\*<var>p</var><sup><var>n</var></sup>
|
8
8
|
\ \n with T<sub><var>n</var></sub> generated by the following random number generator:\n\nS<sub>0</sub>
|
9
9
|
= 290797 \n\rS<sub><var>n</var>+1</sub> = S<sub><var>n</var></sub><sup>2</sup>
|
data/data/problems/289.yml
CHANGED
@@ -12,7 +12,7 @@
|
|
12
12
|
are possible on E(<var>m</var>,<var>n</var>), but we are only interested in those
|
13
13
|
which are not self-crossing: \rA non-crossing path just touches itself at lattice
|
14
14
|
points, but it never crosses itself.\n\nThe image below shows E(3,3) and an example
|
15
|
-
of an Eulerian non-crossing path.\n\n \n\nLet
|
16
16
|
L(<var>m</var>,<var>n</var>) be the number of Eulerian non-crossing paths on E(<var>m</var>,<var>n</var>).
|
17
17
|
\ \n\rFor example, L(1,2) = 2, L(2,2) = 37 and L(3,3) = 104290.\n\nFind L(6,10)
|
18
18
|
mod 10<sup>10</sup>.\n\n"
|
data/data/problems/29.yml
CHANGED
@@ -2,16 +2,15 @@
|
|
2
2
|
:id: 29
|
3
3
|
:name: Distinct powers
|
4
4
|
:url: http://projecteuler.net/problem=29
|
5
|
-
:content: "Consider all integer combinations of _a_<sup><i>b</i></sup> for 2  _a_  5 and 2  _b_  5:\n\n> 2<sup>2</sup>=4,
|
8
|
+
2<sup>3</sup>=8, 2<sup>4</sup>=16, 2<sup>5</sup>=32 \n> 3<sup>2</sup>=9, 3<sup>3</sup>=27,
|
9
|
+
3<sup>4</sup>=81, 3<sup>5</sup>=243 \n> 4<sup>2</sup>=16, 4<sup>3</sup>=64, 4<sup>4</sup>=256,
|
10
|
+
4<sup>5</sup>=1024 \n> 5<sup>2</sup>=25, 5<sup>3</sup>=125, 5<sup>4</sup>=625,
|
11
|
+
5<sup>5</sup>=3125\n\nIf they are then placed in numerical order, with any repeats
|
12
|
+
removed, we get the following sequence of 15 distinct terms:\n\n4, 8, 9, 16, 25,
|
13
|
+
27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125\n\nHow many distinct terms are in
|
14
|
+
the sequence generated by _a_<sup><i>b</i></sup> for 2 
|
15
|
+
_a_  100 and 2 
|
16
|
+
_b_  100?\n\n"
|
data/data/problems/290.yml
CHANGED
@@ -3,5 +3,5 @@
|
|
3
3
|
:name: Digital Signature
|
4
4
|
:url: http://projecteuler.net/problem=290
|
5
5
|
:content: |+
|
6
|
-
How many integers 0  <var>n</var> < 10<sup>18</sup> have the property that the sum of the digits of <var>n</var> equals the sum of digits of 137<var>n</var>?
|
7
7
|
|
data/data/problems/291.yml
CHANGED
@@ -2,6 +2,6 @@
|
|
2
2
|
:id: 291
|
3
3
|
:name: Panaitopol Primes
|
4
4
|
:url: http://projecteuler.net/problem=291
|
5
|
-
:content: "A prime number <var>p</var> is called a Panaitopol prime if  for some positive integers \n <var>x</var> and <var>y</var>.\n\nFind
|
7
|
+
how many Panaitopol primes are less than 5 10<sup>15</sup>.\n\n"
|
data/data/problems/292.yml
CHANGED
@@ -6,7 +6,7 @@
|
|
6
6
|
the following properties:\n\n- there are at least three vertices,\n- no three vertices
|
7
7
|
are aligned,\n- each vertex has **integer coordinates** ,\n- each edge has **integer
|
8
8
|
length** .\n\nFor a given integer <var>n</var>, define P(<var>n</var>) as the number
|
9
|
-
of distinct pythagorean polygons for which the perimeter is  <var>n</var>.
|
10
10
|
\ \n\rPythagorean polygons should be considered distinct as long as none is a translation
|
11
11
|
of another.\n\nYou are given that P(4) = 1, P(30) = 3655 and P(60) = 891045. \n\rFind
|
12
12
|
P(120).\n\n"
|
data/data/problems/293.yml
CHANGED
@@ -5,10 +5,10 @@
|
|
5
5
|
:content: "An even positive integer N will be called admissible, if it is a power
|
6
6
|
of 2 or its distinct prime factors are consecutive primes. \n\rThe first twelve
|
7
7
|
admissible numbers are 2,4,6,8,12,16,18,24,30,32,36,48.\n\nIf N is admissible, the
|
8
|
-
smallest integer M  1 such that N+M is prime,
|
9
|
+
will be called the pseudo-Fortunate number for N.\n\nFor example, N=630 is admissible
|
10
|
+
since it is even and its distinct prime factors are the consecutive primes 2,3,5
|
11
|
+
and 7. \n \rThe next prime number after 631 is 641; hence, the pseudo-Fortunate
|
12
|
+
number for 630 is M=11. \n\rIt can also be seen that the pseudo-Fortunate number
|
13
|
+
for 16 is 3.\n\nFind the sum of all distinct pseudo-Fortunate numbers for admissible
|
14
|
+
numbers N less than 10<sup>9</sup>.\n\n"
|
data/data/problems/295.yml
CHANGED
@@ -9,13 +9,13 @@
|
|
9
9
|
<var>x</var><sup>2</sup>+<var>y</var><sup>2</sup>=25 \n\rC<sub>1</sub>: (<var>x</var>+4)<sup>2</sup>+(<var>y</var>-4)<sup>2</sup>=1
|
10
10
|
\ \n\rC<sub>2</sub>: (<var>x</var>-12)<sup>2</sup>+(<var>y</var>-4)<sup>2</sup>=65\n\nThe
|
11
11
|
circles C<sub>0</sub>, C<sub>1</sub> and C<sub>2</sub> are drawn in the picture
|
12
|
-
below.\n\n \n\nC<sub>0</sub> and C<sub>1</sub>
|
13
|
+
form a lenticular hole, as well as C<sub>0</sub> and C<sub>2</sub>.\n\nWe call an
|
14
|
+
ordered pair of positive real numbers (r<sub>1</sub>, r<sub>2</sub>) a _lenticular
|
15
15
|
pair_ if there exist two circles with radii r<sub>1</sub> and r<sub>2</sub> that
|
16
|
-
form a lenticular hole.\rWe can verify that (1, 5) and (5,  and (5, 65)
|
17
17
|
are the lenticular pairs of the example above.\n\nLet L(N) be the number of **distinct**
|
18
|
-
lenticular pairs (r<sub>1</sub>, r<sub>2</sub>) for which 0  for which 0 
|
19
|
+
r<sub>1</sub>  r<sub>2</sub>  N. \n\rWe can verify that L(10) = 30 and L(100) = 3442.\n\nFind
|
21
|
+
L(100 000).\n\n"
|
data/data/problems/296.yml
CHANGED
@@ -2,12 +2,11 @@
|
|
2
2
|
:id: 296
|
3
3
|
:name: Angular Bisector and Tangent
|
4
4
|
:url: http://projecteuler.net/problem=296
|
5
|
-
:content: "Given is an integer sided triangle <var>ABC</var> with <var>BC</var>  <var>AC</var> 
|
7
7
|
<var>AB</var>. \n<var>k</var> is the angular bisector of angle <var>ACB</var>.
|
8
8
|
\ \n <var>m</var> is the tangent at <var>C</var> to the circumscribed circle of
|
9
9
|
<var>ABC</var>. \n <var>n</var> is a line parallel to <var>m</var> through <var>B</var>.
|
10
10
|
\ \n\rThe intersection of <var>n</var> and <var>k</var> is called <var>E</var>.\n\n
|
11
|
-
\n\nHow many triangles <var>ABC</var> with
|
12
|
+
a perimeter not exceeding 100 000 exist such that <var>BE</var> has integral length?\n\n"
|
data/data/problems/297.yml
CHANGED
@@ -9,8 +9,7 @@
|
|
9
9
|
a sum is called the **Zeckendorf representation** of the number.\n\nFor any integer
|
10
10
|
<var>n</var>>0, let <var>z</var>(<var>n</var>) be the number of terms in the Zeckendorf
|
11
11
|
representation of <var>n</var>. \n\rThus, <var>z</var>(5) = 1, <var>z</var>(14) = 2,
|
12
|
-
<var>z</var>(100) = 3 etc. \n\rAlso, for 0 
|
15
|
-
|
16
|
-
10<sup>17</sup>.\n\n"
|
12
|
+
<var>z</var>(100) = 3 etc. \n\rAlso, for 0 <var>n</var>
|
13
|
+
10<sup>6</sup>, ∑ <var>z</var>(<var>n</var>) = 7894453.\n\nFind
|
14
|
+
∑ <var>z</var>(<var>n</var>) for 0 <var>n</var>
|
15
|
+
10<sup>17</sup>.\n\n"
|
data/data/problems/299.yml
CHANGED
@@ -3,23 +3,22 @@
|
|
3
3
|
:name: Three similar triangles
|
4
4
|
:url: http://projecteuler.net/problem=299
|
5
5
|
:content: "Four points with integer coordinates are selected: \nA(<var>a</var>, 0),
|
6
|
-
B(<var>b</var>, 0), C(0, <var>c</var>) and D(0, <var>d</var>), \rwith 0  <var>d</var>.
|
6
|
+
B(<var>b</var>, 0), C(0, <var>c</var>) and D(0, <var>d</var>), \rwith 0  <var>a</var>  <var>b</var>
|
8
|
+
and 0  <var>c</var>  <var>d</var>.
|
10
9
|
\ \n\rPoint P, also with integer coordinates, is chosen on the line AC so that the
|
11
10
|
three triangles ABP, CDP and BDP are all <dfn title=\"Have equal angles\">similar</dfn>.\n\n
|
12
|
-
\n\nIt is easy to prove that the three
|
12
|
+
triangles can be similar, only if <var>a</var>=<var>c</var>.\n\nSo, given that <var>a</var>=<var>c</var>,
|
13
|
+
we are looking for triplets (<var>a</var>,<var>b</var>,<var>d</var>) such that at
|
14
|
+
least one point P (with integer coordinates) exists on AC, making the three triangles
|
15
|
+
ABP, CDP and BDP all similar.\n\nFor example, if (<var>a</var>,<var>b</var>,<var>d</var>)=(2,3,4),
|
17
16
|
it can be easily verified that point P(1,1) satisfies the above condition. \rNote
|
18
17
|
that the triplets (2,3,4) and (2,4,3) are considered as distinct, although point
|
19
|
-
P(1,1) is common for both.\n\nIf <var>b</var>+<var>d</var>  is common for both.\n\nIf <var>b</var>+<var>d</var>  100,
|
20
19
|
there are 92 distinct triplets (<var>a</var>,<var>b</var>,<var>d</var>) such that
|
21
|
-
point P exists. \n\rIf <var>b</var>+<var>d</var>  100
|
22
21
|
000, there are 320471 distinct triplets (<var>a</var>,<var>b</var>,<var>d</var>)
|
23
|
-
such that point P exists.\n\nIf <var>b</var>+<var>d</var>  100
|
24
23
|
000 000, how many distinct triplets (<var>a</var>,<var>b</var>,<var>d</var>) are
|
25
24
|
there such that point P exists?\n\n"
|
data/data/problems/300.yml
CHANGED
@@ -12,12 +12,13 @@
|
|
12
12
|
in the inner part, with the P-elements on the outside. \n\rNatural proteins are
|
13
13
|
folded in three dimensions of course, but we will only consider protein folding
|
14
14
|
in <u>two dimensions</u>.\n\nThe figure below shows two possible ways that our example
|
15
|
-
protein could be folded (H-H contact points are shown with red dots).\n\n .\n\n \n\nThe folding on the left has only six H-H contact
|
17
|
+
points, thus it would never occur naturally. \n\rOn the other hand, the folding
|
18
|
+
on the right has nine H-H contact points, which is optimal for this string.\n\nAssuming
|
19
|
+
that H and P elements are equally likely to occur in any position along the string,
|
20
|
+
the average number of H-H contact points in an optimal folding of a random protein
|
21
|
+
string of length 8 turns out to be 850 / 2<sup>8</sup>=3.3203125.\n\nWhat is the
|
22
|
+
average number of H-H contact points in an optimal folding of a random protein string
|
23
|
+
of length 15? \n\rGive your answer using as many decimal places as necessary for
|
24
|
+
an exact result.\n\n"
|
data/data/problems/301.yml
CHANGED
@@ -19,5 +19,5 @@
|
|
19
19
|
stones remain; so the current player loses. To illustrate: \n\r- current player
|
20
20
|
moves to (1,2,1) \n\r- opponent moves to (1,0,1) \n\r- current player moves to
|
21
21
|
(0,0,1) \n\r- opponent moves to (0,0,0), and so wins.\n\nFor how many positive
|
22
|
-
integers <var>n</var>  2<sup>30</sup> does
|
23
|
+
<var>X</var>(<var>n</var>,2<var>n</var>,3<var>n</var>) = 0 ?\n\n"
|
data/data/problems/303.yml
CHANGED
@@ -3,11 +3,11 @@
|
|
3
3
|
:name: Multiples with small digits
|
4
4
|
:url: http://projecteuler.net/problem=303
|
5
5
|
:content: |+
|
6
|
-
For a positive integer <var>n</var>, define <var>f</var>(<var>n</var>) as the least positive multiple of <var>n</var> that, written in base 10, uses only digits  as the least positive multiple of <var>n</var> that, written in base 10, uses only digits  2.
|
7
7
|
|
8
8
|
Thus <var>f</var>(2)=2, <var>f</var>(3)=12, <var>f</var>(7)=21, <var>f</var>(42)=210, <var>f</var>(89)=1121222.
|
9
9
|
|
10
|
-
Also, .
|
11
11
|
|
12
|
-
Find .
|
13
13
|
|
data/data/problems/304.yml
CHANGED
@@ -3,12 +3,11 @@
|
|
3
3
|
:name: Primonacci
|
4
4
|
:url: http://projecteuler.net/problem=304
|
5
5
|
:content: "For any positive integer <var>n</var> the function next\\_prime(<var>n</var>)
|
6
|
-
returns the smallest prime p \n such that p <var>n</var>.\n\nThe
|
7
7
|
sequence a(<var>n</var>) is defined by: \n\ra(1)=next\\_prime(10<sup>14</sup>)
|
8
|
-
and a(<var>n</var>)=next\\_prime(a(<var>n</var>-1)) for n =next\\_prime(a(<var>n</var>-1)) for n 1.\n\nThe
|
9
9
|
fibonacci sequence f(<var>n</var>) is defined by:\rf(0)=0, f(1)=1 and f(<var>n</var>)=f(<var>n</var>-1)+f(<var>n</var>-2)
|
10
|
-
for <var>n</var> 1.\n\nThe sequence b(<var>n</var>)
|
11
|
+
is defined as f(a(<var>n</var>)).\n\nFind b(<var>n</var>)
|
12
|
+
for 1 <var>n</var> 100
|
13
|
+
000. \rGive your answer mod 1234567891011.\n\n"
|
data/data/problems/305.yml
CHANGED
@@ -6,5 +6,6 @@
|
|
6
6
|
positive integers (starting from 1) written down in base 10. \n \rThus, S = 1234567891011121314151617181920212223242...\n\nIt's
|
7
7
|
easy to see that any number will show up an infinite number of times in S.\n\nLet's
|
8
8
|
call f(n) the starting position of the n<sup>th</sup> occurrence of n in S. \n
|
9
|
-
\rFor example, f(1)=1, f(5)=81, f(12)=271 and f(7780)=111111365.\n\nFind =1, f(5)=81, f(12)=271 and f(7780)=111111365.\n\nFind f(3<sup>k</sup>) for 1 k
|
11
|
+
13.\n\n"
|
data/data/problems/306.yml
CHANGED
@@ -12,14 +12,11 @@
|
|
12
12
|
loses.\n- If <var>n</var> = 4, there are three valid moves for the first player;
|
13
13
|
she can win the game by painting the two middle squares.\n- If <var>n</var> = 5,
|
14
14
|
there are four valid moves for the first player (shown below in red); but no matter
|
15
|
-
what she does, the second player (blue) wins.\n\n  1 000 000,
|
24
|
-
how many values of <var>n</var> are there for which the first player can force a
|
25
|
-
win?\n\n"
|
15
|
+
what she does, the second player (blue) wins.\n\n \n\nSo,
|
16
|
+
for 1  <var>n</var> 
|
17
|
+
5, there are 3 values of <var>n</var> for which the first player can force a win.
|
18
|
+
\ \n\rSimilarly, for 1  <var>n</var>  50, there are 40 values of <var>n</var> for which the
|
20
|
+
first player can force a win.\n\nFor 1  <var>n</var>
|
21
|
+
 1 000 000, how many values of <var>n</var>
|
22
|
+
are there for which the first player can force a win?\n\n"
|
data/data/problems/307.yml
CHANGED
@@ -6,6 +6,5 @@
|
|
6
6
|
chips produced by a factory (any number of defects may be found on a chip and each
|
7
7
|
defect is independent of the other defects).\n\nLet p(<var>k,n</var>) represent
|
8
8
|
the probability that there is a chip with at least 3 defects. \n\rFor instance
|
9
|
-
p(3,7)   0.0204081633.\n\nFind p(20 000, 1
|
10
|
+
000 000) and give your answer rounded to 10 decimal places in the form 0.abcdefghij\n\n"
|
data/data/problems/309.yml
CHANGED
@@ -6,11 +6,11 @@
|
|
6
6
|
and <var>y</var> of two ladders resting on the opposite walls of a narrow, level
|
7
7
|
street. We are also given the height <var>h</var> above the street where the two
|
8
8
|
ladders cross and we are asked to find the width of the street (<var>w</var>).\n\n
|
9
|
-
\n\nHere, we are only concerned with instances
|
10
|
+
where all four variables are positive integers. \n\rFor example, if <var>x</var>
|
11
|
+
= 70, <var>y</var> = 119 and <var>h</var> = 30, we can calculate that <var>w</var>
|
12
|
+
= 56.\n\nIn fact, for integer values <var>x</var>, <var>y</var>, <var>h</var> and
|
13
|
+
0 x y x,<var>y</var>,<var>h</var>) producing integer solutions for <var>w</var>:
|
14
|
+
\ \n\r(70, 119, 30), (74, 182, 21), (87, 105, 35), (100, 116, 35) and (119, 175,
|
15
|
+
40).\n\nFor integer values <var>x</var>, <var>y</var>, <var>h</var> and 0 x y x,<var>y</var>,<var>h</var>)
|
16
|
+
produce integer solutions for <var>w</var>?\n\n"
|
data/data/problems/31.yml
CHANGED
@@ -9,7 +9,7 @@
|
|
9
9
|
|
10
10
|
It is possible to make £2 in the following way:
|
11
11
|
|
12
|
-
> 1 £1 + 1 50p + 2 20p + 1 5p + 1 2p + 3 1p
|
13
13
|
|
14
14
|
How many different ways can £2 be made using any number of coins?
|
15
15
|
|
data/data/problems/310.yml
CHANGED
@@ -5,10 +5,9 @@
|
|
5
5
|
:content: "Alice and Bob play the game Nim Square. \n\rNim Square is just like ordinary
|
6
6
|
three-heap normal play Nim, but the players may only remove a square number of stones
|
7
7
|
from a heap. \n\rThe number of stones in the three heaps is represented by the
|
8
|
-
ordered triple (a,b,c). \n\rIf 0 100 000.\n\n"
|
8
|
+
ordered triple (a,b,c). \n\rIf 0 a b c 29 then the number of losing positions for the next player is 1160.\n\nFind
|
11
|
+
the number of losing positions for the next player if 0 a
|
12
|
+
b c 100 000.\n\n"
|
data/data/problems/311.yml
CHANGED
@@ -2,14 +2,14 @@
|
|
2
2
|
:id: 311
|
3
3
|
:name: Biclinic Integral Quadrilaterals
|
4
4
|
:url: http://projecteuler.net/problem=311
|
5
|
-
:content: "ABCD is a convex, integer sided quadrilateral with 1  be the number of distinct biclinic
|
13
|
-
that satisfy AB<sup>2</sup>+BC<sup>2</sup>+CD<sup>2</sup>+AD<sup>2</sup>
|
14
|
-
<var>N</var>. \n\rWe can verify that B(10
|
15
|
-
B(10 000 000 000).\n\n"
|
5
|
+
:content: "ABCD is a convex, integer sided quadrilateral with 1  AB  BC  CD  AD. \n\rBD has integer
|
8
|
+
length. O is the midpoint of BD. AO has integer length. \n\rWe'll call ABCD a _biclinic
|
9
|
+
integral quadrilateral_ if AO = CO  BO = DO.\n\nFor
|
10
|
+
example, the following quadrilateral is a biclinic integral quadrilateral: \n\rAB
|
11
|
+
= 19, BC = 29, CD = 37, AD = 43, BD = 48 and AO = CO = 23.\n\n \n\nLet B(<var>N</var>) be the number of distinct biclinic
|
13
|
+
integral quadrilaterals ABCD that satisfy AB<sup>2</sup>+BC<sup>2</sup>+CD<sup>2</sup>+AD<sup>2</sup>
|
14
|
+
 <var>N</var>. \n\rWe can verify that B(10
|
15
|
+
000) = 49 and B(1 000 000) = 38239.\n\nFind B(10 000 000 000).\n\n"
|
data/data/problems/312.yml
CHANGED
@@ -5,10 +5,10 @@
|
|
5
5
|
:content: "- A **Sierpiński graph** of order-1 (<var>S</var><sub>1</sub>) is an equilateral
|
6
6
|
triangle. \n\r- <var>S</var><sub><var>n</var>+1</sub> is obtained from <var>S</var><sub><var>n</var></sub>
|
7
7
|
by positioning three copies of <var>S</var><sub><var>n</var></sub> so that every
|
8
|
-
pair of copies has one common corner.\n\n \n\nLet
|
9
9
|
C(<var>n</var>) be the number of cycles that pass exactly once through all the vertices
|
10
10
|
of <var>S</var><sub><var>n</var></sub>. \n\rFor example, C(3) = 8 because eight
|
11
|
-
such cycles can be drawn on <var>S</var><sub>3</sub>, as shown below:\n\n 
|
13
|
-
|
14
|
-
C(C(C(10 000))) mod 13<sup>8</sup>.\n\n"
|
11
|
+
such cycles can be drawn on <var>S</var><sub>3</sub>, as shown below:\n\n \n\nIt can also be verified that : \n\rC(1)
|
13
|
+
= C(2) = 1 \n\rC(5) = 71328803586048 \n\rC(10 000) mod 10<sup>8</sup> = 37652224
|
14
|
+
\ \n\rC(10 000) mod 13<sup>8</sup> = 617720485\n\nFind C(C(C(10 000))) mod 13<sup>8</sup>.\n\n"
|
data/data/problems/313.yml
CHANGED
@@ -5,13 +5,13 @@
|
|
5
5
|
:content: |+
|
6
6
|
In a sliding game a counter may slide horizontally or vertically into an empty space. The objective of the game is to move the red counter from the top left corner of a grid to the bottom right corner; the space always starts in the bottom right corner. For example, the following sequence of pictures show how the game can be completed in five moves on a 2 by 2 grid.
|
7
7
|
|
8
|
-

|
9
9
|
|
10
10
|
Let S(m,n) represent the minimum number of moves to complete the game on an m by n grid. For example, it can be verified that S(5,4) = 25.
|
11
11
|
|
12
|
-

|
13
13
|
|
14
|
-
There are exactly 5482 grids for which S(m,n) = p<sup>2</sup>, where p  = p<sup>2</sup>, where p  100 is prime.
|
15
15
|
|
16
|
-
How many grids does S(m,n) = p<sup>2</sup>, where p  = p<sup>2</sup>, where p  10<sup>6</sup> is prime?
|
17
17
|
|
data/data/problems/314.yml
CHANGED
@@ -18,10 +18,9 @@
|
|
18
18
|
inside the square area touching the four sides the area will be equal to π\\*250<sup>2</sup>
|
19
19
|
m<sup>2</sup> and the perimeter will be π\\*500 m, so the enclosed-area/wall-length
|
20
20
|
ratio will also be 125.\n\nHowever, if you cut off from the square four triangles
|
21
|
-
with sides 75 m, 75 m and 75 \n\nFind
|
21
|
+
with sides 75 m, 75 m and 75 2 m the total
|
22
|
+
area becomes 238750 m<sup>2</sup> and the perimeter becomes 1400+300 2 m. So this gives an enclosed-area/wall-length ratio of 130.87,
|
24
|
+
which is significantly better.\n\n \n\nFind
|
26
25
|
the maximum enclosed-area/wall-length ratio. \n\rGive your answer rounded to 8
|
27
26
|
places behind the decimal point in the form abc.defghijk.\n\n"
|