euler-manager 0.0.6 → 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (303) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +13 -0
  3. data/data/images/sod_13.gif +4 -0
  4. data/data/problems/100.yml +1 -1
  5. data/data/problems/101.yml +16 -16
  6. data/data/problems/102.yml +2 -3
  7. data/data/problems/103.yml +16 -16
  8. data/data/problems/105.yml +2 -2
  9. data/data/problems/106.yml +2 -2
  10. data/data/problems/107.yml +15 -15
  11. data/data/problems/108.yml +13 -16
  12. data/data/problems/109.yml +16 -17
  13. data/data/problems/11.yml +22 -23
  14. data/data/problems/110.yml +9 -10
  15. data/data/problems/114.yml +30 -41
  16. data/data/problems/116.yml +19 -25
  17. data/data/problems/117.yml +24 -33
  18. data/data/problems/120.yml +3 -3
  19. data/data/problems/122.yml +18 -20
  20. data/data/problems/123.yml +2 -2
  21. data/data/problems/124.yml +18 -23
  22. data/data/problems/126.yml +10 -11
  23. data/data/problems/127.yml +7 -7
  24. data/data/problems/128.yml +1 -1
  25. data/data/problems/130.yml +6 -7
  26. data/data/problems/131.yml +1 -1
  27. data/data/problems/132.yml +1 -1
  28. data/data/problems/134.yml +2 -2
  29. data/data/problems/135.yml +2 -2
  30. data/data/problems/136.yml +2 -2
  31. data/data/problems/137.yml +4 -4
  32. data/data/problems/138.yml +4 -4
  33. data/data/problems/139.yml +1 -1
  34. data/data/problems/14.yml +12 -13
  35. data/data/problems/140.yml +3 -3
  36. data/data/problems/142.yml +1 -1
  37. data/data/problems/143.yml +2 -2
  38. data/data/problems/144.yml +3 -3
  39. data/data/problems/147.yml +1 -1
  40. data/data/problems/149.yml +11 -13
  41. data/data/problems/15.yml +3 -3
  42. data/data/problems/150.yml +8 -8
  43. data/data/problems/151.yml +1 -1
  44. data/data/problems/152.yml +1 -1
  45. data/data/problems/153.yml +24 -26
  46. data/data/problems/154.yml +10 -9
  47. data/data/problems/155.yml +3 -3
  48. data/data/problems/156.yml +7 -8
  49. data/data/problems/157.yml +3 -4
  50. data/data/problems/158.yml +4 -5
  51. data/data/problems/159.yml +3 -3
  52. data/data/problems/161.yml +5 -4
  53. data/data/problems/163.yml +10 -10
  54. data/data/problems/165.yml +1 -1
  55. data/data/problems/166.yml +7 -7
  56. data/data/problems/167.yml +3 -4
  57. data/data/problems/168.yml +5 -5
  58. data/data/problems/170.yml +2 -2
  59. data/data/problems/171.yml +3 -3
  60. data/data/problems/173.yml +1 -1
  61. data/data/problems/174.yml +3 -3
  62. data/data/problems/175.yml +4 -4
  63. data/data/problems/177.yml +1 -1
  64. data/data/problems/179.yml +1 -1
  65. data/data/problems/180.yml +8 -9
  66. data/data/problems/182.yml +22 -24
  67. data/data/problems/183.yml +14 -15
  68. data/data/problems/184.yml +2 -2
  69. data/data/problems/186.yml +10 -11
  70. data/data/problems/187.yml +6 -8
  71. data/data/problems/189.yml +10 -9
  72. data/data/problems/190.yml +1 -1
  73. data/data/problems/192.yml +11 -12
  74. data/data/problems/194.yml +8 -8
  75. data/data/problems/195.yml +2 -2
  76. data/data/problems/197.yml +5 -6
  77. data/data/problems/198.yml +11 -12
  78. data/data/problems/199.yml +7 -7
  79. data/data/problems/20.yml +8 -10
  80. data/data/problems/202.yml +1 -1
  81. data/data/problems/207.yml +4 -4
  82. data/data/problems/208.yml +4 -5
  83. data/data/problems/21.yml +5 -6
  84. data/data/problems/210.yml +4 -5
  85. data/data/problems/211.yml +1 -1
  86. data/data/problems/212.yml +22 -26
  87. data/data/problems/213.yml +5 -6
  88. data/data/problems/214.yml +8 -9
  89. data/data/problems/215.yml +4 -4
  90. data/data/problems/216.yml +5 -5
  91. data/data/problems/217.yml +8 -10
  92. data/data/problems/218.yml +1 -1
  93. data/data/problems/22.yml +1 -1
  94. data/data/problems/220.yml +15 -15
  95. data/data/problems/221.yml +4 -5
  96. data/data/problems/223.yml +5 -6
  97. data/data/problems/224.yml +5 -6
  98. data/data/problems/226.yml +8 -8
  99. data/data/problems/228.yml +4 -5
  100. data/data/problems/229.yml +16 -16
  101. data/data/problems/230.yml +4 -4
  102. data/data/problems/231.yml +4 -5
  103. data/data/problems/233.yml +1 -1
  104. data/data/problems/234.yml +9 -10
  105. data/data/problems/236.yml +4 -4
  106. data/data/problems/237.yml +3 -3
  107. data/data/problems/238.yml +3 -4
  108. data/data/problems/241.yml +4 -4
  109. data/data/problems/242.yml +2 -2
  110. data/data/problems/243.yml +12 -12
  111. data/data/problems/244.yml +10 -11
  112. data/data/problems/245.yml +14 -15
  113. data/data/problems/246.yml +10 -9
  114. data/data/problems/247.yml +12 -13
  115. data/data/problems/251.yml +3 -3
  116. data/data/problems/252.yml +6 -7
  117. data/data/problems/254.yml +2 -2
  118. data/data/problems/255.yml +35 -36
  119. data/data/problems/256.yml +16 -20
  120. data/data/problems/257.yml +9 -9
  121. data/data/problems/258.yml +5 -6
  122. data/data/problems/26.yml +1 -1
  123. data/data/problems/260.yml +6 -8
  124. data/data/problems/261.yml +6 -7
  125. data/data/problems/262.yml +1 -1
  126. data/data/problems/264.yml +10 -11
  127. data/data/problems/265.yml +1 -1
  128. data/data/problems/27.yml +10 -11
  129. data/data/problems/270.yml +3 -3
  130. data/data/problems/271.yml +5 -6
  131. data/data/problems/272.yml +6 -7
  132. data/data/problems/273.yml +3 -3
  133. data/data/problems/274.yml +15 -15
  134. data/data/problems/275.yml +3 -3
  135. data/data/problems/276.yml +3 -3
  136. data/data/problems/277.yml +3 -3
  137. data/data/problems/278.yml +15 -17
  138. data/data/problems/281.yml +4 -4
  139. data/data/problems/282.yml +2 -2
  140. data/data/problems/284.yml +7 -8
  141. data/data/problems/287.yml +18 -17
  142. data/data/problems/288.yml +1 -1
  143. data/data/problems/289.yml +1 -1
  144. data/data/problems/29.yml +12 -13
  145. data/data/problems/290.yml +1 -1
  146. data/data/problems/291.yml +3 -3
  147. data/data/problems/292.yml +1 -1
  148. data/data/problems/293.yml +7 -7
  149. data/data/problems/295.yml +8 -8
  150. data/data/problems/296.yml +4 -5
  151. data/data/problems/297.yml +4 -5
  152. data/data/problems/299.yml +11 -12
  153. data/data/problems/300.yml +10 -9
  154. data/data/problems/301.yml +2 -2
  155. data/data/problems/303.yml +3 -3
  156. data/data/problems/304.yml +6 -7
  157. data/data/problems/305.yml +3 -2
  158. data/data/problems/306.yml +8 -11
  159. data/data/problems/307.yml +2 -3
  160. data/data/problems/309.yml +8 -8
  161. data/data/problems/31.yml +1 -1
  162. data/data/problems/310.yml +6 -7
  163. data/data/problems/311.yml +11 -11
  164. data/data/problems/312.yml +5 -5
  165. data/data/problems/313.yml +4 -4
  166. data/data/problems/314.yml +4 -5
  167. data/data/problems/315.yml +26 -27
  168. data/data/problems/316.yml +2 -4
  169. data/data/problems/318.yml +27 -34
  170. data/data/problems/319.yml +11 -12
  171. data/data/problems/32.yml +1 -1
  172. data/data/problems/320.yml +1 -1
  173. data/data/problems/321.yml +3 -3
  174. data/data/problems/322.yml +4 -4
  175. data/data/problems/323.yml +7 -8
  176. data/data/problems/324.yml +8 -9
  177. data/data/problems/325.yml +1 -1
  178. data/data/problems/326.yml +2 -2
  179. data/data/problems/327.yml +27 -29
  180. data/data/problems/328.yml +2 -2
  181. data/data/problems/330.yml +13 -14
  182. data/data/problems/331.yml +12 -12
  183. data/data/problems/332.yml +10 -9
  184. data/data/problems/333.yml +15 -16
  185. data/data/problems/334.yml +14 -14
  186. data/data/problems/335.yml +2 -2
  187. data/data/problems/336.yml +5 -4
  188. data/data/problems/337.yml +7 -7
  189. data/data/problems/338.yml +21 -24
  190. data/data/problems/340.yml +6 -7
  191. data/data/problems/341.yml +3 -5
  192. data/data/problems/342.yml +6 -7
  193. data/data/problems/343.yml +8 -12
  194. data/data/problems/344.yml +1 -1
  195. data/data/problems/347.yml +8 -8
  196. data/data/problems/350.yml +5 -5
  197. data/data/problems/351.yml +1 -1
  198. data/data/problems/352.yml +25 -26
  199. data/data/problems/353.yml +1 -1
  200. data/data/problems/354.yml +6 -6
  201. data/data/problems/356.yml +2 -3
  202. data/data/problems/358.yml +13 -14
  203. data/data/problems/359.yml +1 -1
  204. data/data/problems/361.yml +2 -1
  205. data/data/problems/362.yml +11 -13
  206. data/data/problems/363.yml +6 -6
  207. data/data/problems/364.yml +3 -3
  208. data/data/problems/365.yml +2 -2
  209. data/data/problems/366.yml +4 -5
  210. data/data/problems/369.yml +1 -1
  211. data/data/problems/370.yml +3 -3
  212. data/data/problems/372.yml +6 -8
  213. data/data/problems/374.yml +5 -7
  214. data/data/problems/375.yml +5 -6
  215. data/data/problems/377.yml +2 -2
  216. data/data/problems/378.yml +2 -2
  217. data/data/problems/379.yml +7 -8
  218. data/data/problems/38.yml +9 -9
  219. data/data/problems/380.yml +12 -15
  220. data/data/problems/381.yml +8 -11
  221. data/data/problems/382.yml +6 -6
  222. data/data/problems/383.yml +4 -4
  223. data/data/problems/384.yml +7 -8
  224. data/data/problems/385.yml +8 -8
  225. data/data/problems/386.yml +2 -2
  226. data/data/problems/388.yml +5 -6
  227. data/data/problems/39.yml +1 -1
  228. data/data/problems/390.yml +4 -6
  229. data/data/problems/391.yml +11 -12
  230. data/data/problems/392.yml +1 -1
  231. data/data/problems/393.yml +2 -2
  232. data/data/problems/394.yml +6 -7
  233. data/data/problems/395.yml +5 -5
  234. data/data/problems/396.yml +15 -17
  235. data/data/problems/397.yml +5 -8
  236. data/data/problems/4.yml +1 -1
  237. data/data/problems/40.yml +1 -1
  238. data/data/problems/400.yml +5 -6
  239. data/data/problems/401.yml +2 -2
  240. data/data/problems/402.yml +7 -8
  241. data/data/problems/403.yml +9 -10
  242. data/data/problems/404.yml +5 -6
  243. data/data/problems/405.yml +7 -7
  244. data/data/problems/406.yml +8 -10
  245. data/data/problems/407.yml +9 -9
  246. data/data/problems/410.yml +5 -6
  247. data/data/problems/411.yml +11 -12
  248. data/data/problems/412.yml +9 -9
  249. data/data/problems/414.yml +13 -15
  250. data/data/problems/415.yml +2 -2
  251. data/data/problems/417.yml +4 -5
  252. data/data/problems/418.yml +7 -8
  253. data/data/problems/419.yml +8 -8
  254. data/data/problems/420.yml +5 -5
  255. data/data/problems/421.yml +11 -12
  256. data/data/problems/422.yml +9 -9
  257. data/data/problems/423.yml +5 -7
  258. data/data/problems/424.yml +8 -9
  259. data/data/problems/425.yml +2 -3
  260. data/data/problems/426.yml +3 -3
  261. data/data/problems/427.yml +8 -8
  262. data/data/problems/428.yml +16 -19
  263. data/data/problems/430.yml +4 -5
  264. data/data/problems/44.yml +3 -3
  265. data/data/problems/45.yml +2 -2
  266. data/data/problems/46.yml +8 -8
  267. data/data/problems/47.yml +6 -10
  268. data/data/problems/53.yml +8 -9
  269. data/data/problems/56.yml +1 -1
  270. data/data/problems/57.yml +5 -5
  271. data/data/problems/58.yml +1 -1
  272. data/data/problems/6.yml +1 -1
  273. data/data/problems/61.yml +4 -4
  274. data/data/problems/64.yml +39 -46
  275. data/data/problems/65.yml +13 -14
  276. data/data/problems/66.yml +10 -10
  277. data/data/problems/68.yml +4 -5
  278. data/data/problems/69.yml +2 -2
  279. data/data/problems/70.yml +3 -4
  280. data/data/problems/71.yml +3 -3
  281. data/data/problems/72.yml +3 -3
  282. data/data/problems/73.yml +3 -3
  283. data/data/problems/74.yml +15 -22
  284. data/data/problems/75.yml +1 -1
  285. data/data/problems/8.yml +14 -14
  286. data/data/problems/81.yml +7 -7
  287. data/data/problems/82.yml +4 -4
  288. data/data/problems/83.yml +4 -4
  289. data/data/problems/85.yml +1 -1
  290. data/data/problems/86.yml +8 -8
  291. data/data/problems/88.yml +22 -27
  292. data/data/problems/9.yml +6 -6
  293. data/data/problems/90.yml +13 -13
  294. data/data/problems/91.yml +8 -8
  295. data/data/problems/92.yml +7 -9
  296. data/data/problems/93.yml +9 -10
  297. data/data/problems/95.yml +1 -1
  298. data/data/problems/96.yml +17 -17
  299. data/data/problems/97.yml +2 -2
  300. data/data/problems/99.yml +2 -2
  301. data/lib/euler/problem.rb +6 -1
  302. data/lib/euler/version.rb +1 -1
  303. metadata +2 -2
@@ -6,44 +6,43 @@
6
6
  as the square root of <var>n</var> rounded to the nearest integer.\n\nThe following
7
7
  procedure (essentially Heron's method adapted to integer arithmetic) finds the rounded-square-root
8
8
  of <var>n</var>:\n\nLet <var>d</var> be the number of digits of the number <var>n</var>.
9
- \ \n\rIf <var>d</var> is odd, set <var>x</var><sub>0</sub> = 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)10<sup>(<var>d</var>-1)⁄2</sup>.
10
- \ \n\rIf <var>d</var> is even, set <var>x</var><sub>0</sub> = 7 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)10<sup>(<var>d</var>-2)⁄2</sup>.
11
- \ \n\rRepeat:\n\n![](/home/will/src/euler-manager/config/../data/images/p_255_Heron.gif)\n\n<!--\r\n<table
12
- align='center'>\r\n<tr><td><var>x</var><sub><var>k</var>+1</sub> =</td>\r\n<td style='font-size:220%'>&#8970;</td>\r\n<td
13
- style='text-align:center;'><var>x</var><sub><var>k</var></sub> + <img src='images/symbol_lceil.gif'
14
- width='6' height='16' alt='&lceil;' border='0' style='vertical-align:middle;' /><var>n</var>&frasl;<var>x</var><sub><var>k</var></sub><img
9
+ \ \n\rIf <var>d</var> is odd, set <var>x</var><sub>0</sub> = 2 ![×]({{ images_dir
10
+ }}/symbol_times.gif)10<sup>(<var>d</var>-1)⁄2</sup>. \n\rIf <var>d</var> is even,
11
+ set <var>x</var><sub>0</sub> = 7 ![×]({{ images_dir }}/symbol_times.gif)10<sup>(<var>d</var>-2)⁄2</sup>.
12
+ \ \n\rRepeat:\n\n![]({{ images_dir }}/p_255_Heron.gif)\n\n<!--\r\n<table align='center'>\r\n<tr><td><var>x</var><sub><var>k</var>+1</sub>
13
+ =</td>\r\n<td style='font-size:220%'>&#8970;</td>\r\n<td style='text-align:center;'><var>x</var><sub><var>k</var></sub>
14
+ + <img src='images/symbol_lceil.gif' width='6' height='16' alt='&lceil;' border='0'
15
+ style='vertical-align:middle;' /><var>n</var>&frasl;<var>x</var><sub><var>k</var></sub><img
15
16
  src='images/symbol_rceil.gif' width='6' height='16' alt='&rceil;' border='0' style='vertical-align:middle;'
16
17
  /><br />\r\n<img src='images/blackdot.gif' width='75' height='1' alt='' /><br />\r\n2</td><td><td
17
18
  style='font-size:220%'>&#8971;</td></tr>\r\n</table> -->\n\nuntil <var>x</var><sub><var>k</var>+1</sub>
18
19
  = <var>x</var><sub><var>k</var></sub>.\n\nAs an example, let us find the rounded-square-root
19
20
  of <var>n</var> = 4321. \n<var>n</var> has 4 digits, so <var>x</var><sub>0</sub>
20
- = 7 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)10<sup>(4-2)⁄2</sup>
21
- = 70. \n ![](/home/will/src/euler-manager/config/../data/images/p_255_Example.gif)<!--<var>x</var><sub>1</sub>
22
- = <img src='images/symbol_lfloor.gif' width='6' height='16' alt='&lfloor;' border='0'
23
- style='vertical-align:middle;' />(70 + <img src='images/symbol_lceil.gif' width='6'
24
- height='16' alt='&lceil;' border='0' style='vertical-align:middle;' />4321&frasl;70<img
25
- src='images/symbol_rceil.gif' width='6' height='16' alt='&rceil;' border='0' style='vertical-align:middle;'
26
- />)&frasl;2<img src='images/symbol_rfloor.gif' width='6' height='16' alt='&rfloor;'
27
- border='0' style='vertical-align:middle;' /> = 66.<br />\r\n<var>x</var><sub>2</sub>
28
- = <img src='images/symbol_lfloor.gif' width='6' height='16' alt='&lfloor;' border='0'
29
- style='vertical-align:middle;' />(66 + <img src='images/symbol_lceil.gif' width='6'
30
- height='16' alt='&lceil;' border='0' style='vertical-align:middle;' />4321&frasl;66<img
31
- src='images/symbol_rceil.gif' width='6' height='16' alt='&rceil;' border='0' style='vertical-align:middle;'
32
- />)&frasl;2<img src='images/symbol_rfloor.gif' width='6' height='16' alt='&rfloor;'
33
- border='0' style='vertical-align:middle;' /> = 66.--> \n\rSince <var>x</var><sub>2</sub>
34
- = <var>x</var><sub>1</sub>, we stop here. \n\rSo, after just two iterations, we
35
- have found that the rounded-square-root of 4321 is 66 (the actual square root is
36
- 65.7343137…).\n\nThe number of iterations required when using this method is surprisingly
37
- low. \n\rFor example, we can find the rounded-square-root of a 5-digit integer
38
- (10,000 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>n</var>
39
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 99,999) with
40
- an average of 3.2102888889 iterations (the average value was rounded to 10 decimal
41
- places).\n\nUsing the procedure described above, what is the average number of iterations
42
- required to find the rounded-square-root of a 14-digit number (10<sup>13</sup> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
43
- <var>n</var> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
44
- 10<sup>14</sup>)? \n\rGive your answer rounded to 10 decimal places.\n\nNote: The
45
- symbols ![](/home/will/src/euler-manager/config/../data/images/symbol_lfloor.gif)<var>x</var>
46
- ![⌋](/home/will/src/euler-manager/config/../data/images/symbol_rfloor.gif) and ![⌈](/home/will/src/euler-manager/config/../data/images/symbol_lceil.gif)<var>x</var>
47
- ![⌉](/home/will/src/euler-manager/config/../data/images/symbol_rceil.gif) represent
48
- the <dfn title=\"the largest integer not greater than x\">floor function</dfn> and
49
- <dfn title=\"the smallest integer not less than x\">ceiling function</dfn> respectively.\n\n"
21
+ = 7 ![×]({{ images_dir }}/symbol_times.gif)10<sup>(4-2)⁄2</sup> = 70. \n ![]({{
22
+ images_dir }}/p_255_Example.gif)<!--<var>x</var><sub>1</sub> = <img src='images/symbol_lfloor.gif'
23
+ width='6' height='16' alt='&lfloor;' border='0' style='vertical-align:middle;' />(70
24
+ + <img src='images/symbol_lceil.gif' width='6' height='16' alt='&lceil;' border='0'
25
+ style='vertical-align:middle;' />4321&frasl;70<img src='images/symbol_rceil.gif'
26
+ width='6' height='16' alt='&rceil;' border='0' style='vertical-align:middle;' />)&frasl;2<img
27
+ src='images/symbol_rfloor.gif' width='6' height='16' alt='&rfloor;' border='0' style='vertical-align:middle;'
28
+ /> = 66.<br />\r\n<var>x</var><sub>2</sub> = <img src='images/symbol_lfloor.gif'
29
+ width='6' height='16' alt='&lfloor;' border='0' style='vertical-align:middle;' />(66
30
+ + <img src='images/symbol_lceil.gif' width='6' height='16' alt='&lceil;' border='0'
31
+ style='vertical-align:middle;' />4321&frasl;66<img src='images/symbol_rceil.gif'
32
+ width='6' height='16' alt='&rceil;' border='0' style='vertical-align:middle;' />)&frasl;2<img
33
+ src='images/symbol_rfloor.gif' width='6' height='16' alt='&rfloor;' border='0' style='vertical-align:middle;'
34
+ /> = 66.--> \n\rSince <var>x</var><sub>2</sub> = <var>x</var><sub>1</sub>, we stop
35
+ here. \n\rSo, after just two iterations, we have found that the rounded-square-root
36
+ of 4321 is 66 (the actual square root is 65.7343137…).\n\nThe number of iterations
37
+ required when using this method is surprisingly low. \n\rFor example, we can find
38
+ the rounded-square-root of a 5-digit integer (10,000 ![≤]({{ images_dir }}/symbol_le.gif)
39
+ <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif) 99,999) with an average of 3.2102888889
40
+ iterations (the average value was rounded to 10 decimal places).\n\nUsing the procedure
41
+ described above, what is the average number of iterations required to find the rounded-square-root
42
+ of a 14-digit number (10<sup>13</sup> ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var>
43
+ ![<]({{ images_dir }}/symbol_lt.gif) 10<sup>14</sup>)? \n\rGive your answer rounded
44
+ to 10 decimal places.\n\nNote: The symbols ![]({{ images_dir }}/symbol_lfloor.gif)<var>x</var>
45
+ ![⌋]({{ images_dir }}/symbol_rfloor.gif) and ![⌈]({{ images_dir }}/symbol_lceil.gif)<var>x</var>
46
+ ![]({{ images_dir }}/symbol_rceil.gif) represent the <dfn title=\"the largest integer
47
+ not greater than x\">floor function</dfn> and <dfn title=\"the smallest integer
48
+ not less than x\">ceiling function</dfn> respectively.\n\n"
@@ -4,32 +4,28 @@
4
4
  :url: http://projecteuler.net/problem=256
5
5
  :content: "Tatami are rectangular mats, used to completely cover the floor of a room,
6
6
  without overlap.\n\nAssuming that the only type of available tatami has dimensions
7
- 1 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2, there
8
- are obviously some limitations for the shape and size of the rooms that can be covered.\n\nFor
9
- this problem, we consider only rectangular rooms with integer dimensions <var>a</var>,
10
- <var>b</var> and even size <var>s</var> = <var>a</var>·<var>b</var>. \n\rWe use
11
- the term 'size' to denote the floor surface area of the room, and — without loss
12
- of generality — we add the condition <var>a</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
13
- <var>b</var>.\n\nThere is one rule to follow when laying out tatami: there must
14
- be no points where corners of four different mats meet. \n\rFor example, consider
15
- the two arrangements below for a 4 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)4
16
- room:\n\n ![](/home/will/src/euler-manager/config/../data/images/p_256_tatami3.gif)
7
+ 1 ![×]({{ images_dir }}/symbol_times.gif)2, there are obviously some limitations
8
+ for the shape and size of the rooms that can be covered.\n\nFor this problem, we
9
+ consider only rectangular rooms with integer dimensions <var>a</var>, <var>b</var>
10
+ and even size <var>s</var> = <var>a</var>·<var>b</var>. \n\rWe use the term 'size'
11
+ to denote the floor surface area of the room, and — without loss of generality —
12
+ we add the condition <var>a</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>b</var>.\n\nThere
13
+ is one rule to follow when laying out tatami: there must be no points where corners
14
+ of four different mats meet. \n\rFor example, consider the two arrangements below
15
+ for a 4 ![×]({{ images_dir }}/symbol_times.gif)4 room:\n\n ![]({{ images_dir }}/p_256_tatami3.gif)
17
16
  \ \n\nThe arrangement on the left is acceptable, whereas the one on the right is
18
17
  not: a red \" **X** \" in the middle, marks the point where four tatami meet.\n\nBecause
19
18
  of this rule, certain even-sized rooms cannot be covered with tatami: we call them
20
19
  tatami-free rooms. \n\rFurther, we define <var>T</var>(<var>s</var>) as the number
21
20
  of tatami-free rooms of size <var>s</var>.\n\nThe smallest tatami-free room has
22
- size <var>s</var> = 70 and dimensions 7 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)10.
21
+ size <var>s</var> = 70 and dimensions 7 ![×]({{ images_dir }}/symbol_times.gif)10.
23
22
  \ \n\rAll the other rooms of size <var>s</var> = 70 can be covered with tatami;
24
- they are: 1 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)70,
25
- 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)35 and
26
- 5 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)14. \n\rHence,
27
- <var>T</var>(70) = 1.\n\nSimilarly, we can verify that <var>T</var>(1320) = 5 because
28
- there are exactly 5 tatami-free rooms of size <var>s</var> = 1320: \n\r20 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)66,
29
- 22 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)60,
30
- 24 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)55,
31
- 30 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)44 and
32
- 33 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)40.
23
+ they are: 1 ![×]({{ images_dir }}/symbol_times.gif)70, 2 ![×]({{ images_dir }}/symbol_times.gif)35
24
+ and 5 ![×]({{ images_dir }}/symbol_times.gif)14. \n\rHence, <var>T</var>(70) =
25
+ 1.\n\nSimilarly, we can verify that <var>T</var>(1320) = 5 because there are exactly
26
+ 5 tatami-free rooms of size <var>s</var> = 1320: \n\r20 ![×]({{ images_dir }}/symbol_times.gif)66,
27
+ 22 ![×]({{ images_dir }}/symbol_times.gif)60, 24 ![×]({{ images_dir }}/symbol_times.gif)55,
28
+ 30 ![×]({{ images_dir }}/symbol_times.gif)44 and 33 ![×]({{ images_dir }}/symbol_times.gif)40.
33
29
  \ \n\rIn fact, <var>s</var> = 1320 is the smallest room-size <var>s</var> for which
34
30
  <var>T</var>(<var>s</var>) = 5.\n\nFind the smallest room-size <var>s</var> for
35
31
  which <var>T</var>(<var>s</var>) = 200.\n\n"
@@ -2,13 +2,13 @@
2
2
  :id: 257
3
3
  :name: Angular Bisectors
4
4
  :url: http://projecteuler.net/problem=257
5
- :content: "Given is an integer sided triangle ABC with sides a ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
6
- b ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) c. \r(AB
7
- = c, BC = a and AC = b). \n\rThe angular bisectors of the triangle intersect the
8
- sides at points E, F and G (see picture below).\n\n ![](/home/will/src/euler-manager/config/../data/images/p_257_bisector.gif)
9
- \ \n\nThe segments EF, EG and FG partition the triangle ABC into four smaller triangles:
10
- AEG, BFE, CGF and EFG. \n\rIt can be proven that for each of these four triangles
11
- the ratio area(ABC)/area(subtriangle) is rational. \n\rHowever, there exist triangles
5
+ :content: "Given is an integer sided triangle ABC with sides a ![≤]({{ images_dir
6
+ }}/symbol_le.gif) b ![≤]({{ images_dir }}/symbol_le.gif) c. \r(AB = c, BC = a and
7
+ AC = b). \n\rThe angular bisectors of the triangle intersect the sides at points
8
+ E, F and G (see picture below).\n\n ![]({{ images_dir }}/p_257_bisector.gif) \n\nThe
9
+ segments EF, EG and FG partition the triangle ABC into four smaller triangles: AEG,
10
+ BFE, CGF and EFG. \n\rIt can be proven that for each of these four triangles the
11
+ ratio area(ABC)/area(subtriangle) is rational. \n\rHowever, there exist triangles
12
12
  for which some or all of these ratios are integral.\n\nHow many triangles ABC with
13
- perimeter ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)100,000,000
14
- exist so that the ratio area(ABC)/area(AEG) is integral?\n\n"
13
+ perimeter ![≤]({{ images_dir }}/symbol_le.gif)100,000,000 exist so that the ratio
14
+ area(ABC)/area(AEG) is integral?\n\n"
@@ -3,9 +3,8 @@
3
3
  :name: A lagged Fibonacci sequence
4
4
  :url: http://projecteuler.net/problem=258
5
5
  :content: "A sequence is defined as:\n\n- <var>g</var><sub><var>k</var></sub> = 1,
6
- for 0 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>k</var>
7
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 1999\n- <var>g</var><sub><var>k</var></sub>
8
- = <var>g</var><sub><var>k</var>-2000</sub> + <var>g</var><sub><var>k</var>-1999</sub>,
9
- for <var>k</var> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
10
- 2000.\r\n\nFind <var>g</var><sub><var>k</var></sub> mod 20092010 for <var>k</var>
11
- = 10<sup>18</sup>.\n\n"
6
+ for 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>k</var> ![≤]({{ images_dir }}/symbol_le.gif)
7
+ 1999\n- <var>g</var><sub><var>k</var></sub> = <var>g</var><sub><var>k</var>-2000</sub>
8
+ + <var>g</var><sub><var>k</var>-1999</sub>, for <var>k</var> ![≥]({{ images_dir
9
+ }}/symbol_ge.gif) 2000.\r\n\nFind <var>g</var><sub><var>k</var></sub> mod 20092010
10
+ for <var>k</var> = 10<sup>18</sup>.\n\n"
data/data/problems/26.yml CHANGED
@@ -17,5 +17,5 @@
17
17
 
18
18
  Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that <sup>1</sup>/<sub>7</sub> has a 6-digit recurring cycle.
19
19
 
20
- Find the value of _d_ ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 1000 for which <sup>1</sup>/<sub><i>d</i></sub> contains the longest recurring cycle in its decimal fraction part.
20
+ Find the value of _d_ ![<]({{ images_dir }}/symbol_lt.gif) 1000 for which <sup>1</sup>/<sub><i>d</i></sub> contains the longest recurring cycle in its decimal fraction part.
21
21
 
@@ -15,12 +15,10 @@
15
15
  what the first player does. \n \rFor example, (0,1,2) and (1,3,3) are losing configurations:
16
16
  any legal move leaves a winning configuration for the second player.\n\nConsider
17
17
  all losing configurations (x<sub>i</sub>,y<sub>i</sub>,z<sub>i</sub>) where x<sub>i</sub>
18
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) y<sub>i</sub>
19
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) z<sub>i</sub>
20
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 100. \n\rWe
21
- can verify that Σ(x<sub>i</sub>+y<sub>i</sub>+z<sub>i</sub>) = 173895 for these.\n\nFind
22
- Σ(x<sub>i</sub>+y<sub>i</sub>+z<sub>i</sub>) where (x<sub>i</sub>,y<sub>i</sub>,z<sub>i</sub>)
23
- ranges over the losing configurations \n\rwith x<sub>i</sub> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
24
- y<sub>i</sub> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
25
- z<sub>i</sub> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
18
+ ![≤]({{ images_dir }}/symbol_le.gif) y<sub>i</sub> ![≤]({{ images_dir }}/symbol_le.gif)
19
+ z<sub>i</sub> ![≤]({{ images_dir }}/symbol_le.gif) 100. \n\rWe can verify that
20
+ Σ(x<sub>i</sub>+y<sub>i</sub>+z<sub>i</sub>) = 173895 for these.\n\nFind Σ(x<sub>i</sub>+y<sub>i</sub>+z<sub>i</sub>)
21
+ where (x<sub>i</sub>,y<sub>i</sub>,z<sub>i</sub>) ranges over the losing configurations
22
+ \ \n\rwith x<sub>i</sub> ![≤]({{ images_dir }}/symbol_le.gif) y<sub>i</sub> ![≤]({{
23
+ images_dir }}/symbol_le.gif) z<sub>i</sub> ![≤]({{ images_dir }}/symbol_le.gif)
26
24
  1000.\n\n"
@@ -3,15 +3,14 @@
3
3
  :name: Pivotal Square Sums
4
4
  :url: http://projecteuler.net/problem=261
5
5
  :content: "Let us call a positive integer <var>k</var> a <var>square-pivot</var>,
6
- if there is a pair of integers <var>m</var> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
7
- 0 and <var>n</var> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
8
- <var>k</var>, such that the sum of the (<var>m</var>+1) consecutive squares up to
9
- <var>k</var> equals the sum of the <var>m</var> consecutive squares from (<var>n</var>+1)
10
- on:\n\n\r(<var>k</var>-<var>m</var>)<sup>2</sup> + ... + <var>k</var><sup>2</sup>
11
- = (<var>n</var>+1)<sup>2</sup> + ... + (<var>n</var>+<var>m</var>)<sup>2</sup>.\n\nSome
6
+ if there is a pair of integers <var>m</var> ![>]({{ images_dir }}/symbol_gt.gif)
7
+ 0 and <var>n</var> ![≥]({{ images_dir }}/symbol_ge.gif) <var>k</var>, such that
8
+ the sum of the (<var>m</var>+1) consecutive squares up to <var>k</var> equals the
9
+ sum of the <var>m</var> consecutive squares from (<var>n</var>+1) on:\n\n\r(<var>k</var>-<var>m</var>)<sup>2</sup>
10
+ + ... + <var>k</var><sup>2</sup> = (<var>n</var>+1)<sup>2</sup> + ... + (<var>n</var>+<var>m</var>)<sup>2</sup>.\n\nSome
12
11
  small square-pivots are\n\n- **4** : 3<sup>2</sup> + **4** <sup>2</sup>\r = 5<sup>2</sup>\n-
13
12
  **21** : 20<sup>2</sup> + **21** <sup>2</sup> = 29<sup>2</sup>\n- **24** : 21<sup>2</sup>
14
13
  + 22<sup>2</sup> + 23<sup>2</sup> + **24** <sup>2</sup> = 25<sup>2</sup> + 26<sup>2</sup>
15
14
  + 27<sup>2</sup>\n- **110** : 108<sup>2</sup> + 109<sup>2</sup> + **110** <sup>2</sup>
16
15
  = 133<sup>2</sup> + 134<sup>2</sup>\n\nFind the sum of all **distinct** square-pivots
17
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 10<sup>10</sup>.\n\n"
16
+ ![≤]({{ images_dir }}/symbol_le.gif) 10<sup>10</sup>.\n\n"
@@ -4,7 +4,7 @@
4
4
  :url: http://projecteuler.net/problem=262
5
5
  :content: "The following equation represents the _continuous_ topography of a mountainous
6
6
  region, giving the <dfn title=\"height above sea level\">elevation</dfn> <var>h</var>
7
- at any point (<var>x</var>,<var>y</var>):\n\n ![](/home/will/src/euler-manager/config/../data/images/p_262_formula1.gif)
7
+ at any point (<var>x</var>,<var>y</var>):\n\n ![]({{ images_dir }}/p_262_formula1.gif)
8
8
  \ \n\nA mosquito intends to fly from A(200,200) to B(1400,1400), without leaving
9
9
  the area given by 0 ≤ <var>x</var>, <var>y</var> ≤ 1600.\n\nBecause of the intervening
10
10
  mountains, it first rises straight up to a point A', having elevation <var>f</var>.
@@ -6,14 +6,13 @@
6
6
  coordinates\">lattice points</dfn>.\n- <dfn title=\"Centre of the circumscribed
7
7
  circle\">Circumcentre</dfn> at the origin O.\n- <dfn title=\"Point where the three
8
8
  altitudes meet\">Orthocentre</dfn> at the point H(5, 0).\n\nThere are nine such
9
- triangles having a perimeter ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
10
- 50. \n\rListed and shown in ascending order of their perimeter, they are:\n\n|
11
- A(-4, 3), B(5, 0), C(4, -3) \n\rA(4, 3), B(5, 0), C(-4, -3) \n\rA(-3, 4), B(5,
12
- 0), C(3, -4) \n \n \n \n \n\rA(3, 4), B(5, 0), C(-3, -4) \n\rA(0, 5), B(5,
13
- 0), C(0, -5) \n\rA(1, 8), B(8, -1), C(-4, -7) \n \n \n \n \n\rA(8, 1), B(1,
14
- -8), C(-4, 7) \n\rA(2, 9), B(9, -2), C(-6, -7) \n\rA(9, 2), B(2, -9), C(-6, 7)
15
- \ \n | ![](/home/will/src/euler-manager/config/../data/images/p_264_TriangleCentres.gif)
16
- |\n\nThe sum of their perimeters, rounded to four decimal places, is 291.0089.\n\nFind
17
- all such triangles with a perimeter ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
18
- 10<sup>5</sup>. \n\rEnter as your answer the sum of their perimeters rounded to
19
- four decimal places.\n\n"
9
+ triangles having a perimeter ![≤]({{ images_dir }}/symbol_le.gif) 50. \n\rListed
10
+ and shown in ascending order of their perimeter, they are:\n\n| A(-4, 3), B(5, 0),
11
+ C(4, -3) \n\rA(4, 3), B(5, 0), C(-4, -3) \n\rA(-3, 4), B(5, 0), C(3, -4) \n \n
12
+ \ \n \n \n\rA(3, 4), B(5, 0), C(-3, -4) \n\rA(0, 5), B(5, 0), C(0, -5) \n\rA(1,
13
+ 8), B(8, -1), C(-4, -7) \n \n \n \n \n\rA(8, 1), B(1, -8), C(-4, 7) \n\rA(2,
14
+ 9), B(9, -2), C(-6, -7) \n\rA(9, 2), B(2, -9), C(-6, 7) \n | ![]({{ images_dir
15
+ }}/p_264_TriangleCentres.gif) |\n\nThe sum of their perimeters, rounded to four
16
+ decimal places, is 291.0089.\n\nFind all such triangles with a perimeter ![≤]({{
17
+ images_dir }}/symbol_le.gif) 10<sup>5</sup>. \n\rEnter as your answer the sum of
18
+ their perimeters rounded to four decimal places.\n\n"
@@ -4,7 +4,7 @@
4
4
  :url: http://projecteuler.net/problem=265
5
5
  :content: "2<sup>N</sup> binary digits can be placed in a circle so that all the N-digit
6
6
  clockwise subsequences are distinct.\n\nFor N=3, two such circular arrangements
7
- are possible, ignoring rotations:\n\n ![](/home/will/src/euler-manager/config/../data/images/p_265_BinaryCircles.gif)\n\nFor
7
+ are possible, ignoring rotations:\n\n ![]({{ images_dir }}/p_265_BinaryCircles.gif)\n\nFor
8
8
  the first arrangement, the 3-digit subsequences, in clockwise order, are: \n 000,
9
9
  001, 010, 101, 011, 111, 110 and 100.\n\nEach circular arrangement can be encoded
10
10
  as a number by concatenating the binary digits starting with the subsequence of
data/data/problems/27.yml CHANGED
@@ -6,14 +6,13 @@
6
6
  turns out that the formula will produce 40 primes for the consecutive values _n_
7
7
  = 0 to 39. However, when _n_ = 40, 40<sup>2</sup> + 40 + 41 = 40(40 + 1) + 41 is
8
8
  divisible by 41, and certainly when _n_ = 41, 41² + 41 + 41 is clearly divisible
9
- by 41.\n\nThe incredible formula  _n_² ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)
10
- 79_n_ + 1601 was discovered, which produces 80 primes for the consecutive values
11
- _n_ = 0 to 79. The product of the coefficients, ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)79
12
- and 1601, is ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)126479.\n\nConsidering
13
- quadratics of the form:\n\n> _n_² + _an_ + _b_, where |_a_| ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
14
- 1000 and |_b_| ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
15
- 1000 \n> \n> \n> where |_n_| is the modulus/absolute value of _n_ \n> e.g. |11|
16
- = 11 and | ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)4|
17
- = 4\n\nFind the product of the coefficients, _a_ and _b_, for the quadratic expression
18
- that produces the maximum number of primes for consecutive values of _n_, starting
19
- with _n_ = 0.\n\n"
9
+ by 41.\n\nThe incredible formula  _n_² ![−]({{ images_dir }}/symbol_minus.gif) 79_n_
10
+ + 1601 was discovered, which produces 80 primes for the consecutive values _n_ =
11
+ 0 to 79. The product of the coefficients, ![−]({{ images_dir }}/symbol_minus.gif)79
12
+ and 1601, is ![−]({{ images_dir }}/symbol_minus.gif)126479.\n\nConsidering quadratics
13
+ of the form:\n\n> _n_² + _an_ + _b_, where |_a_| ![<]({{ images_dir }}/symbol_lt.gif)
14
+ 1000 and |_b_| ![<]({{ images_dir }}/symbol_lt.gif) 1000 \n> \n> \n> where |_n_|
15
+ is the modulus/absolute value of _n_ \n> e.g. |11| = 11 and | ![−]({{ images_dir
16
+ }}/symbol_minus.gif)4| = 4\n\nFind the product of the coefficients, _a_ and _b_,
17
+ for the quadratic expression that produces the maximum number of primes for consecutive
18
+ values of _n_, starting with _n_ = 0.\n\n"
@@ -3,15 +3,15 @@
3
3
  :name: Cutting Squares
4
4
  :url: http://projecteuler.net/problem=270
5
5
  :content: |+
6
- A square piece of paper with integer dimensions N ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)N is placed with a corner at the origin and two of its sides along the <var>x</var>- and <var>y</var>-axes. Then, we cut it up respecting the following rules:
6
+ A square piece of paper with integer dimensions N ![×]({{ images_dir }}/symbol_times.gif)N is placed with a corner at the origin and two of its sides along the <var>x</var>- and <var>y</var>-axes. Then, we cut it up respecting the following rules:
7
7
 
8
8
  - We only make straight cuts between two points lying on different sides of the square, and having integer coordinates.
9
9
  - Two cuts cannot cross, but several cuts can meet at the same border point.
10
10
  - Proceed until no more legal cuts can be made.
11
11
 
12
- Counting any reflections or rotations as distinct, we call C(N) the number of ways to cut an N ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)N square. For example, C(1) = 2 and C(2) = 30 (shown below).
12
+ Counting any reflections or rotations as distinct, we call C(N) the number of ways to cut an N ![×]({{ images_dir }}/symbol_times.gif)N square. For example, C(1) = 2 and C(2) = 30 (shown below).
13
13
 
14
- ![](/home/will/src/euler-manager/config/../data/images/p_270_CutSquare.gif)
14
+ ![]({{ images_dir }}/p_270_CutSquare.gif)
15
15
 
16
16
  What is C(30) mod 10<sup>8</sup> ?
17
17
 
@@ -3,9 +3,8 @@
3
3
  :name: Modular Cubes, part 1
4
4
  :url: http://projecteuler.net/problem=271
5
5
  :content: "For a positive number <var>n</var>, define S(<var>n</var>) as the sum of
6
- the integers <var>x,</var> for which 1 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)<var>x</var>
7
- ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)<var>n</var>
8
- and \n <var>x</var><sup>3</sup> ![≡](/home/will/src/euler-manager/config/../data/images/symbol_cong.gif)1
9
- mod <var>n</var>.\n\nWhen <var>n</var>=91, there are 8 possible values for <var>x</var>,
10
- namely : 9, 16, 22, 29, 53, 74, 79, 81. \n\rThus, S(91)=9+16+22+29+53+74+79+81=363.\n\nFind
11
- S(13082761331670030).\n\n"
6
+ the integers <var>x,</var> for which 1 ![<]({{ images_dir }}/symbol_lt.gif)<var>x</var>
7
+ ![<]({{ images_dir }}/symbol_lt.gif)<var>n</var> and \n <var>x</var><sup>3</sup>
8
+ ![≡]({{ images_dir }}/symbol_cong.gif)1 mod <var>n</var>.\n\nWhen <var>n</var>=91,
9
+ there are 8 possible values for <var>x</var>, namely : 9, 16, 22, 29, 53, 74, 79,
10
+ 81. \n\rThus, S(91)=9+16+22+29+53+74+79+81=363.\n\nFind S(13082761331670030).\n\n"
@@ -3,10 +3,9 @@
3
3
  :name: Modular Cubes, part 2
4
4
  :url: http://projecteuler.net/problem=272
5
5
  :content: "For a positive number <var>n</var>, define C(<var>n</var>) as the number
6
- of the integers <var>x,</var> for which 1 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)<var>x</var>
7
- ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)<var>n</var>
8
- and \n <var>x</var><sup>3</sup> ![≡](/home/will/src/euler-manager/config/../data/images/symbol_cong.gif)1
9
- mod <var>n</var>.\n\nWhen <var>n</var>=91, there are 8 possible values for <var>x</var>,
10
- namely : 9, 16, 22, 29, 53, 74, 79, 81. \n\rThus, C(91)=8.\n\nFind the sum of the
11
- positive numbers <var>n</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)10<sup>11</sup>
12
- for which C(<var>n</var>)=242.\n\n"
6
+ of the integers <var>x,</var> for which 1 ![<]({{ images_dir }}/symbol_lt.gif)<var>x</var>
7
+ ![<]({{ images_dir }}/symbol_lt.gif)<var>n</var> and \n <var>x</var><sup>3</sup>
8
+ ![≡]({{ images_dir }}/symbol_cong.gif)1 mod <var>n</var>.\n\nWhen <var>n</var>=91,
9
+ there are 8 possible values for <var>x</var>, namely : 9, 16, 22, 29, 53, 74, 79,
10
+ 81. \n\rThus, C(91)=8.\n\nFind the sum of the positive numbers <var>n</var> ![≤]({{
11
+ images_dir }}/symbol_le.gif)10<sup>11</sup> for which C(<var>n</var>)=242.\n\n"
@@ -3,15 +3,15 @@
3
3
  :name: Sum of Squares
4
4
  :url: http://projecteuler.net/problem=273
5
5
  :content: |+
6
- Consider equations of the form: <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>N</var>, 0 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>a</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>b</var>, <var>a</var>, <var>b</var> and <var>N</var> integer.
6
+ Consider equations of the form: <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>N</var>, 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>a</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>b</var>, <var>a</var>, <var>b</var> and <var>N</var> integer.
7
7
 
8
8
  For <var>N</var>=65 there are two solutions:
9
9
 
10
10
  <var>a</var>=1, <var>b</var>=8 and <var>a</var>=4, <var>b</var>=7.
11
11
 
12
- We call S(<var>N</var>) the sum of the values of <var>a</var> of all solutions of <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>N</var>, 0 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>a</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>b</var>, <var>a</var>, <var>b</var> and <var>N</var> integer.
12
+ We call S(<var>N</var>) the sum of the values of <var>a</var> of all solutions of <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>N</var>, 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>a</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>b</var>, <var>a</var>, <var>b</var> and <var>N</var> integer.
13
13
 
14
14
  Thus S(65) = 1 + 4 = 5.
15
15
 
16
- Find ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)S(<var>N</var>), for all squarefree <var>N</var> only divisible by primes of the form 4<var>k</var>+1 with 4<var>k</var>+1 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 150.
16
+ Find ![∑]({{ images_dir }}/symbol_sum.gif)S(<var>N</var>), for all squarefree <var>N</var> only divisible by primes of the form 4<var>k</var>+1 with 4<var>k</var>+1 ![<]({{ images_dir }}/symbol_lt.gif) 150.
17
17
 
@@ -2,19 +2,19 @@
2
2
  :id: 274
3
3
  :name: Divisibility Multipliers
4
4
  :url: http://projecteuler.net/problem=274
5
- :content: "For each integer <var>p</var> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
6
- 1 coprime to 10 there is a positive _divisibility multiplier_ <var>m</var> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
7
- <var>p</var> which preserves divisibility by <var>p</var> for the following function
8
- on any positive integer, <var>n</var>:\n\n<var>f</var>(<var>n</var>) = (all but
9
- the last digit of <var>n</var>) + (the last digit of <var>n</var>) \\* <var>m</var>\n\nThat
10
- is, if <var>m</var> is the divisibility multiplier for <var>p</var>, then <var>f</var>(<var>n</var>)
11
- is divisible by <var>p</var> if and only if <var>n</var> is divisible by <var>p</var>.\n\n(When
12
- <var>n</var> is much larger than <var>p</var>, <var>f</var>(<var>n</var>) will be
13
- less than <var>n</var> and repeated application of <var>f</var> provides a multiplicative
14
- divisibility test for <var>p</var>.)\n\nFor example, the divisibility multiplier
15
- for 113 is 34.\n\n<var>f</var>(76275) = 7627 + 5 \\* 34 = 7797 : 76275 and 7797
16
- are both divisible by 113 \n<var>f</var>(12345) = 1234 + 5 \\* 34 = 1404 : 12345
17
- and 1404 are both not divisible by 113\n\nThe sum of the divisibility multipliers
18
- for the primes that are coprime to 10 and less than 1000 is 39517. What is the sum
5
+ :content: "For each integer <var>p</var> ![>]({{ images_dir }}/symbol_gt.gif) 1 coprime
6
+ to 10 there is a positive _divisibility multiplier_ <var>m</var> ![<]({{ images_dir
7
+ }}/symbol_lt.gif) <var>p</var> which preserves divisibility by <var>p</var> for
8
+ the following function on any positive integer, <var>n</var>:\n\n<var>f</var>(<var>n</var>)
9
+ = (all but the last digit of <var>n</var>) + (the last digit of <var>n</var>) \\*
10
+ <var>m</var>\n\nThat is, if <var>m</var> is the divisibility multiplier for <var>p</var>,
11
+ then <var>f</var>(<var>n</var>) is divisible by <var>p</var> if and only if <var>n</var>
12
+ is divisible by <var>p</var>.\n\n(When <var>n</var> is much larger than <var>p</var>,
13
+ <var>f</var>(<var>n</var>) will be less than <var>n</var> and repeated application
14
+ of <var>f</var> provides a multiplicative divisibility test for <var>p</var>.)\n\nFor
15
+ example, the divisibility multiplier for 113 is 34.\n\n<var>f</var>(76275) = 7627
16
+ + 5 \\* 34 = 7797 : 76275 and 7797 are both divisible by 113 \n<var>f</var>(12345)
17
+ = 1234 + 5 \\* 34 = 1404 : 12345 and 1404 are both not divisible by 113\n\nThe sum
19
18
  of the divisibility multipliers for the primes that are coprime to 10 and less than
20
- 10<sup>7</sup>?\n\n"
19
+ 1000 is 39517. What is the sum of the divisibility multipliers for the primes that
20
+ are coprime to 10 and less than 10<sup>7</sup>?\n\n"
@@ -12,6 +12,6 @@
12
12
  to zero.\n\nWhen counting the sculptures, any arrangements which are simply reflections
13
13
  about the <var>y</var>-axis, are <u>not</u> counted as distinct. For example, the
14
14
  18 balanced sculptures of order 6 are shown below; note that each pair of mirror
15
- images (about the <var>y</var>-axis) is counted as one sculpture:\n\n ![](/home/will/src/euler-manager/config/../data/images/p_275_sculptures2.gif)\n\nThere
16
- are 964 balanced sculptures of order 10 and 360505 of order 15. \nHow many balanced
17
- sculptures are there of order 18?\n\n"
15
+ images (about the <var>y</var>-axis) is counted as one sculpture:\n\n ![]({{ images_dir
16
+ }}/p_275_sculptures2.gif)\n\nThere are 964 balanced sculptures of order 10 and 360505
17
+ of order 15. \nHow many balanced sculptures are there of order 18?\n\n"
@@ -2,8 +2,8 @@
2
2
  :id: 276
3
3
  :name: Primitive Triangles
4
4
  :url: http://projecteuler.net/problem=276
5
- :content: "Consider the triangles with integer sides a, b and c with a ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
6
- b ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) c. \n\rAn
7
- integer sided triangle (a,b,c) is called primitive if <dfn title=\" gcd(a,b,c)=gcd(a,gcd(b,c))\">
5
+ :content: "Consider the triangles with integer sides a, b and c with a ![≤]({{ images_dir
6
+ }}/symbol_le.gif) b ![≤]({{ images_dir }}/symbol_le.gif) c. \n\rAn integer sided
7
+ triangle (a,b,c) is called primitive if <dfn title=\" gcd(a,b,c)=gcd(a,gcd(b,c))\">
8
8
  gcd(a,b,c)</dfn>=1. \n\rHow many primitive integer sided triangles exist with
9
9
  a perimeter not exceeding 10 000 000?\n\n"
@@ -15,7 +15,7 @@
15
15
  corresponds to the steps \"DdDddUUdDD\".\n\nOf course, there are other sequences
16
16
  that begin with that same sequence \"DdDddUUdDD....\". \n\rFor instance, if <var>a</var><sub>1</sub>=1004064,
17
17
  then the sequence is DdDddUUdDDDdUDUUUdDdUUDDDUdDD. \n\rIn fact, 1004064 is the
18
- smallest possible <var>a</var><sub>1</sub> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
18
+ smallest possible <var>a</var><sub>1</sub> ![>]({{ images_dir }}/symbol_gt.gif)
19
19
  10<sup>6</sup> that begins with the sequence DdDddUUdDD.\n\nWhat is the smallest
20
- <var>a</var><sub>1</sub> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
21
- 10<sup>15</sup> that begins with the sequence \"UDDDUdddDDUDDddDdDddDDUDDdUUDd\"?\n\n"
20
+ <var>a</var><sub>1</sub> ![>]({{ images_dir }}/symbol_gt.gif) 10<sup>15</sup> that
21
+ begins with the sequence \"UDDDUdddDDUDDddDdDddDDUDDdUUDd\"?\n\n"
@@ -2,23 +2,21 @@
2
2
  :id: 278
3
3
  :name: Linear Combinations of Semiprimes
4
4
  :url: http://projecteuler.net/problem=278
5
- :content: "Given the values of integers 1 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
6
- <var>a</var><sub>1</sub> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
7
- <var>a</var><sub>2</sub> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)...
8
- ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) <var>a</var><sub><var>n</var></sub>,
5
+ :content: "Given the values of integers 1 ![<]({{ images_dir }}/symbol_lt.gif) <var>a</var><sub>1</sub>
6
+ ![<]({{ images_dir }}/symbol_lt.gif) <var>a</var><sub>2</sub> ![<]({{ images_dir
7
+ }}/symbol_lt.gif)... ![<]({{ images_dir }}/symbol_lt.gif) <var>a</var><sub><var>n</var></sub>,
9
8
  consider the linear combination \n <var>q</var><sub>1</sub><var>a</var><sub>1</sub>
10
9
  + <var>q</var><sub>2</sub><var>a</var><sub>2</sub> + ... + <var>q</var><sub><var>n</var></sub><var>a</var><sub><var>n</var></sub>
11
- = <var>b</var>, using only integer values <var>q</var><sub><var>k</var></sub> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
12
- 0.\n\nNote that for a given set of <var>a</var><sub><var>k</var></sub>, it may be
13
- that not all values of <var>b</var> are possible. \n\rFor instance, if <var>a</var><sub>1</sub>
14
- = 5 and <var>a</var><sub>2</sub> = 7, there are no <var>q</var><sub>1</sub> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
15
- 0 and <var>q</var><sub>2</sub> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
16
- 0 such that <var>b</var> could be \n \r1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18 or 23.\r
17
- \ \n\rIn fact, 23 is the largest impossible value of <var>b</var> for <var>a</var><sub>1</sub>
18
- = 5 and <var>a</var><sub>2</sub> = 7. \n We therefore call <var>f</var>(5, 7) =
19
- 23. \n Similarly, it can be shown that <var>f</var>(6, 10, 15)=29 and <var>f</var>(14,
20
- 22, 77) = 195.\n\nFind ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)
10
+ = <var>b</var>, using only integer values <var>q</var><sub><var>k</var></sub> ![≥]({{
11
+ images_dir }}/symbol_ge.gif) 0.\n\nNote that for a given set of <var>a</var><sub><var>k</var></sub>,
12
+ it may be that not all values of <var>b</var> are possible. \n\rFor instance, if
13
+ <var>a</var><sub>1</sub> = 5 and <var>a</var><sub>2</sub> = 7, there are no <var>q</var><sub>1</sub>
14
+ ![≥]({{ images_dir }}/symbol_ge.gif) 0 and <var>q</var><sub>2</sub> ![≥]({{ images_dir
15
+ }}/symbol_ge.gif) 0 such that <var>b</var> could be \n \r1, 2, 3, 4, 6, 8, 9, 11,
16
+ 13, 16, 18 or 23.\r \n\rIn fact, 23 is the largest impossible value of <var>b</var>
17
+ for <var>a</var><sub>1</sub> = 5 and <var>a</var><sub>2</sub> = 7. \n We therefore
18
+ call <var>f</var>(5, 7) = 23. \n Similarly, it can be shown that <var>f</var>(6,
19
+ 10, 15)=29 and <var>f</var>(14, 22, 77) = 195.\n\nFind ![∑]({{ images_dir }}/symbol_sum.gif)
21
20
  <var>f</var>(<var>p*q,p*r,q*r</var>), where <var>p</var>, <var>q</var> and <var>r</var>
22
- are prime numbers and <var>p</var> &lt <var>q</var> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
23
- <var>r</var> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
24
- 5000.\n\n"
21
+ are prime numbers and <var>p</var> &lt <var>q</var> ![<]({{ images_dir }}/symbol_lt.gif)
22
+ <var>r</var> ![<]({{ images_dir }}/symbol_lt.gif) 5000.\n\n"
@@ -5,10 +5,10 @@
5
5
  :content: "You are given a pizza (perfect circle) that has been cut into <var>m</var>·<var>n</var>
6
6
  equal pieces and you want to have exactly one topping on each slice.\n\nLet <var>f</var>(<var>m</var>,<var>n</var>)
7
7
  denote the number of ways you can have toppings on the pizza with <var>m</var> different
8
- toppings (<var>m</var>  ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif) 2),
9
- using each topping on exactly <var>n</var> slices (<var>n</var>  ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif) 1).
8
+ toppings (<var>m</var>  ![≥]({{ images_dir }}/symbol_ge.gif) 2), using each topping
9
+ on exactly <var>n</var> slices (<var>n</var>  ![≥]({{ images_dir }}/symbol_ge.gif) 1).
10
10
  \ \nReflections are considered distinct, rotations are not.\n\nThus, for instance,
11
11
  <var>f</var>(2,1) = 1, <var>f</var>(2,2) = <var>f</var>(3,1) = 2 and <var>f</var>(3,2) = 16.
12
- \ \n<var>f</var>(3,2) is shown below:\n\n ![](/home/will/src/euler-manager/config/../data/images/p_281_pizza.gif)\n\nFind
12
+ \ \n<var>f</var>(3,2) is shown below:\n\n ![]({{ images_dir }}/p_281_pizza.gif)\n\nFind
13
13
  the sum of all <var>f</var>(<var>m</var>,<var>n</var>) such that <var>f</var>(<var>m</var>,<var>n</var>) 
14
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 10<sup>15</sup>.\n\n"
14
+ ![≤]({{ images_dir }}/symbol_le.gif) 10<sup>15</sup>.\n\n"
@@ -5,9 +5,9 @@
5
5
  :content: |+
6
6
  For non-negative integers <var>m</var>, <var>n</var>, the Ackermann function <var>A</var>(<var>m</var>, <var>n</var>) is defined as follows:
7
7
 
8
- ![](/home/will/src/euler-manager/config/../data/images/p_282_formula.gif)
8
+ ![]({{ images_dir }}/p_282_formula.gif)
9
9
 
10
10
  For example <var>A</var>(1, 0) = 2, <var>A</var>(2, 2) = 7 and <var>A</var>(3, 4) = 125.
11
11
 
12
- Find ![](/home/will/src/euler-manager/config/../data/images/p_282formula3.gif)<var>A</var>(<var>n</var>, <var>n</var>) and give your answer mod 14<sup>8</sup>.
12
+ Find ![]({{ images_dir }}/p_282formula3.gif)<var>A</var>(<var>n</var>, <var>n</var>) and give your answer mod 14<sup>8</sup>.
13
13
 
@@ -9,11 +9,10 @@
9
9
  the 3-digit number c37 is also a steady square: c37<sup>2</sup> = aa0c37, and the
10
10
  sum of its digits is c+3+7=18 in the same numbering system. The letters a, b, c
11
11
  and d are used for the 10, 11, 12 and 13 digits respectively, in a manner similar
12
- to the hexadecimal numbering system.\n\nFor 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
13
- n ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 9, the
14
- sum of the digits of all the n-digit steady squares in the base 14 numbering system
15
- is 2d8 (582 decimal). Steady squares with leading 0's are not allowed.\n\nFind the
16
- sum of the digits of all the n-digit steady squares in the base 14 numbering system
17
- for \n\r1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
18
- n ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 10000 (decimal)
19
- and give your answer in the base 14 system using lower case letters where necessary.\n\n"
12
+ to the hexadecimal numbering system.\n\nFor 1 ![≤]({{ images_dir }}/symbol_le.gif)
13
+ n ![≤]({{ images_dir }}/symbol_le.gif) 9, the sum of the digits of all the n-digit
14
+ steady squares in the base 14 numbering system is 2d8 (582 decimal). Steady squares
15
+ with leading 0's are not allowed.\n\nFind the sum of the digits of all the n-digit
16
+ steady squares in the base 14 numbering system for \n\r1 ![≤]({{ images_dir }}/symbol_le.gif)
17
+ n ![≤]({{ images_dir }}/symbol_le.gif) 10000 (decimal) and give your answer in the
18
+ base 14 system using lower case letters where necessary.\n\n"