euler-manager 0.0.6 → 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +13 -0
- data/data/images/sod_13.gif +4 -0
- data/data/problems/100.yml +1 -1
- data/data/problems/101.yml +16 -16
- data/data/problems/102.yml +2 -3
- data/data/problems/103.yml +16 -16
- data/data/problems/105.yml +2 -2
- data/data/problems/106.yml +2 -2
- data/data/problems/107.yml +15 -15
- data/data/problems/108.yml +13 -16
- data/data/problems/109.yml +16 -17
- data/data/problems/11.yml +22 -23
- data/data/problems/110.yml +9 -10
- data/data/problems/114.yml +30 -41
- data/data/problems/116.yml +19 -25
- data/data/problems/117.yml +24 -33
- data/data/problems/120.yml +3 -3
- data/data/problems/122.yml +18 -20
- data/data/problems/123.yml +2 -2
- data/data/problems/124.yml +18 -23
- data/data/problems/126.yml +10 -11
- data/data/problems/127.yml +7 -7
- data/data/problems/128.yml +1 -1
- data/data/problems/130.yml +6 -7
- data/data/problems/131.yml +1 -1
- data/data/problems/132.yml +1 -1
- data/data/problems/134.yml +2 -2
- data/data/problems/135.yml +2 -2
- data/data/problems/136.yml +2 -2
- data/data/problems/137.yml +4 -4
- data/data/problems/138.yml +4 -4
- data/data/problems/139.yml +1 -1
- data/data/problems/14.yml +12 -13
- data/data/problems/140.yml +3 -3
- data/data/problems/142.yml +1 -1
- data/data/problems/143.yml +2 -2
- data/data/problems/144.yml +3 -3
- data/data/problems/147.yml +1 -1
- data/data/problems/149.yml +11 -13
- data/data/problems/15.yml +3 -3
- data/data/problems/150.yml +8 -8
- data/data/problems/151.yml +1 -1
- data/data/problems/152.yml +1 -1
- data/data/problems/153.yml +24 -26
- data/data/problems/154.yml +10 -9
- data/data/problems/155.yml +3 -3
- data/data/problems/156.yml +7 -8
- data/data/problems/157.yml +3 -4
- data/data/problems/158.yml +4 -5
- data/data/problems/159.yml +3 -3
- data/data/problems/161.yml +5 -4
- data/data/problems/163.yml +10 -10
- data/data/problems/165.yml +1 -1
- data/data/problems/166.yml +7 -7
- data/data/problems/167.yml +3 -4
- data/data/problems/168.yml +5 -5
- data/data/problems/170.yml +2 -2
- data/data/problems/171.yml +3 -3
- data/data/problems/173.yml +1 -1
- data/data/problems/174.yml +3 -3
- data/data/problems/175.yml +4 -4
- data/data/problems/177.yml +1 -1
- data/data/problems/179.yml +1 -1
- data/data/problems/180.yml +8 -9
- data/data/problems/182.yml +22 -24
- data/data/problems/183.yml +14 -15
- data/data/problems/184.yml +2 -2
- data/data/problems/186.yml +10 -11
- data/data/problems/187.yml +6 -8
- data/data/problems/189.yml +10 -9
- data/data/problems/190.yml +1 -1
- data/data/problems/192.yml +11 -12
- data/data/problems/194.yml +8 -8
- data/data/problems/195.yml +2 -2
- data/data/problems/197.yml +5 -6
- data/data/problems/198.yml +11 -12
- data/data/problems/199.yml +7 -7
- data/data/problems/20.yml +8 -10
- data/data/problems/202.yml +1 -1
- data/data/problems/207.yml +4 -4
- data/data/problems/208.yml +4 -5
- data/data/problems/21.yml +5 -6
- data/data/problems/210.yml +4 -5
- data/data/problems/211.yml +1 -1
- data/data/problems/212.yml +22 -26
- data/data/problems/213.yml +5 -6
- data/data/problems/214.yml +8 -9
- data/data/problems/215.yml +4 -4
- data/data/problems/216.yml +5 -5
- data/data/problems/217.yml +8 -10
- data/data/problems/218.yml +1 -1
- data/data/problems/22.yml +1 -1
- data/data/problems/220.yml +15 -15
- data/data/problems/221.yml +4 -5
- data/data/problems/223.yml +5 -6
- data/data/problems/224.yml +5 -6
- data/data/problems/226.yml +8 -8
- data/data/problems/228.yml +4 -5
- data/data/problems/229.yml +16 -16
- data/data/problems/230.yml +4 -4
- data/data/problems/231.yml +4 -5
- data/data/problems/233.yml +1 -1
- data/data/problems/234.yml +9 -10
- data/data/problems/236.yml +4 -4
- data/data/problems/237.yml +3 -3
- data/data/problems/238.yml +3 -4
- data/data/problems/241.yml +4 -4
- data/data/problems/242.yml +2 -2
- data/data/problems/243.yml +12 -12
- data/data/problems/244.yml +10 -11
- data/data/problems/245.yml +14 -15
- data/data/problems/246.yml +10 -9
- data/data/problems/247.yml +12 -13
- data/data/problems/251.yml +3 -3
- data/data/problems/252.yml +6 -7
- data/data/problems/254.yml +2 -2
- data/data/problems/255.yml +35 -36
- data/data/problems/256.yml +16 -20
- data/data/problems/257.yml +9 -9
- data/data/problems/258.yml +5 -6
- data/data/problems/26.yml +1 -1
- data/data/problems/260.yml +6 -8
- data/data/problems/261.yml +6 -7
- data/data/problems/262.yml +1 -1
- data/data/problems/264.yml +10 -11
- data/data/problems/265.yml +1 -1
- data/data/problems/27.yml +10 -11
- data/data/problems/270.yml +3 -3
- data/data/problems/271.yml +5 -6
- data/data/problems/272.yml +6 -7
- data/data/problems/273.yml +3 -3
- data/data/problems/274.yml +15 -15
- data/data/problems/275.yml +3 -3
- data/data/problems/276.yml +3 -3
- data/data/problems/277.yml +3 -3
- data/data/problems/278.yml +15 -17
- data/data/problems/281.yml +4 -4
- data/data/problems/282.yml +2 -2
- data/data/problems/284.yml +7 -8
- data/data/problems/287.yml +18 -17
- data/data/problems/288.yml +1 -1
- data/data/problems/289.yml +1 -1
- data/data/problems/29.yml +12 -13
- data/data/problems/290.yml +1 -1
- data/data/problems/291.yml +3 -3
- data/data/problems/292.yml +1 -1
- data/data/problems/293.yml +7 -7
- data/data/problems/295.yml +8 -8
- data/data/problems/296.yml +4 -5
- data/data/problems/297.yml +4 -5
- data/data/problems/299.yml +11 -12
- data/data/problems/300.yml +10 -9
- data/data/problems/301.yml +2 -2
- data/data/problems/303.yml +3 -3
- data/data/problems/304.yml +6 -7
- data/data/problems/305.yml +3 -2
- data/data/problems/306.yml +8 -11
- data/data/problems/307.yml +2 -3
- data/data/problems/309.yml +8 -8
- data/data/problems/31.yml +1 -1
- data/data/problems/310.yml +6 -7
- data/data/problems/311.yml +11 -11
- data/data/problems/312.yml +5 -5
- data/data/problems/313.yml +4 -4
- data/data/problems/314.yml +4 -5
- data/data/problems/315.yml +26 -27
- data/data/problems/316.yml +2 -4
- data/data/problems/318.yml +27 -34
- data/data/problems/319.yml +11 -12
- data/data/problems/32.yml +1 -1
- data/data/problems/320.yml +1 -1
- data/data/problems/321.yml +3 -3
- data/data/problems/322.yml +4 -4
- data/data/problems/323.yml +7 -8
- data/data/problems/324.yml +8 -9
- data/data/problems/325.yml +1 -1
- data/data/problems/326.yml +2 -2
- data/data/problems/327.yml +27 -29
- data/data/problems/328.yml +2 -2
- data/data/problems/330.yml +13 -14
- data/data/problems/331.yml +12 -12
- data/data/problems/332.yml +10 -9
- data/data/problems/333.yml +15 -16
- data/data/problems/334.yml +14 -14
- data/data/problems/335.yml +2 -2
- data/data/problems/336.yml +5 -4
- data/data/problems/337.yml +7 -7
- data/data/problems/338.yml +21 -24
- data/data/problems/340.yml +6 -7
- data/data/problems/341.yml +3 -5
- data/data/problems/342.yml +6 -7
- data/data/problems/343.yml +8 -12
- data/data/problems/344.yml +1 -1
- data/data/problems/347.yml +8 -8
- data/data/problems/350.yml +5 -5
- data/data/problems/351.yml +1 -1
- data/data/problems/352.yml +25 -26
- data/data/problems/353.yml +1 -1
- data/data/problems/354.yml +6 -6
- data/data/problems/356.yml +2 -3
- data/data/problems/358.yml +13 -14
- data/data/problems/359.yml +1 -1
- data/data/problems/361.yml +2 -1
- data/data/problems/362.yml +11 -13
- data/data/problems/363.yml +6 -6
- data/data/problems/364.yml +3 -3
- data/data/problems/365.yml +2 -2
- data/data/problems/366.yml +4 -5
- data/data/problems/369.yml +1 -1
- data/data/problems/370.yml +3 -3
- data/data/problems/372.yml +6 -8
- data/data/problems/374.yml +5 -7
- data/data/problems/375.yml +5 -6
- data/data/problems/377.yml +2 -2
- data/data/problems/378.yml +2 -2
- data/data/problems/379.yml +7 -8
- data/data/problems/38.yml +9 -9
- data/data/problems/380.yml +12 -15
- data/data/problems/381.yml +8 -11
- data/data/problems/382.yml +6 -6
- data/data/problems/383.yml +4 -4
- data/data/problems/384.yml +7 -8
- data/data/problems/385.yml +8 -8
- data/data/problems/386.yml +2 -2
- data/data/problems/388.yml +5 -6
- data/data/problems/39.yml +1 -1
- data/data/problems/390.yml +4 -6
- data/data/problems/391.yml +11 -12
- data/data/problems/392.yml +1 -1
- data/data/problems/393.yml +2 -2
- data/data/problems/394.yml +6 -7
- data/data/problems/395.yml +5 -5
- data/data/problems/396.yml +15 -17
- data/data/problems/397.yml +5 -8
- data/data/problems/4.yml +1 -1
- data/data/problems/40.yml +1 -1
- data/data/problems/400.yml +5 -6
- data/data/problems/401.yml +2 -2
- data/data/problems/402.yml +7 -8
- data/data/problems/403.yml +9 -10
- data/data/problems/404.yml +5 -6
- data/data/problems/405.yml +7 -7
- data/data/problems/406.yml +8 -10
- data/data/problems/407.yml +9 -9
- data/data/problems/410.yml +5 -6
- data/data/problems/411.yml +11 -12
- data/data/problems/412.yml +9 -9
- data/data/problems/414.yml +13 -15
- data/data/problems/415.yml +2 -2
- data/data/problems/417.yml +4 -5
- data/data/problems/418.yml +7 -8
- data/data/problems/419.yml +8 -8
- data/data/problems/420.yml +5 -5
- data/data/problems/421.yml +11 -12
- data/data/problems/422.yml +9 -9
- data/data/problems/423.yml +5 -7
- data/data/problems/424.yml +8 -9
- data/data/problems/425.yml +2 -3
- data/data/problems/426.yml +3 -3
- data/data/problems/427.yml +8 -8
- data/data/problems/428.yml +16 -19
- data/data/problems/430.yml +4 -5
- data/data/problems/44.yml +3 -3
- data/data/problems/45.yml +2 -2
- data/data/problems/46.yml +8 -8
- data/data/problems/47.yml +6 -10
- data/data/problems/53.yml +8 -9
- data/data/problems/56.yml +1 -1
- data/data/problems/57.yml +5 -5
- data/data/problems/58.yml +1 -1
- data/data/problems/6.yml +1 -1
- data/data/problems/61.yml +4 -4
- data/data/problems/64.yml +39 -46
- data/data/problems/65.yml +13 -14
- data/data/problems/66.yml +10 -10
- data/data/problems/68.yml +4 -5
- data/data/problems/69.yml +2 -2
- data/data/problems/70.yml +3 -4
- data/data/problems/71.yml +3 -3
- data/data/problems/72.yml +3 -3
- data/data/problems/73.yml +3 -3
- data/data/problems/74.yml +15 -22
- data/data/problems/75.yml +1 -1
- data/data/problems/8.yml +14 -14
- data/data/problems/81.yml +7 -7
- data/data/problems/82.yml +4 -4
- data/data/problems/83.yml +4 -4
- data/data/problems/85.yml +1 -1
- data/data/problems/86.yml +8 -8
- data/data/problems/88.yml +22 -27
- data/data/problems/9.yml +6 -6
- data/data/problems/90.yml +13 -13
- data/data/problems/91.yml +8 -8
- data/data/problems/92.yml +7 -9
- data/data/problems/93.yml +9 -10
- data/data/problems/95.yml +1 -1
- data/data/problems/96.yml +17 -17
- data/data/problems/97.yml +2 -2
- data/data/problems/99.yml +2 -2
- data/lib/euler/problem.rb +6 -1
- data/lib/euler/version.rb +1 -1
- metadata +2 -2
data/data/problems/255.yml
CHANGED
@@ -6,44 +6,43 @@
|
|
6
6
|
as the square root of <var>n</var> rounded to the nearest integer.\n\nThe following
|
7
7
|
procedure (essentially Heron's method adapted to integer arithmetic) finds the rounded-square-root
|
8
8
|
of <var>n</var>:\n\nLet <var>d</var> be the number of digits of the number <var>n</var>.
|
9
|
-
\ \n\rIf <var>d</var> is odd, set <var>x</var><sub>0</sub> = 2 ![×](
|
10
|
-
|
11
|
-
|
12
|
-
align='center'>\r\n<tr><td><var>x</var><sub><var>k</var>+1</sub>
|
13
|
-
style='text-align:center;'><var>x</var><sub><var>k</var></sub>
|
14
|
-
width='6' height='16' alt='⌈' border='0'
|
9
|
+
\ \n\rIf <var>d</var> is odd, set <var>x</var><sub>0</sub> = 2 ![×]({{ images_dir
|
10
|
+
}}/symbol_times.gif)10<sup>(<var>d</var>-1)⁄2</sup>. \n\rIf <var>d</var> is even,
|
11
|
+
set <var>x</var><sub>0</sub> = 7 ![×]({{ images_dir }}/symbol_times.gif)10<sup>(<var>d</var>-2)⁄2</sup>.
|
12
|
+
\ \n\rRepeat:\n\n![]({{ images_dir }}/p_255_Heron.gif)\n\n<!--\r\n<table align='center'>\r\n<tr><td><var>x</var><sub><var>k</var>+1</sub>
|
13
|
+
=</td>\r\n<td style='font-size:220%'>⌊</td>\r\n<td style='text-align:center;'><var>x</var><sub><var>k</var></sub>
|
14
|
+
+ <img src='images/symbol_lceil.gif' width='6' height='16' alt='⌈' border='0'
|
15
|
+
style='vertical-align:middle;' /><var>n</var>⁄<var>x</var><sub><var>k</var></sub><img
|
15
16
|
src='images/symbol_rceil.gif' width='6' height='16' alt='⌉' border='0' style='vertical-align:middle;'
|
16
17
|
/><br />\r\n<img src='images/blackdot.gif' width='75' height='1' alt='' /><br />\r\n2</td><td><td
|
17
18
|
style='font-size:220%'>⌋</td></tr>\r\n</table> -->\n\nuntil <var>x</var><sub><var>k</var>+1</sub>
|
18
19
|
= <var>x</var><sub><var>k</var></sub>.\n\nAs an example, let us find the rounded-square-root
|
19
20
|
of <var>n</var> = 4321. \n<var>n</var> has 4 digits, so <var>x</var><sub>0</sub>
|
20
|
-
= 7 ![×](/
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
the <dfn title=\"the largest integer not greater than x\">floor function</dfn> and
|
49
|
-
<dfn title=\"the smallest integer not less than x\">ceiling function</dfn> respectively.\n\n"
|
21
|
+
= 7 ![×]({{ images_dir }}/symbol_times.gif)10<sup>(4-2)⁄2</sup> = 70. \n ![]({{
|
22
|
+
images_dir }}/p_255_Example.gif)<!--<var>x</var><sub>1</sub> = <img src='images/symbol_lfloor.gif'
|
23
|
+
width='6' height='16' alt='⌊' border='0' style='vertical-align:middle;' />(70
|
24
|
+
+ <img src='images/symbol_lceil.gif' width='6' height='16' alt='⌈' border='0'
|
25
|
+
style='vertical-align:middle;' />4321⁄70<img src='images/symbol_rceil.gif'
|
26
|
+
width='6' height='16' alt='⌉' border='0' style='vertical-align:middle;' />)⁄2<img
|
27
|
+
src='images/symbol_rfloor.gif' width='6' height='16' alt='⌋' border='0' style='vertical-align:middle;'
|
28
|
+
/> = 66.<br />\r\n<var>x</var><sub>2</sub> = <img src='images/symbol_lfloor.gif'
|
29
|
+
width='6' height='16' alt='⌊' border='0' style='vertical-align:middle;' />(66
|
30
|
+
+ <img src='images/symbol_lceil.gif' width='6' height='16' alt='⌈' border='0'
|
31
|
+
style='vertical-align:middle;' />4321⁄66<img src='images/symbol_rceil.gif'
|
32
|
+
width='6' height='16' alt='⌉' border='0' style='vertical-align:middle;' />)⁄2<img
|
33
|
+
src='images/symbol_rfloor.gif' width='6' height='16' alt='⌋' border='0' style='vertical-align:middle;'
|
34
|
+
/> = 66.--> \n\rSince <var>x</var><sub>2</sub> = <var>x</var><sub>1</sub>, we stop
|
35
|
+
here. \n\rSo, after just two iterations, we have found that the rounded-square-root
|
36
|
+
of 4321 is 66 (the actual square root is 65.7343137…).\n\nThe number of iterations
|
37
|
+
required when using this method is surprisingly low. \n\rFor example, we can find
|
38
|
+
the rounded-square-root of a 5-digit integer (10,000 ![≤]({{ images_dir }}/symbol_le.gif)
|
39
|
+
<var>n</var> ![≤]({{ images_dir }}/symbol_le.gif) 99,999) with an average of 3.2102888889
|
40
|
+
iterations (the average value was rounded to 10 decimal places).\n\nUsing the procedure
|
41
|
+
described above, what is the average number of iterations required to find the rounded-square-root
|
42
|
+
of a 14-digit number (10<sup>13</sup> ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var>
|
43
|
+
![<]({{ images_dir }}/symbol_lt.gif) 10<sup>14</sup>)? \n\rGive your answer rounded
|
44
|
+
to 10 decimal places.\n\nNote: The symbols ![⌊]({{ images_dir }}/symbol_lfloor.gif)<var>x</var>
|
45
|
+
![⌋]({{ images_dir }}/symbol_rfloor.gif) and ![⌈]({{ images_dir }}/symbol_lceil.gif)<var>x</var>
|
46
|
+
![⌉]({{ images_dir }}/symbol_rceil.gif) represent the <dfn title=\"the largest integer
|
47
|
+
not greater than x\">floor function</dfn> and <dfn title=\"the smallest integer
|
48
|
+
not less than x\">ceiling function</dfn> respectively.\n\n"
|
data/data/problems/256.yml
CHANGED
@@ -4,32 +4,28 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=256
|
5
5
|
:content: "Tatami are rectangular mats, used to completely cover the floor of a room,
|
6
6
|
without overlap.\n\nAssuming that the only type of available tatami has dimensions
|
7
|
-
1 ![×](/
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
room:\n\n ![](/home/will/src/euler-manager/config/../data/images/p_256_tatami3.gif)
|
7
|
+
1 ![×]({{ images_dir }}/symbol_times.gif)2, there are obviously some limitations
|
8
|
+
for the shape and size of the rooms that can be covered.\n\nFor this problem, we
|
9
|
+
consider only rectangular rooms with integer dimensions <var>a</var>, <var>b</var>
|
10
|
+
and even size <var>s</var> = <var>a</var>·<var>b</var>. \n\rWe use the term 'size'
|
11
|
+
to denote the floor surface area of the room, and — without loss of generality —
|
12
|
+
we add the condition <var>a</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>b</var>.\n\nThere
|
13
|
+
is one rule to follow when laying out tatami: there must be no points where corners
|
14
|
+
of four different mats meet. \n\rFor example, consider the two arrangements below
|
15
|
+
for a 4 ![×]({{ images_dir }}/symbol_times.gif)4 room:\n\n ![]({{ images_dir }}/p_256_tatami3.gif)
|
17
16
|
\ \n\nThe arrangement on the left is acceptable, whereas the one on the right is
|
18
17
|
not: a red \" **X** \" in the middle, marks the point where four tatami meet.\n\nBecause
|
19
18
|
of this rule, certain even-sized rooms cannot be covered with tatami: we call them
|
20
19
|
tatami-free rooms. \n\rFurther, we define <var>T</var>(<var>s</var>) as the number
|
21
20
|
of tatami-free rooms of size <var>s</var>.\n\nThe smallest tatami-free room has
|
22
|
-
size <var>s</var> = 70 and dimensions 7 ![×](/
|
21
|
+
size <var>s</var> = 70 and dimensions 7 ![×]({{ images_dir }}/symbol_times.gif)10.
|
23
22
|
\ \n\rAll the other rooms of size <var>s</var> = 70 can be covered with tatami;
|
24
|
-
they are: 1 ![×](/
|
25
|
-
|
26
|
-
|
27
|
-
<var>
|
28
|
-
|
29
|
-
|
30
|
-
24 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)55,
|
31
|
-
30 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)44 and
|
32
|
-
33 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)40.
|
23
|
+
they are: 1 ![×]({{ images_dir }}/symbol_times.gif)70, 2 ![×]({{ images_dir }}/symbol_times.gif)35
|
24
|
+
and 5 ![×]({{ images_dir }}/symbol_times.gif)14. \n\rHence, <var>T</var>(70) =
|
25
|
+
1.\n\nSimilarly, we can verify that <var>T</var>(1320) = 5 because there are exactly
|
26
|
+
5 tatami-free rooms of size <var>s</var> = 1320: \n\r20 ![×]({{ images_dir }}/symbol_times.gif)66,
|
27
|
+
22 ![×]({{ images_dir }}/symbol_times.gif)60, 24 ![×]({{ images_dir }}/symbol_times.gif)55,
|
28
|
+
30 ![×]({{ images_dir }}/symbol_times.gif)44 and 33 ![×]({{ images_dir }}/symbol_times.gif)40.
|
33
29
|
\ \n\rIn fact, <var>s</var> = 1320 is the smallest room-size <var>s</var> for which
|
34
30
|
<var>T</var>(<var>s</var>) = 5.\n\nFind the smallest room-size <var>s</var> for
|
35
31
|
which <var>T</var>(<var>s</var>) = 200.\n\n"
|
data/data/problems/257.yml
CHANGED
@@ -2,13 +2,13 @@
|
|
2
2
|
:id: 257
|
3
3
|
:name: Angular Bisectors
|
4
4
|
:url: http://projecteuler.net/problem=257
|
5
|
-
:content: "Given is an integer sided triangle ABC with sides a ![≤](
|
6
|
-
b ![≤](/
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
5
|
+
:content: "Given is an integer sided triangle ABC with sides a ![≤]({{ images_dir
|
6
|
+
}}/symbol_le.gif) b ![≤]({{ images_dir }}/symbol_le.gif) c. \r(AB = c, BC = a and
|
7
|
+
AC = b). \n\rThe angular bisectors of the triangle intersect the sides at points
|
8
|
+
E, F and G (see picture below).\n\n ![]({{ images_dir }}/p_257_bisector.gif) \n\nThe
|
9
|
+
segments EF, EG and FG partition the triangle ABC into four smaller triangles: AEG,
|
10
|
+
BFE, CGF and EFG. \n\rIt can be proven that for each of these four triangles the
|
11
|
+
ratio area(ABC)/area(subtriangle) is rational. \n\rHowever, there exist triangles
|
12
12
|
for which some or all of these ratios are integral.\n\nHow many triangles ABC with
|
13
|
-
perimeter ![≤](/
|
14
|
-
|
13
|
+
perimeter ![≤]({{ images_dir }}/symbol_le.gif)100,000,000 exist so that the ratio
|
14
|
+
area(ABC)/area(AEG) is integral?\n\n"
|
data/data/problems/258.yml
CHANGED
@@ -3,9 +3,8 @@
|
|
3
3
|
:name: A lagged Fibonacci sequence
|
4
4
|
:url: http://projecteuler.net/problem=258
|
5
5
|
:content: "A sequence is defined as:\n\n- <var>g</var><sub><var>k</var></sub> = 1,
|
6
|
-
for 0 ![≤](/
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
= 10<sup>18</sup>.\n\n"
|
6
|
+
for 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>k</var> ![≤]({{ images_dir }}/symbol_le.gif)
|
7
|
+
1999\n- <var>g</var><sub><var>k</var></sub> = <var>g</var><sub><var>k</var>-2000</sub>
|
8
|
+
+ <var>g</var><sub><var>k</var>-1999</sub>, for <var>k</var> ![≥]({{ images_dir
|
9
|
+
}}/symbol_ge.gif) 2000.\r\n\nFind <var>g</var><sub><var>k</var></sub> mod 20092010
|
10
|
+
for <var>k</var> = 10<sup>18</sup>.\n\n"
|
data/data/problems/26.yml
CHANGED
@@ -17,5 +17,5 @@
|
|
17
17
|
|
18
18
|
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that <sup>1</sup>/<sub>7</sub> has a 6-digit recurring cycle.
|
19
19
|
|
20
|
-
Find the value of _d_ ![<](/
|
20
|
+
Find the value of _d_ ![<]({{ images_dir }}/symbol_lt.gif) 1000 for which <sup>1</sup>/<sub><i>d</i></sub> contains the longest recurring cycle in its decimal fraction part.
|
21
21
|
|
data/data/problems/260.yml
CHANGED
@@ -15,12 +15,10 @@
|
|
15
15
|
what the first player does. \n \rFor example, (0,1,2) and (1,3,3) are losing configurations:
|
16
16
|
any legal move leaves a winning configuration for the second player.\n\nConsider
|
17
17
|
all losing configurations (x<sub>i</sub>,y<sub>i</sub>,z<sub>i</sub>) where x<sub>i</sub>
|
18
|
-
![≤](/
|
19
|
-
![≤](/
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
y<sub>i</sub> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
|
25
|
-
z<sub>i</sub> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
|
18
|
+
![≤]({{ images_dir }}/symbol_le.gif) y<sub>i</sub> ![≤]({{ images_dir }}/symbol_le.gif)
|
19
|
+
z<sub>i</sub> ![≤]({{ images_dir }}/symbol_le.gif) 100. \n\rWe can verify that
|
20
|
+
Σ(x<sub>i</sub>+y<sub>i</sub>+z<sub>i</sub>) = 173895 for these.\n\nFind Σ(x<sub>i</sub>+y<sub>i</sub>+z<sub>i</sub>)
|
21
|
+
where (x<sub>i</sub>,y<sub>i</sub>,z<sub>i</sub>) ranges over the losing configurations
|
22
|
+
\ \n\rwith x<sub>i</sub> ![≤]({{ images_dir }}/symbol_le.gif) y<sub>i</sub> ![≤]({{
|
23
|
+
images_dir }}/symbol_le.gif) z<sub>i</sub> ![≤]({{ images_dir }}/symbol_le.gif)
|
26
24
|
1000.\n\n"
|
data/data/problems/261.yml
CHANGED
@@ -3,15 +3,14 @@
|
|
3
3
|
:name: Pivotal Square Sums
|
4
4
|
:url: http://projecteuler.net/problem=261
|
5
5
|
:content: "Let us call a positive integer <var>k</var> a <var>square-pivot</var>,
|
6
|
-
if there is a pair of integers <var>m</var> ![>](/
|
7
|
-
0 and <var>n</var> ![≥](/
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
= (<var>n</var>+1)<sup>2</sup> + ... + (<var>n</var>+<var>m</var>)<sup>2</sup>.\n\nSome
|
6
|
+
if there is a pair of integers <var>m</var> ![>]({{ images_dir }}/symbol_gt.gif)
|
7
|
+
0 and <var>n</var> ![≥]({{ images_dir }}/symbol_ge.gif) <var>k</var>, such that
|
8
|
+
the sum of the (<var>m</var>+1) consecutive squares up to <var>k</var> equals the
|
9
|
+
sum of the <var>m</var> consecutive squares from (<var>n</var>+1) on:\n\n\r(<var>k</var>-<var>m</var>)<sup>2</sup>
|
10
|
+
+ ... + <var>k</var><sup>2</sup> = (<var>n</var>+1)<sup>2</sup> + ... + (<var>n</var>+<var>m</var>)<sup>2</sup>.\n\nSome
|
12
11
|
small square-pivots are\n\n- **4** : 3<sup>2</sup> + **4** <sup>2</sup>\r = 5<sup>2</sup>\n-
|
13
12
|
**21** : 20<sup>2</sup> + **21** <sup>2</sup> = 29<sup>2</sup>\n- **24** : 21<sup>2</sup>
|
14
13
|
+ 22<sup>2</sup> + 23<sup>2</sup> + **24** <sup>2</sup> = 25<sup>2</sup> + 26<sup>2</sup>
|
15
14
|
+ 27<sup>2</sup>\n- **110** : 108<sup>2</sup> + 109<sup>2</sup> + **110** <sup>2</sup>
|
16
15
|
= 133<sup>2</sup> + 134<sup>2</sup>\n\nFind the sum of all **distinct** square-pivots
|
17
|
-
![≤](/
|
16
|
+
![≤]({{ images_dir }}/symbol_le.gif) 10<sup>10</sup>.\n\n"
|
data/data/problems/262.yml
CHANGED
@@ -4,7 +4,7 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=262
|
5
5
|
:content: "The following equation represents the _continuous_ topography of a mountainous
|
6
6
|
region, giving the <dfn title=\"height above sea level\">elevation</dfn> <var>h</var>
|
7
|
-
at any point (<var>x</var>,<var>y</var>):\n\n ![](/
|
7
|
+
at any point (<var>x</var>,<var>y</var>):\n\n ![]({{ images_dir }}/p_262_formula1.gif)
|
8
8
|
\ \n\nA mosquito intends to fly from A(200,200) to B(1400,1400), without leaving
|
9
9
|
the area given by 0 ≤ <var>x</var>, <var>y</var> ≤ 1600.\n\nBecause of the intervening
|
10
10
|
mountains, it first rises straight up to a point A', having elevation <var>f</var>.
|
data/data/problems/264.yml
CHANGED
@@ -6,14 +6,13 @@
|
|
6
6
|
coordinates\">lattice points</dfn>.\n- <dfn title=\"Centre of the circumscribed
|
7
7
|
circle\">Circumcentre</dfn> at the origin O.\n- <dfn title=\"Point where the three
|
8
8
|
altitudes meet\">Orthocentre</dfn> at the point H(5, 0).\n\nThere are nine such
|
9
|
-
triangles having a perimeter ![≤](/
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
four decimal places.\n\n"
|
9
|
+
triangles having a perimeter ![≤]({{ images_dir }}/symbol_le.gif) 50. \n\rListed
|
10
|
+
and shown in ascending order of their perimeter, they are:\n\n| A(-4, 3), B(5, 0),
|
11
|
+
C(4, -3) \n\rA(4, 3), B(5, 0), C(-4, -3) \n\rA(-3, 4), B(5, 0), C(3, -4) \n \n
|
12
|
+
\ \n \n \n\rA(3, 4), B(5, 0), C(-3, -4) \n\rA(0, 5), B(5, 0), C(0, -5) \n\rA(1,
|
13
|
+
8), B(8, -1), C(-4, -7) \n \n \n \n \n\rA(8, 1), B(1, -8), C(-4, 7) \n\rA(2,
|
14
|
+
9), B(9, -2), C(-6, -7) \n\rA(9, 2), B(2, -9), C(-6, 7) \n | ![]({{ images_dir
|
15
|
+
}}/p_264_TriangleCentres.gif) |\n\nThe sum of their perimeters, rounded to four
|
16
|
+
decimal places, is 291.0089.\n\nFind all such triangles with a perimeter ![≤]({{
|
17
|
+
images_dir }}/symbol_le.gif) 10<sup>5</sup>. \n\rEnter as your answer the sum of
|
18
|
+
their perimeters rounded to four decimal places.\n\n"
|
data/data/problems/265.yml
CHANGED
@@ -4,7 +4,7 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=265
|
5
5
|
:content: "2<sup>N</sup> binary digits can be placed in a circle so that all the N-digit
|
6
6
|
clockwise subsequences are distinct.\n\nFor N=3, two such circular arrangements
|
7
|
-
are possible, ignoring rotations:\n\n ![](/
|
7
|
+
are possible, ignoring rotations:\n\n ![]({{ images_dir }}/p_265_BinaryCircles.gif)\n\nFor
|
8
8
|
the first arrangement, the 3-digit subsequences, in clockwise order, are: \n 000,
|
9
9
|
001, 010, 101, 011, 111, 110 and 100.\n\nEach circular arrangement can be encoded
|
10
10
|
as a number by concatenating the binary digits starting with the subsequence of
|
data/data/problems/27.yml
CHANGED
@@ -6,14 +6,13 @@
|
|
6
6
|
turns out that the formula will produce 40 primes for the consecutive values _n_
|
7
7
|
= 0 to 39. However, when _n_ = 40, 40<sup>2</sup> + 40 + 41 = 40(40 + 1) + 41 is
|
8
8
|
divisible by 41, and certainly when _n_ = 41, 41² + 41 + 41 is clearly divisible
|
9
|
-
by 41.\n\nThe incredible formula _n_² ![−](/
|
10
|
-
|
11
|
-
|
12
|
-
and 1601, is ![−](/
|
13
|
-
|
14
|
-
1000 and |_b_| ![<](/
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
with _n_ = 0.\n\n"
|
9
|
+
by 41.\n\nThe incredible formula _n_² ![−]({{ images_dir }}/symbol_minus.gif) 79_n_
|
10
|
+
+ 1601 was discovered, which produces 80 primes for the consecutive values _n_ =
|
11
|
+
0 to 79. The product of the coefficients, ![−]({{ images_dir }}/symbol_minus.gif)79
|
12
|
+
and 1601, is ![−]({{ images_dir }}/symbol_minus.gif)126479.\n\nConsidering quadratics
|
13
|
+
of the form:\n\n> _n_² + _an_ + _b_, where |_a_| ![<]({{ images_dir }}/symbol_lt.gif)
|
14
|
+
1000 and |_b_| ![<]({{ images_dir }}/symbol_lt.gif) 1000 \n> \n> \n> where |_n_|
|
15
|
+
is the modulus/absolute value of _n_ \n> e.g. |11| = 11 and | ![−]({{ images_dir
|
16
|
+
}}/symbol_minus.gif)4| = 4\n\nFind the product of the coefficients, _a_ and _b_,
|
17
|
+
for the quadratic expression that produces the maximum number of primes for consecutive
|
18
|
+
values of _n_, starting with _n_ = 0.\n\n"
|
data/data/problems/270.yml
CHANGED
@@ -3,15 +3,15 @@
|
|
3
3
|
:name: Cutting Squares
|
4
4
|
:url: http://projecteuler.net/problem=270
|
5
5
|
:content: |+
|
6
|
-
A square piece of paper with integer dimensions N ![×](/
|
6
|
+
A square piece of paper with integer dimensions N ![×]({{ images_dir }}/symbol_times.gif)N is placed with a corner at the origin and two of its sides along the <var>x</var>- and <var>y</var>-axes. Then, we cut it up respecting the following rules:
|
7
7
|
|
8
8
|
- We only make straight cuts between two points lying on different sides of the square, and having integer coordinates.
|
9
9
|
- Two cuts cannot cross, but several cuts can meet at the same border point.
|
10
10
|
- Proceed until no more legal cuts can be made.
|
11
11
|
|
12
|
-
Counting any reflections or rotations as distinct, we call C(N) the number of ways to cut an N ![×](/
|
12
|
+
Counting any reflections or rotations as distinct, we call C(N) the number of ways to cut an N ![×]({{ images_dir }}/symbol_times.gif)N square. For example, C(1) = 2 and C(2) = 30 (shown below).
|
13
13
|
|
14
|
-
![](/
|
14
|
+
![]({{ images_dir }}/p_270_CutSquare.gif)
|
15
15
|
|
16
16
|
What is C(30) mod 10<sup>8</sup> ?
|
17
17
|
|
data/data/problems/271.yml
CHANGED
@@ -3,9 +3,8 @@
|
|
3
3
|
:name: Modular Cubes, part 1
|
4
4
|
:url: http://projecteuler.net/problem=271
|
5
5
|
:content: "For a positive number <var>n</var>, define S(<var>n</var>) as the sum of
|
6
|
-
the integers <var>x,</var> for which 1 ![<](/
|
7
|
-
![<](/
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
S(13082761331670030).\n\n"
|
6
|
+
the integers <var>x,</var> for which 1 ![<]({{ images_dir }}/symbol_lt.gif)<var>x</var>
|
7
|
+
![<]({{ images_dir }}/symbol_lt.gif)<var>n</var> and \n <var>x</var><sup>3</sup>
|
8
|
+
![≡]({{ images_dir }}/symbol_cong.gif)1 mod <var>n</var>.\n\nWhen <var>n</var>=91,
|
9
|
+
there are 8 possible values for <var>x</var>, namely : 9, 16, 22, 29, 53, 74, 79,
|
10
|
+
81. \n\rThus, S(91)=9+16+22+29+53+74+79+81=363.\n\nFind S(13082761331670030).\n\n"
|
data/data/problems/272.yml
CHANGED
@@ -3,10 +3,9 @@
|
|
3
3
|
:name: Modular Cubes, part 2
|
4
4
|
:url: http://projecteuler.net/problem=272
|
5
5
|
:content: "For a positive number <var>n</var>, define C(<var>n</var>) as the number
|
6
|
-
of the integers <var>x,</var> for which 1 ![<](/
|
7
|
-
![<](/
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
for which C(<var>n</var>)=242.\n\n"
|
6
|
+
of the integers <var>x,</var> for which 1 ![<]({{ images_dir }}/symbol_lt.gif)<var>x</var>
|
7
|
+
![<]({{ images_dir }}/symbol_lt.gif)<var>n</var> and \n <var>x</var><sup>3</sup>
|
8
|
+
![≡]({{ images_dir }}/symbol_cong.gif)1 mod <var>n</var>.\n\nWhen <var>n</var>=91,
|
9
|
+
there are 8 possible values for <var>x</var>, namely : 9, 16, 22, 29, 53, 74, 79,
|
10
|
+
81. \n\rThus, C(91)=8.\n\nFind the sum of the positive numbers <var>n</var> ![≤]({{
|
11
|
+
images_dir }}/symbol_le.gif)10<sup>11</sup> for which C(<var>n</var>)=242.\n\n"
|
data/data/problems/273.yml
CHANGED
@@ -3,15 +3,15 @@
|
|
3
3
|
:name: Sum of Squares
|
4
4
|
:url: http://projecteuler.net/problem=273
|
5
5
|
:content: |+
|
6
|
-
Consider equations of the form: <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>N</var>, 0 ![≤](/
|
6
|
+
Consider equations of the form: <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>N</var>, 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>a</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>b</var>, <var>a</var>, <var>b</var> and <var>N</var> integer.
|
7
7
|
|
8
8
|
For <var>N</var>=65 there are two solutions:
|
9
9
|
|
10
10
|
<var>a</var>=1, <var>b</var>=8 and <var>a</var>=4, <var>b</var>=7.
|
11
11
|
|
12
|
-
We call S(<var>N</var>) the sum of the values of <var>a</var> of all solutions of <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>N</var>, 0 ![≤](/
|
12
|
+
We call S(<var>N</var>) the sum of the values of <var>a</var> of all solutions of <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup> = <var>N</var>, 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>a</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>b</var>, <var>a</var>, <var>b</var> and <var>N</var> integer.
|
13
13
|
|
14
14
|
Thus S(65) = 1 + 4 = 5.
|
15
15
|
|
16
|
-
Find ![∑](/
|
16
|
+
Find ![∑]({{ images_dir }}/symbol_sum.gif)S(<var>N</var>), for all squarefree <var>N</var> only divisible by primes of the form 4<var>k</var>+1 with 4<var>k</var>+1 ![<]({{ images_dir }}/symbol_lt.gif) 150.
|
17
17
|
|
data/data/problems/274.yml
CHANGED
@@ -2,19 +2,19 @@
|
|
2
2
|
:id: 274
|
3
3
|
:name: Divisibility Multipliers
|
4
4
|
:url: http://projecteuler.net/problem=274
|
5
|
-
:content: "For each integer <var>p</var> ![>](/
|
6
|
-
|
7
|
-
<var>p</var> which preserves divisibility by <var>p</var> for
|
8
|
-
on any positive integer, <var>n</var>:\n\n<var>f</var>(<var>n</var>)
|
9
|
-
the last digit of <var>n</var>) + (the last digit of <var>n</var>) \\*
|
10
|
-
is, if <var>m</var> is the divisibility multiplier for <var>p</var>,
|
11
|
-
is divisible by <var>p</var> if and only if <var>n</var>
|
12
|
-
<var>n</var> is much larger than <var>p</var>,
|
13
|
-
|
14
|
-
divisibility test for <var>p</var>.)\n\nFor
|
15
|
-
for 113 is 34.\n\n<var>f</var>(76275) = 7627
|
16
|
-
are both divisible by 113 \n<var>f</var>(12345)
|
17
|
-
and 1404 are both not divisible by 113\n\nThe sum
|
18
|
-
for the primes that are coprime to 10 and less than 1000 is 39517. What is the sum
|
5
|
+
:content: "For each integer <var>p</var> ![>]({{ images_dir }}/symbol_gt.gif) 1 coprime
|
6
|
+
to 10 there is a positive _divisibility multiplier_ <var>m</var> ![<]({{ images_dir
|
7
|
+
}}/symbol_lt.gif) <var>p</var> which preserves divisibility by <var>p</var> for
|
8
|
+
the following function on any positive integer, <var>n</var>:\n\n<var>f</var>(<var>n</var>)
|
9
|
+
= (all but the last digit of <var>n</var>) + (the last digit of <var>n</var>) \\*
|
10
|
+
<var>m</var>\n\nThat is, if <var>m</var> is the divisibility multiplier for <var>p</var>,
|
11
|
+
then <var>f</var>(<var>n</var>) is divisible by <var>p</var> if and only if <var>n</var>
|
12
|
+
is divisible by <var>p</var>.\n\n(When <var>n</var> is much larger than <var>p</var>,
|
13
|
+
<var>f</var>(<var>n</var>) will be less than <var>n</var> and repeated application
|
14
|
+
of <var>f</var> provides a multiplicative divisibility test for <var>p</var>.)\n\nFor
|
15
|
+
example, the divisibility multiplier for 113 is 34.\n\n<var>f</var>(76275) = 7627
|
16
|
+
+ 5 \\* 34 = 7797 : 76275 and 7797 are both divisible by 113 \n<var>f</var>(12345)
|
17
|
+
= 1234 + 5 \\* 34 = 1404 : 12345 and 1404 are both not divisible by 113\n\nThe sum
|
19
18
|
of the divisibility multipliers for the primes that are coprime to 10 and less than
|
20
|
-
|
19
|
+
1000 is 39517. What is the sum of the divisibility multipliers for the primes that
|
20
|
+
are coprime to 10 and less than 10<sup>7</sup>?\n\n"
|
data/data/problems/275.yml
CHANGED
@@ -12,6 +12,6 @@
|
|
12
12
|
to zero.\n\nWhen counting the sculptures, any arrangements which are simply reflections
|
13
13
|
about the <var>y</var>-axis, are <u>not</u> counted as distinct. For example, the
|
14
14
|
18 balanced sculptures of order 6 are shown below; note that each pair of mirror
|
15
|
-
images (about the <var>y</var>-axis) is counted as one sculpture:\n\n ![](
|
16
|
-
are 964 balanced sculptures of order 10 and 360505
|
17
|
-
sculptures are there of order 18?\n\n"
|
15
|
+
images (about the <var>y</var>-axis) is counted as one sculpture:\n\n ![]({{ images_dir
|
16
|
+
}}/p_275_sculptures2.gif)\n\nThere are 964 balanced sculptures of order 10 and 360505
|
17
|
+
of order 15. \nHow many balanced sculptures are there of order 18?\n\n"
|
data/data/problems/276.yml
CHANGED
@@ -2,8 +2,8 @@
|
|
2
2
|
:id: 276
|
3
3
|
:name: Primitive Triangles
|
4
4
|
:url: http://projecteuler.net/problem=276
|
5
|
-
:content: "Consider the triangles with integer sides a, b and c with a ![≤](
|
6
|
-
b ![≤](/
|
7
|
-
|
5
|
+
:content: "Consider the triangles with integer sides a, b and c with a ![≤]({{ images_dir
|
6
|
+
}}/symbol_le.gif) b ![≤]({{ images_dir }}/symbol_le.gif) c. \n\rAn integer sided
|
7
|
+
triangle (a,b,c) is called primitive if <dfn title=\" gcd(a,b,c)=gcd(a,gcd(b,c))\">
|
8
8
|
gcd(a,b,c)</dfn>=1. \n\rHow many primitive integer sided triangles exist with
|
9
9
|
a perimeter not exceeding 10 000 000?\n\n"
|
data/data/problems/277.yml
CHANGED
@@ -15,7 +15,7 @@
|
|
15
15
|
corresponds to the steps \"DdDddUUdDD\".\n\nOf course, there are other sequences
|
16
16
|
that begin with that same sequence \"DdDddUUdDD....\". \n\rFor instance, if <var>a</var><sub>1</sub>=1004064,
|
17
17
|
then the sequence is DdDddUUdDDDdUDUUUdDdUUDDDUdDD. \n\rIn fact, 1004064 is the
|
18
|
-
smallest possible <var>a</var><sub>1</sub> ![>](/
|
18
|
+
smallest possible <var>a</var><sub>1</sub> ![>]({{ images_dir }}/symbol_gt.gif)
|
19
19
|
10<sup>6</sup> that begins with the sequence DdDddUUdDD.\n\nWhat is the smallest
|
20
|
-
<var>a</var><sub>1</sub> ![>](/
|
21
|
-
|
20
|
+
<var>a</var><sub>1</sub> ![>]({{ images_dir }}/symbol_gt.gif) 10<sup>15</sup> that
|
21
|
+
begins with the sequence \"UDDDUdddDDUDDddDdDddDDUDDdUUDd\"?\n\n"
|
data/data/problems/278.yml
CHANGED
@@ -2,23 +2,21 @@
|
|
2
2
|
:id: 278
|
3
3
|
:name: Linear Combinations of Semiprimes
|
4
4
|
:url: http://projecteuler.net/problem=278
|
5
|
-
:content: "Given the values of integers 1 ![<](/
|
6
|
-
<var>a</var><sub>
|
7
|
-
<var>a</var><sub>
|
8
|
-
![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) <var>a</var><sub><var>n</var></sub>,
|
5
|
+
:content: "Given the values of integers 1 ![<]({{ images_dir }}/symbol_lt.gif) <var>a</var><sub>1</sub>
|
6
|
+
![<]({{ images_dir }}/symbol_lt.gif) <var>a</var><sub>2</sub> ![<]({{ images_dir
|
7
|
+
}}/symbol_lt.gif)... ![<]({{ images_dir }}/symbol_lt.gif) <var>a</var><sub><var>n</var></sub>,
|
9
8
|
consider the linear combination \n <var>q</var><sub>1</sub><var>a</var><sub>1</sub>
|
10
9
|
+ <var>q</var><sub>2</sub><var>a</var><sub>2</sub> + ... + <var>q</var><sub><var>n</var></sub><var>a</var><sub><var>n</var></sub>
|
11
|
-
= <var>b</var>, using only integer values <var>q</var><sub><var>k</var></sub> ![≥](
|
12
|
-
0.\n\nNote that for a given set of <var>a</var><sub><var>k</var></sub>,
|
13
|
-
that not all values of <var>b</var> are possible. \n\rFor instance, if
|
14
|
-
= 5 and <var>a</var><sub>2</sub> = 7, there are no <var>q</var><sub>1</sub>
|
15
|
-
0 and <var>q</var><sub>2</sub> ![≥](
|
16
|
-
0 such that <var>b</var> could be \n \r1, 2, 3, 4, 6, 8, 9, 11,
|
17
|
-
|
18
|
-
= 5 and <var>a</var><sub>2</sub> = 7. \n We therefore
|
19
|
-
23. \n Similarly, it can be shown that <var>f</var>(6,
|
20
|
-
22, 77) = 195.\n\nFind ![∑](/
|
10
|
+
= <var>b</var>, using only integer values <var>q</var><sub><var>k</var></sub> ![≥]({{
|
11
|
+
images_dir }}/symbol_ge.gif) 0.\n\nNote that for a given set of <var>a</var><sub><var>k</var></sub>,
|
12
|
+
it may be that not all values of <var>b</var> are possible. \n\rFor instance, if
|
13
|
+
<var>a</var><sub>1</sub> = 5 and <var>a</var><sub>2</sub> = 7, there are no <var>q</var><sub>1</sub>
|
14
|
+
![≥]({{ images_dir }}/symbol_ge.gif) 0 and <var>q</var><sub>2</sub> ![≥]({{ images_dir
|
15
|
+
}}/symbol_ge.gif) 0 such that <var>b</var> could be \n \r1, 2, 3, 4, 6, 8, 9, 11,
|
16
|
+
13, 16, 18 or 23.\r \n\rIn fact, 23 is the largest impossible value of <var>b</var>
|
17
|
+
for <var>a</var><sub>1</sub> = 5 and <var>a</var><sub>2</sub> = 7. \n We therefore
|
18
|
+
call <var>f</var>(5, 7) = 23. \n Similarly, it can be shown that <var>f</var>(6,
|
19
|
+
10, 15)=29 and <var>f</var>(14, 22, 77) = 195.\n\nFind ![∑]({{ images_dir }}/symbol_sum.gif)
|
21
20
|
<var>f</var>(<var>p*q,p*r,q*r</var>), where <var>p</var>, <var>q</var> and <var>r</var>
|
22
|
-
are prime numbers and <var>p</var> < <var>q</var> ![<](/
|
23
|
-
<var>r</var> ![<](/
|
24
|
-
5000.\n\n"
|
21
|
+
are prime numbers and <var>p</var> < <var>q</var> ![<]({{ images_dir }}/symbol_lt.gif)
|
22
|
+
<var>r</var> ![<]({{ images_dir }}/symbol_lt.gif) 5000.\n\n"
|
data/data/problems/281.yml
CHANGED
@@ -5,10 +5,10 @@
|
|
5
5
|
:content: "You are given a pizza (perfect circle) that has been cut into <var>m</var>·<var>n</var>
|
6
6
|
equal pieces and you want to have exactly one topping on each slice.\n\nLet <var>f</var>(<var>m</var>,<var>n</var>)
|
7
7
|
denote the number of ways you can have toppings on the pizza with <var>m</var> different
|
8
|
-
toppings (<var>m</var> ![≥](/
|
9
|
-
|
8
|
+
toppings (<var>m</var> ![≥]({{ images_dir }}/symbol_ge.gif) 2), using each topping
|
9
|
+
on exactly <var>n</var> slices (<var>n</var> ![≥]({{ images_dir }}/symbol_ge.gif) 1).
|
10
10
|
\ \nReflections are considered distinct, rotations are not.\n\nThus, for instance,
|
11
11
|
<var>f</var>(2,1) = 1, <var>f</var>(2,2) = <var>f</var>(3,1) = 2 and <var>f</var>(3,2) = 16.
|
12
|
-
\ \n<var>f</var>(3,2) is shown below:\n\n ![](/
|
12
|
+
\ \n<var>f</var>(3,2) is shown below:\n\n ![]({{ images_dir }}/p_281_pizza.gif)\n\nFind
|
13
13
|
the sum of all <var>f</var>(<var>m</var>,<var>n</var>) such that <var>f</var>(<var>m</var>,<var>n</var>)
|
14
|
-
![≤](/
|
14
|
+
![≤]({{ images_dir }}/symbol_le.gif) 10<sup>15</sup>.\n\n"
|
data/data/problems/282.yml
CHANGED
@@ -5,9 +5,9 @@
|
|
5
5
|
:content: |+
|
6
6
|
For non-negative integers <var>m</var>, <var>n</var>, the Ackermann function <var>A</var>(<var>m</var>, <var>n</var>) is defined as follows:
|
7
7
|
|
8
|
-
![](/
|
8
|
+
![]({{ images_dir }}/p_282_formula.gif)
|
9
9
|
|
10
10
|
For example <var>A</var>(1, 0) = 2, <var>A</var>(2, 2) = 7 and <var>A</var>(3, 4) = 125.
|
11
11
|
|
12
|
-
Find ![](/
|
12
|
+
Find ![]({{ images_dir }}/p_282formula3.gif)<var>A</var>(<var>n</var>, <var>n</var>) and give your answer mod 14<sup>8</sup>.
|
13
13
|
|
data/data/problems/284.yml
CHANGED
@@ -9,11 +9,10 @@
|
|
9
9
|
the 3-digit number c37 is also a steady square: c37<sup>2</sup> = aa0c37, and the
|
10
10
|
sum of its digits is c+3+7=18 in the same numbering system. The letters a, b, c
|
11
11
|
and d are used for the 10, 11, 12 and 13 digits respectively, in a manner similar
|
12
|
-
to the hexadecimal numbering system.\n\nFor 1 ![≤](/
|
13
|
-
n ![≤](/
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
and give your answer in the base 14 system using lower case letters where necessary.\n\n"
|
12
|
+
to the hexadecimal numbering system.\n\nFor 1 ![≤]({{ images_dir }}/symbol_le.gif)
|
13
|
+
n ![≤]({{ images_dir }}/symbol_le.gif) 9, the sum of the digits of all the n-digit
|
14
|
+
steady squares in the base 14 numbering system is 2d8 (582 decimal). Steady squares
|
15
|
+
with leading 0's are not allowed.\n\nFind the sum of the digits of all the n-digit
|
16
|
+
steady squares in the base 14 numbering system for \n\r1 ![≤]({{ images_dir }}/symbol_le.gif)
|
17
|
+
n ![≤]({{ images_dir }}/symbol_le.gif) 10000 (decimal) and give your answer in the
|
18
|
+
base 14 system using lower case letters where necessary.\n\n"
|