euler-manager 0.0.6 → 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +13 -0
- data/data/images/sod_13.gif +4 -0
- data/data/problems/100.yml +1 -1
- data/data/problems/101.yml +16 -16
- data/data/problems/102.yml +2 -3
- data/data/problems/103.yml +16 -16
- data/data/problems/105.yml +2 -2
- data/data/problems/106.yml +2 -2
- data/data/problems/107.yml +15 -15
- data/data/problems/108.yml +13 -16
- data/data/problems/109.yml +16 -17
- data/data/problems/11.yml +22 -23
- data/data/problems/110.yml +9 -10
- data/data/problems/114.yml +30 -41
- data/data/problems/116.yml +19 -25
- data/data/problems/117.yml +24 -33
- data/data/problems/120.yml +3 -3
- data/data/problems/122.yml +18 -20
- data/data/problems/123.yml +2 -2
- data/data/problems/124.yml +18 -23
- data/data/problems/126.yml +10 -11
- data/data/problems/127.yml +7 -7
- data/data/problems/128.yml +1 -1
- data/data/problems/130.yml +6 -7
- data/data/problems/131.yml +1 -1
- data/data/problems/132.yml +1 -1
- data/data/problems/134.yml +2 -2
- data/data/problems/135.yml +2 -2
- data/data/problems/136.yml +2 -2
- data/data/problems/137.yml +4 -4
- data/data/problems/138.yml +4 -4
- data/data/problems/139.yml +1 -1
- data/data/problems/14.yml +12 -13
- data/data/problems/140.yml +3 -3
- data/data/problems/142.yml +1 -1
- data/data/problems/143.yml +2 -2
- data/data/problems/144.yml +3 -3
- data/data/problems/147.yml +1 -1
- data/data/problems/149.yml +11 -13
- data/data/problems/15.yml +3 -3
- data/data/problems/150.yml +8 -8
- data/data/problems/151.yml +1 -1
- data/data/problems/152.yml +1 -1
- data/data/problems/153.yml +24 -26
- data/data/problems/154.yml +10 -9
- data/data/problems/155.yml +3 -3
- data/data/problems/156.yml +7 -8
- data/data/problems/157.yml +3 -4
- data/data/problems/158.yml +4 -5
- data/data/problems/159.yml +3 -3
- data/data/problems/161.yml +5 -4
- data/data/problems/163.yml +10 -10
- data/data/problems/165.yml +1 -1
- data/data/problems/166.yml +7 -7
- data/data/problems/167.yml +3 -4
- data/data/problems/168.yml +5 -5
- data/data/problems/170.yml +2 -2
- data/data/problems/171.yml +3 -3
- data/data/problems/173.yml +1 -1
- data/data/problems/174.yml +3 -3
- data/data/problems/175.yml +4 -4
- data/data/problems/177.yml +1 -1
- data/data/problems/179.yml +1 -1
- data/data/problems/180.yml +8 -9
- data/data/problems/182.yml +22 -24
- data/data/problems/183.yml +14 -15
- data/data/problems/184.yml +2 -2
- data/data/problems/186.yml +10 -11
- data/data/problems/187.yml +6 -8
- data/data/problems/189.yml +10 -9
- data/data/problems/190.yml +1 -1
- data/data/problems/192.yml +11 -12
- data/data/problems/194.yml +8 -8
- data/data/problems/195.yml +2 -2
- data/data/problems/197.yml +5 -6
- data/data/problems/198.yml +11 -12
- data/data/problems/199.yml +7 -7
- data/data/problems/20.yml +8 -10
- data/data/problems/202.yml +1 -1
- data/data/problems/207.yml +4 -4
- data/data/problems/208.yml +4 -5
- data/data/problems/21.yml +5 -6
- data/data/problems/210.yml +4 -5
- data/data/problems/211.yml +1 -1
- data/data/problems/212.yml +22 -26
- data/data/problems/213.yml +5 -6
- data/data/problems/214.yml +8 -9
- data/data/problems/215.yml +4 -4
- data/data/problems/216.yml +5 -5
- data/data/problems/217.yml +8 -10
- data/data/problems/218.yml +1 -1
- data/data/problems/22.yml +1 -1
- data/data/problems/220.yml +15 -15
- data/data/problems/221.yml +4 -5
- data/data/problems/223.yml +5 -6
- data/data/problems/224.yml +5 -6
- data/data/problems/226.yml +8 -8
- data/data/problems/228.yml +4 -5
- data/data/problems/229.yml +16 -16
- data/data/problems/230.yml +4 -4
- data/data/problems/231.yml +4 -5
- data/data/problems/233.yml +1 -1
- data/data/problems/234.yml +9 -10
- data/data/problems/236.yml +4 -4
- data/data/problems/237.yml +3 -3
- data/data/problems/238.yml +3 -4
- data/data/problems/241.yml +4 -4
- data/data/problems/242.yml +2 -2
- data/data/problems/243.yml +12 -12
- data/data/problems/244.yml +10 -11
- data/data/problems/245.yml +14 -15
- data/data/problems/246.yml +10 -9
- data/data/problems/247.yml +12 -13
- data/data/problems/251.yml +3 -3
- data/data/problems/252.yml +6 -7
- data/data/problems/254.yml +2 -2
- data/data/problems/255.yml +35 -36
- data/data/problems/256.yml +16 -20
- data/data/problems/257.yml +9 -9
- data/data/problems/258.yml +5 -6
- data/data/problems/26.yml +1 -1
- data/data/problems/260.yml +6 -8
- data/data/problems/261.yml +6 -7
- data/data/problems/262.yml +1 -1
- data/data/problems/264.yml +10 -11
- data/data/problems/265.yml +1 -1
- data/data/problems/27.yml +10 -11
- data/data/problems/270.yml +3 -3
- data/data/problems/271.yml +5 -6
- data/data/problems/272.yml +6 -7
- data/data/problems/273.yml +3 -3
- data/data/problems/274.yml +15 -15
- data/data/problems/275.yml +3 -3
- data/data/problems/276.yml +3 -3
- data/data/problems/277.yml +3 -3
- data/data/problems/278.yml +15 -17
- data/data/problems/281.yml +4 -4
- data/data/problems/282.yml +2 -2
- data/data/problems/284.yml +7 -8
- data/data/problems/287.yml +18 -17
- data/data/problems/288.yml +1 -1
- data/data/problems/289.yml +1 -1
- data/data/problems/29.yml +12 -13
- data/data/problems/290.yml +1 -1
- data/data/problems/291.yml +3 -3
- data/data/problems/292.yml +1 -1
- data/data/problems/293.yml +7 -7
- data/data/problems/295.yml +8 -8
- data/data/problems/296.yml +4 -5
- data/data/problems/297.yml +4 -5
- data/data/problems/299.yml +11 -12
- data/data/problems/300.yml +10 -9
- data/data/problems/301.yml +2 -2
- data/data/problems/303.yml +3 -3
- data/data/problems/304.yml +6 -7
- data/data/problems/305.yml +3 -2
- data/data/problems/306.yml +8 -11
- data/data/problems/307.yml +2 -3
- data/data/problems/309.yml +8 -8
- data/data/problems/31.yml +1 -1
- data/data/problems/310.yml +6 -7
- data/data/problems/311.yml +11 -11
- data/data/problems/312.yml +5 -5
- data/data/problems/313.yml +4 -4
- data/data/problems/314.yml +4 -5
- data/data/problems/315.yml +26 -27
- data/data/problems/316.yml +2 -4
- data/data/problems/318.yml +27 -34
- data/data/problems/319.yml +11 -12
- data/data/problems/32.yml +1 -1
- data/data/problems/320.yml +1 -1
- data/data/problems/321.yml +3 -3
- data/data/problems/322.yml +4 -4
- data/data/problems/323.yml +7 -8
- data/data/problems/324.yml +8 -9
- data/data/problems/325.yml +1 -1
- data/data/problems/326.yml +2 -2
- data/data/problems/327.yml +27 -29
- data/data/problems/328.yml +2 -2
- data/data/problems/330.yml +13 -14
- data/data/problems/331.yml +12 -12
- data/data/problems/332.yml +10 -9
- data/data/problems/333.yml +15 -16
- data/data/problems/334.yml +14 -14
- data/data/problems/335.yml +2 -2
- data/data/problems/336.yml +5 -4
- data/data/problems/337.yml +7 -7
- data/data/problems/338.yml +21 -24
- data/data/problems/340.yml +6 -7
- data/data/problems/341.yml +3 -5
- data/data/problems/342.yml +6 -7
- data/data/problems/343.yml +8 -12
- data/data/problems/344.yml +1 -1
- data/data/problems/347.yml +8 -8
- data/data/problems/350.yml +5 -5
- data/data/problems/351.yml +1 -1
- data/data/problems/352.yml +25 -26
- data/data/problems/353.yml +1 -1
- data/data/problems/354.yml +6 -6
- data/data/problems/356.yml +2 -3
- data/data/problems/358.yml +13 -14
- data/data/problems/359.yml +1 -1
- data/data/problems/361.yml +2 -1
- data/data/problems/362.yml +11 -13
- data/data/problems/363.yml +6 -6
- data/data/problems/364.yml +3 -3
- data/data/problems/365.yml +2 -2
- data/data/problems/366.yml +4 -5
- data/data/problems/369.yml +1 -1
- data/data/problems/370.yml +3 -3
- data/data/problems/372.yml +6 -8
- data/data/problems/374.yml +5 -7
- data/data/problems/375.yml +5 -6
- data/data/problems/377.yml +2 -2
- data/data/problems/378.yml +2 -2
- data/data/problems/379.yml +7 -8
- data/data/problems/38.yml +9 -9
- data/data/problems/380.yml +12 -15
- data/data/problems/381.yml +8 -11
- data/data/problems/382.yml +6 -6
- data/data/problems/383.yml +4 -4
- data/data/problems/384.yml +7 -8
- data/data/problems/385.yml +8 -8
- data/data/problems/386.yml +2 -2
- data/data/problems/388.yml +5 -6
- data/data/problems/39.yml +1 -1
- data/data/problems/390.yml +4 -6
- data/data/problems/391.yml +11 -12
- data/data/problems/392.yml +1 -1
- data/data/problems/393.yml +2 -2
- data/data/problems/394.yml +6 -7
- data/data/problems/395.yml +5 -5
- data/data/problems/396.yml +15 -17
- data/data/problems/397.yml +5 -8
- data/data/problems/4.yml +1 -1
- data/data/problems/40.yml +1 -1
- data/data/problems/400.yml +5 -6
- data/data/problems/401.yml +2 -2
- data/data/problems/402.yml +7 -8
- data/data/problems/403.yml +9 -10
- data/data/problems/404.yml +5 -6
- data/data/problems/405.yml +7 -7
- data/data/problems/406.yml +8 -10
- data/data/problems/407.yml +9 -9
- data/data/problems/410.yml +5 -6
- data/data/problems/411.yml +11 -12
- data/data/problems/412.yml +9 -9
- data/data/problems/414.yml +13 -15
- data/data/problems/415.yml +2 -2
- data/data/problems/417.yml +4 -5
- data/data/problems/418.yml +7 -8
- data/data/problems/419.yml +8 -8
- data/data/problems/420.yml +5 -5
- data/data/problems/421.yml +11 -12
- data/data/problems/422.yml +9 -9
- data/data/problems/423.yml +5 -7
- data/data/problems/424.yml +8 -9
- data/data/problems/425.yml +2 -3
- data/data/problems/426.yml +3 -3
- data/data/problems/427.yml +8 -8
- data/data/problems/428.yml +16 -19
- data/data/problems/430.yml +4 -5
- data/data/problems/44.yml +3 -3
- data/data/problems/45.yml +2 -2
- data/data/problems/46.yml +8 -8
- data/data/problems/47.yml +6 -10
- data/data/problems/53.yml +8 -9
- data/data/problems/56.yml +1 -1
- data/data/problems/57.yml +5 -5
- data/data/problems/58.yml +1 -1
- data/data/problems/6.yml +1 -1
- data/data/problems/61.yml +4 -4
- data/data/problems/64.yml +39 -46
- data/data/problems/65.yml +13 -14
- data/data/problems/66.yml +10 -10
- data/data/problems/68.yml +4 -5
- data/data/problems/69.yml +2 -2
- data/data/problems/70.yml +3 -4
- data/data/problems/71.yml +3 -3
- data/data/problems/72.yml +3 -3
- data/data/problems/73.yml +3 -3
- data/data/problems/74.yml +15 -22
- data/data/problems/75.yml +1 -1
- data/data/problems/8.yml +14 -14
- data/data/problems/81.yml +7 -7
- data/data/problems/82.yml +4 -4
- data/data/problems/83.yml +4 -4
- data/data/problems/85.yml +1 -1
- data/data/problems/86.yml +8 -8
- data/data/problems/88.yml +22 -27
- data/data/problems/9.yml +6 -6
- data/data/problems/90.yml +13 -13
- data/data/problems/91.yml +8 -8
- data/data/problems/92.yml +7 -9
- data/data/problems/93.yml +9 -10
- data/data/problems/95.yml +1 -1
- data/data/problems/96.yml +17 -17
- data/data/problems/97.yml +2 -2
- data/data/problems/99.yml +2 -2
- data/lib/euler/problem.rb +6 -1
- data/lib/euler/version.rb +1 -1
- metadata +2 -2
data/data/problems/47.yml
CHANGED
@@ -3,14 +3,10 @@
|
|
3
3
|
:name: Distinct primes factors
|
4
4
|
:url: http://projecteuler.net/problem=47
|
5
5
|
:content: "The first two consecutive numbers to have two distinct prime factors are:\n\n14
|
6
|
-
= 2 ![×](/
|
7
|
-
\ \n15 = 3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
|
6
|
+
= 2 ![×]({{ images_dir }}/symbol_times.gif) 7 \n15 = 3 ![×]({{ images_dir }}/symbol_times.gif)
|
8
7
|
5\n\nThe first three consecutive numbers to have three distinct prime factors are:\n\n644
|
9
|
-
= 2² ![×](/
|
10
|
-
![×](/
|
11
|
-
=
|
12
|
-
|
13
|
-
|
14
|
-
![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 19.\n\nFind
|
15
|
-
the first four consecutive integers to have four distinct prime factors. What is
|
16
|
-
the first of these numbers?\n\n"
|
8
|
+
= 2² ![×]({{ images_dir }}/symbol_times.gif) 7 ![×]({{ images_dir }}/symbol_times.gif)
|
9
|
+
23 \n645 = 3 ![×]({{ images_dir }}/symbol_times.gif) 5 ![×]({{ images_dir }}/symbol_times.gif)
|
10
|
+
43 \n646 = 2 ![×]({{ images_dir }}/symbol_times.gif) 17 ![×]({{ images_dir }}/symbol_times.gif)
|
11
|
+
19.\n\nFind the first four consecutive integers to have four distinct prime factors.
|
12
|
+
What is the first of these numbers?\n\n"
|
data/data/problems/53.yml
CHANGED
@@ -7,13 +7,12 @@
|
|
7
7
|
notation, <sup>5</sup>C<sub>3</sub> = 10.\n\nIn general,\n\n| <sup><var>n</var></sup>C<sub><var>r</var></sub>
|
8
8
|
= | \n<var>n</var>! \n<var>r</var>!(<var>n<img src=\"%7B%7B%20images_dir%20%7D%7D/symbol_minus.gif\"
|
9
9
|
width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">r</var>)!\n
|
10
|
-
| ,where <var>r</var> ![≤](/
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
<sup>
|
17
|
-
|
18
|
-
<var>n</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
|
10
|
+
| ,where <var>r</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var>, <var>n</var>!
|
11
|
+
= <var>n</var> ![×]({{ images_dir }}/symbol_times.gif)(<var>n</var> ![−]({{ images_dir
|
12
|
+
}}/symbol_minus.gif)1) ![×]({{ images_dir }}/symbol_times.gif)... ![×]({{ images_dir
|
13
|
+
}}/symbol_times.gif)3 ![×]({{ images_dir }}/symbol_times.gif)2 ![×]({{ images_dir
|
14
|
+
}}/symbol_times.gif)1, and 0! = 1. |\n\nIt is not until <var>n</var> = 23, that
|
15
|
+
a value exceeds one-million: <sup>23</sup>C<sub>10</sub> = 1144066.\n\nHow many,
|
16
|
+
not necessarily distinct, values of <sup><var>n</var></sup>C<sub><var>r</var></sub>,
|
17
|
+
for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif)
|
19
18
|
100, are greater than one-million?\n\n"
|
data/data/problems/56.yml
CHANGED
@@ -5,5 +5,5 @@
|
|
5
5
|
:content: |+
|
6
6
|
A googol (10<sup>100</sup>) is a massive number: one followed by one-hundred zeros; 100<sup>100</sup> is almost unimaginably large: one followed by two-hundred zeros. Despite their size, the sum of the digits in each number is only 1.
|
7
7
|
|
8
|
-
Considering natural numbers of the form, _a<sup>b</sup>_, where _a, b_ ![<](/
|
8
|
+
Considering natural numbers of the form, _a<sup>b</sup>_, where _a, b_ ![<]({{ images_dir }}/symbol_lt.gif) 100, what is the maximum digital sum?
|
9
9
|
|
data/data/problems/57.yml
CHANGED
@@ -3,11 +3,11 @@
|
|
3
3
|
:name: Square root convergents
|
4
4
|
:url: http://projecteuler.net/problem=57
|
5
5
|
:content: "It is possible to show that the square root of two can be expressed as
|
6
|
-
an infinite continued fraction.\n\n![√](/
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
6
|
+
an infinite continued fraction.\n\n![√]({{ images_dir }}/symbol_radic.gif) 2 = 1
|
7
|
+
+ 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...\n\nBy expanding this for the first
|
8
|
+
four iterations, we get:\n\n1 + 1/2 = 3/2 = 1.5 \n\r1 + 1/(2 + 1/2) = 7/5 = 1.4
|
9
|
+
\ \n\r1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666... \n\r1 + 1/(2 + 1/(2 + 1/(2 +
|
10
|
+
1/2))) = 41/29 = 1.41379...\n\nThe next three expansions are 99/70, 239/169, and
|
11
11
|
577/408, but the eighth expansion, 1393/985, is the first example where the number
|
12
12
|
of digits in the numerator exceeds the number of digits in the denominator.\n\nIn
|
13
13
|
the first one-thousand expansions, how many fractions contain a numerator with more
|
data/data/problems/58.yml
CHANGED
@@ -8,7 +8,7 @@
|
|
8
8
|
\ \n\r41 20 **7** 8 9 10 27 \n\r42 21 22 23 24 25 26 \n**43** 44 45 46 47
|
9
9
|
48 49\n\nIt is interesting to note that the odd squares lie along the bottom right
|
10
10
|
diagonal, but what is more interesting is that 8 out of the 13 numbers lying along
|
11
|
-
both diagonals are prime; that is, a ratio of 8/13 ![≈](/
|
11
|
+
both diagonals are prime; that is, a ratio of 8/13 ![≈]({{ images_dir }}/symbol_asymp.gif)
|
12
12
|
62%.\n\nIf one complete new layer is wrapped around the spiral above, a square spiral
|
13
13
|
with side length 9 will be formed. If this process is continued, what is the side
|
14
14
|
length of the square spiral for which the ratio of primes along both diagonals first
|
data/data/problems/6.yml
CHANGED
@@ -11,7 +11,7 @@
|
|
11
11
|
|
12
12
|
(1 + 2 + ... + 10)<sup>2</sup> = 55<sup>2</sup> = 3025
|
13
13
|
|
14
|
-
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 ![−](/
|
14
|
+
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 ![−]({{ images_dir }}/symbol_minus.gif) 385 = 2640.
|
15
15
|
|
16
16
|
Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
|
17
17
|
|
data/data/problems/61.yml
CHANGED
@@ -7,10 +7,10 @@
|
|
7
7
|
|
8
8
|
| Triangle | | P<sub>3,<i>n</i></sub>=_n_(_n_+1)/2 | | 1, 3, 6, 10, 15, ... |
|
9
9
|
| Square | | P<sub>4,<i>n</i></sub>=_n_<sup>2</sup> | | 1, 4, 9, 16, 25, ... |
|
10
|
-
| Pentagonal | | P<sub>5,<i>n</i></sub>=_n_(3_n_ ![−](/
|
11
|
-
| Hexagonal | | P<sub>6,<i>n</i></sub>=_n_(2_n_ ![−](/
|
12
|
-
| Heptagonal | | P<sub>7,<i>n</i></sub>=_n_(5_n_ ![−](/
|
13
|
-
| Octagonal | | P<sub>8,<i>n</i></sub>=_n_(3_n_ ![−](/
|
10
|
+
| Pentagonal | | P<sub>5,<i>n</i></sub>=_n_(3_n_ ![−]({{ images_dir }}/symbol_minus.gif)1)/2 | | 1, 5, 12, 22, 35, ... |
|
11
|
+
| Hexagonal | | P<sub>6,<i>n</i></sub>=_n_(2_n_ ![−]({{ images_dir }}/symbol_minus.gif)1) | | 1, 6, 15, 28, 45, ... |
|
12
|
+
| Heptagonal | | P<sub>7,<i>n</i></sub>=_n_(5_n_ ![−]({{ images_dir }}/symbol_minus.gif)3)/2 | | 1, 7, 18, 34, 55, ... |
|
13
|
+
| Octagonal | | P<sub>8,<i>n</i></sub>=_n_(3_n_ ![−]({{ images_dir }}/symbol_minus.gif)2) | | 1, 8, 21, 40, 65, ... |
|
14
14
|
|
15
15
|
The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.
|
16
16
|
|
data/data/problems/64.yml
CHANGED
@@ -3,54 +3,47 @@
|
|
3
3
|
:name: Odd period square roots
|
4
4
|
:url: http://projecteuler.net/problem=64
|
5
5
|
:content: "All square roots are periodic when written as continued fractions and can
|
6
|
-
be written in the form:\n\n| ![√](/
|
6
|
+
be written in the form:\n\n| ![√]({{ images_dir }}/symbol_radic.gif)<var>N</var>
|
7
7
|
= <var>a</var><sub>0</sub> + | \n1\n |\n| | <var>a</var><sub>1</sub> + | \n1\n
|
8
8
|
|\n| | | <var>a</var><sub>2</sub> + | \n1\n |\n| | | | <var>a</var><sub>3</sub>
|
9
|
-
+ ... |\n\nFor example, let us consider ![√](/
|
10
|
-
![√](/
|
11
|
-
+ ![√](/
|
12
|
-
|
13
|
-
|
14
|
-
– 3 \n7\n |\n\nIf we continue we would get the following expansion:\n\n| ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23
|
9
|
+
+ ... |\n\nFor example, let us consider ![√]({{ images_dir }}/symbol_radic.gif)23:\n\n|
|
10
|
+
![√]({{ images_dir }}/symbol_radic.gif)23 = 4 + ![√]({{ images_dir }}/symbol_radic.gif)23
|
11
|
+
— 4 = 4 + | \n1\n | = 4 + | \n1\n |\n| | \n1 \n ![√]({{ images_dir }}/symbol_radic.gif)23—4\n
|
12
|
+
| | 1 + | \n ![√]({{ images_dir }}/symbol_radic.gif)23 – 3 \n7\n |\n\nIf we
|
13
|
+
continue we would get the following expansion:\n\n| ![√]({{ images_dir }}/symbol_radic.gif)23
|
15
14
|
= 4 + | \n1\n |\n| | 1 + | \n1\n |\n| | | 3 + | \n1\n |\n| | | | 1 +
|
16
15
|
| \n1\n |\n| | | | | 8 + ... |\n\nThe process can be summarised as follows:\n\n|
|
17
|
-
<var>a</var><sub>0</sub> = 4, | | \n1 \n ![√](/
|
18
|
-
| = | \n ![√](/
|
19
|
-
|
20
|
-
|
21
|
-
| = | \
|
22
|
-
\ \
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
|
28
|
-
\ \n7\n | =
|
29
|
-
|\n| <var>a</var><sub>
|
30
|
-
|
31
|
-
\
|
32
|
-
\ \
|
33
|
-
| = | \
|
34
|
-
|
35
|
-
|
36
|
-
| = |
|
37
|
-
\ \n14\n | = 1 + | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4
|
38
|
-
\ \n7\n |\n| <var>a</var><sub>7</sub> = 1, | | \n7 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4\n
|
39
|
-
| = | \n7( ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23+4)
|
40
|
-
\ \n7\n | = 8 + | ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4
|
16
|
+
<var>a</var><sub>0</sub> = 4, | | \n1 \n ![√]({{ images_dir }}/symbol_radic.gif)23—4\n
|
17
|
+
| = | \n ![√]({{ images_dir }}/symbol_radic.gif)23+4 \n7\n | = 1 + | \n ![√]({{
|
18
|
+
images_dir }}/symbol_radic.gif)23—3 \n7\n |\n| <var>a</var><sub>1</sub> = 1, |
|
19
|
+
| \n7 \n ![√]({{ images_dir }}/symbol_radic.gif)23—3\n | = | \n7( ![√]({{ images_dir
|
20
|
+
}}/symbol_radic.gif)23+3) \n14\n | = 3 + | \n ![√]({{ images_dir }}/symbol_radic.gif)23—3
|
21
|
+
\ \n2\n |\n| <var>a</var><sub>2</sub> = 3, | | \n2 \n ![√]({{ images_dir }}/symbol_radic.gif)23—3\n
|
22
|
+
| = | \n2( ![√]({{ images_dir }}/symbol_radic.gif)23+3) \n14\n | = 1 + | \n
|
23
|
+
![√]({{ images_dir }}/symbol_radic.gif)23—4 \n7\n |\n| <var>a</var><sub>3</sub>
|
24
|
+
= 1, | | \n7 \n ![√]({{ images_dir }}/symbol_radic.gif)23—4\n | = | \n7( ![√]({{
|
25
|
+
images_dir }}/symbol_radic.gif)23+4) \n7\n | = 8 + | ![√]({{ images_dir }}/symbol_radic.gif)23—4
|
26
|
+
|\n| <var>a</var><sub>4</sub> = 8, | | \n1 \n ![√]({{ images_dir }}/symbol_radic.gif)23—4\n
|
27
|
+
| = | \n ![√]({{ images_dir }}/symbol_radic.gif)23+4 \n7\n | = 1 + | \n ![√]({{
|
28
|
+
images_dir }}/symbol_radic.gif)23—3 \n7\n |\n| <var>a</var><sub>5</sub> = 1, |
|
29
|
+
| \n7 \n ![√]({{ images_dir }}/symbol_radic.gif)23—3\n | = | \n7( ![√]({{ images_dir
|
30
|
+
}}/symbol_radic.gif)23+3) \n14\n | = 3 + | \n ![√]({{ images_dir }}/symbol_radic.gif)23—3
|
31
|
+
\ \n2\n |\n| <var>a</var><sub>6</sub> = 3, | | \n2 \n ![√]({{ images_dir }}/symbol_radic.gif)23—3\n
|
32
|
+
| = | \n2( ![√]({{ images_dir }}/symbol_radic.gif)23+3) \n14\n | = 1 + | \n
|
33
|
+
![√]({{ images_dir }}/symbol_radic.gif)23—4 \n7\n |\n| <var>a</var><sub>7</sub>
|
34
|
+
= 1, | | \n7 \n ![√]({{ images_dir }}/symbol_radic.gif)23—4\n | = | \n7( ![√]({{
|
35
|
+
images_dir }}/symbol_radic.gif)23+4) \n7\n | = 8 + | ![√]({{ images_dir }}/symbol_radic.gif)23—4
|
41
36
|
|\n\nIt can be seen that the sequence is repeating. For conciseness, we use the
|
42
|
-
notation ![√](/
|
43
|
-
|
44
|
-
|
45
|
-
period=1 \n ![√](/
|
46
|
-
period=
|
47
|
-
period=
|
48
|
-
|
49
|
-
period=
|
50
|
-
period=2 \n ![√](/
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
13, have an odd period.\n\nHow many continued fractions for <var>N</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
|
56
|
-
10000 have an odd period?\n\n"
|
37
|
+
notation ![√]({{ images_dir }}/symbol_radic.gif)23 = [4;(1,3,1,8)], to indicate
|
38
|
+
that the block (1,3,1,8) repeats indefinitely.\n\nThe first ten continued fraction
|
39
|
+
representations of (irrational) square roots are:\n\n![√]({{ images_dir }}/symbol_radic.gif)2=[1;(2)],
|
40
|
+
period=1 \n ![√]({{ images_dir }}/symbol_radic.gif)3=[1;(1,2)], period=2 \n ![√]({{
|
41
|
+
images_dir }}/symbol_radic.gif)5=[2;(4)], period=1 \n ![√]({{ images_dir }}/symbol_radic.gif)6=[2;(2,4)],
|
42
|
+
period=2 \n ![√]({{ images_dir }}/symbol_radic.gif)7=[2;(1,1,1,4)], period=4 \n
|
43
|
+
![√]({{ images_dir }}/symbol_radic.gif)8=[2;(1,4)], period=2 \n ![√]({{ images_dir
|
44
|
+
}}/symbol_radic.gif)10=[3;(6)], period=1 \n ![√]({{ images_dir }}/symbol_radic.gif)11=[3;(3,6)],
|
45
|
+
period=2 \n ![√]({{ images_dir }}/symbol_radic.gif)12= [3;(2,6)], period=2 \n
|
46
|
+
![√]({{ images_dir }}/symbol_radic.gif)13=[3;(1,1,1,1,6)], period=5\n\nExactly four
|
47
|
+
continued fractions, for <var>N</var> ![≤]({{ images_dir }}/symbol_le.gif) 13, have
|
48
|
+
an odd period.\n\nHow many continued fractions for <var>N</var> ![≤]({{ images_dir
|
49
|
+
}}/symbol_le.gif) 10000 have an odd period?\n\n"
|
data/data/problems/65.yml
CHANGED
@@ -3,24 +3,23 @@
|
|
3
3
|
:name: Convergents of e
|
4
4
|
:url: http://projecteuler.net/problem=65
|
5
5
|
:content: "The square root of 2 can be written as an infinite continued fraction.\n\n|
|
6
|
-
![√](/
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
the convergents for ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)2.\n\n|
|
6
|
+
![√]({{ images_dir }}/symbol_radic.gif)2 = 1 + | \n1\n |\n| | 2 + | \n1\n |\n|
|
7
|
+
| | 2 + | \n1\n |\n| | | | 2 + | \n1\n |\n| | | | | 2 + ... |\n\nThe
|
8
|
+
infinite continued fraction can be written, ![√]({{ images_dir }}/symbol_radic.gif)2
|
9
|
+
= [1;(2)], (2) indicates that 2 repeats _ad infinitum_. In a similar way, ![√]({{
|
10
|
+
images_dir }}/symbol_radic.gif)23 = [4;(1,3,1,8)].\n\nIt turns out that the sequence
|
11
|
+
of partial values of continued fractions for square roots provide the best rational
|
12
|
+
approximations. Let us consider the convergents for ![√]({{ images_dir }}/symbol_radic.gif)2.\n\n|
|
14
13
|
1 + | \n1\n | = 3/2 |\n| | \n2\n | |\n\n| 1 + | \n1\n | = 7/5 |\n| | 2 + |
|
15
14
|
\n1\n |\n| | | \n2\n | |\n\n| 1 + | \n1\n | = 17/12 |\n| | 2 + | \n1\n |
|
16
15
|
|\n| | | 2 + | \n1\n | |\n| | | | \n2\n | |\n\n| 1 + | \n1\n | =
|
17
16
|
41/29 |\n| | 2 + | \n1\n |\n| | | 2 + | \n1\n | |\n| | | | 2 + | \n1\n
|
18
17
|
| |\n| | | | | \n2\n | |\n\nHence the sequence of the first ten convergents
|
19
|
-
for ![√](/
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
18
|
+
for ![√]({{ images_dir }}/symbol_radic.gif)2 are:\n\n1, 3/2, 7/5, 17/12, 41/29,
|
19
|
+
99/70, 239/169, 577/408, 1393/985, 3363/2378, ...\n\nWhat is most surprising is
|
20
|
+
that the important mathematical constant, \n_e_ = [2; 1,2,1, 1,4,1, 1,6,1 , ...
|
21
|
+
, 1,2_k_,1, ...].\n\nThe first ten terms in the sequence of convergents for _e_
|
22
|
+
are:\n\n2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...\n\nThe
|
23
|
+
sum of digits in the numerator of the 10<sup>th</sup> convergent is 1+4+5+7=17.\n\nFind
|
25
24
|
the sum of digits in the numerator of the 100<sup>th</sup> convergent of the continued
|
26
25
|
fraction for _e_.\n\n"
|
data/data/problems/66.yml
CHANGED
@@ -4,14 +4,14 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=66
|
5
5
|
:content: "Consider quadratic Diophantine equations of the form:\n\n_x_<sup>2</sup>
|
6
6
|
– D_y_<sup>2</sup> = 1\n\nFor example, when D=13, the minimal solution in _x_ is
|
7
|
-
649<sup>2</sup> – 13 ![×](/
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
7
|
+
649<sup>2</sup> – 13 ![×]({{ images_dir }}/symbol_times.gif)180<sup>2</sup> = 1.\n\nIt
|
8
|
+
can be assumed that there are no solutions in positive integers when D is square.\n\nBy
|
9
|
+
finding minimal solutions in _x_ for D = {2, 3, 5, 6, 7}, we obtain the following:\n\n3<sup>2</sup>
|
10
|
+
– 2 ![×]({{ images_dir }}/symbol_times.gif)2<sup>2</sup> = 1 \n\r2<sup>2</sup>
|
11
|
+
– 3 ![×]({{ images_dir }}/symbol_times.gif)1<sup>2</sup> = 1 \n9<sup>2</sup> –
|
12
|
+
5 ![×]({{ images_dir }}/symbol_times.gif)4<sup>2</sup> = 1 \n\r5<sup>2</sup> –
|
13
|
+
6 ![×]({{ images_dir }}/symbol_times.gif)2<sup>2</sup> = 1 \n\r8<sup>2</sup> –
|
14
|
+
7 ![×]({{ images_dir }}/symbol_times.gif)3<sup>2</sup> = 1\n\nHence, by considering
|
15
|
+
minimal solutions in _x_ for D ![≤]({{ images_dir }}/symbol_le.gif) 7, the largest
|
16
|
+
_x_ is obtained when D=5.\n\nFind the value of D ![≤]({{ images_dir }}/symbol_le.gif)
|
17
17
|
1000 in minimal solutions of _x_ for which the largest value of _x_ is obtained.\n\n"
|
data/data/problems/68.yml
CHANGED
@@ -3,9 +3,9 @@
|
|
3
3
|
:name: Magic 5-gon ring
|
4
4
|
:url: http://projecteuler.net/problem=68
|
5
5
|
:content: "Consider the following \"magic\" 3-gon ring, filled with the numbers 1
|
6
|
-
to 6, and each line adding to nine.\n\n ![](/
|
7
|
-
|
8
|
-
|
6
|
+
to 6, and each line adding to nine.\n\n ![]({{ images_dir }}/p_068_1.gif) \n\nWorking
|
7
|
+
**clockwise** , and starting from the group of three with the numerically lowest
|
8
|
+
external node (4,3,2 in this example), each solution can be described uniquely.
|
9
9
|
For example, the above solution can be described by the set: 4,3,2; 6,2,1; 5,1,3.\n\nIt
|
10
10
|
is possible to complete the ring with four different totals: 9, 10, 11, and 12.
|
11
11
|
There are eight solutions in total.\n\n| **Total** | **Solution Set** |\n| 9 | 4,2,3;
|
@@ -15,5 +15,4 @@
|
|
15
15
|
each group it is possible to form 9-digit strings; the maximum string for a 3-gon
|
16
16
|
ring is 432621513.\n\nUsing the numbers 1 to 10, and depending on arrangements,
|
17
17
|
it is possible to form 16- and 17-digit strings. What is the maximum **16-digit**
|
18
|
-
string for a \"magic\" 5-gon ring?\n\n ![](/
|
19
|
-
\ \n\n"
|
18
|
+
string for a \"magic\" 5-gon ring?\n\n ![]({{ images_dir }}/p_068_2.gif) \n\n"
|
data/data/problems/69.yml
CHANGED
@@ -16,7 +16,7 @@
|
|
16
16
|
| 9 | 1,2,4,5,7,8 | 6 | 1.5 |
|
17
17
|
| 10 | 1,3,7,9 | 4 | 2.5 |
|
18
18
|
|
19
|
-
It can be seen that _n_=6 produces a maximum _n_/φ(_n_) for _n_ ![≤](/
|
19
|
+
It can be seen that _n_=6 produces a maximum _n_/φ(_n_) for _n_ ![≤]({{ images_dir }}/symbol_le.gif) 10.
|
20
20
|
|
21
|
-
Find the value of _n_ ![≤](/
|
21
|
+
Find the value of _n_ ![≤]({{ images_dir }}/symbol_le.gif) 1,000,000 for which _n_/φ(_n_) is a maximum.
|
22
22
|
|
data/data/problems/70.yml
CHANGED
@@ -8,7 +8,6 @@
|
|
8
8
|
are all less than nine and relatively prime to nine, φ(9)=6. \nThe number 1 is
|
9
9
|
considered to be relatively prime to every positive number, so φ(1)=1.\n\nInterestingly,
|
10
10
|
φ(87109)=79180, and it can be seen that 87109 is a permutation of 79180.\n\nFind
|
11
|
-
the value of <var>n</var>, 1 ![<](/
|
12
|
-
<var>n</var>
|
13
|
-
|
14
|
-
ratio <var>n</var>/φ(<var>n</var>) produces a minimum.\n\n"
|
11
|
+
the value of <var>n</var>, 1 ![<]({{ images_dir }}/symbol_lt.gif) <var>n</var> ![<]({{
|
12
|
+
images_dir }}/symbol_lt.gif) 10<sup>7</sup>, for which φ(<var>n</var>) is a permutation
|
13
|
+
of <var>n</var> and the ratio <var>n</var>/φ(<var>n</var>) produces a minimum.\n\n"
|
data/data/problems/71.yml
CHANGED
@@ -3,13 +3,13 @@
|
|
3
3
|
:name: Ordered fractions
|
4
4
|
:url: http://projecteuler.net/problem=71
|
5
5
|
:content: |+
|
6
|
-
Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<](/
|
6
|
+
Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<]({{ images_dir }}/symbol_lt.gif)_d_ and HCF(_n,d_)=1, it is called a reduced proper fraction.
|
7
7
|
|
8
|
-
If we list the set of reduced proper fractions for _d_ ![≤](/
|
8
|
+
If we list the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 8 in ascending order of size, we get:
|
9
9
|
|
10
10
|
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, **2/5** , 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
|
11
11
|
|
12
12
|
It can be seen that 2/5 is the fraction immediately to the left of 3/7.
|
13
13
|
|
14
|
-
By listing the set of reduced proper fractions for _d_ ![≤](/
|
14
|
+
By listing the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 1,000,000 in ascending order of size, find the numerator of the fraction immediately to the left of 3/7.
|
15
15
|
|
data/data/problems/72.yml
CHANGED
@@ -3,13 +3,13 @@
|
|
3
3
|
:name: Counting fractions
|
4
4
|
:url: http://projecteuler.net/problem=72
|
5
5
|
:content: |+
|
6
|
-
Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<](/
|
6
|
+
Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<]({{ images_dir }}/symbol_lt.gif)_d_ and HCF(_n,d_)=1, it is called a reduced proper fraction.
|
7
7
|
|
8
|
-
If we list the set of reduced proper fractions for _d_ ![≤](/
|
8
|
+
If we list the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 8 in ascending order of size, we get:
|
9
9
|
|
10
10
|
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
|
11
11
|
|
12
12
|
It can be seen that there are 21 elements in this set.
|
13
13
|
|
14
|
-
How many elements would be contained in the set of reduced proper fractions for _d_ ![≤](/
|
14
|
+
How many elements would be contained in the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 1,000,000?
|
15
15
|
|
data/data/problems/73.yml
CHANGED
@@ -3,13 +3,13 @@
|
|
3
3
|
:name: Counting fractions in a range
|
4
4
|
:url: http://projecteuler.net/problem=73
|
5
5
|
:content: |+
|
6
|
-
Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<](/
|
6
|
+
Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<]({{ images_dir }}/symbol_lt.gif)_d_ and HCF(_n,d_)=1, it is called a reduced proper fraction.
|
7
7
|
|
8
|
-
If we list the set of reduced proper fractions for _d_ ![≤](/
|
8
|
+
If we list the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 8 in ascending order of size, we get:
|
9
9
|
|
10
10
|
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, **3/8, 2/5, 3/7** , 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
|
11
11
|
|
12
12
|
It can be seen that there are 3 fractions between 1/3 and 1/2.
|
13
13
|
|
14
|
-
How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for _d_ ![≤](/
|
14
|
+
How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 12,000?
|
15
15
|
|
data/data/problems/74.yml
CHANGED
@@ -5,25 +5,18 @@
|
|
5
5
|
:content: "The number 145 is well known for the property that the sum of the factorial
|
6
6
|
of its digits is equal to 145:\n\n1! + 4! + 5! = 1 + 24 + 120 = 145\n\nPerhaps less
|
7
7
|
well known is 169, in that it produces the longest chain of numbers that link back
|
8
|
-
to 169; it turns out that there are only three such loops that exist:\n\n169 ![→](
|
9
|
-
363601 ![→](/
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
![→](/
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 45361 (
|
24
|
-
![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 871) \n540
|
25
|
-
![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 145 ( ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif)
|
26
|
-
145)\n\nStarting with 69 produces a chain of five non-repeating terms, but the longest
|
27
|
-
non-repeating chain with a starting number below one million is sixty terms.\n\nHow
|
28
|
-
many chains, with a starting number below one million, contain exactly sixty non-repeating
|
29
|
-
terms?\n\n"
|
8
|
+
to 169; it turns out that there are only three such loops that exist:\n\n169 ![→]({{
|
9
|
+
images_dir }}/symbol_maps.gif) 363601 ![→]({{ images_dir }}/symbol_maps.gif) 1454
|
10
|
+
![→]({{ images_dir }}/symbol_maps.gif) 169 \n871 ![→]({{ images_dir }}/symbol_maps.gif)
|
11
|
+
45361 ![→]({{ images_dir }}/symbol_maps.gif) 871 \n872 ![→]({{ images_dir }}/symbol_maps.gif)
|
12
|
+
45362 ![→]({{ images_dir }}/symbol_maps.gif) 872\n\nIt is not difficult to prove
|
13
|
+
that EVERY starting number will eventually get stuck in a loop. For example,\n\n69
|
14
|
+
![→]({{ images_dir }}/symbol_maps.gif) 363600 ![→]({{ images_dir }}/symbol_maps.gif)
|
15
|
+
1454 ![→]({{ images_dir }}/symbol_maps.gif) 169 ![→]({{ images_dir }}/symbol_maps.gif)
|
16
|
+
363601 ( ![→]({{ images_dir }}/symbol_maps.gif) 1454) \n78 ![→]({{ images_dir }}/symbol_maps.gif)
|
17
|
+
45360 ![→]({{ images_dir }}/symbol_maps.gif) 871 ![→]({{ images_dir }}/symbol_maps.gif)
|
18
|
+
45361 ( ![→]({{ images_dir }}/symbol_maps.gif) 871) \n540 ![→]({{ images_dir }}/symbol_maps.gif)
|
19
|
+
145 ( ![→]({{ images_dir }}/symbol_maps.gif) 145)\n\nStarting with 69 produces a
|
20
|
+
chain of five non-repeating terms, but the longest non-repeating chain with a starting
|
21
|
+
number below one million is sixty terms.\n\nHow many chains, with a starting number
|
22
|
+
below one million, contain exactly sixty non-repeating terms?\n\n"
|
data/data/problems/75.yml
CHANGED
@@ -10,5 +10,5 @@
|
|
10
10
|
right angle triangle, and other lengths allow more than one solution to be found;
|
11
11
|
for example, using 120 cm it is possible to form exactly three different integer
|
12
12
|
sided right angle triangles.\n\n**120 cm** : (30,40,50), (20,48,52), (24,45,51)\n\nGiven
|
13
|
-
that L is the length of the wire, for how many values of L ![≤](/
|
13
|
+
that L is the length of the wire, for how many values of L ![≤]({{ images_dir }}/symbol_le.gif)
|
14
14
|
1,500,000 can exactly one integer sided right angle triangle be formed?\n\n"
|
data/data/problems/8.yml
CHANGED
@@ -3,17 +3,17 @@
|
|
3
3
|
:name: Largest product in a series
|
4
4
|
:url: http://projecteuler.net/problem=8
|
5
5
|
:content: "The four adjacent digits in the 1000-digit number that have the greatest
|
6
|
-
product are 9 ![×](/
|
7
|
-
|
8
|
-
|
9
|
-
\ \n\
|
10
|
-
\ \n\
|
11
|
-
\ \n\
|
12
|
-
\ \n\
|
13
|
-
\ \n\
|
14
|
-
\ \n\
|
15
|
-
\ \n\
|
16
|
-
\ \n\
|
17
|
-
\ \n\
|
18
|
-
|
19
|
-
|
6
|
+
product are 9 ![×]({{ images_dir }}/symbol_times.gif) 9 ![×]({{ images_dir }}/symbol_times.gif)
|
7
|
+
8 ![×]({{ images_dir }}/symbol_times.gif) 9 = 5832.\n\n73167176531330624919225119674426574742355349194934
|
8
|
+
\ \n\r96983520312774506326239578318016984801869478851843 \n\r85861560789112949495459501737958331952853208805511
|
9
|
+
\ \n\r12540698747158523863050715693290963295227443043557 \n\r66896648950445244523161731856403098711121722383113
|
10
|
+
\ \n\r62229893423380308135336276614282806444486645238749 \n\r30358907296290491560440772390713810515859307960866
|
11
|
+
\ \n\r70172427121883998797908792274921901699720888093776 \n\r65727333001053367881220235421809751254540594752243
|
12
|
+
\ \n\r52584907711670556013604839586446706324415722155397 \n\r53697817977846174064955149290862569321978468622482
|
13
|
+
\ \n\r83972241375657056057490261407972968652414535100474 \n\r82166370484403199890008895243450658541227588666881
|
14
|
+
\ \n\r16427171479924442928230863465674813919123162824586 \n\r17866458359124566529476545682848912883142607690042
|
15
|
+
\ \n\r24219022671055626321111109370544217506941658960408 \n\r07198403850962455444362981230987879927244284909188
|
16
|
+
\ \n\r84580156166097919133875499200524063689912560717606 \n\r05886116467109405077541002256983155200055935729725
|
17
|
+
\ \n\r71636269561882670428252483600823257530420752963450\n\nFind the thirteen adjacent
|
18
|
+
digits in the 1000-digit number that have the greatest product. What is the value
|
19
|
+
of this product?\n\n"
|
data/data/problems/81.yml
CHANGED
@@ -4,10 +4,10 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=81
|
5
5
|
:content: "In the 5 by 5 matrix below, the minimal path sum from the top left to the
|
6
6
|
bottom right, by **only moving to the right and down** , is indicated in bold red
|
7
|
-
and is equal to 2427.\n\n| ![](/
|
8
|
-
|
9
|
-
|
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
7
|
+
and is equal to 2427.\n\n| ![]({{ images_dir }}/bracket_left.gif) \n | \n\n| **131**
|
8
|
+
| 673 | 234 | 103 | 18 |\n| **201** | **96** | **342** | 965 | 150 |\n| 630 | 803
|
9
|
+
| **746** | **422** | 111 |\n| 537 | 699 | 497 | **121** | 956 |\n| 805 | 732 |
|
10
|
+
524 | **37** | **331** |\n\n | ![]({{ images_dir }}/bracket_right.gif) \n |\n\nFind
|
11
|
+
the minimal path sum, in [matrix.txt](project/matrix.txt) (right click and 'Save
|
12
|
+
Link/Target As...'), a 31K text file containing a 80 by 80 matrix, from the top
|
13
|
+
left to the bottom right by only moving right and down.\n\n"
|
data/data/problems/82.yml
CHANGED
@@ -5,10 +5,10 @@
|
|
5
5
|
:content: "NOTE: This problem is a more challenging version of [Problem 81](problem=81).\n\nThe
|
6
6
|
minimal path sum in the 5 by 5 matrix below, by starting in any cell in the left
|
7
7
|
column and finishing in any cell in the right column, and only moving up, down,
|
8
|
-
and right, is indicated in red and bold; the sum is equal to 994.\n\n| ![](
|
9
|
-
\
|
10
|
-
| 965 | 150 |\n| 630 | 803 | 746 | 422 | 111 |\n| 537 | 699 |
|
11
|
-
805 | 732 | 524 | 37 | 331 |\n\n | ![](/
|
8
|
+
and right, is indicated in red and bold; the sum is equal to 994.\n\n| ![]({{ images_dir
|
9
|
+
}}/bracket_left.gif) \n | \n\n| 131 | 673 | **234** | **103** | **18** |\n| **201**
|
10
|
+
| **96** | **342** | 965 | 150 |\n| 630 | 803 | 746 | 422 | 111 |\n| 537 | 699 |
|
11
|
+
497 | 121 | 956 |\n| 805 | 732 | 524 | 37 | 331 |\n\n | ![]({{ images_dir }}/bracket_right.gif)
|
12
12
|
\ \n |\n\nFind the minimal path sum, in [matrix.txt](project/matrix.txt) (right
|
13
13
|
click and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix,
|
14
14
|
from the left column to the right column.\n\n"
|
data/data/problems/83.yml
CHANGED
@@ -5,10 +5,10 @@
|
|
5
5
|
:content: "NOTE: This problem is a significantly more challenging version of [Problem
|
6
6
|
81](problem=81).\n\nIn the 5 by 5 matrix below, the minimal path sum from the top
|
7
7
|
left to the bottom right, by moving left, right, up, and down, is indicated in bold
|
8
|
-
red and is equal to 2297.\n\n| ![](/
|
9
|
-
|
10
|
-
|
11
|
-
|
|
8
|
+
red and is equal to 2297.\n\n| ![]({{ images_dir }}/bracket_left.gif) \n | \n\n|
|
9
|
+
**131** | 673 | **234** | **103** | **18** |\n| **201** | **96** | **342** | 965
|
10
|
+
| **150** |\n| 630 | 803 | 746 | **422** | **111** |\n| 537 | 699 | 497 | **121**
|
11
|
+
| 956 |\n| 805 | 732 | 524 | **37** | **331** |\n\n | ![]({{ images_dir }}/bracket_right.gif)
|
12
12
|
\ \n |\n\nFind the minimal path sum, in [matrix.txt](project/matrix.txt) (right
|
13
13
|
click and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix,
|
14
14
|
from the top left to the bottom right by moving left, right, up, and down.\n\n"
|
data/data/problems/85.yml
CHANGED
@@ -5,7 +5,7 @@
|
|
5
5
|
:content: |+
|
6
6
|
By counting carefully it can be seen that a rectangular grid measuring 3 by 2 contains eighteen rectangles:
|
7
7
|
|
8
|
-
![](/
|
8
|
+
![]({{ images_dir }}/p_085.gif)
|
9
9
|
|
10
10
|
Although there exists no rectangular grid that contains exactly two million rectangles, find the area of the grid with the nearest solution.
|
11
11
|
|
data/data/problems/86.yml
CHANGED
@@ -5,11 +5,11 @@
|
|
5
5
|
:content: "A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3,
|
6
6
|
and a fly, F, sits in the opposite corner. By travelling on the surfaces of the
|
7
7
|
room the shortest \"straight line\" distance from S to F is 10 and the path is shown
|
8
|
-
on the diagram.\n\n ![](/
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
8
|
+
on the diagram.\n\n ![]({{ images_dir }}/p_086.gif) \n\nHowever, there are up to
|
9
|
+
three \"shortest\" path candidates for any given cuboid and the shortest route doesn't
|
10
|
+
always have integer length.\n\nBy considering all cuboid rooms with integer dimensions,
|
11
|
+
up to a maximum size of M by M by M, there are exactly 2060 cuboids for which the
|
12
|
+
shortest route has integer length when M=100, and this is the least value of M for
|
13
|
+
which the number of solutions first exceeds two thousand; the number of solutions
|
14
|
+
is 1975 when M=99.\n\nFind the least value of M such that the number of solutions
|
15
|
+
first exceeds one million.\n\n"
|