euler-manager 0.0.6 → 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (303) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +13 -0
  3. data/data/images/sod_13.gif +4 -0
  4. data/data/problems/100.yml +1 -1
  5. data/data/problems/101.yml +16 -16
  6. data/data/problems/102.yml +2 -3
  7. data/data/problems/103.yml +16 -16
  8. data/data/problems/105.yml +2 -2
  9. data/data/problems/106.yml +2 -2
  10. data/data/problems/107.yml +15 -15
  11. data/data/problems/108.yml +13 -16
  12. data/data/problems/109.yml +16 -17
  13. data/data/problems/11.yml +22 -23
  14. data/data/problems/110.yml +9 -10
  15. data/data/problems/114.yml +30 -41
  16. data/data/problems/116.yml +19 -25
  17. data/data/problems/117.yml +24 -33
  18. data/data/problems/120.yml +3 -3
  19. data/data/problems/122.yml +18 -20
  20. data/data/problems/123.yml +2 -2
  21. data/data/problems/124.yml +18 -23
  22. data/data/problems/126.yml +10 -11
  23. data/data/problems/127.yml +7 -7
  24. data/data/problems/128.yml +1 -1
  25. data/data/problems/130.yml +6 -7
  26. data/data/problems/131.yml +1 -1
  27. data/data/problems/132.yml +1 -1
  28. data/data/problems/134.yml +2 -2
  29. data/data/problems/135.yml +2 -2
  30. data/data/problems/136.yml +2 -2
  31. data/data/problems/137.yml +4 -4
  32. data/data/problems/138.yml +4 -4
  33. data/data/problems/139.yml +1 -1
  34. data/data/problems/14.yml +12 -13
  35. data/data/problems/140.yml +3 -3
  36. data/data/problems/142.yml +1 -1
  37. data/data/problems/143.yml +2 -2
  38. data/data/problems/144.yml +3 -3
  39. data/data/problems/147.yml +1 -1
  40. data/data/problems/149.yml +11 -13
  41. data/data/problems/15.yml +3 -3
  42. data/data/problems/150.yml +8 -8
  43. data/data/problems/151.yml +1 -1
  44. data/data/problems/152.yml +1 -1
  45. data/data/problems/153.yml +24 -26
  46. data/data/problems/154.yml +10 -9
  47. data/data/problems/155.yml +3 -3
  48. data/data/problems/156.yml +7 -8
  49. data/data/problems/157.yml +3 -4
  50. data/data/problems/158.yml +4 -5
  51. data/data/problems/159.yml +3 -3
  52. data/data/problems/161.yml +5 -4
  53. data/data/problems/163.yml +10 -10
  54. data/data/problems/165.yml +1 -1
  55. data/data/problems/166.yml +7 -7
  56. data/data/problems/167.yml +3 -4
  57. data/data/problems/168.yml +5 -5
  58. data/data/problems/170.yml +2 -2
  59. data/data/problems/171.yml +3 -3
  60. data/data/problems/173.yml +1 -1
  61. data/data/problems/174.yml +3 -3
  62. data/data/problems/175.yml +4 -4
  63. data/data/problems/177.yml +1 -1
  64. data/data/problems/179.yml +1 -1
  65. data/data/problems/180.yml +8 -9
  66. data/data/problems/182.yml +22 -24
  67. data/data/problems/183.yml +14 -15
  68. data/data/problems/184.yml +2 -2
  69. data/data/problems/186.yml +10 -11
  70. data/data/problems/187.yml +6 -8
  71. data/data/problems/189.yml +10 -9
  72. data/data/problems/190.yml +1 -1
  73. data/data/problems/192.yml +11 -12
  74. data/data/problems/194.yml +8 -8
  75. data/data/problems/195.yml +2 -2
  76. data/data/problems/197.yml +5 -6
  77. data/data/problems/198.yml +11 -12
  78. data/data/problems/199.yml +7 -7
  79. data/data/problems/20.yml +8 -10
  80. data/data/problems/202.yml +1 -1
  81. data/data/problems/207.yml +4 -4
  82. data/data/problems/208.yml +4 -5
  83. data/data/problems/21.yml +5 -6
  84. data/data/problems/210.yml +4 -5
  85. data/data/problems/211.yml +1 -1
  86. data/data/problems/212.yml +22 -26
  87. data/data/problems/213.yml +5 -6
  88. data/data/problems/214.yml +8 -9
  89. data/data/problems/215.yml +4 -4
  90. data/data/problems/216.yml +5 -5
  91. data/data/problems/217.yml +8 -10
  92. data/data/problems/218.yml +1 -1
  93. data/data/problems/22.yml +1 -1
  94. data/data/problems/220.yml +15 -15
  95. data/data/problems/221.yml +4 -5
  96. data/data/problems/223.yml +5 -6
  97. data/data/problems/224.yml +5 -6
  98. data/data/problems/226.yml +8 -8
  99. data/data/problems/228.yml +4 -5
  100. data/data/problems/229.yml +16 -16
  101. data/data/problems/230.yml +4 -4
  102. data/data/problems/231.yml +4 -5
  103. data/data/problems/233.yml +1 -1
  104. data/data/problems/234.yml +9 -10
  105. data/data/problems/236.yml +4 -4
  106. data/data/problems/237.yml +3 -3
  107. data/data/problems/238.yml +3 -4
  108. data/data/problems/241.yml +4 -4
  109. data/data/problems/242.yml +2 -2
  110. data/data/problems/243.yml +12 -12
  111. data/data/problems/244.yml +10 -11
  112. data/data/problems/245.yml +14 -15
  113. data/data/problems/246.yml +10 -9
  114. data/data/problems/247.yml +12 -13
  115. data/data/problems/251.yml +3 -3
  116. data/data/problems/252.yml +6 -7
  117. data/data/problems/254.yml +2 -2
  118. data/data/problems/255.yml +35 -36
  119. data/data/problems/256.yml +16 -20
  120. data/data/problems/257.yml +9 -9
  121. data/data/problems/258.yml +5 -6
  122. data/data/problems/26.yml +1 -1
  123. data/data/problems/260.yml +6 -8
  124. data/data/problems/261.yml +6 -7
  125. data/data/problems/262.yml +1 -1
  126. data/data/problems/264.yml +10 -11
  127. data/data/problems/265.yml +1 -1
  128. data/data/problems/27.yml +10 -11
  129. data/data/problems/270.yml +3 -3
  130. data/data/problems/271.yml +5 -6
  131. data/data/problems/272.yml +6 -7
  132. data/data/problems/273.yml +3 -3
  133. data/data/problems/274.yml +15 -15
  134. data/data/problems/275.yml +3 -3
  135. data/data/problems/276.yml +3 -3
  136. data/data/problems/277.yml +3 -3
  137. data/data/problems/278.yml +15 -17
  138. data/data/problems/281.yml +4 -4
  139. data/data/problems/282.yml +2 -2
  140. data/data/problems/284.yml +7 -8
  141. data/data/problems/287.yml +18 -17
  142. data/data/problems/288.yml +1 -1
  143. data/data/problems/289.yml +1 -1
  144. data/data/problems/29.yml +12 -13
  145. data/data/problems/290.yml +1 -1
  146. data/data/problems/291.yml +3 -3
  147. data/data/problems/292.yml +1 -1
  148. data/data/problems/293.yml +7 -7
  149. data/data/problems/295.yml +8 -8
  150. data/data/problems/296.yml +4 -5
  151. data/data/problems/297.yml +4 -5
  152. data/data/problems/299.yml +11 -12
  153. data/data/problems/300.yml +10 -9
  154. data/data/problems/301.yml +2 -2
  155. data/data/problems/303.yml +3 -3
  156. data/data/problems/304.yml +6 -7
  157. data/data/problems/305.yml +3 -2
  158. data/data/problems/306.yml +8 -11
  159. data/data/problems/307.yml +2 -3
  160. data/data/problems/309.yml +8 -8
  161. data/data/problems/31.yml +1 -1
  162. data/data/problems/310.yml +6 -7
  163. data/data/problems/311.yml +11 -11
  164. data/data/problems/312.yml +5 -5
  165. data/data/problems/313.yml +4 -4
  166. data/data/problems/314.yml +4 -5
  167. data/data/problems/315.yml +26 -27
  168. data/data/problems/316.yml +2 -4
  169. data/data/problems/318.yml +27 -34
  170. data/data/problems/319.yml +11 -12
  171. data/data/problems/32.yml +1 -1
  172. data/data/problems/320.yml +1 -1
  173. data/data/problems/321.yml +3 -3
  174. data/data/problems/322.yml +4 -4
  175. data/data/problems/323.yml +7 -8
  176. data/data/problems/324.yml +8 -9
  177. data/data/problems/325.yml +1 -1
  178. data/data/problems/326.yml +2 -2
  179. data/data/problems/327.yml +27 -29
  180. data/data/problems/328.yml +2 -2
  181. data/data/problems/330.yml +13 -14
  182. data/data/problems/331.yml +12 -12
  183. data/data/problems/332.yml +10 -9
  184. data/data/problems/333.yml +15 -16
  185. data/data/problems/334.yml +14 -14
  186. data/data/problems/335.yml +2 -2
  187. data/data/problems/336.yml +5 -4
  188. data/data/problems/337.yml +7 -7
  189. data/data/problems/338.yml +21 -24
  190. data/data/problems/340.yml +6 -7
  191. data/data/problems/341.yml +3 -5
  192. data/data/problems/342.yml +6 -7
  193. data/data/problems/343.yml +8 -12
  194. data/data/problems/344.yml +1 -1
  195. data/data/problems/347.yml +8 -8
  196. data/data/problems/350.yml +5 -5
  197. data/data/problems/351.yml +1 -1
  198. data/data/problems/352.yml +25 -26
  199. data/data/problems/353.yml +1 -1
  200. data/data/problems/354.yml +6 -6
  201. data/data/problems/356.yml +2 -3
  202. data/data/problems/358.yml +13 -14
  203. data/data/problems/359.yml +1 -1
  204. data/data/problems/361.yml +2 -1
  205. data/data/problems/362.yml +11 -13
  206. data/data/problems/363.yml +6 -6
  207. data/data/problems/364.yml +3 -3
  208. data/data/problems/365.yml +2 -2
  209. data/data/problems/366.yml +4 -5
  210. data/data/problems/369.yml +1 -1
  211. data/data/problems/370.yml +3 -3
  212. data/data/problems/372.yml +6 -8
  213. data/data/problems/374.yml +5 -7
  214. data/data/problems/375.yml +5 -6
  215. data/data/problems/377.yml +2 -2
  216. data/data/problems/378.yml +2 -2
  217. data/data/problems/379.yml +7 -8
  218. data/data/problems/38.yml +9 -9
  219. data/data/problems/380.yml +12 -15
  220. data/data/problems/381.yml +8 -11
  221. data/data/problems/382.yml +6 -6
  222. data/data/problems/383.yml +4 -4
  223. data/data/problems/384.yml +7 -8
  224. data/data/problems/385.yml +8 -8
  225. data/data/problems/386.yml +2 -2
  226. data/data/problems/388.yml +5 -6
  227. data/data/problems/39.yml +1 -1
  228. data/data/problems/390.yml +4 -6
  229. data/data/problems/391.yml +11 -12
  230. data/data/problems/392.yml +1 -1
  231. data/data/problems/393.yml +2 -2
  232. data/data/problems/394.yml +6 -7
  233. data/data/problems/395.yml +5 -5
  234. data/data/problems/396.yml +15 -17
  235. data/data/problems/397.yml +5 -8
  236. data/data/problems/4.yml +1 -1
  237. data/data/problems/40.yml +1 -1
  238. data/data/problems/400.yml +5 -6
  239. data/data/problems/401.yml +2 -2
  240. data/data/problems/402.yml +7 -8
  241. data/data/problems/403.yml +9 -10
  242. data/data/problems/404.yml +5 -6
  243. data/data/problems/405.yml +7 -7
  244. data/data/problems/406.yml +8 -10
  245. data/data/problems/407.yml +9 -9
  246. data/data/problems/410.yml +5 -6
  247. data/data/problems/411.yml +11 -12
  248. data/data/problems/412.yml +9 -9
  249. data/data/problems/414.yml +13 -15
  250. data/data/problems/415.yml +2 -2
  251. data/data/problems/417.yml +4 -5
  252. data/data/problems/418.yml +7 -8
  253. data/data/problems/419.yml +8 -8
  254. data/data/problems/420.yml +5 -5
  255. data/data/problems/421.yml +11 -12
  256. data/data/problems/422.yml +9 -9
  257. data/data/problems/423.yml +5 -7
  258. data/data/problems/424.yml +8 -9
  259. data/data/problems/425.yml +2 -3
  260. data/data/problems/426.yml +3 -3
  261. data/data/problems/427.yml +8 -8
  262. data/data/problems/428.yml +16 -19
  263. data/data/problems/430.yml +4 -5
  264. data/data/problems/44.yml +3 -3
  265. data/data/problems/45.yml +2 -2
  266. data/data/problems/46.yml +8 -8
  267. data/data/problems/47.yml +6 -10
  268. data/data/problems/53.yml +8 -9
  269. data/data/problems/56.yml +1 -1
  270. data/data/problems/57.yml +5 -5
  271. data/data/problems/58.yml +1 -1
  272. data/data/problems/6.yml +1 -1
  273. data/data/problems/61.yml +4 -4
  274. data/data/problems/64.yml +39 -46
  275. data/data/problems/65.yml +13 -14
  276. data/data/problems/66.yml +10 -10
  277. data/data/problems/68.yml +4 -5
  278. data/data/problems/69.yml +2 -2
  279. data/data/problems/70.yml +3 -4
  280. data/data/problems/71.yml +3 -3
  281. data/data/problems/72.yml +3 -3
  282. data/data/problems/73.yml +3 -3
  283. data/data/problems/74.yml +15 -22
  284. data/data/problems/75.yml +1 -1
  285. data/data/problems/8.yml +14 -14
  286. data/data/problems/81.yml +7 -7
  287. data/data/problems/82.yml +4 -4
  288. data/data/problems/83.yml +4 -4
  289. data/data/problems/85.yml +1 -1
  290. data/data/problems/86.yml +8 -8
  291. data/data/problems/88.yml +22 -27
  292. data/data/problems/9.yml +6 -6
  293. data/data/problems/90.yml +13 -13
  294. data/data/problems/91.yml +8 -8
  295. data/data/problems/92.yml +7 -9
  296. data/data/problems/93.yml +9 -10
  297. data/data/problems/95.yml +1 -1
  298. data/data/problems/96.yml +17 -17
  299. data/data/problems/97.yml +2 -2
  300. data/data/problems/99.yml +2 -2
  301. data/lib/euler/problem.rb +6 -1
  302. data/lib/euler/version.rb +1 -1
  303. metadata +2 -2
data/data/problems/47.yml CHANGED
@@ -3,14 +3,10 @@
3
3
  :name: Distinct primes factors
4
4
  :url: http://projecteuler.net/problem=47
5
5
  :content: "The first two consecutive numbers to have two distinct prime factors are:\n\n14
6
- = 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 7
7
- \ \n15 = 3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
6
+ = 2 ![×]({{ images_dir }}/symbol_times.gif) 7 \n15 = 3 ![×]({{ images_dir }}/symbol_times.gif)
8
7
  5\n\nThe first three consecutive numbers to have three distinct prime factors are:\n\n644
9
- = 2² ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 7
10
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 23 \n645
11
- = 3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 5
12
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 43 \n646
13
- = 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 17
14
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 19.\n\nFind
15
- the first four consecutive integers to have four distinct prime factors. What is
16
- the first of these numbers?\n\n"
8
+ = 2² ![×]({{ images_dir }}/symbol_times.gif) 7 ![×]({{ images_dir }}/symbol_times.gif)
9
+ 23 \n645 = 3 ![×]({{ images_dir }}/symbol_times.gif) 5 ![×]({{ images_dir }}/symbol_times.gif)
10
+ 43 \n646 = 2 ![×]({{ images_dir }}/symbol_times.gif) 17 ![×]({{ images_dir }}/symbol_times.gif)
11
+ 19.\n\nFind the first four consecutive integers to have four distinct prime factors.
12
+ What is the first of these numbers?\n\n"
data/data/problems/53.yml CHANGED
@@ -7,13 +7,12 @@
7
7
  notation, <sup>5</sup>C<sub>3</sub> = 10.\n\nIn general,\n\n| <sup><var>n</var></sup>C<sub><var>r</var></sub>
8
8
  = | \n<var>n</var>! \n<var>r</var>!(<var>n<img src=\"%7B%7B%20images_dir%20%7D%7D/symbol_minus.gif\"
9
9
  width=\"9\" height=\"3\" alt=\"−\" border=\"0\" style=\"vertical-align:middle;\">r</var>)!\n
10
- | ,where <var>r</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
11
- <var>n</var>, <var>n</var>! = <var>n</var> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)(<var>n</var>
12
- ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)1) ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)...
13
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2
14
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)1, and
15
- 0! = 1. |\n\nIt is not until <var>n</var> = 23, that a value exceeds one-million:
16
- <sup>23</sup>C<sub>10</sub> = 1144066.\n\nHow many, not necessarily distinct, values
17
- of  <sup><var>n</var></sup>C<sub><var>r</var></sub>, for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
18
- <var>n</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
10
+ | ,where <var>r</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var>, <var>n</var>!
11
+ = <var>n</var> ![×]({{ images_dir }}/symbol_times.gif)(<var>n</var> ![−]({{ images_dir
12
+ }}/symbol_minus.gif)1) ![×]({{ images_dir }}/symbol_times.gif)... ![×]({{ images_dir
13
+ }}/symbol_times.gif)3 ![×]({{ images_dir }}/symbol_times.gif)2 ![×]({{ images_dir
14
+ }}/symbol_times.gif)1, and 0! = 1. |\n\nIt is not until <var>n</var> = 23, that
15
+ a value exceeds one-million: <sup>23</sup>C<sub>10</sub> = 1144066.\n\nHow many,
16
+ not necessarily distinct, values of  <sup><var>n</var></sup>C<sub><var>r</var></sub>,
17
+ for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif)
19
18
  100, are greater than one-million?\n\n"
data/data/problems/56.yml CHANGED
@@ -5,5 +5,5 @@
5
5
  :content: |+
6
6
  A googol (10<sup>100</sup>) is a massive number: one followed by one-hundred zeros; 100<sup>100</sup> is almost unimaginably large: one followed by two-hundred zeros. Despite their size, the sum of the digits in each number is only 1.
7
7
 
8
- Considering natural numbers of the form, _a<sup>b</sup>_, where _a, b_ ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 100, what is the maximum digital sum?
8
+ Considering natural numbers of the form, _a<sup>b</sup>_, where _a, b_ ![<]({{ images_dir }}/symbol_lt.gif) 100, what is the maximum digital sum?
9
9
 
data/data/problems/57.yml CHANGED
@@ -3,11 +3,11 @@
3
3
  :name: Square root convergents
4
4
  :url: http://projecteuler.net/problem=57
5
5
  :content: "It is possible to show that the square root of two can be expressed as
6
- an infinite continued fraction.\n\n![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)
7
- 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...\n\nBy expanding this for the
8
- first four iterations, we get:\n\n1 + 1/2 = 3/2 = 1.5 \n\r1 + 1/(2 + 1/2) = 7/5
9
- = 1.4 \n\r1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666... \n\r1 + 1/(2 + 1/(2 + 1/(2
10
- + 1/2))) = 41/29 = 1.41379...\n\nThe next three expansions are 99/70, 239/169, and
6
+ an infinite continued fraction.\n\n![√]({{ images_dir }}/symbol_radic.gif) 2 = 1
7
+ + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...\n\nBy expanding this for the first
8
+ four iterations, we get:\n\n1 + 1/2 = 3/2 = 1.5 \n\r1 + 1/(2 + 1/2) = 7/5 = 1.4
9
+ \ \n\r1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666... \n\r1 + 1/(2 + 1/(2 + 1/(2 +
10
+ 1/2))) = 41/29 = 1.41379...\n\nThe next three expansions are 99/70, 239/169, and
11
11
  577/408, but the eighth expansion, 1393/985, is the first example where the number
12
12
  of digits in the numerator exceeds the number of digits in the denominator.\n\nIn
13
13
  the first one-thousand expansions, how many fractions contain a numerator with more
data/data/problems/58.yml CHANGED
@@ -8,7 +8,7 @@
8
8
  \ \n\r41 20   **7**  8  9 10 27 \n\r42 21 22 23 24 25 26 \n**43** 44 45 46 47
9
9
  48 49\n\nIt is interesting to note that the odd squares lie along the bottom right
10
10
  diagonal, but what is more interesting is that 8 out of the 13 numbers lying along
11
- both diagonals are prime; that is, a ratio of 8/13 ![≈](/home/will/src/euler-manager/config/../data/images/symbol_asymp.gif)
11
+ both diagonals are prime; that is, a ratio of 8/13 ![≈]({{ images_dir }}/symbol_asymp.gif)
12
12
  62%.\n\nIf one complete new layer is wrapped around the spiral above, a square spiral
13
13
  with side length 9 will be formed. If this process is continued, what is the side
14
14
  length of the square spiral for which the ratio of primes along both diagonals first
data/data/problems/6.yml CHANGED
@@ -11,7 +11,7 @@
11
11
 
12
12
  (1 + 2 + ... + 10)<sup>2</sup> = 55<sup>2</sup> = 3025
13
13
 
14
- Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif) 385 = 2640.
14
+ Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 ![−]({{ images_dir }}/symbol_minus.gif) 385 = 2640.
15
15
 
16
16
  Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
17
17
 
data/data/problems/61.yml CHANGED
@@ -7,10 +7,10 @@
7
7
 
8
8
  | Triangle |   | P<sub>3,<i>n</i></sub>=_n_(_n_+1)/2 |   | 1, 3, 6, 10, 15, ... |
9
9
  | Square |   | P<sub>4,<i>n</i></sub>=_n_<sup>2</sup> |   | 1, 4, 9, 16, 25, ... |
10
- | Pentagonal |   | P<sub>5,<i>n</i></sub>=_n_(3_n_ ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)1)/2 |   | 1, 5, 12, 22, 35, ... |
11
- | Hexagonal |   | P<sub>6,<i>n</i></sub>=_n_(2_n_ ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)1) |   | 1, 6, 15, 28, 45, ... |
12
- | Heptagonal |   | P<sub>7,<i>n</i></sub>=_n_(5_n_ ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)3)/2 |   | 1, 7, 18, 34, 55, ... |
13
- | Octagonal |   | P<sub>8,<i>n</i></sub>=_n_(3_n_ ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)2) |   | 1, 8, 21, 40, 65, ... |
10
+ | Pentagonal |   | P<sub>5,<i>n</i></sub>=_n_(3_n_ ![−]({{ images_dir }}/symbol_minus.gif)1)/2 |   | 1, 5, 12, 22, 35, ... |
11
+ | Hexagonal |   | P<sub>6,<i>n</i></sub>=_n_(2_n_ ![−]({{ images_dir }}/symbol_minus.gif)1) |   | 1, 6, 15, 28, 45, ... |
12
+ | Heptagonal |   | P<sub>7,<i>n</i></sub>=_n_(5_n_ ![−]({{ images_dir }}/symbol_minus.gif)3)/2 |   | 1, 7, 18, 34, 55, ... |
13
+ | Octagonal |   | P<sub>8,<i>n</i></sub>=_n_(3_n_ ![−]({{ images_dir }}/symbol_minus.gif)2) |   | 1, 8, 21, 40, 65, ... |
14
14
 
15
15
  The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.
16
16
 
data/data/problems/64.yml CHANGED
@@ -3,54 +3,47 @@
3
3
  :name: Odd period square roots
4
4
  :url: http://projecteuler.net/problem=64
5
5
  :content: "All square roots are periodic when written as continued fractions and can
6
- be written in the form:\n\n| ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)<var>N</var>
6
+ be written in the form:\n\n| ![√]({{ images_dir }}/symbol_radic.gif)<var>N</var>
7
7
  = <var>a</var><sub>0</sub> + | \n1\n |\n|   | <var>a</var><sub>1</sub> + | \n1\n
8
8
  |\n|   |   | <var>a</var><sub>2</sub> + | \n1\n |\n|   |   |   | <var>a</var><sub>3</sub>
9
- + ... |\n\nFor example, let us consider ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23:\n\n|
10
- ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23 = 4
11
- + ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23
12
- 4 = 4 +  | \n1\n |  = 4 +  | \n1\n |\n|   | \n1 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4\n
13
- |   | 1 +  | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23
14
- – 3 \n7\n |\n\nIf we continue we would get the following expansion:\n\n| ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23
9
+ + ... |\n\nFor example, let us consider ![√]({{ images_dir }}/symbol_radic.gif)23:\n\n|
10
+ ![√]({{ images_dir }}/symbol_radic.gif)23 = 4 + ![√]({{ images_dir }}/symbol_radic.gif)23
11
+ — 4 = 4 +  | \n1\n |  = 4 +  | \n1\n |\n|   | \n1 \n ![√]({{ images_dir }}/symbol_radic.gif)23—4\n
12
+ |   | 1 +  | \n ![√]({{ images_dir }}/symbol_radic.gif)23 – 3 \n7\n |\n\nIf we
13
+ continue we would get the following expansion:\n\n| ![√]({{ images_dir }}/symbol_radic.gif)23
15
14
  = 4 + | \n1\n |\n|   | 1 + | \n1\n |\n|   |   | 3 + | \n1\n |\n|   |   |   | 1 +
16
15
  | \n1\n |\n|   |   |   |   | 8 + ... |\n\nThe process can be summarised as follows:\n\n|
17
- <var>a</var><sub>0</sub> = 4, |   | \n1 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4\n
18
- |  =  | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23+4
19
- \ \n7\n |  = 1 | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—3
20
- \ \n7\n |\n| <var>a</var><sub>1</sub> = 1, |   | \n7 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—3\n
21
- |  =  | \n7( ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23+3)
22
- \ \n14\n |  = 3 | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—3
23
- \ \n2\n |\n| <var>a</var><sub>2</sub> = 3, |   | \n2 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)233\n
24
- |  =  | \n2( ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23+3)
25
- \ \n14\n |  = 1 | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4
26
- \ \n7\n |\n| <var>a</var><sub>3</sub> = 1, |   | \n7 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4\n
27
- |  =  | \n7( ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23+4)
28
- \ \n7\n |  = 8 +  | ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4
29
- |\n| <var>a</var><sub>4</sub> = 8, |   | \n1 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4\n
30
- |  =  | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23+4
31
- \ \n7\n |  = 1 +  | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—3
32
- \ \n7\n |\n| <var>a</var><sub>5</sub> = 1, |   | \n7 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—3\n
33
- |  =  | \n7( ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23+3)
34
- \ \n14\n |  = 3 +  | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—3
35
- \ \n2\n |\n| <var>a</var><sub>6</sub> = 3, |   | \n2 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—3\n
36
- |  =  | \n2( ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23+3)
37
- \ \n14\n |  = 1 +  | \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4
38
- \ \n7\n |\n| <var>a</var><sub>7</sub> = 1, |   | \n7 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4\n
39
- |  =  | \n7( ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23+4)
40
- \ \n7\n |  = 8 +  | ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23—4
16
+ <var>a</var><sub>0</sub> = 4, |   | \n1 \n ![√]({{ images_dir }}/symbol_radic.gif)23—4\n
17
+ |  =  | \n ![√]({{ images_dir }}/symbol_radic.gif)23+4 \n7\n |  = 1 +  | \n ![√]({{
18
+ images_dir }}/symbol_radic.gif)23—3 \n7\n |\n| <var>a</var><sub>1</sub> = 1, |
19
+   | \n7 \n ![√]({{ images_dir }}/symbol_radic.gif)23—3\n |  =  | \n7( ![√]({{ images_dir
20
+ }}/symbol_radic.gif)23+3) \n14\n |  = 3 +  | \n ![√]({{ images_dir }}/symbol_radic.gif)233
21
+ \ \n2\n |\n| <var>a</var><sub>2</sub> = 3, |   | \n2 \n ![√]({{ images_dir }}/symbol_radic.gif)23—3\n
22
+ |  =  | \n2( ![√]({{ images_dir }}/symbol_radic.gif)23+3) \n14\n |  = 1 +  | \n
23
+ ![√]({{ images_dir }}/symbol_radic.gif)23—4 \n7\n |\n| <var>a</var><sub>3</sub>
24
+ = 1, |   | \n7 \n ![√]({{ images_dir }}/symbol_radic.gif)23—4\n |  =  | \n7( ![√]({{
25
+ images_dir }}/symbol_radic.gif)23+4) \n7\n |  = 8 | ![√]({{ images_dir }}/symbol_radic.gif)23—4
26
+ |\n| <var>a</var><sub>4</sub> = 8, |   | \n1 \n ![√]({{ images_dir }}/symbol_radic.gif)234\n
27
+ |  =  | \n ![√]({{ images_dir }}/symbol_radic.gif)23+4 \n7\n |  = 1 +  | \n ![√]({{
28
+ images_dir }}/symbol_radic.gif)23—3 \n7\n |\n| <var>a</var><sub>5</sub> = 1, |
29
+   | \n7 \n ![√]({{ images_dir }}/symbol_radic.gif)23—3\n |  =  | \n7( ![√]({{ images_dir
30
+ }}/symbol_radic.gif)23+3) \n14\n |  = 3 +  | \n ![√]({{ images_dir }}/symbol_radic.gif)23—3
31
+ \ \n2\n |\n| <var>a</var><sub>6</sub> = 3, |   | \n2 \n ![√]({{ images_dir }}/symbol_radic.gif)23—3\n
32
+ |  =  | \n2( ![√]({{ images_dir }}/symbol_radic.gif)23+3) \n14\n |  = 1 +  | \n
33
+ ![√]({{ images_dir }}/symbol_radic.gif)23—4 \n7\n |\n| <var>a</var><sub>7</sub>
34
+ = 1, |   | \n7 \n ![√]({{ images_dir }}/symbol_radic.gif)23—4\n |  =  | \n7( ![√]({{
35
+ images_dir }}/symbol_radic.gif)23+4) \n7\n |  = 8 +  | ![√]({{ images_dir }}/symbol_radic.gif)23—4
41
36
  |\n\nIt can be seen that the sequence is repeating. For conciseness, we use the
42
- notation ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23
43
- = [4;(1,3,1,8)], to indicate that the block (1,3,1,8) repeats indefinitely.\n\nThe
44
- first ten continued fraction representations of (irrational) square roots are:\n\n![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)2=[1;(2)],
45
- period=1 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)3=[1;(1,2)],
46
- period=2 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)5=[2;(4)],
47
- period=1 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)6=[2;(2,4)],
48
- period=2 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)7=[2;(1,1,1,4)],
49
- period=4 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)8=[2;(1,4)],
50
- period=2 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)10=[3;(6)],
51
- period=1 \n ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)11=[3;(3,6)],
52
- period=2 \n ![](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)12=
53
- [3;(2,6)], period=2 \n ![](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)13=[3;(1,1,1,1,6)],
54
- period=5\n\nExactly four continued fractions, for <var>N</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
55
- 13, have an odd period.\n\nHow many continued fractions for <var>N</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
56
- 10000 have an odd period?\n\n"
37
+ notation ![√]({{ images_dir }}/symbol_radic.gif)23 = [4;(1,3,1,8)], to indicate
38
+ that the block (1,3,1,8) repeats indefinitely.\n\nThe first ten continued fraction
39
+ representations of (irrational) square roots are:\n\n![√]({{ images_dir }}/symbol_radic.gif)2=[1;(2)],
40
+ period=1 \n ![√]({{ images_dir }}/symbol_radic.gif)3=[1;(1,2)], period=2 \n ![√]({{
41
+ images_dir }}/symbol_radic.gif)5=[2;(4)], period=1 \n ![√]({{ images_dir }}/symbol_radic.gif)6=[2;(2,4)],
42
+ period=2 \n ![√]({{ images_dir }}/symbol_radic.gif)7=[2;(1,1,1,4)], period=4 \n
43
+ ![√]({{ images_dir }}/symbol_radic.gif)8=[2;(1,4)], period=2 \n ![√]({{ images_dir
44
+ }}/symbol_radic.gif)10=[3;(6)], period=1 \n ![√]({{ images_dir }}/symbol_radic.gif)11=[3;(3,6)],
45
+ period=2 \n ![√]({{ images_dir }}/symbol_radic.gif)12= [3;(2,6)], period=2 \n
46
+ ![√]({{ images_dir }}/symbol_radic.gif)13=[3;(1,1,1,1,6)], period=5\n\nExactly four
47
+ continued fractions, for <var>N</var> ![]({{ images_dir }}/symbol_le.gif) 13, have
48
+ an odd period.\n\nHow many continued fractions for <var>N</var> ![]({{ images_dir
49
+ }}/symbol_le.gif) 10000 have an odd period?\n\n"
data/data/problems/65.yml CHANGED
@@ -3,24 +3,23 @@
3
3
  :name: Convergents of e
4
4
  :url: http://projecteuler.net/problem=65
5
5
  :content: "The square root of 2 can be written as an infinite continued fraction.\n\n|
6
- ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)2 = 1 +
7
- | \n1\n |\n|   | 2 + | \n1\n |\n|   |   | 2 + | \n1\n |\n|   |   |   | 2 + | \n1\n
8
- |\n|   |   |   |   | 2 + ... |\n\nThe infinite continued fraction can be written,
9
- ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)2 = [1;(2)],
10
- (2) indicates that 2 repeats _ad infinitum_. In a similar way, ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)23
11
- = [4;(1,3,1,8)].\n\nIt turns out that the sequence of partial values of continued
12
- fractions for square roots provide the best rational approximations. Let us consider
13
- the convergents for ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)2.\n\n|
6
+ ![√]({{ images_dir }}/symbol_radic.gif)2 = 1 + | \n1\n |\n|   | 2 + | \n1\n |\n|
7
+   |   | 2 + | \n1\n |\n|   |   |   | 2 + | \n1\n |\n|   |   |   |   | 2 + ... |\n\nThe
8
+ infinite continued fraction can be written, ![√]({{ images_dir }}/symbol_radic.gif)2
9
+ = [1;(2)], (2) indicates that 2 repeats _ad infinitum_. In a similar way, ![√]({{
10
+ images_dir }}/symbol_radic.gif)23 = [4;(1,3,1,8)].\n\nIt turns out that the sequence
11
+ of partial values of continued fractions for square roots provide the best rational
12
+ approximations. Let us consider the convergents for ![√]({{ images_dir }}/symbol_radic.gif)2.\n\n|
14
13
  1 + | \n1\n | = 3/2 |\n|   | \n2\n |   |\n\n| 1 + | \n1\n | = 7/5 |\n|   | 2 + |
15
14
  \n1\n |\n|   |   | \n2\n |   |\n\n| 1 + | \n1\n | = 17/12 |\n|   | 2 + | \n1\n |
16
15
    |\n|   |   | 2 + | \n1\n |   |\n|   |   |   | \n2\n |   |\n\n| 1 + | \n1\n | =
17
16
  41/29 |\n|   | 2 + | \n1\n |\n|   |   | 2 + | \n1\n |   |\n|   |   |   | 2 + | \n1\n
18
17
  |   |\n|   |   |   |   | \n2\n |   |\n\nHence the sequence of the first ten convergents
19
- for ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)2 are:\n\n1,
20
- 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, ...\n\nWhat
21
- is most surprising is that the important mathematical constant, \n_e_ = [2; 1,2,1,
22
- 1,4,1, 1,6,1 , ... , 1,2_k_,1, ...].\n\nThe first ten terms in the sequence of convergents
23
- for _e_ are:\n\n2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536,
24
- ...\n\nThe sum of digits in the numerator of the 10<sup>th</sup> convergent is 1+4+5+7=17.\n\nFind
18
+ for ![√]({{ images_dir }}/symbol_radic.gif)2 are:\n\n1, 3/2, 7/5, 17/12, 41/29,
19
+ 99/70, 239/169, 577/408, 1393/985, 3363/2378, ...\n\nWhat is most surprising is
20
+ that the important mathematical constant, \n_e_ = [2; 1,2,1, 1,4,1, 1,6,1 , ...
21
+ , 1,2_k_,1, ...].\n\nThe first ten terms in the sequence of convergents for _e_
22
+ are:\n\n2, 3, 8/3, 11/4, 19/7, 87/32, 106/39, 193/71, 1264/465, 1457/536, ...\n\nThe
23
+ sum of digits in the numerator of the 10<sup>th</sup> convergent is 1+4+5+7=17.\n\nFind
25
24
  the sum of digits in the numerator of the 100<sup>th</sup> convergent of the continued
26
25
  fraction for _e_.\n\n"
data/data/problems/66.yml CHANGED
@@ -4,14 +4,14 @@
4
4
  :url: http://projecteuler.net/problem=66
5
5
  :content: "Consider quadratic Diophantine equations of the form:\n\n_x_<sup>2</sup>
6
6
  – D_y_<sup>2</sup> = 1\n\nFor example, when D=13, the minimal solution in _x_ is
7
- 649<sup>2</sup> – 13 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)180<sup>2</sup>
8
- = 1.\n\nIt can be assumed that there are no solutions in positive integers when
9
- D is square.\n\nBy finding minimal solutions in _x_ for D = {2, 3, 5, 6, 7}, we
10
- obtain the following:\n\n3<sup>2</sup> – 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2<sup>2</sup>
11
- = 1 \n\r2<sup>2</sup> – 3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)1<sup>2</sup>
12
- = 1 \n9<sup>2</sup> – 5 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)4<sup>2</sup>
13
- = 1 \n\r5<sup>2</sup> – 6 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)2<sup>2</sup>
14
- = 1 \n\r8<sup>2</sup> – 7 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)3<sup>2</sup>
15
- = 1\n\nHence, by considering minimal solutions in _x_ for D ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
16
- 7, the largest _x_ is obtained when D=5.\n\nFind the value of D ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
7
+ 649<sup>2</sup> – 13 ![×]({{ images_dir }}/symbol_times.gif)180<sup>2</sup> = 1.\n\nIt
8
+ can be assumed that there are no solutions in positive integers when D is square.\n\nBy
9
+ finding minimal solutions in _x_ for D = {2, 3, 5, 6, 7}, we obtain the following:\n\n3<sup>2</sup>
10
+ – 2 ![×]({{ images_dir }}/symbol_times.gif)2<sup>2</sup> = 1 \n\r2<sup>2</sup>
11
+ – 3 ![×]({{ images_dir }}/symbol_times.gif)1<sup>2</sup> = 1 \n9<sup>2</sup> –
12
+ 5 ![×]({{ images_dir }}/symbol_times.gif)4<sup>2</sup> = 1 \n\r5<sup>2</sup> –
13
+ 6 ![×]({{ images_dir }}/symbol_times.gif)2<sup>2</sup> = 1 \n\r8<sup>2</sup> –
14
+ 7 ![×]({{ images_dir }}/symbol_times.gif)3<sup>2</sup> = 1\n\nHence, by considering
15
+ minimal solutions in _x_ for D ![≤]({{ images_dir }}/symbol_le.gif) 7, the largest
16
+ _x_ is obtained when D=5.\n\nFind the value of D ![≤]({{ images_dir }}/symbol_le.gif)
17
17
  1000 in minimal solutions of _x_ for which the largest value of _x_ is obtained.\n\n"
data/data/problems/68.yml CHANGED
@@ -3,9 +3,9 @@
3
3
  :name: Magic 5-gon ring
4
4
  :url: http://projecteuler.net/problem=68
5
5
  :content: "Consider the following \"magic\" 3-gon ring, filled with the numbers 1
6
- to 6, and each line adding to nine.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_068_1.gif)
7
- \ \n\nWorking **clockwise** , and starting from the group of three with the numerically
8
- lowest external node (4,3,2 in this example), each solution can be described uniquely.
6
+ to 6, and each line adding to nine.\n\n ![]({{ images_dir }}/p_068_1.gif) \n\nWorking
7
+ **clockwise** , and starting from the group of three with the numerically lowest
8
+ external node (4,3,2 in this example), each solution can be described uniquely.
9
9
  For example, the above solution can be described by the set: 4,3,2; 6,2,1; 5,1,3.\n\nIt
10
10
  is possible to complete the ring with four different totals: 9, 10, 11, and 12.
11
11
  There are eight solutions in total.\n\n| **Total** | **Solution Set** |\n| 9 | 4,2,3;
@@ -15,5 +15,4 @@
15
15
  each group it is possible to form 9-digit strings; the maximum string for a 3-gon
16
16
  ring is 432621513.\n\nUsing the numbers 1 to 10, and depending on arrangements,
17
17
  it is possible to form 16- and 17-digit strings. What is the maximum **16-digit**
18
- string for a \"magic\" 5-gon ring?\n\n ![](/home/will/src/euler-manager/config/../data/images/p_068_2.gif)
19
- \ \n\n"
18
+ string for a \"magic\" 5-gon ring?\n\n ![]({{ images_dir }}/p_068_2.gif) \n\n"
data/data/problems/69.yml CHANGED
@@ -16,7 +16,7 @@
16
16
  | 9 | 1,2,4,5,7,8 | 6 | 1.5 |
17
17
  | 10 | 1,3,7,9 | 4 | 2.5 |
18
18
 
19
- It can be seen that _n_=6 produces a maximum _n_/φ(_n_) for _n_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 10.
19
+ It can be seen that _n_=6 produces a maximum _n_/φ(_n_) for _n_ ![≤]({{ images_dir }}/symbol_le.gif) 10.
20
20
 
21
- Find the value of _n_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 1,000,000 for which _n_/φ(_n_) is a maximum.
21
+ Find the value of _n_ ![≤]({{ images_dir }}/symbol_le.gif) 1,000,000 for which _n_/φ(_n_) is a maximum.
22
22
 
data/data/problems/70.yml CHANGED
@@ -8,7 +8,6 @@
8
8
  are all less than nine and relatively prime to nine, φ(9)=6. \nThe number 1 is
9
9
  considered to be relatively prime to every positive number, so φ(1)=1.\n\nInterestingly,
10
10
  φ(87109)=79180, and it can be seen that 87109 is a permutation of 79180.\n\nFind
11
- the value of <var>n</var>, 1 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
12
- <var>n</var> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
13
- 10<sup>7</sup>, for which φ(<var>n</var>) is a permutation of <var>n</var> and the
14
- ratio <var>n</var>/φ(<var>n</var>) produces a minimum.\n\n"
11
+ the value of <var>n</var>, 1 ![<]({{ images_dir }}/symbol_lt.gif) <var>n</var> ![<]({{
12
+ images_dir }}/symbol_lt.gif) 10<sup>7</sup>, for which φ(<var>n</var>) is a permutation
13
+ of <var>n</var> and the ratio <var>n</var>/φ(<var>n</var>) produces a minimum.\n\n"
data/data/problems/71.yml CHANGED
@@ -3,13 +3,13 @@
3
3
  :name: Ordered fractions
4
4
  :url: http://projecteuler.net/problem=71
5
5
  :content: |+
6
- Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)_d_ and HCF(_n,d_)=1, it is called a reduced proper fraction.
6
+ Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<]({{ images_dir }}/symbol_lt.gif)_d_ and HCF(_n,d_)=1, it is called a reduced proper fraction.
7
7
 
8
- If we list the set of reduced proper fractions for _d_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 8 in ascending order of size, we get:
8
+ If we list the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 8 in ascending order of size, we get:
9
9
 
10
10
  1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, **2/5** , 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
11
11
 
12
12
  It can be seen that 2/5 is the fraction immediately to the left of 3/7.
13
13
 
14
- By listing the set of reduced proper fractions for _d_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 1,000,000 in ascending order of size, find the numerator of the fraction immediately to the left of 3/7.
14
+ By listing the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 1,000,000 in ascending order of size, find the numerator of the fraction immediately to the left of 3/7.
15
15
 
data/data/problems/72.yml CHANGED
@@ -3,13 +3,13 @@
3
3
  :name: Counting fractions
4
4
  :url: http://projecteuler.net/problem=72
5
5
  :content: |+
6
- Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)_d_ and HCF(_n,d_)=1, it is called a reduced proper fraction.
6
+ Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<]({{ images_dir }}/symbol_lt.gif)_d_ and HCF(_n,d_)=1, it is called a reduced proper fraction.
7
7
 
8
- If we list the set of reduced proper fractions for _d_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 8 in ascending order of size, we get:
8
+ If we list the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 8 in ascending order of size, we get:
9
9
 
10
10
  1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
11
11
 
12
12
  It can be seen that there are 21 elements in this set.
13
13
 
14
- How many elements would be contained in the set of reduced proper fractions for _d_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 1,000,000?
14
+ How many elements would be contained in the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 1,000,000?
15
15
 
data/data/problems/73.yml CHANGED
@@ -3,13 +3,13 @@
3
3
  :name: Counting fractions in a range
4
4
  :url: http://projecteuler.net/problem=73
5
5
  :content: |+
6
- Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)_d_ and HCF(_n,d_)=1, it is called a reduced proper fraction.
6
+ Consider the fraction, _n/d_, where _n_ and _d_ are positive integers. If _n_ ![<]({{ images_dir }}/symbol_lt.gif)_d_ and HCF(_n,d_)=1, it is called a reduced proper fraction.
7
7
 
8
- If we list the set of reduced proper fractions for _d_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 8 in ascending order of size, we get:
8
+ If we list the set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 8 in ascending order of size, we get:
9
9
 
10
10
  1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, **3/8, 2/5, 3/7** , 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
11
11
 
12
12
  It can be seen that there are 3 fractions between 1/3 and 1/2.
13
13
 
14
- How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for _d_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 12,000?
14
+ How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for _d_ ![≤]({{ images_dir }}/symbol_le.gif) 12,000?
15
15
 
data/data/problems/74.yml CHANGED
@@ -5,25 +5,18 @@
5
5
  :content: "The number 145 is well known for the property that the sum of the factorial
6
6
  of its digits is equal to 145:\n\n1! + 4! + 5! = 1 + 24 + 120 = 145\n\nPerhaps less
7
7
  well known is 169, in that it produces the longest chain of numbers that link back
8
- to 169; it turns out that there are only three such loops that exist:\n\n169 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif)
9
- 363601 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif)
10
- 1454 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 169
11
- \ \n871 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif)
12
- 45361 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 871
13
- \ \n872 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif)
14
- 45362 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 872\n\nIt
15
- is not difficult to prove that EVERY starting number will eventually get stuck in
16
- a loop. For example,\n\n69 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif)
17
- 363600 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif)
18
- 1454 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 169
19
- ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 363601
20
- ( ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 1454)
21
- \ \n78 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif)
22
- 45360 ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 871
23
- ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 45361 (
24
- ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 871) \n540
25
- ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif) 145 ( ![→](/home/will/src/euler-manager/config/../data/images/symbol_maps.gif)
26
- 145)\n\nStarting with 69 produces a chain of five non-repeating terms, but the longest
27
- non-repeating chain with a starting number below one million is sixty terms.\n\nHow
28
- many chains, with a starting number below one million, contain exactly sixty non-repeating
29
- terms?\n\n"
8
+ to 169; it turns out that there are only three such loops that exist:\n\n169 ![→]({{
9
+ images_dir }}/symbol_maps.gif) 363601 ![→]({{ images_dir }}/symbol_maps.gif) 1454
10
+ ![→]({{ images_dir }}/symbol_maps.gif) 169 \n871 ![→]({{ images_dir }}/symbol_maps.gif)
11
+ 45361 ![→]({{ images_dir }}/symbol_maps.gif) 871 \n872 ![→]({{ images_dir }}/symbol_maps.gif)
12
+ 45362 ![→]({{ images_dir }}/symbol_maps.gif) 872\n\nIt is not difficult to prove
13
+ that EVERY starting number will eventually get stuck in a loop. For example,\n\n69
14
+ ![→]({{ images_dir }}/symbol_maps.gif) 363600 ![→]({{ images_dir }}/symbol_maps.gif)
15
+ 1454 ![→]({{ images_dir }}/symbol_maps.gif) 169 ![→]({{ images_dir }}/symbol_maps.gif)
16
+ 363601 ( ![→]({{ images_dir }}/symbol_maps.gif) 1454) \n78 ![→]({{ images_dir }}/symbol_maps.gif)
17
+ 45360 ![→]({{ images_dir }}/symbol_maps.gif) 871 ![→]({{ images_dir }}/symbol_maps.gif)
18
+ 45361 ( ![→]({{ images_dir }}/symbol_maps.gif) 871) \n540 ![→]({{ images_dir }}/symbol_maps.gif)
19
+ 145 ( ![→]({{ images_dir }}/symbol_maps.gif) 145)\n\nStarting with 69 produces a
20
+ chain of five non-repeating terms, but the longest non-repeating chain with a starting
21
+ number below one million is sixty terms.\n\nHow many chains, with a starting number
22
+ below one million, contain exactly sixty non-repeating terms?\n\n"
data/data/problems/75.yml CHANGED
@@ -10,5 +10,5 @@
10
10
  right angle triangle, and other lengths allow more than one solution to be found;
11
11
  for example, using 120 cm it is possible to form exactly three different integer
12
12
  sided right angle triangles.\n\n**120 cm** : (30,40,50), (20,48,52), (24,45,51)\n\nGiven
13
- that L is the length of the wire, for how many values of L ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
13
+ that L is the length of the wire, for how many values of L ![≤]({{ images_dir }}/symbol_le.gif)
14
14
  1,500,000 can exactly one integer sided right angle triangle be formed?\n\n"
data/data/problems/8.yml CHANGED
@@ -3,17 +3,17 @@
3
3
  :name: Largest product in a series
4
4
  :url: http://projecteuler.net/problem=8
5
5
  :content: "The four adjacent digits in the 1000-digit number that have the greatest
6
- product are 9 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
7
- 9 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 8 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
8
- 9 = 5832.\n\n73167176531330624919225119674426574742355349194934 \n\r96983520312774506326239578318016984801869478851843
9
- \ \n\r85861560789112949495459501737958331952853208805511 \n\r12540698747158523863050715693290963295227443043557
10
- \ \n\r66896648950445244523161731856403098711121722383113 \n\r62229893423380308135336276614282806444486645238749
11
- \ \n\r30358907296290491560440772390713810515859307960866 \n\r70172427121883998797908792274921901699720888093776
12
- \ \n\r65727333001053367881220235421809751254540594752243 \n\r52584907711670556013604839586446706324415722155397
13
- \ \n\r53697817977846174064955149290862569321978468622482 \n\r83972241375657056057490261407972968652414535100474
14
- \ \n\r82166370484403199890008895243450658541227588666881 \n\r16427171479924442928230863465674813919123162824586
15
- \ \n\r17866458359124566529476545682848912883142607690042 \n\r24219022671055626321111109370544217506941658960408
16
- \ \n\r07198403850962455444362981230987879927244284909188 \n\r84580156166097919133875499200524063689912560717606
17
- \ \n\r05886116467109405077541002256983155200055935729725 \n\r71636269561882670428252483600823257530420752963450\n\nFind
18
- the thirteen adjacent digits in the 1000-digit number that have the greatest product.
19
- What is the value of this product?\n\n"
6
+ product are 9 ![×]({{ images_dir }}/symbol_times.gif) 9 ![×]({{ images_dir }}/symbol_times.gif)
7
+ 8 ![×]({{ images_dir }}/symbol_times.gif) 9 = 5832.\n\n73167176531330624919225119674426574742355349194934
8
+ \ \n\r96983520312774506326239578318016984801869478851843 \n\r85861560789112949495459501737958331952853208805511
9
+ \ \n\r12540698747158523863050715693290963295227443043557 \n\r66896648950445244523161731856403098711121722383113
10
+ \ \n\r62229893423380308135336276614282806444486645238749 \n\r30358907296290491560440772390713810515859307960866
11
+ \ \n\r70172427121883998797908792274921901699720888093776 \n\r65727333001053367881220235421809751254540594752243
12
+ \ \n\r52584907711670556013604839586446706324415722155397 \n\r53697817977846174064955149290862569321978468622482
13
+ \ \n\r83972241375657056057490261407972968652414535100474 \n\r82166370484403199890008895243450658541227588666881
14
+ \ \n\r16427171479924442928230863465674813919123162824586 \n\r17866458359124566529476545682848912883142607690042
15
+ \ \n\r24219022671055626321111109370544217506941658960408 \n\r07198403850962455444362981230987879927244284909188
16
+ \ \n\r84580156166097919133875499200524063689912560717606 \n\r05886116467109405077541002256983155200055935729725
17
+ \ \n\r71636269561882670428252483600823257530420752963450\n\nFind the thirteen adjacent
18
+ digits in the 1000-digit number that have the greatest product. What is the value
19
+ of this product?\n\n"
data/data/problems/81.yml CHANGED
@@ -4,10 +4,10 @@
4
4
  :url: http://projecteuler.net/problem=81
5
5
  :content: "In the 5 by 5 matrix below, the minimal path sum from the top left to the
6
6
  bottom right, by **only moving to the right and down** , is indicated in bold red
7
- and is equal to 2427.\n\n| ![](/home/will/src/euler-manager/config/../data/images/bracket_left.gif)
8
- \ \n | \n\n| **131** | 673 | 234 | 103 | 18 |\n| **201** | **96** | **342** | 965
9
- | 150 |\n| 630 | 803 | **746** | **422** | 111 |\n| 537 | 699 | 497 | **121** |
10
- 956 |\n| 805 | 732 | 524 | **37** | **331** |\n\n | ![](/home/will/src/euler-manager/config/../data/images/bracket_right.gif)
11
- \ \n |\n\nFind the minimal path sum, in [matrix.txt](project/matrix.txt) (right
12
- click and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix,
13
- from the top left to the bottom right by only moving right and down.\n\n"
7
+ and is equal to 2427.\n\n| ![]({{ images_dir }}/bracket_left.gif) \n | \n\n| **131**
8
+ | 673 | 234 | 103 | 18 |\n| **201** | **96** | **342** | 965 | 150 |\n| 630 | 803
9
+ | **746** | **422** | 111 |\n| 537 | 699 | 497 | **121** | 956 |\n| 805 | 732 |
10
+ 524 | **37** | **331** |\n\n | ![]({{ images_dir }}/bracket_right.gif) \n |\n\nFind
11
+ the minimal path sum, in [matrix.txt](project/matrix.txt) (right click and 'Save
12
+ Link/Target As...'), a 31K text file containing a 80 by 80 matrix, from the top
13
+ left to the bottom right by only moving right and down.\n\n"
data/data/problems/82.yml CHANGED
@@ -5,10 +5,10 @@
5
5
  :content: "NOTE: This problem is a more challenging version of [Problem 81](problem=81).\n\nThe
6
6
  minimal path sum in the 5 by 5 matrix below, by starting in any cell in the left
7
7
  column and finishing in any cell in the right column, and only moving up, down,
8
- and right, is indicated in red and bold; the sum is equal to 994.\n\n| ![](/home/will/src/euler-manager/config/../data/images/bracket_left.gif)
9
- \ \n | \n\n| 131 | 673 | **234** | **103** | **18** |\n| **201** | **96** | **342**
10
- | 965 | 150 |\n| 630 | 803 | 746 | 422 | 111 |\n| 537 | 699 | 497 | 121 | 956 |\n|
11
- 805 | 732 | 524 | 37 | 331 |\n\n | ![](/home/will/src/euler-manager/config/../data/images/bracket_right.gif)
8
+ and right, is indicated in red and bold; the sum is equal to 994.\n\n| ![]({{ images_dir
9
+ }}/bracket_left.gif) \n | \n\n| 131 | 673 | **234** | **103** | **18** |\n| **201**
10
+ | **96** | **342** | 965 | 150 |\n| 630 | 803 | 746 | 422 | 111 |\n| 537 | 699 |
11
+ 497 | 121 | 956 |\n| 805 | 732 | 524 | 37 | 331 |\n\n | ![]({{ images_dir }}/bracket_right.gif)
12
12
  \ \n |\n\nFind the minimal path sum, in [matrix.txt](project/matrix.txt) (right
13
13
  click and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix,
14
14
  from the left column to the right column.\n\n"
data/data/problems/83.yml CHANGED
@@ -5,10 +5,10 @@
5
5
  :content: "NOTE: This problem is a significantly more challenging version of [Problem
6
6
  81](problem=81).\n\nIn the 5 by 5 matrix below, the minimal path sum from the top
7
7
  left to the bottom right, by moving left, right, up, and down, is indicated in bold
8
- red and is equal to 2297.\n\n| ![](/home/will/src/euler-manager/config/../data/images/bracket_left.gif)
9
- \ \n | \n\n| **131** | 673 | **234** | **103** | **18** |\n| **201** | **96** |
10
- **342** | 965 | **150** |\n| 630 | 803 | 746 | **422** | **111** |\n| 537 | 699
11
- | 497 | **121** | 956 |\n| 805 | 732 | 524 | **37** | **331** |\n\n | ![](/home/will/src/euler-manager/config/../data/images/bracket_right.gif)
8
+ red and is equal to 2297.\n\n| ![]({{ images_dir }}/bracket_left.gif) \n | \n\n|
9
+ **131** | 673 | **234** | **103** | **18** |\n| **201** | **96** | **342** | 965
10
+ | **150** |\n| 630 | 803 | 746 | **422** | **111** |\n| 537 | 699 | 497 | **121**
11
+ | 956 |\n| 805 | 732 | 524 | **37** | **331** |\n\n | ![]({{ images_dir }}/bracket_right.gif)
12
12
  \ \n |\n\nFind the minimal path sum, in [matrix.txt](project/matrix.txt) (right
13
13
  click and 'Save Link/Target As...'), a 31K text file containing a 80 by 80 matrix,
14
14
  from the top left to the bottom right by moving left, right, up, and down.\n\n"
data/data/problems/85.yml CHANGED
@@ -5,7 +5,7 @@
5
5
  :content: |+
6
6
  By counting carefully it can be seen that a rectangular grid measuring 3 by 2 contains eighteen rectangles:
7
7
 
8
- ![](/home/will/src/euler-manager/config/../data/images/p_085.gif)
8
+ ![]({{ images_dir }}/p_085.gif)
9
9
 
10
10
  Although there exists no rectangular grid that contains exactly two million rectangles, find the area of the grid with the nearest solution.
11
11
 
data/data/problems/86.yml CHANGED
@@ -5,11 +5,11 @@
5
5
  :content: "A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3,
6
6
  and a fly, F, sits in the opposite corner. By travelling on the surfaces of the
7
7
  room the shortest \"straight line\" distance from S to F is 10 and the path is shown
8
- on the diagram.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_086.gif)
9
- \ \n\nHowever, there are up to three \"shortest\" path candidates for any given
10
- cuboid and the shortest route doesn't always have integer length.\n\nBy considering
11
- all cuboid rooms with integer dimensions, up to a maximum size of M by M by M, there
12
- are exactly 2060 cuboids for which the shortest route has integer length when M=100,
13
- and this is the least value of M for which the number of solutions first exceeds
14
- two thousand; the number of solutions is 1975 when M=99.\n\nFind the least value
15
- of M such that the number of solutions first exceeds one million.\n\n"
8
+ on the diagram.\n\n ![]({{ images_dir }}/p_086.gif) \n\nHowever, there are up to
9
+ three \"shortest\" path candidates for any given cuboid and the shortest route doesn't
10
+ always have integer length.\n\nBy considering all cuboid rooms with integer dimensions,
11
+ up to a maximum size of M by M by M, there are exactly 2060 cuboids for which the
12
+ shortest route has integer length when M=100, and this is the least value of M for
13
+ which the number of solutions first exceeds two thousand; the number of solutions
14
+ is 1975 when M=99.\n\nFind the least value of M such that the number of solutions
15
+ first exceeds one million.\n\n"