euler-manager 0.0.6 → 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +13 -0
- data/data/images/sod_13.gif +4 -0
- data/data/problems/100.yml +1 -1
- data/data/problems/101.yml +16 -16
- data/data/problems/102.yml +2 -3
- data/data/problems/103.yml +16 -16
- data/data/problems/105.yml +2 -2
- data/data/problems/106.yml +2 -2
- data/data/problems/107.yml +15 -15
- data/data/problems/108.yml +13 -16
- data/data/problems/109.yml +16 -17
- data/data/problems/11.yml +22 -23
- data/data/problems/110.yml +9 -10
- data/data/problems/114.yml +30 -41
- data/data/problems/116.yml +19 -25
- data/data/problems/117.yml +24 -33
- data/data/problems/120.yml +3 -3
- data/data/problems/122.yml +18 -20
- data/data/problems/123.yml +2 -2
- data/data/problems/124.yml +18 -23
- data/data/problems/126.yml +10 -11
- data/data/problems/127.yml +7 -7
- data/data/problems/128.yml +1 -1
- data/data/problems/130.yml +6 -7
- data/data/problems/131.yml +1 -1
- data/data/problems/132.yml +1 -1
- data/data/problems/134.yml +2 -2
- data/data/problems/135.yml +2 -2
- data/data/problems/136.yml +2 -2
- data/data/problems/137.yml +4 -4
- data/data/problems/138.yml +4 -4
- data/data/problems/139.yml +1 -1
- data/data/problems/14.yml +12 -13
- data/data/problems/140.yml +3 -3
- data/data/problems/142.yml +1 -1
- data/data/problems/143.yml +2 -2
- data/data/problems/144.yml +3 -3
- data/data/problems/147.yml +1 -1
- data/data/problems/149.yml +11 -13
- data/data/problems/15.yml +3 -3
- data/data/problems/150.yml +8 -8
- data/data/problems/151.yml +1 -1
- data/data/problems/152.yml +1 -1
- data/data/problems/153.yml +24 -26
- data/data/problems/154.yml +10 -9
- data/data/problems/155.yml +3 -3
- data/data/problems/156.yml +7 -8
- data/data/problems/157.yml +3 -4
- data/data/problems/158.yml +4 -5
- data/data/problems/159.yml +3 -3
- data/data/problems/161.yml +5 -4
- data/data/problems/163.yml +10 -10
- data/data/problems/165.yml +1 -1
- data/data/problems/166.yml +7 -7
- data/data/problems/167.yml +3 -4
- data/data/problems/168.yml +5 -5
- data/data/problems/170.yml +2 -2
- data/data/problems/171.yml +3 -3
- data/data/problems/173.yml +1 -1
- data/data/problems/174.yml +3 -3
- data/data/problems/175.yml +4 -4
- data/data/problems/177.yml +1 -1
- data/data/problems/179.yml +1 -1
- data/data/problems/180.yml +8 -9
- data/data/problems/182.yml +22 -24
- data/data/problems/183.yml +14 -15
- data/data/problems/184.yml +2 -2
- data/data/problems/186.yml +10 -11
- data/data/problems/187.yml +6 -8
- data/data/problems/189.yml +10 -9
- data/data/problems/190.yml +1 -1
- data/data/problems/192.yml +11 -12
- data/data/problems/194.yml +8 -8
- data/data/problems/195.yml +2 -2
- data/data/problems/197.yml +5 -6
- data/data/problems/198.yml +11 -12
- data/data/problems/199.yml +7 -7
- data/data/problems/20.yml +8 -10
- data/data/problems/202.yml +1 -1
- data/data/problems/207.yml +4 -4
- data/data/problems/208.yml +4 -5
- data/data/problems/21.yml +5 -6
- data/data/problems/210.yml +4 -5
- data/data/problems/211.yml +1 -1
- data/data/problems/212.yml +22 -26
- data/data/problems/213.yml +5 -6
- data/data/problems/214.yml +8 -9
- data/data/problems/215.yml +4 -4
- data/data/problems/216.yml +5 -5
- data/data/problems/217.yml +8 -10
- data/data/problems/218.yml +1 -1
- data/data/problems/22.yml +1 -1
- data/data/problems/220.yml +15 -15
- data/data/problems/221.yml +4 -5
- data/data/problems/223.yml +5 -6
- data/data/problems/224.yml +5 -6
- data/data/problems/226.yml +8 -8
- data/data/problems/228.yml +4 -5
- data/data/problems/229.yml +16 -16
- data/data/problems/230.yml +4 -4
- data/data/problems/231.yml +4 -5
- data/data/problems/233.yml +1 -1
- data/data/problems/234.yml +9 -10
- data/data/problems/236.yml +4 -4
- data/data/problems/237.yml +3 -3
- data/data/problems/238.yml +3 -4
- data/data/problems/241.yml +4 -4
- data/data/problems/242.yml +2 -2
- data/data/problems/243.yml +12 -12
- data/data/problems/244.yml +10 -11
- data/data/problems/245.yml +14 -15
- data/data/problems/246.yml +10 -9
- data/data/problems/247.yml +12 -13
- data/data/problems/251.yml +3 -3
- data/data/problems/252.yml +6 -7
- data/data/problems/254.yml +2 -2
- data/data/problems/255.yml +35 -36
- data/data/problems/256.yml +16 -20
- data/data/problems/257.yml +9 -9
- data/data/problems/258.yml +5 -6
- data/data/problems/26.yml +1 -1
- data/data/problems/260.yml +6 -8
- data/data/problems/261.yml +6 -7
- data/data/problems/262.yml +1 -1
- data/data/problems/264.yml +10 -11
- data/data/problems/265.yml +1 -1
- data/data/problems/27.yml +10 -11
- data/data/problems/270.yml +3 -3
- data/data/problems/271.yml +5 -6
- data/data/problems/272.yml +6 -7
- data/data/problems/273.yml +3 -3
- data/data/problems/274.yml +15 -15
- data/data/problems/275.yml +3 -3
- data/data/problems/276.yml +3 -3
- data/data/problems/277.yml +3 -3
- data/data/problems/278.yml +15 -17
- data/data/problems/281.yml +4 -4
- data/data/problems/282.yml +2 -2
- data/data/problems/284.yml +7 -8
- data/data/problems/287.yml +18 -17
- data/data/problems/288.yml +1 -1
- data/data/problems/289.yml +1 -1
- data/data/problems/29.yml +12 -13
- data/data/problems/290.yml +1 -1
- data/data/problems/291.yml +3 -3
- data/data/problems/292.yml +1 -1
- data/data/problems/293.yml +7 -7
- data/data/problems/295.yml +8 -8
- data/data/problems/296.yml +4 -5
- data/data/problems/297.yml +4 -5
- data/data/problems/299.yml +11 -12
- data/data/problems/300.yml +10 -9
- data/data/problems/301.yml +2 -2
- data/data/problems/303.yml +3 -3
- data/data/problems/304.yml +6 -7
- data/data/problems/305.yml +3 -2
- data/data/problems/306.yml +8 -11
- data/data/problems/307.yml +2 -3
- data/data/problems/309.yml +8 -8
- data/data/problems/31.yml +1 -1
- data/data/problems/310.yml +6 -7
- data/data/problems/311.yml +11 -11
- data/data/problems/312.yml +5 -5
- data/data/problems/313.yml +4 -4
- data/data/problems/314.yml +4 -5
- data/data/problems/315.yml +26 -27
- data/data/problems/316.yml +2 -4
- data/data/problems/318.yml +27 -34
- data/data/problems/319.yml +11 -12
- data/data/problems/32.yml +1 -1
- data/data/problems/320.yml +1 -1
- data/data/problems/321.yml +3 -3
- data/data/problems/322.yml +4 -4
- data/data/problems/323.yml +7 -8
- data/data/problems/324.yml +8 -9
- data/data/problems/325.yml +1 -1
- data/data/problems/326.yml +2 -2
- data/data/problems/327.yml +27 -29
- data/data/problems/328.yml +2 -2
- data/data/problems/330.yml +13 -14
- data/data/problems/331.yml +12 -12
- data/data/problems/332.yml +10 -9
- data/data/problems/333.yml +15 -16
- data/data/problems/334.yml +14 -14
- data/data/problems/335.yml +2 -2
- data/data/problems/336.yml +5 -4
- data/data/problems/337.yml +7 -7
- data/data/problems/338.yml +21 -24
- data/data/problems/340.yml +6 -7
- data/data/problems/341.yml +3 -5
- data/data/problems/342.yml +6 -7
- data/data/problems/343.yml +8 -12
- data/data/problems/344.yml +1 -1
- data/data/problems/347.yml +8 -8
- data/data/problems/350.yml +5 -5
- data/data/problems/351.yml +1 -1
- data/data/problems/352.yml +25 -26
- data/data/problems/353.yml +1 -1
- data/data/problems/354.yml +6 -6
- data/data/problems/356.yml +2 -3
- data/data/problems/358.yml +13 -14
- data/data/problems/359.yml +1 -1
- data/data/problems/361.yml +2 -1
- data/data/problems/362.yml +11 -13
- data/data/problems/363.yml +6 -6
- data/data/problems/364.yml +3 -3
- data/data/problems/365.yml +2 -2
- data/data/problems/366.yml +4 -5
- data/data/problems/369.yml +1 -1
- data/data/problems/370.yml +3 -3
- data/data/problems/372.yml +6 -8
- data/data/problems/374.yml +5 -7
- data/data/problems/375.yml +5 -6
- data/data/problems/377.yml +2 -2
- data/data/problems/378.yml +2 -2
- data/data/problems/379.yml +7 -8
- data/data/problems/38.yml +9 -9
- data/data/problems/380.yml +12 -15
- data/data/problems/381.yml +8 -11
- data/data/problems/382.yml +6 -6
- data/data/problems/383.yml +4 -4
- data/data/problems/384.yml +7 -8
- data/data/problems/385.yml +8 -8
- data/data/problems/386.yml +2 -2
- data/data/problems/388.yml +5 -6
- data/data/problems/39.yml +1 -1
- data/data/problems/390.yml +4 -6
- data/data/problems/391.yml +11 -12
- data/data/problems/392.yml +1 -1
- data/data/problems/393.yml +2 -2
- data/data/problems/394.yml +6 -7
- data/data/problems/395.yml +5 -5
- data/data/problems/396.yml +15 -17
- data/data/problems/397.yml +5 -8
- data/data/problems/4.yml +1 -1
- data/data/problems/40.yml +1 -1
- data/data/problems/400.yml +5 -6
- data/data/problems/401.yml +2 -2
- data/data/problems/402.yml +7 -8
- data/data/problems/403.yml +9 -10
- data/data/problems/404.yml +5 -6
- data/data/problems/405.yml +7 -7
- data/data/problems/406.yml +8 -10
- data/data/problems/407.yml +9 -9
- data/data/problems/410.yml +5 -6
- data/data/problems/411.yml +11 -12
- data/data/problems/412.yml +9 -9
- data/data/problems/414.yml +13 -15
- data/data/problems/415.yml +2 -2
- data/data/problems/417.yml +4 -5
- data/data/problems/418.yml +7 -8
- data/data/problems/419.yml +8 -8
- data/data/problems/420.yml +5 -5
- data/data/problems/421.yml +11 -12
- data/data/problems/422.yml +9 -9
- data/data/problems/423.yml +5 -7
- data/data/problems/424.yml +8 -9
- data/data/problems/425.yml +2 -3
- data/data/problems/426.yml +3 -3
- data/data/problems/427.yml +8 -8
- data/data/problems/428.yml +16 -19
- data/data/problems/430.yml +4 -5
- data/data/problems/44.yml +3 -3
- data/data/problems/45.yml +2 -2
- data/data/problems/46.yml +8 -8
- data/data/problems/47.yml +6 -10
- data/data/problems/53.yml +8 -9
- data/data/problems/56.yml +1 -1
- data/data/problems/57.yml +5 -5
- data/data/problems/58.yml +1 -1
- data/data/problems/6.yml +1 -1
- data/data/problems/61.yml +4 -4
- data/data/problems/64.yml +39 -46
- data/data/problems/65.yml +13 -14
- data/data/problems/66.yml +10 -10
- data/data/problems/68.yml +4 -5
- data/data/problems/69.yml +2 -2
- data/data/problems/70.yml +3 -4
- data/data/problems/71.yml +3 -3
- data/data/problems/72.yml +3 -3
- data/data/problems/73.yml +3 -3
- data/data/problems/74.yml +15 -22
- data/data/problems/75.yml +1 -1
- data/data/problems/8.yml +14 -14
- data/data/problems/81.yml +7 -7
- data/data/problems/82.yml +4 -4
- data/data/problems/83.yml +4 -4
- data/data/problems/85.yml +1 -1
- data/data/problems/86.yml +8 -8
- data/data/problems/88.yml +22 -27
- data/data/problems/9.yml +6 -6
- data/data/problems/90.yml +13 -13
- data/data/problems/91.yml +8 -8
- data/data/problems/92.yml +7 -9
- data/data/problems/93.yml +9 -10
- data/data/problems/95.yml +1 -1
- data/data/problems/96.yml +17 -17
- data/data/problems/97.yml +2 -2
- data/data/problems/99.yml +2 -2
- data/lib/euler/problem.rb +6 -1
- data/lib/euler/version.rb +1 -1
- metadata +2 -2
data/data/problems/223.yml
CHANGED
@@ -2,9 +2,8 @@
|
|
2
2
|
:id: 223
|
3
3
|
:name: Almost right-angled triangles I
|
4
4
|
:url: http://projecteuler.net/problem=223
|
5
|
-
:content: "Let us call an integer sided triangle with sides <var>a</var> ![≤](
|
6
|
-
<var>b</var> ![≤](/
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
25,000,000?\n\n"
|
5
|
+
:content: "Let us call an integer sided triangle with sides <var>a</var> ![≤]({{ images_dir
|
6
|
+
}}/symbol_le.gif) <var>b</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>c</var>
|
7
|
+
_barely acute_ if the sides satisfy \n <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup>
|
8
|
+
= <var>c</var><sup>2</sup> + 1.\n\nHow many barely acute triangles are there with
|
9
|
+
perimeter ![≤]({{ images_dir }}/symbol_le.gif) 25,000,000?\n\n"
|
data/data/problems/224.yml
CHANGED
@@ -2,9 +2,8 @@
|
|
2
2
|
:id: 224
|
3
3
|
:name: Almost right-angled triangles II
|
4
4
|
:url: http://projecteuler.net/problem=224
|
5
|
-
:content: "Let us call an integer sided triangle with sides <var>a</var> ![≤](
|
6
|
-
<var>b</var> ![≤](/
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
75,000,000?\n\n"
|
5
|
+
:content: "Let us call an integer sided triangle with sides <var>a</var> ![≤]({{ images_dir
|
6
|
+
}}/symbol_le.gif) <var>b</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>c</var>
|
7
|
+
_barely obtuse_ if the sides satisfy \n <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup>
|
8
|
+
= <var>c</var><sup>2</sup> - 1.\n\nHow many barely obtuse triangles are there with
|
9
|
+
perimeter ![≤]({{ images_dir }}/symbol_le.gif) 75,000,000?\n\n"
|
data/data/problems/226.yml
CHANGED
@@ -3,11 +3,11 @@
|
|
3
3
|
:name: A Scoop of Blancmange
|
4
4
|
:url: http://projecteuler.net/problem=226
|
5
5
|
:content: "The _blancmange curve_ is the set of points (<var>x</var>,<var>y</var>)
|
6
|
-
such that 0 ![≤](/
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
6
|
+
such that 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>x</var> ![≤]({{ images_dir
|
7
|
+
}}/symbol_le.gif) 1 and ![]({{ images_dir }}/p_226_formula.gif) , \nwhere <var>s</var>(<var>x</var>)
|
8
|
+
= the distance from <var>x</var> to the nearest integer.\n\nThe area under the blancmange
|
9
|
+
curve is equal to ½, shown in pink in the diagram below.\n\n ![blancmange curve]({{
|
10
|
+
images_dir }}/p_226_scoop2.gif)\n\nLet <var>C</var> be the circle with centre (¼,½)
|
11
|
+
and radius ¼, shown in black in the diagram.\n\nWhat area under the blancmange curve
|
12
|
+
is enclosed by <var>C</var>? \nGive your answer rounded to eight decimal places
|
13
|
+
in the form _0.abcdefgh_\n\n"
|
data/data/problems/228.yml
CHANGED
@@ -5,9 +5,8 @@
|
|
5
5
|
:content: "Let <var>S</var><sub>n</sub> be the regular <var>n</var>-sided polygon
|
6
6
|
– or _shape_ – whose vertices \r\r<var>v</var><sub><var>k</var></sub> (<var>k</var> = 1,2,…,<var>n</var>)
|
7
7
|
have coordinates:\n\n| | <var>x</var><sub><var>k</var></sub> = \r cos( <sup>2<var>k</var>-1</sup>/<sub><var>n</var></sub>
|
8
|
-
![×](/
|
9
|
-
|
10
|
-
![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)180° )
|
8
|
+
![×]({{ images_dir }}/symbol_times.gif)180° ) |\n| | <var>y</var><sub><var>k</var></sub> =
|
9
|
+
\r sin( <sup>2<var>k</var>-1</sup>/<sub><var>n</var></sub> ![×]({{ images_dir }}/symbol_times.gif)180° )
|
11
10
|
|\n\nEach <var>S</var><sub><var>n</var></sub> is to be interpreted as a filled shape
|
12
11
|
consisting of all points on the perimeter and in the interior.\n\nThe _Minkowski
|
13
12
|
sum_, <var>S</var>+<var>T</var>, of two shapes <var>S</var> and <var>T</var> is
|
@@ -15,6 +14,6 @@
|
|
15
14
|
where point addition is performed coordinate-wise: \r\r(<var>u</var>, <var>v</var>)
|
16
15
|
+ (<var>x</var>, <var>y</var>) = (<var>u</var>+<var>x</var>, <var>v</var>+<var>y</var>).\n\nFor
|
17
16
|
example, the sum of <var>S</var><sub>3</sub> and <var>S</var><sub>4</sub> is the
|
18
|
-
six-sided shape shown in pink below:\n\n ![picture showing S_3 + S_4](
|
19
|
-
many sides does <var>S</var><sub>1864</sub> + <var>S</var><sub>1865</sub> + … + <var>S</var><sub>1909</sub>
|
17
|
+
six-sided shape shown in pink below:\n\n ![picture showing S_3 + S_4]({{ images_dir
|
18
|
+
}}/p_228.png)\n\nHow many sides does <var>S</var><sub>1864</sub> + <var>S</var><sub>1865</sub> + … + <var>S</var><sub>1909</sub>
|
20
19
|
have?\n\n"
|
data/data/problems/229.yml
CHANGED
@@ -3,20 +3,20 @@
|
|
3
3
|
:name: Four Representations using Squares
|
4
4
|
:url: http://projecteuler.net/problem=229
|
5
5
|
:content: "Consider the number 3600. It is very special, because\n\n\r3600 = 48<sup>2</sup>
|
6
|
-
+ 36<sup>2</sup> \n \n \n\r3600 = 20<sup>2</sup> + 2 ![×](/
|
7
|
-
\ \n \n \n\r3600 = 30<sup>2</sup> + 3 ![×](/
|
8
|
-
\ \n \n \n\r3600 = 45<sup>2</sup> + 7 ![×](/
|
6
|
+
+ 36<sup>2</sup> \n \n \n\r3600 = 20<sup>2</sup> + 2 ![×]({{ images_dir }}/symbol_times.gif)40<sup>2</sup>
|
7
|
+
\ \n \n \n\r3600 = 30<sup>2</sup> + 3 ![×]({{ images_dir }}/symbol_times.gif)30<sup>2</sup>
|
8
|
+
\ \n \n \n\r3600 = 45<sup>2</sup> + 7 ![×]({{ images_dir }}/symbol_times.gif)15<sup>2</sup>
|
9
9
|
\ \n \n \n\nSimilarly, we find that 88201 = 99<sup>2</sup> + 280<sup>2</sup> =
|
10
|
-
287<sup>2</sup> + 2 ![×](/
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
10
|
+
287<sup>2</sup> + 2 ![×]({{ images_dir }}/symbol_times.gif)54<sup>2</sup> = 283<sup>2</sup>
|
11
|
+
+ 3 ![×]({{ images_dir }}/symbol_times.gif)52<sup>2</sup> = 197<sup>2</sup> + 7
|
12
|
+
![×]({{ images_dir }}/symbol_times.gif)84<sup>2</sup>.\n\nIn 1747, Euler proved
|
13
|
+
which numbers are representable as a sum of two squares.\rWe are interested in the
|
14
|
+
numbers <var>n</var> which admit representations of all of the following four types:\n\n<var>n</var>
|
15
|
+
= <var>a<sub>1</sub></var><sup>2</sup> + <var>b<sub>1</sub></var><sup>2</sup>
|
16
|
+
\ \n \n \n<var>n</var> = <var>a<sub>2</sub></var><sup>2</sup> + 2 <var>b<sub>2</sub></var><sup>2</sup>
|
17
|
+
\ \n \n \n<var>n</var> = <var>a<sub>3</sub></var><sup>2</sup> + 3 <var>b<sub>3</sub></var><sup>2</sup>
|
18
|
+
\ \n \n \n<var>n</var> = <var>a<sub>7</sub></var><sup>2</sup> + 7 <var>b<sub>7</sub></var><sup>2</sup>,\r\n\nwhere
|
19
|
+
the <var>a</var><sub><var>k</var></sub> and <var>b</var><sub><var>k</var></sub>
|
20
|
+
are positive integers.\n\nThere are 75373 such numbers that do not exceed 10<sup>7</sup>.
|
21
|
+
\ \n\r\rHow many such numbers are there that do not exceed 2 ![×]({{ images_dir
|
22
|
+
}}/symbol_times.gif)10<sup>9</sup>?\n\n"
|
data/data/problems/230.yml
CHANGED
@@ -13,7 +13,7 @@
|
|
13
13
|
fifth term, which is 9.\n\nNow we use for A the first 100 digits of π behind the
|
14
14
|
decimal point:\n\n14159265358979323846264338327950288419716939937510 \n\r58209749445923078164062862089986280348253421170679\n\nand
|
15
15
|
for B the next hundred digits:\n\n82148086513282306647093844609550582231725359408128
|
16
|
-
\ \n\r48111745028410270193852110555964462294895493038196 .\n\nFind ![∑](
|
17
|
-
= 0,1,...,17</sub> 10<sup><var>n</var></sup>
|
18
|
-
D<sub>A,B</sub>((127+19<var>n</var>) ![×](
|
19
|
-
.\n\n"
|
16
|
+
\ \n\r48111745028410270193852110555964462294895493038196 .\n\nFind ![∑]({{ images_dir
|
17
|
+
}}/symbol_sum.gif)<sub><var>n</var> = 0,1,...,17</sub> 10<sup><var>n</var></sup>
|
18
|
+
![×]({{ images_dir }}/symbol_times.gif) D<sub>A,B</sub>((127+19<var>n</var>) ![×]({{
|
19
|
+
images_dir }}/symbol_times.gif)7<sup><var>n</var></sup>) .\n\n"
|
data/data/problems/231.yml
CHANGED
@@ -3,10 +3,9 @@
|
|
3
3
|
:name: The prime factorisation of binomial coefficients
|
4
4
|
:url: http://projecteuler.net/problem=231
|
5
5
|
:content: "The binomial coefficient <sup>10</sup>C<sub>3</sub> = 120. \n\r120 = 2<sup>3</sup>
|
6
|
-
![×](/
|
7
|
-
5 = 2 ![×](/
|
8
|
-
2 ![×](/
|
9
|
-
3
|
10
|
-
2 + 2 + 2 + 3 + 5 = 14. \n\rSo the sum of the terms in the prime factorisation
|
6
|
+
![×]({{ images_dir }}/symbol_times.gif) 3 ![×]({{ images_dir }}/symbol_times.gif)
|
7
|
+
5 = 2 ![×]({{ images_dir }}/symbol_times.gif) 2 ![×]({{ images_dir }}/symbol_times.gif)
|
8
|
+
2 ![×]({{ images_dir }}/symbol_times.gif) 3 ![×]({{ images_dir }}/symbol_times.gif)
|
9
|
+
5, and 2 + 2 + 2 + 3 + 5 = 14. \n\rSo the sum of the terms in the prime factorisation
|
11
10
|
of <sup>10</sup>C<sub>3</sub> is 14.\r \n \n \n\rFind the sum of the terms in
|
12
11
|
the prime factorisation of <sup>20000000</sup>C<sub>15000000</sub>.\n\n"
|
data/data/problems/233.yml
CHANGED
@@ -7,5 +7,5 @@
|
|
7
7
|
|
8
8
|
It can be shown that <var>f</var>(10000) = 36.
|
9
9
|
|
10
|
-
What is the sum of all positive integers <var>N</var> ![≤](/
|
10
|
+
What is the sum of all positive integers <var>N</var> ![≤]({{ images_dir }}/symbol_le.gif) 10<sup>11</sup> such that <var>f</var>(<var>N</var>) = 420 ?
|
11
11
|
|
data/data/problems/234.yml
CHANGED
@@ -2,17 +2,16 @@
|
|
2
2
|
:id: 234
|
3
3
|
:name: Semidivisible numbers
|
4
4
|
:url: http://projecteuler.net/problem=234
|
5
|
-
:content: "For an integer <var>n</var> ![≥](/
|
6
|
-
|
7
|
-
as the largest prime ![≤](/
|
8
|
-
![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)<var>n</var>
|
5
|
+
:content: "For an integer <var>n</var> ![≥]({{ images_dir }}/symbol_ge.gif) 4, we
|
6
|
+
define the _lower prime square root_ of <var>n</var>, denoted by lps(<var>n</var>),
|
7
|
+
as the largest prime ![≤]({{ images_dir }}/symbol_le.gif) ![√]({{ images_dir }}/symbol_radic.gif)<var>n</var>
|
9
8
|
and the _upper prime square root_ of <var>n</var>, ups(<var>n</var>), as the smallest
|
10
|
-
prime ![≥](/
|
9
|
+
prime ![≥]({{ images_dir }}/symbol_ge.gif) ![√]({{ images_dir }}/symbol_radic.gif)<var>n</var>.\n\nSo,
|
11
10
|
for example, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37. \n\rLet us call
|
12
|
-
an integer <var>n</var> ![≥](/
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
11
|
+
an integer <var>n</var> ![≥]({{ images_dir }}/symbol_ge.gif) 4 _semidivisible_,
|
12
|
+
if one of lps(<var>n</var>) and ups(<var>n</var>) divides <var>n</var>, but not
|
13
|
+
both.\n\nThe sum of the semidivisible numbers not exceeding 15 is 30, the numbers
|
14
|
+
are 8, 10 and 12. \n 15 is not semidivisible because it is a multiple of both lps(15)
|
15
|
+
= 3 and ups(15) = 5. \n\rAs a further example, the sum of the 92 semidivisible
|
17
16
|
numbers up to 1000 is 34825.\n\nWhat is the sum of all semidivisible numbers not
|
18
17
|
exceeding 999966663333 ?\n\n"
|
data/data/problems/236.yml
CHANGED
@@ -24,7 +24,7 @@
|
|
24
24
|
found that each of the five per-product spoilage rates was worse (higher) for 'B'
|
25
25
|
than for 'A' by the same factor (ratio of spoilage rates), <var>m</var>>1; and yet,
|
26
26
|
paradoxically, the overall spoilage rate was worse for 'A' than for 'B', also by
|
27
|
-
a factor of <var>m</var>.\n\nThere are thirty-five <var>m</var> ![>](
|
28
|
-
for which this surprising result could have occurred, the smallest
|
29
|
-
the largest possible value of <var>m</var>? \n\rGive
|
30
|
-
reduced to its lowest terms, in the form <var>u</var>/<var>v</var>.\n\n"
|
27
|
+
a factor of <var>m</var>.\n\nThere are thirty-five <var>m</var> ![>]({{ images_dir
|
28
|
+
}}/symbol_gt.gif)1 for which this surprising result could have occurred, the smallest
|
29
|
+
of which is 1476/1475.\n\nWhat's the largest possible value of <var>m</var>? \n\rGive
|
30
|
+
your answer as a fraction reduced to its lowest terms, in the form <var>u</var>/<var>v</var>.\n\n"
|
data/data/problems/237.yml
CHANGED
@@ -3,16 +3,16 @@
|
|
3
3
|
:name: Tours on a 4 x n playing board
|
4
4
|
:url: http://projecteuler.net/problem=237
|
5
5
|
:content: |+
|
6
|
-
Let T(_n_) be the number of tours over a 4 ![×](/
|
6
|
+
Let T(_n_) be the number of tours over a 4 ![×]({{ images_dir }}/symbol_times.gif) _n_ playing board such that:
|
7
7
|
|
8
8
|
- The tour starts in the top left corner.
|
9
9
|
- The tour consists of moves that are up, down, left, or right one square.
|
10
10
|
- The tour visits each square exactly once.
|
11
11
|
- The tour ends in the bottom left corner.
|
12
12
|
|
13
|
-
The diagram shows one tour over a 4 ![×](/
|
13
|
+
The diagram shows one tour over a 4 ![×]({{ images_dir }}/symbol_times.gif) 10 board:
|
14
14
|
|
15
|
-
![](/
|
15
|
+
![]({{ images_dir }}/p_237.gif)
|
16
16
|
|
17
17
|
T(10) is 2329. What is T(10<sup>12</sup>) modulo 10<sup>8</sup>?
|
18
18
|
|
data/data/problems/238.yml
CHANGED
@@ -24,7 +24,6 @@
|
|
24
24
|
**3** .\n\nNote that substring 025 starting at position **3** , has a sum of digits
|
25
25
|
equal to 7, but there was an earlier substring (starting at position **1** ) with
|
26
26
|
a sum of digits equal to 7, so <var>p</var>(7) = 1, _not_ 3.\n\nWe can verify that,
|
27
|
-
for 0 k ![≤](/
|
28
|
-
|
29
|
-
|
30
|
-
for 0 k ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 2·10<sup>15</sup>.\n\n"
|
27
|
+
for 0 k ![≤]({{ images_dir }}/symbol_le.gif) 10<sup>3</sup>, ![∑]({{ images_dir
|
28
|
+
}}/symbol_sum.gif) <var>p</var>(<var>k</var>) = 4742.\n\nFind ![∑]({{ images_dir
|
29
|
+
}}/symbol_sum.gif) <var>p</var>(<var>k</var>), for 0 k ![≤]({{ images_dir }}/symbol_le.gif) 2·10<sup>15</sup>.\n\n"
|
data/data/problems/241.yml
CHANGED
@@ -6,9 +6,9 @@
|
|
6
6
|
all divisors of <var>n</var>, so e.g. σ(6) = 1 + 2 + 3 + 6 = 12.\n\nA perfect number,
|
7
7
|
as you probably know, is a number with σ(<var>n</var>) = 2<var>n</var>.\n\n| Let
|
8
8
|
us define the **perfection quotient** of a positive integer as | <var>p</var>(<var>n</var>)
|
9
|
-
| = | \nσ(<var>n</var>) \n ![](/
|
10
|
-
|
11
|
-
|
12
|
-
the sum of all positive integers <var>n</var> ![≤](/
|
9
|
+
| = | \nσ(<var>n</var>) \n ![]({{ images_dir }}/blackdot.gif) \n<var>n</var>\n
|
10
|
+
| . |\n\n<!--\r\n<p>Let us define the <b>perfection quotient</b> of a positive integer
|
11
|
+
as <var>p</var>(<var>n</var>) = <font \"size=4\"> <sup>σ(<var>n</var>)</sup>⁄<sub><var>n</var></sub></font>.</p>\r\n-->\n\nFind
|
12
|
+
the sum of all positive integers <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif)
|
13
13
|
10<sup>18</sup> for which <var>p</var>(<var>n</var>) has the form <var>k</var> +
|
14
14
|
<sup>1</sup>⁄<sub>2</sub>, where <var>k</var> is an integer.\n\n"
|
data/data/problems/242.yml
CHANGED
@@ -8,7 +8,7 @@
|
|
8
8
|
having an odd sum of elements, i.e.: {1,2,4}, {1,3,5}, {2,3,4} and {2,4,5}.\n\nWhen
|
9
9
|
all three values <var>n</var>, <var>k</var> and <var>f</var>(<var>n</var>,<var>k</var>)
|
10
10
|
are odd, we say that they make \n\ran _odd-triplet_ [<var>n</var>,<var>k</var>,<var>f</var>(<var>n</var>,<var>k</var>)].\n\nThere
|
11
|
-
are exactly five odd-triplets with <var>n</var> ![≤](/
|
11
|
+
are exactly five odd-triplets with <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif) 10,
|
12
12
|
namely: \n\r[1,1,<var>f</var>(1,1) = 1], [5,1,<var>f</var>(5,1) = 3], [5,5,<var>f</var>(5,5) = 1],
|
13
13
|
[9,1,<var>f</var>(9,1) = 5] and [9,9,<var>f</var>(9,9) = 1].\n\nHow many odd-triplets
|
14
|
-
are there with <var>n</var> ![≤](/
|
14
|
+
are there with <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif) 10<sup>12</sup> ?\n\n"
|
data/data/problems/243.yml
CHANGED
@@ -4,15 +4,15 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=243
|
5
5
|
:content: "A positive fraction whose numerator is less than its denominator is called
|
6
6
|
a proper fraction. \n\rFor any denominator, <var>d</var>, there will be <var>d</var>
|
7
|
-
![−](/
|
8
|
-
|
9
|
-
<sup>
|
10
|
-
, <sup>
|
11
|
-
, <sup>
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
<var>R</var>(<var>d</var>)
|
18
|
-
|
7
|
+
![−]({{ images_dir }}/symbol_minus.gif)1 proper fractions; for example, with <var>d</var> = 12:
|
8
|
+
\ \n<sup>1</sup>/<sub>12</sub> , <sup>2</sup>/<sub>12</sub> , <sup>3</sup>/<sub>12</sub>
|
9
|
+
, <sup>4</sup>/<sub>12</sub> , <sup>5</sup>/<sub>12</sub> , <sup>6</sup>/<sub>12</sub>
|
10
|
+
, <sup>7</sup>/<sub>12</sub> , <sup>8</sup>/<sub>12</sub> , <sup>9</sup>/<sub>12</sub>
|
11
|
+
, <sup>10</sup>/<sub>12</sub> , <sup>11</sup>/<sub>12</sub> .\n\nWe shall call a
|
12
|
+
fraction that cannot be cancelled down a _resilient fraction_. \n\rFurthermore
|
13
|
+
we shall define the _resilience_ of a denominator, <var>R</var>(<var>d</var>), to
|
14
|
+
be the ratio of its proper fractions that are resilient; for example, <var>R</var>(12)
|
15
|
+
= <sup>4</sup>/<sub>11</sub> . \n\rIn fact, <var>d</var> = 12 is the smallest denominator
|
16
|
+
having a resilience <var>R</var>(<var>d</var>) 4/<sub>10</sub> .\n\nFind the smallest
|
17
|
+
denominator <var>d</var>, having a resilience <var>R</var>(<var>d</var>) 15499/<sub>94744</sub>
|
18
|
+
.\n\n"
|
data/data/problems/244.yml
CHANGED
@@ -6,18 +6,17 @@
|
|
6
6
|
tiles, we have seven red tiles and eight blue tiles.\n\nA move is denoted by the
|
7
7
|
uppercase initial of the direction (Left, Right, Up, Down) in which the tile is
|
8
8
|
slid, e.g. starting from configuration ( **S** ), by the sequence **LULUR** we reach
|
9
|
-
the configuration ( **E** ):\n\n| ( **S** ) | ![](/
|
10
|
-
| , ( **E** ) | ![](/
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
<var>m</var><sub><var>n</var></sub>) mod 100 000 007 \n\n\rwhere <var>m</var><sub><var>k</var></sub>
|
9
|
+
the configuration ( **E** ):\n\n| ( **S** ) | ![]({{ images_dir }}/p_244_start.gif)
|
10
|
+
| , ( **E** ) | ![]({{ images_dir }}/p_244_example.gif) |\n\nFor each path, its
|
11
|
+
checksum is calculated by (pseudocode):\n\n\rchecksum = 0 \n\rchecksum = (checksum
|
12
|
+
![×]({{ images_dir }}/symbol_times.gif) 243 + <var>m</var><sub>1</sub>) mod 100 000 007
|
13
|
+
\ \n\rchecksum = (checksum ![×]({{ images_dir }}/symbol_times.gif) 243 + <var>m</var><sub>2</sub>)
|
14
|
+
mod 100 000 007 \n\r … \n\rchecksum = (checksum ![×]({{ images_dir }}/symbol_times.gif)
|
15
|
+
243 + <var>m</var><sub><var>n</var></sub>) mod 100 000 007 \n\n\rwhere <var>m</var><sub><var>k</var></sub>
|
17
16
|
is the ASCII value of the <var>k</var><sup><var>th</var></sup> letter in the move
|
18
17
|
sequence and the ASCII values for the moves are:\r\r\n\n| **L** | 76 |\n| **R**
|
19
18
|
| 82 |\n| **U** | 85 |\n| **D** | 68 |\n\nFor the sequence **LULUR** given above,
|
20
19
|
the checksum would be 19761398.\n\nNow, starting from configuration ( **S** ),\rfind
|
21
|
-
all shortest ways to reach configuration ( **T** ).\n\n| ( **S** ) | ![](
|
22
|
-
| , ( **T** ) | ![](/
|
23
|
-
|
20
|
+
all shortest ways to reach configuration ( **T** ).\n\n| ( **S** ) | ![]({{ images_dir
|
21
|
+
}}/p_244_start.gif) | , ( **T** ) | ![]({{ images_dir }}/p_244_target.gif) |\n\nWhat
|
22
|
+
is the sum of all checksums for the paths having the minimal length?\n\n"
|
data/data/problems/245.yml
CHANGED
@@ -5,24 +5,23 @@
|
|
5
5
|
:content: "We shall call a fraction that cannot be cancelled down a resilient fraction.
|
6
6
|
\ \n Furthermore we shall define the resilience of a denominator, <var>R</var>(<var>d</var>),
|
7
7
|
to be the ratio of its proper fractions that are resilient; for example, <var>R</var>(12)
|
8
|
-
= <sup>4</sup>⁄<sub>11</sub>.\n\n| The resilience of a number <var>d</var> ![>](
|
9
|
-
1 is then | \nφ(<var>d</var>) \n ![](
|
10
|
-
\
|
11
|
-
define the **coresilience** of a number <var>n</var> ![>](
|
12
|
-
1 as <var>C</var>(<var>n</var>) | = | \n<var>n</var> - φ(<var>n</var>)
|
13
|
-
\ \n<var>n</var> - 1\n | . |\n\n| The coresilience
|
14
|
-
| = | \n1 \n ![](
|
15
|
-
\
|
16
|
-
<img src='images/symbol_gt.gif' width='10' height='10' alt='>' border='0'
|
17
|
-
/> 1 is then <font \"size=4\"><sup>φ(<var>d</var>)</sup>⁄<sub>(<var>d</var>-1)</sub></font>,
|
8
|
+
= <sup>4</sup>⁄<sub>11</sub>.\n\n| The resilience of a number <var>d</var> ![>]({{
|
9
|
+
images_dir }}/symbol_gt.gif) 1 is then | \nφ(<var>d</var>) \n ![]({{ images_dir
|
10
|
+
}}/blackdot.gif) \n<var>d</var> - 1\n | , where φ is Euler's totient function.
|
11
|
+
|\n\n| We further define the **coresilience** of a number <var>n</var> ![>]({{ images_dir
|
12
|
+
}}/symbol_gt.gif) 1 as <var>C</var>(<var>n</var>) | = | \n<var>n</var> - φ(<var>n</var>)
|
13
|
+
\ \n ![]({{ images_dir }}/blackdot.gif) \n<var>n</var> - 1\n | . |\n\n| The coresilience
|
14
|
+
of a prime <var>p</var> is <var>C</var>(<var>p</var>) | = | \n1 \n ![]({{ images_dir
|
15
|
+
}}/blackdot.gif) \n<var>p</var> - 1\n | . |\n\n<!--\r\n<p>The resilience of a number
|
16
|
+
<var>d</var> <img src='images/symbol_gt.gif' width='10' height='10' alt='>' border='0'
|
17
|
+
style='vertical-align:middle;' /> 1 is then <font \"size=4\"><sup>φ(<var>d</var>)</sup>⁄<sub>(<var>d</var>-1)</sub></font>,
|
18
18
|
where φ is Euler's totient function.</p>\r\n\r\n\r\n<p>We further define the
|
19
19
|
<b>coresilience</b> of a number <var>n</var> <img src='images/symbol_gt.gif' width='10'
|
20
20
|
height='10' alt='>' border='0' style='vertical-align:middle;' /> 1 as <var>C</var>(<var>n</var>)
|
21
21
|
= <font \"size=4\"><sup>(<var>n</var> - φ(<var>n</var>))</sup>⁄<sub>(<var>n</var>
|
22
22
|
- 1)</sub></font>.\r\n</p>\r\n\r\n\r\n<p>The coresilience of a prime <var>p</var>
|
23
23
|
is <var>C</var>(<var>p</var>) = <font \"size=4\"><sup>1</sup>⁄<sub>(<var>p</var>
|
24
|
-
- 1)</sub></font>.</p>\r\n-->\n\nFind the sum of all **composite** integers 1 ![<](
|
25
|
-
<var>n</var> ![≤](/
|
26
|
-
|
27
|
-
|
28
|
-
1\">unit fraction</dfn>.\n\n"
|
24
|
+
- 1)</sub></font>.</p>\r\n-->\n\nFind the sum of all **composite** integers 1 ![<]({{
|
25
|
+
images_dir }}/symbol_lt.gif) <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif) 2
|
26
|
+
![×]({{ images_dir }}/symbol_times.gif)10<sup>11</sup>, for which <var>C</var>(<var>n</var>)
|
27
|
+
is a <dfn title=\"A fraction with numerator 1\">unit fraction</dfn>.\n\n"
|
data/data/problems/246.yml
CHANGED
@@ -3,12 +3,13 @@
|
|
3
3
|
:name: Tangents to an ellipse
|
4
4
|
:url: http://projecteuler.net/problem=246
|
5
5
|
:content: "A definition for an ellipse is: \n\rGiven a circle c with centre M and
|
6
|
-
radius r and a point G such that d(G,M) ![<](/
|
7
|
-
|
8
|
-
construction of the points of the ellipse is shown below.\r\r\n ![](
|
9
|
-
are the points M(-2000,1500) and G(8000,1500). \n \rGiven
|
10
|
-
with centre M and radius 15000. \n\rThe locus of the points
|
11
|
-
from G and c form an ellipse e. \n\rFrom a point P outside
|
12
|
-
and t<sub>2</sub> to the ellipse are drawn. \n\rLet
|
13
|
-
and t<sub>2</sub> touch the ellipse be R and S.\n\n
|
14
|
-
how many lattice points P is angle
|
6
|
+
radius r and a point G such that d(G,M) ![<]({{ images_dir }}/symbol_lt.gif)r, the
|
7
|
+
locus of the points that are equidistant from c and G form an ellipse.\n\n\rThe
|
8
|
+
construction of the points of the ellipse is shown below.\r\r\n ![]({{ images_dir
|
9
|
+
}}/p_246_anim.gif)\n\nGiven are the points M(-2000,1500) and G(8000,1500). \n \rGiven
|
10
|
+
is also the circle c with centre M and radius 15000. \n\rThe locus of the points
|
11
|
+
that are equidistant from G and c form an ellipse e. \n\rFrom a point P outside
|
12
|
+
e the two tangents t<sub>1</sub> and t<sub>2</sub> to the ellipse are drawn. \n\rLet
|
13
|
+
the points where t<sub>1</sub> and t<sub>2</sub> touch the ellipse be R and S.\n\n
|
14
|
+
![]({{ images_dir }}/p_246_ellipse.gif)\n\nFor how many lattice points P is angle
|
15
|
+
RPS greater than 45 degrees?\n\n"
|
data/data/problems/247.yml
CHANGED
@@ -2,17 +2,16 @@
|
|
2
2
|
:id: 247
|
3
3
|
:name: Squares under a hyperbola
|
4
4
|
:url: http://projecteuler.net/problem=247
|
5
|
-
:content: "Consider the region constrained by 1 ![≤](/
|
6
|
-
<var>x</var> and 0 ![≤](/
|
7
|
-
<var>
|
8
|
-
|
9
|
-
that
|
10
|
-
fits in the remaining area, and so on. \n\rLet the _index_ of S<sub><var>n</var></sub>
|
5
|
+
:content: "Consider the region constrained by 1 ![≤]({{ images_dir }}/symbol_le.gif)
|
6
|
+
<var>x</var> and 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>y</var> ![≤]({{ images_dir
|
7
|
+
}}/symbol_le.gif) <sup>1</sup>/<sub><var>x</var></sub>.\n\nLet S<sub>1</sub> be
|
8
|
+
the largest square that can fit under the curve. \n\rLet S<sub>2</sub> be the largest
|
9
|
+
square that fits in the remaining area, and so on. \n\rLet the _index_ of S<sub><var>n</var></sub>
|
11
10
|
be the pair (left, below) indicating the number of squares to the left of S<sub><var>n</var></sub>
|
12
|
-
and the number of squares below S<sub><var>n</var></sub>.\n\n ![](
|
13
|
-
diagram shows some such squares labelled by number.
|
14
|
-
square to its left and none below, so the index of
|
15
|
-
|
16
|
-
|
17
|
-
is (1,1).\n\nWhat is the largest <var>n</var>
|
18
|
-
is (3,3)?\n\n"
|
11
|
+
and the number of squares below S<sub><var>n</var></sub>.\n\n ![]({{ images_dir
|
12
|
+
}}/p_247_hypersquares.gif)\n\nThe diagram shows some such squares labelled by number.
|
13
|
+
\ \n\rS<sub>2</sub> has one square to its left and none below, so the index of
|
14
|
+
S<sub>2</sub> is (1,0). \n\rIt can be seen that the index of S<sub>32</sub> is
|
15
|
+
(1,1) as is the index of S<sub>50</sub>. \n\r50 is the largest <var>n</var> for
|
16
|
+
which the index of S<sub><var>n</var></sub> is (1,1).\n\nWhat is the largest <var>n</var>
|
17
|
+
for which the index of S<sub><var>n</var></sub> is (3,3)?\n\n"
|
data/data/problems/251.yml
CHANGED
@@ -5,11 +5,11 @@
|
|
5
5
|
:content: |+
|
6
6
|
A triplet of positive integers (<var>a</var>,<var>b</var>,<var>c</var>) is called a Cardano Triplet if it satisfies the condition:
|
7
7
|
|
8
|
-
![](/
|
8
|
+
![]({{ images_dir }}/p_251_cardano.gif)
|
9
9
|
|
10
10
|
For example, (2,1,5) is a Cardano Triplet.
|
11
11
|
|
12
|
-
There exist 149 Cardano Triplets for which <var>a</var>+<var>b</var>+<var>c</var> ![≤](/
|
12
|
+
There exist 149 Cardano Triplets for which <var>a</var>+<var>b</var>+<var>c</var> ![≤]({{ images_dir }}/symbol_le.gif) 1000.
|
13
13
|
|
14
|
-
Find how many Cardano Triplets exist such that <var>a</var>+<var>b</var>+<var>c</var> ![≤](/
|
14
|
+
Find how many Cardano Triplets exist such that <var>a</var>+<var>b</var>+<var>c</var> ![≤]({{ images_dir }}/symbol_le.gif) 110,000,000.
|
15
15
|
|
data/data/problems/252.yml
CHANGED
@@ -8,7 +8,7 @@
|
|
8
8
|
lie on the perimeter of the polygon).\n\nAs an example, the image below shows a
|
9
9
|
set of twenty points and a few such convex holes. \rThe convex hole shown as a red
|
10
10
|
heptagon has an area equal to 1049694.5 square units, which is the highest possible
|
11
|
-
area for a convex hole on the given set of points.\n\n ![](/
|
11
|
+
area for a convex hole on the given set of points.\n\n ![]({{ images_dir }}/p_252_convexhole.gif)\n\n<style
|
12
12
|
type=\"text/css\"><![CDATA[\r\ntable.p252 td {\r\n padding: 0px 3px 0px 3px;\r\n
|
13
13
|
\ vertical-align: bottom;\r\n text-align: left;\r\n}\r\n]]></style>\n\nFor our
|
14
14
|
example, we used the first 20 points (<var>T</var><sub>2<var>k</var><img src=\"%7B%7B%20images_dir%20%7D%7D/symbol_minus.gif\"
|
@@ -22,9 +22,8 @@
|
|
22
22
|
\ <td>=<sub> </sub>\n</td>\r\n <td>( <var>S</var><sub><var>n</var></sub> mod
|
23
23
|
2000 ) <img src=\"%7B%7B%20images_dir%20%7D%7D/symbol_minus.gif\" width=\"9\" height=\"3\"
|
24
24
|
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 1000<sup> </sup>\n</td>\r\n
|
25
|
-
\ </tr>\r\n</table></center>\n\n_i.e._ (527, 144), ( ![−](/
|
26
|
-
( ![−](/
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
the decimal point.\n\n"
|
25
|
+
\ </tr>\r\n</table></center>\n\n_i.e._ (527, 144), ( ![−]({{ images_dir }}/symbol_minus.gif)488, 732),
|
26
|
+
( ![−]({{ images_dir }}/symbol_minus.gif)454, ![−]({{ images_dir }}/symbol_minus.gif)947),
|
27
|
+
…\n\nWhat is the maximum area for a convex hole on the set containing the first
|
28
|
+
500 points in the pseudo-random sequence? \n Specify your answer including one
|
29
|
+
digit after the decimal point.\n\n"
|
data/data/problems/254.yml
CHANGED
@@ -11,7 +11,7 @@
|
|
11
11
|
|
12
12
|
Define sg(<var>i</var>) as the sum of the digits of g(<var>i</var>). So sg(5) = 2 + 5 = 7.
|
13
13
|
|
14
|
-
Further, it can be verified that g(20) is 267 and ![∑](/
|
14
|
+
Further, it can be verified that g(20) is 267 and ![∑]({{ images_dir }}/symbol_sum.gif) sg(<var>i</var>) for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>i</var> ![≤]({{ images_dir }}/symbol_le.gif) 20 is 156.
|
15
15
|
|
16
|
-
What is ![∑](/
|
16
|
+
What is ![∑]({{ images_dir }}/symbol_sum.gif) sg(<var>i</var>) for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>i</var> ![≤]({{ images_dir }}/symbol_le.gif) 150?
|
17
17
|
|