euler-manager 0.0.6 → 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +13 -0
- data/data/images/sod_13.gif +4 -0
- data/data/problems/100.yml +1 -1
- data/data/problems/101.yml +16 -16
- data/data/problems/102.yml +2 -3
- data/data/problems/103.yml +16 -16
- data/data/problems/105.yml +2 -2
- data/data/problems/106.yml +2 -2
- data/data/problems/107.yml +15 -15
- data/data/problems/108.yml +13 -16
- data/data/problems/109.yml +16 -17
- data/data/problems/11.yml +22 -23
- data/data/problems/110.yml +9 -10
- data/data/problems/114.yml +30 -41
- data/data/problems/116.yml +19 -25
- data/data/problems/117.yml +24 -33
- data/data/problems/120.yml +3 -3
- data/data/problems/122.yml +18 -20
- data/data/problems/123.yml +2 -2
- data/data/problems/124.yml +18 -23
- data/data/problems/126.yml +10 -11
- data/data/problems/127.yml +7 -7
- data/data/problems/128.yml +1 -1
- data/data/problems/130.yml +6 -7
- data/data/problems/131.yml +1 -1
- data/data/problems/132.yml +1 -1
- data/data/problems/134.yml +2 -2
- data/data/problems/135.yml +2 -2
- data/data/problems/136.yml +2 -2
- data/data/problems/137.yml +4 -4
- data/data/problems/138.yml +4 -4
- data/data/problems/139.yml +1 -1
- data/data/problems/14.yml +12 -13
- data/data/problems/140.yml +3 -3
- data/data/problems/142.yml +1 -1
- data/data/problems/143.yml +2 -2
- data/data/problems/144.yml +3 -3
- data/data/problems/147.yml +1 -1
- data/data/problems/149.yml +11 -13
- data/data/problems/15.yml +3 -3
- data/data/problems/150.yml +8 -8
- data/data/problems/151.yml +1 -1
- data/data/problems/152.yml +1 -1
- data/data/problems/153.yml +24 -26
- data/data/problems/154.yml +10 -9
- data/data/problems/155.yml +3 -3
- data/data/problems/156.yml +7 -8
- data/data/problems/157.yml +3 -4
- data/data/problems/158.yml +4 -5
- data/data/problems/159.yml +3 -3
- data/data/problems/161.yml +5 -4
- data/data/problems/163.yml +10 -10
- data/data/problems/165.yml +1 -1
- data/data/problems/166.yml +7 -7
- data/data/problems/167.yml +3 -4
- data/data/problems/168.yml +5 -5
- data/data/problems/170.yml +2 -2
- data/data/problems/171.yml +3 -3
- data/data/problems/173.yml +1 -1
- data/data/problems/174.yml +3 -3
- data/data/problems/175.yml +4 -4
- data/data/problems/177.yml +1 -1
- data/data/problems/179.yml +1 -1
- data/data/problems/180.yml +8 -9
- data/data/problems/182.yml +22 -24
- data/data/problems/183.yml +14 -15
- data/data/problems/184.yml +2 -2
- data/data/problems/186.yml +10 -11
- data/data/problems/187.yml +6 -8
- data/data/problems/189.yml +10 -9
- data/data/problems/190.yml +1 -1
- data/data/problems/192.yml +11 -12
- data/data/problems/194.yml +8 -8
- data/data/problems/195.yml +2 -2
- data/data/problems/197.yml +5 -6
- data/data/problems/198.yml +11 -12
- data/data/problems/199.yml +7 -7
- data/data/problems/20.yml +8 -10
- data/data/problems/202.yml +1 -1
- data/data/problems/207.yml +4 -4
- data/data/problems/208.yml +4 -5
- data/data/problems/21.yml +5 -6
- data/data/problems/210.yml +4 -5
- data/data/problems/211.yml +1 -1
- data/data/problems/212.yml +22 -26
- data/data/problems/213.yml +5 -6
- data/data/problems/214.yml +8 -9
- data/data/problems/215.yml +4 -4
- data/data/problems/216.yml +5 -5
- data/data/problems/217.yml +8 -10
- data/data/problems/218.yml +1 -1
- data/data/problems/22.yml +1 -1
- data/data/problems/220.yml +15 -15
- data/data/problems/221.yml +4 -5
- data/data/problems/223.yml +5 -6
- data/data/problems/224.yml +5 -6
- data/data/problems/226.yml +8 -8
- data/data/problems/228.yml +4 -5
- data/data/problems/229.yml +16 -16
- data/data/problems/230.yml +4 -4
- data/data/problems/231.yml +4 -5
- data/data/problems/233.yml +1 -1
- data/data/problems/234.yml +9 -10
- data/data/problems/236.yml +4 -4
- data/data/problems/237.yml +3 -3
- data/data/problems/238.yml +3 -4
- data/data/problems/241.yml +4 -4
- data/data/problems/242.yml +2 -2
- data/data/problems/243.yml +12 -12
- data/data/problems/244.yml +10 -11
- data/data/problems/245.yml +14 -15
- data/data/problems/246.yml +10 -9
- data/data/problems/247.yml +12 -13
- data/data/problems/251.yml +3 -3
- data/data/problems/252.yml +6 -7
- data/data/problems/254.yml +2 -2
- data/data/problems/255.yml +35 -36
- data/data/problems/256.yml +16 -20
- data/data/problems/257.yml +9 -9
- data/data/problems/258.yml +5 -6
- data/data/problems/26.yml +1 -1
- data/data/problems/260.yml +6 -8
- data/data/problems/261.yml +6 -7
- data/data/problems/262.yml +1 -1
- data/data/problems/264.yml +10 -11
- data/data/problems/265.yml +1 -1
- data/data/problems/27.yml +10 -11
- data/data/problems/270.yml +3 -3
- data/data/problems/271.yml +5 -6
- data/data/problems/272.yml +6 -7
- data/data/problems/273.yml +3 -3
- data/data/problems/274.yml +15 -15
- data/data/problems/275.yml +3 -3
- data/data/problems/276.yml +3 -3
- data/data/problems/277.yml +3 -3
- data/data/problems/278.yml +15 -17
- data/data/problems/281.yml +4 -4
- data/data/problems/282.yml +2 -2
- data/data/problems/284.yml +7 -8
- data/data/problems/287.yml +18 -17
- data/data/problems/288.yml +1 -1
- data/data/problems/289.yml +1 -1
- data/data/problems/29.yml +12 -13
- data/data/problems/290.yml +1 -1
- data/data/problems/291.yml +3 -3
- data/data/problems/292.yml +1 -1
- data/data/problems/293.yml +7 -7
- data/data/problems/295.yml +8 -8
- data/data/problems/296.yml +4 -5
- data/data/problems/297.yml +4 -5
- data/data/problems/299.yml +11 -12
- data/data/problems/300.yml +10 -9
- data/data/problems/301.yml +2 -2
- data/data/problems/303.yml +3 -3
- data/data/problems/304.yml +6 -7
- data/data/problems/305.yml +3 -2
- data/data/problems/306.yml +8 -11
- data/data/problems/307.yml +2 -3
- data/data/problems/309.yml +8 -8
- data/data/problems/31.yml +1 -1
- data/data/problems/310.yml +6 -7
- data/data/problems/311.yml +11 -11
- data/data/problems/312.yml +5 -5
- data/data/problems/313.yml +4 -4
- data/data/problems/314.yml +4 -5
- data/data/problems/315.yml +26 -27
- data/data/problems/316.yml +2 -4
- data/data/problems/318.yml +27 -34
- data/data/problems/319.yml +11 -12
- data/data/problems/32.yml +1 -1
- data/data/problems/320.yml +1 -1
- data/data/problems/321.yml +3 -3
- data/data/problems/322.yml +4 -4
- data/data/problems/323.yml +7 -8
- data/data/problems/324.yml +8 -9
- data/data/problems/325.yml +1 -1
- data/data/problems/326.yml +2 -2
- data/data/problems/327.yml +27 -29
- data/data/problems/328.yml +2 -2
- data/data/problems/330.yml +13 -14
- data/data/problems/331.yml +12 -12
- data/data/problems/332.yml +10 -9
- data/data/problems/333.yml +15 -16
- data/data/problems/334.yml +14 -14
- data/data/problems/335.yml +2 -2
- data/data/problems/336.yml +5 -4
- data/data/problems/337.yml +7 -7
- data/data/problems/338.yml +21 -24
- data/data/problems/340.yml +6 -7
- data/data/problems/341.yml +3 -5
- data/data/problems/342.yml +6 -7
- data/data/problems/343.yml +8 -12
- data/data/problems/344.yml +1 -1
- data/data/problems/347.yml +8 -8
- data/data/problems/350.yml +5 -5
- data/data/problems/351.yml +1 -1
- data/data/problems/352.yml +25 -26
- data/data/problems/353.yml +1 -1
- data/data/problems/354.yml +6 -6
- data/data/problems/356.yml +2 -3
- data/data/problems/358.yml +13 -14
- data/data/problems/359.yml +1 -1
- data/data/problems/361.yml +2 -1
- data/data/problems/362.yml +11 -13
- data/data/problems/363.yml +6 -6
- data/data/problems/364.yml +3 -3
- data/data/problems/365.yml +2 -2
- data/data/problems/366.yml +4 -5
- data/data/problems/369.yml +1 -1
- data/data/problems/370.yml +3 -3
- data/data/problems/372.yml +6 -8
- data/data/problems/374.yml +5 -7
- data/data/problems/375.yml +5 -6
- data/data/problems/377.yml +2 -2
- data/data/problems/378.yml +2 -2
- data/data/problems/379.yml +7 -8
- data/data/problems/38.yml +9 -9
- data/data/problems/380.yml +12 -15
- data/data/problems/381.yml +8 -11
- data/data/problems/382.yml +6 -6
- data/data/problems/383.yml +4 -4
- data/data/problems/384.yml +7 -8
- data/data/problems/385.yml +8 -8
- data/data/problems/386.yml +2 -2
- data/data/problems/388.yml +5 -6
- data/data/problems/39.yml +1 -1
- data/data/problems/390.yml +4 -6
- data/data/problems/391.yml +11 -12
- data/data/problems/392.yml +1 -1
- data/data/problems/393.yml +2 -2
- data/data/problems/394.yml +6 -7
- data/data/problems/395.yml +5 -5
- data/data/problems/396.yml +15 -17
- data/data/problems/397.yml +5 -8
- data/data/problems/4.yml +1 -1
- data/data/problems/40.yml +1 -1
- data/data/problems/400.yml +5 -6
- data/data/problems/401.yml +2 -2
- data/data/problems/402.yml +7 -8
- data/data/problems/403.yml +9 -10
- data/data/problems/404.yml +5 -6
- data/data/problems/405.yml +7 -7
- data/data/problems/406.yml +8 -10
- data/data/problems/407.yml +9 -9
- data/data/problems/410.yml +5 -6
- data/data/problems/411.yml +11 -12
- data/data/problems/412.yml +9 -9
- data/data/problems/414.yml +13 -15
- data/data/problems/415.yml +2 -2
- data/data/problems/417.yml +4 -5
- data/data/problems/418.yml +7 -8
- data/data/problems/419.yml +8 -8
- data/data/problems/420.yml +5 -5
- data/data/problems/421.yml +11 -12
- data/data/problems/422.yml +9 -9
- data/data/problems/423.yml +5 -7
- data/data/problems/424.yml +8 -9
- data/data/problems/425.yml +2 -3
- data/data/problems/426.yml +3 -3
- data/data/problems/427.yml +8 -8
- data/data/problems/428.yml +16 -19
- data/data/problems/430.yml +4 -5
- data/data/problems/44.yml +3 -3
- data/data/problems/45.yml +2 -2
- data/data/problems/46.yml +8 -8
- data/data/problems/47.yml +6 -10
- data/data/problems/53.yml +8 -9
- data/data/problems/56.yml +1 -1
- data/data/problems/57.yml +5 -5
- data/data/problems/58.yml +1 -1
- data/data/problems/6.yml +1 -1
- data/data/problems/61.yml +4 -4
- data/data/problems/64.yml +39 -46
- data/data/problems/65.yml +13 -14
- data/data/problems/66.yml +10 -10
- data/data/problems/68.yml +4 -5
- data/data/problems/69.yml +2 -2
- data/data/problems/70.yml +3 -4
- data/data/problems/71.yml +3 -3
- data/data/problems/72.yml +3 -3
- data/data/problems/73.yml +3 -3
- data/data/problems/74.yml +15 -22
- data/data/problems/75.yml +1 -1
- data/data/problems/8.yml +14 -14
- data/data/problems/81.yml +7 -7
- data/data/problems/82.yml +4 -4
- data/data/problems/83.yml +4 -4
- data/data/problems/85.yml +1 -1
- data/data/problems/86.yml +8 -8
- data/data/problems/88.yml +22 -27
- data/data/problems/9.yml +6 -6
- data/data/problems/90.yml +13 -13
- data/data/problems/91.yml +8 -8
- data/data/problems/92.yml +7 -9
- data/data/problems/93.yml +9 -10
- data/data/problems/95.yml +1 -1
- data/data/problems/96.yml +17 -17
- data/data/problems/97.yml +2 -2
- data/data/problems/99.yml +2 -2
- data/lib/euler/problem.rb +6 -1
- data/lib/euler/version.rb +1 -1
- metadata +2 -2
data/data/problems/223.yml
CHANGED
@@ -2,9 +2,8 @@
|
|
2
2
|
:id: 223
|
3
3
|
:name: Almost right-angled triangles I
|
4
4
|
:url: http://projecteuler.net/problem=223
|
5
|
-
:content: "Let us call an integer sided triangle with sides <var>a</var>  <var>b</var>  <var>c</var>
|
7
|
+
_barely acute_ if the sides satisfy \n <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup>
|
8
|
+
= <var>c</var><sup>2</sup> + 1.\n\nHow many barely acute triangles are there with
|
9
|
+
perimeter  25,000,000?\n\n"
|
data/data/problems/224.yml
CHANGED
@@ -2,9 +2,8 @@
|
|
2
2
|
:id: 224
|
3
3
|
:name: Almost right-angled triangles II
|
4
4
|
:url: http://projecteuler.net/problem=224
|
5
|
-
:content: "Let us call an integer sided triangle with sides <var>a</var>  <var>b</var>  <var>c</var>
|
7
|
+
_barely obtuse_ if the sides satisfy \n <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup>
|
8
|
+
= <var>c</var><sup>2</sup> - 1.\n\nHow many barely obtuse triangles are there with
|
9
|
+
perimeter  75,000,000?\n\n"
|
data/data/problems/226.yml
CHANGED
@@ -3,11 +3,11 @@
|
|
3
3
|
:name: A Scoop of Blancmange
|
4
4
|
:url: http://projecteuler.net/problem=226
|
5
5
|
:content: "The _blancmange curve_ is the set of points (<var>x</var>,<var>y</var>)
|
6
|
-
such that 0  <var>x</var>  1 and  , \nwhere <var>s</var>(<var>x</var>)
|
8
|
+
= the distance from <var>x</var> to the nearest integer.\n\nThe area under the blancmange
|
9
|
+
curve is equal to ½, shown in pink in the diagram below.\n\n \n\nLet <var>C</var> be the circle with centre (¼,½)
|
11
|
+
and radius ¼, shown in black in the diagram.\n\nWhat area under the blancmange curve
|
12
|
+
is enclosed by <var>C</var>? \nGive your answer rounded to eight decimal places
|
13
|
+
in the form _0.abcdefgh_\n\n"
|
data/data/problems/228.yml
CHANGED
@@ -5,9 +5,8 @@
|
|
5
5
|
:content: "Let <var>S</var><sub>n</sub> be the regular <var>n</var>-sided polygon
|
6
6
|
– or _shape_ – whose vertices \r\r<var>v</var><sub><var>k</var></sub> (<var>k</var> = 1,2,…,<var>n</var>)
|
7
7
|
have coordinates:\n\n| | <var>x</var><sub><var>k</var></sub> = \r cos( <sup>2<var>k</var>-1</sup>/<sub><var>n</var></sub>
|
8
|
-
180° )
|
8
|
+
180° ) |\n| | <var>y</var><sub><var>k</var></sub> =
|
9
|
+
\r sin( <sup>2<var>k</var>-1</sup>/<sub><var>n</var></sub> 180° )
|
11
10
|
|\n\nEach <var>S</var><sub><var>n</var></sub> is to be interpreted as a filled shape
|
12
11
|
consisting of all points on the perimeter and in the interior.\n\nThe _Minkowski
|
13
12
|
sum_, <var>S</var>+<var>T</var>, of two shapes <var>S</var> and <var>T</var> is
|
@@ -15,6 +14,6 @@
|
|
15
14
|
where point addition is performed coordinate-wise: \r\r(<var>u</var>, <var>v</var>)
|
16
15
|
+ (<var>x</var>, <var>y</var>) = (<var>u</var>+<var>x</var>, <var>v</var>+<var>y</var>).\n\nFor
|
17
16
|
example, the sum of <var>S</var><sub>3</sub> and <var>S</var><sub>4</sub> is the
|
18
|
-
six-sided shape shown in pink below:\n\n \n\nHow many sides does <var>S</var><sub>1864</sub> + <var>S</var><sub>1865</sub> + … + <var>S</var><sub>1909</sub>
|
20
19
|
have?\n\n"
|
data/data/problems/229.yml
CHANGED
@@ -3,20 +3,20 @@
|
|
3
3
|
:name: Four Representations using Squares
|
4
4
|
:url: http://projecteuler.net/problem=229
|
5
5
|
:content: "Consider the number 3600. It is very special, because\n\n\r3600 = 48<sup>2</sup>
|
6
|
-
+ 36<sup>2</sup> \n \n \n\r3600 = 20<sup>2</sup> + 2 40<sup>2</sup>
|
7
|
+
\ \n \n \n\r3600 = 30<sup>2</sup> + 3 30<sup>2</sup>
|
8
|
+
\ \n \n \n\r3600 = 45<sup>2</sup> + 7 15<sup>2</sup>
|
9
9
|
\ \n \n \n\nSimilarly, we find that 88201 = 99<sup>2</sup> + 280<sup>2</sup> =
|
10
|
-
287<sup>2</sup> + 2 54<sup>2</sup> = 283<sup>2</sup>
|
11
|
+
+ 3 52<sup>2</sup> = 197<sup>2</sup> + 7
|
12
|
+
84<sup>2</sup>.\n\nIn 1747, Euler proved
|
13
|
+
which numbers are representable as a sum of two squares.\rWe are interested in the
|
14
|
+
numbers <var>n</var> which admit representations of all of the following four types:\n\n<var>n</var>
|
15
|
+
= <var>a<sub>1</sub></var><sup>2</sup> + <var>b<sub>1</sub></var><sup>2</sup>
|
16
|
+
\ \n \n \n<var>n</var> = <var>a<sub>2</sub></var><sup>2</sup> + 2 <var>b<sub>2</sub></var><sup>2</sup>
|
17
|
+
\ \n \n \n<var>n</var> = <var>a<sub>3</sub></var><sup>2</sup> + 3 <var>b<sub>3</sub></var><sup>2</sup>
|
18
|
+
\ \n \n \n<var>n</var> = <var>a<sub>7</sub></var><sup>2</sup> + 7 <var>b<sub>7</sub></var><sup>2</sup>,\r\n\nwhere
|
19
|
+
the <var>a</var><sub><var>k</var></sub> and <var>b</var><sub><var>k</var></sub>
|
20
|
+
are positive integers.\n\nThere are 75373 such numbers that do not exceed 10<sup>7</sup>.
|
21
|
+
\ \n\r\rHow many such numbers are there that do not exceed 2 10<sup>9</sup>?\n\n"
|
data/data/problems/230.yml
CHANGED
@@ -13,7 +13,7 @@
|
|
13
13
|
fifth term, which is 9.\n\nNow we use for A the first 100 digits of π behind the
|
14
14
|
decimal point:\n\n14159265358979323846264338327950288419716939937510 \n\r58209749445923078164062862089986280348253421170679\n\nand
|
15
15
|
for B the next hundred digits:\n\n82148086513282306647093844609550582231725359408128
|
16
|
-
\ \n\r48111745028410270193852110555964462294895493038196 .\n\nFind  <sub><var>n</var> = 0,1,...,17</sub> 10<sup><var>n</var></sup>
|
18
|
+
 D<sub>A,B</sub>((127+19<var>n</var>) 7<sup><var>n</var></sup>) .\n\n"
|
data/data/problems/231.yml
CHANGED
@@ -3,10 +3,9 @@
|
|
3
3
|
:name: The prime factorisation of binomial coefficients
|
4
4
|
:url: http://projecteuler.net/problem=231
|
5
5
|
:content: "The binomial coefficient <sup>10</sup>C<sub>3</sub> = 120. \n\r120 = 2<sup>3</sup>
|
6
|
-
 3 
|
7
|
+
5 = 2  2 
|
8
|
+
2  3 
|
9
|
+
5, and 2 + 2 + 2 + 3 + 5 = 14. \n\rSo the sum of the terms in the prime factorisation
|
11
10
|
of <sup>10</sup>C<sub>3</sub> is 14.\r \n \n \n\rFind the sum of the terms in
|
12
11
|
the prime factorisation of <sup>20000000</sup>C<sub>15000000</sub>.\n\n"
|
data/data/problems/233.yml
CHANGED
@@ -7,5 +7,5 @@
|
|
7
7
|
|
8
8
|
It can be shown that <var>f</var>(10000) = 36.
|
9
9
|
|
10
|
-
What is the sum of all positive integers <var>N</var>  10<sup>11</sup> such that <var>f</var>(<var>N</var>) = 420 ?
|
11
11
|
|
data/data/problems/234.yml
CHANGED
@@ -2,17 +2,16 @@
|
|
2
2
|
:id: 234
|
3
3
|
:name: Semidivisible numbers
|
4
4
|
:url: http://projecteuler.net/problem=234
|
5
|
-
:content: "For an integer <var>n</var> <var>n</var>
|
5
|
+
:content: "For an integer <var>n</var>  4, we
|
6
|
+
define the _lower prime square root_ of <var>n</var>, denoted by lps(<var>n</var>),
|
7
|
+
as the largest prime  <var>n</var>
|
9
8
|
and the _upper prime square root_ of <var>n</var>, ups(<var>n</var>), as the smallest
|
10
|
-
prime  <var>n</var>.\n\nSo,
|
11
10
|
for example, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37. \n\rLet us call
|
12
|
-
an integer <var>n</var>  4 _semidivisible_,
|
12
|
+
if one of lps(<var>n</var>) and ups(<var>n</var>) divides <var>n</var>, but not
|
13
|
+
both.\n\nThe sum of the semidivisible numbers not exceeding 15 is 30, the numbers
|
14
|
+
are 8, 10 and 12. \n 15 is not semidivisible because it is a multiple of both lps(15)
|
15
|
+
= 3 and ups(15) = 5. \n\rAs a further example, the sum of the 92 semidivisible
|
17
16
|
numbers up to 1000 is 34825.\n\nWhat is the sum of all semidivisible numbers not
|
18
17
|
exceeding 999966663333 ?\n\n"
|
data/data/problems/236.yml
CHANGED
@@ -24,7 +24,7 @@
|
|
24
24
|
found that each of the five per-product spoilage rates was worse (higher) for 'B'
|
25
25
|
than for 'A' by the same factor (ratio of spoilage rates), <var>m</var>>1; and yet,
|
26
26
|
paradoxically, the overall spoilage rate was worse for 'A' than for 'B', also by
|
27
|
-
a factor of <var>m</var>.\n\nThere are thirty-five <var>m</var> 1 for which this surprising result could have occurred, the smallest
|
29
|
+
of which is 1476/1475.\n\nWhat's the largest possible value of <var>m</var>? \n\rGive
|
30
|
+
your answer as a fraction reduced to its lowest terms, in the form <var>u</var>/<var>v</var>.\n\n"
|
data/data/problems/237.yml
CHANGED
@@ -3,16 +3,16 @@
|
|
3
3
|
:name: Tours on a 4 x n playing board
|
4
4
|
:url: http://projecteuler.net/problem=237
|
5
5
|
:content: |+
|
6
|
-
Let T(_n_) be the number of tours over a 4  be the number of tours over a 4  _n_ playing board such that:
|
7
7
|
|
8
8
|
- The tour starts in the top left corner.
|
9
9
|
- The tour consists of moves that are up, down, left, or right one square.
|
10
10
|
- The tour visits each square exactly once.
|
11
11
|
- The tour ends in the bottom left corner.
|
12
12
|
|
13
|
-
The diagram shows one tour over a 4  10 board:
|
14
14
|
|
15
|
-

|
16
16
|
|
17
17
|
T(10) is 2329. What is T(10<sup>12</sup>) modulo 10<sup>8</sup>?
|
18
18
|
|
data/data/problems/238.yml
CHANGED
@@ -24,7 +24,6 @@
|
|
24
24
|
**3** .\n\nNote that substring 025 starting at position **3** , has a sum of digits
|
25
25
|
equal to 7, but there was an earlier substring (starting at position **1** ) with
|
26
26
|
a sum of digits equal to 7, so <var>p</var>(7) = 1, _not_ 3.\n\nWe can verify that,
|
27
|
-
for 0 k  2·10<sup>15</sup>.\n\n"
|
27
|
+
for 0 k  10<sup>3</sup>,  <var>p</var>(<var>k</var>) = 4742.\n\nFind  <var>p</var>(<var>k</var>), for 0 k  2·10<sup>15</sup>.\n\n"
|
data/data/problems/241.yml
CHANGED
@@ -6,9 +6,9 @@
|
|
6
6
|
all divisors of <var>n</var>, so e.g. σ(6) = 1 + 2 + 3 + 6 = 12.\n\nA perfect number,
|
7
7
|
as you probably know, is a number with σ(<var>n</var>) = 2<var>n</var>.\n\n| Let
|
8
8
|
us define the **perfection quotient** of a positive integer as | <var>p</var>(<var>n</var>)
|
9
|
-
| = | \nσ(<var>n</var>) \n  \n  \n<var>n</var>\n
|
10
|
+
| . |\n\n<!--\r\n<p>Let us define the <b>perfection quotient</b> of a positive integer
|
11
|
+
as <var>p</var>(<var>n</var>) = <font \"size=4\"> <sup>σ(<var>n</var>)</sup>⁄<sub><var>n</var></sub></font>.</p>\r\n-->\n\nFind
|
12
|
+
the sum of all positive integers <var>n</var> 
|
13
13
|
10<sup>18</sup> for which <var>p</var>(<var>n</var>) has the form <var>k</var> +
|
14
14
|
<sup>1</sup>⁄<sub>2</sub>, where <var>k</var> is an integer.\n\n"
|
data/data/problems/242.yml
CHANGED
@@ -8,7 +8,7 @@
|
|
8
8
|
having an odd sum of elements, i.e.: {1,2,4}, {1,3,5}, {2,3,4} and {2,4,5}.\n\nWhen
|
9
9
|
all three values <var>n</var>, <var>k</var> and <var>f</var>(<var>n</var>,<var>k</var>)
|
10
10
|
are odd, we say that they make \n\ran _odd-triplet_ [<var>n</var>,<var>k</var>,<var>f</var>(<var>n</var>,<var>k</var>)].\n\nThere
|
11
|
-
are exactly five odd-triplets with <var>n</var>  10,
|
12
12
|
namely: \n\r[1,1,<var>f</var>(1,1) = 1], [5,1,<var>f</var>(5,1) = 3], [5,5,<var>f</var>(5,5) = 1],
|
13
13
|
[9,1,<var>f</var>(9,1) = 5] and [9,9,<var>f</var>(9,9) = 1].\n\nHow many odd-triplets
|
14
|
-
are there with <var>n</var>  10<sup>12</sup> ?\n\n"
|
data/data/problems/243.yml
CHANGED
@@ -4,15 +4,15 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=243
|
5
5
|
:content: "A positive fraction whose numerator is less than its denominator is called
|
6
6
|
a proper fraction. \n\rFor any denominator, <var>d</var>, there will be <var>d</var>
|
7
|
-

|
18
|
-
|
7
|
+
1 proper fractions; for example, with <var>d</var> = 12:
|
8
|
+
\ \n<sup>1</sup>/<sub>12</sub> , <sup>2</sup>/<sub>12</sub> , <sup>3</sup>/<sub>12</sub>
|
9
|
+
, <sup>4</sup>/<sub>12</sub> , <sup>5</sup>/<sub>12</sub> , <sup>6</sup>/<sub>12</sub>
|
10
|
+
, <sup>7</sup>/<sub>12</sub> , <sup>8</sup>/<sub>12</sub> , <sup>9</sup>/<sub>12</sub>
|
11
|
+
, <sup>10</sup>/<sub>12</sub> , <sup>11</sup>/<sub>12</sub> .\n\nWe shall call a
|
12
|
+
fraction that cannot be cancelled down a _resilient fraction_. \n\rFurthermore
|
13
|
+
we shall define the _resilience_ of a denominator, <var>R</var>(<var>d</var>), to
|
14
|
+
be the ratio of its proper fractions that are resilient; for example, <var>R</var>(12)
|
15
|
+
= <sup>4</sup>/<sub>11</sub> . \n\rIn fact, <var>d</var> = 12 is the smallest denominator
|
16
|
+
having a resilience <var>R</var>(<var>d</var>) 4/<sub>10</sub> .\n\nFind the smallest
|
17
|
+
denominator <var>d</var>, having a resilience <var>R</var>(<var>d</var>) 15499/<sub>94744</sub>
|
18
|
+
.\n\n"
|
data/data/problems/244.yml
CHANGED
@@ -6,18 +6,17 @@
|
|
6
6
|
tiles, we have seven red tiles and eight blue tiles.\n\nA move is denoted by the
|
7
7
|
uppercase initial of the direction (Left, Right, Up, Down) in which the tile is
|
8
8
|
slid, e.g. starting from configuration ( **S** ), by the sequence **LULUR** we reach
|
9
|
-
the configuration ( **E** ):\n\n| ( **S** ) |  |  mod 100 000 007 \n\n\rwhere <var>m</var><sub><var>k</var></sub>
|
9
|
+
the configuration ( **E** ):\n\n| ( **S** ) | 
|
10
|
+
| , ( **E** ) |  |\n\nFor each path, its
|
11
|
+
checksum is calculated by (pseudocode):\n\n\rchecksum = 0 \n\rchecksum = (checksum
|
12
|
+
 243 + <var>m</var><sub>1</sub>) mod 100 000 007
|
13
|
+
\ \n\rchecksum = (checksum  243 + <var>m</var><sub>2</sub>)
|
14
|
+
mod 100 000 007 \n\r … \n\rchecksum = (checksum 
|
15
|
+
243 + <var>m</var><sub><var>n</var></sub>) mod 100 000 007 \n\n\rwhere <var>m</var><sub><var>k</var></sub>
|
17
16
|
is the ASCII value of the <var>k</var><sup><var>th</var></sup> letter in the move
|
18
17
|
sequence and the ASCII values for the moves are:\r\r\n\n| **L** | 76 |\n| **R**
|
19
18
|
| 82 |\n| **U** | 85 |\n| **D** | 68 |\n\nFor the sequence **LULUR** given above,
|
20
19
|
the checksum would be 19761398.\n\nNow, starting from configuration ( **S** ),\rfind
|
21
|
-
all shortest ways to reach configuration ( **T** ).\n\n| ( **S** ) |  | .\n\n| ( **S** ) |  | , ( **T** ) |  |\n\nWhat
|
22
|
+
is the sum of all checksums for the paths having the minimal length?\n\n"
|
data/data/problems/245.yml
CHANGED
@@ -5,24 +5,23 @@
|
|
5
5
|
:content: "We shall call a fraction that cannot be cancelled down a resilient fraction.
|
6
6
|
\ \n Furthermore we shall define the resilience of a denominator, <var>R</var>(<var>d</var>),
|
7
7
|
to be the ratio of its proper fractions that are resilient; for example, <var>R</var>(12)
|
8
|
-
= <sup>4</sup>⁄<sub>11</sub>.\n\n| The resilience of a number <var>d</var>  \n  | = | \n<var>n</var> - φ(<var>n</var>)
|
13
|
-
\ \n<var>n</var> - 1\n | . |\n\n| The coresilience
|
14
|
-
| = | \n1 \n </sup>⁄<sub>(<var>d</var>-1)</sub></font>,
|
8
|
+
= <sup>4</sup>⁄<sub>11</sub>.\n\n| The resilience of a number <var>d</var>  1 is then | \nφ(<var>d</var>) \n  \n<var>d</var> - 1\n | , where φ is Euler's totient function.
|
11
|
+
|\n\n| We further define the **coresilience** of a number <var>n</var>  1 as <var>C</var>(<var>n</var>) | = | \n<var>n</var> - φ(<var>n</var>)
|
13
|
+
\ \n  \n<var>n</var> - 1\n | . |\n\n| The coresilience
|
14
|
+
of a prime <var>p</var> is <var>C</var>(<var>p</var>) | = | \n1 \n  \n<var>p</var> - 1\n | . |\n\n<!--\r\n<p>The resilience of a number
|
16
|
+
<var>d</var> <img src='images/symbol_gt.gif' width='10' height='10' alt='>' border='0'
|
17
|
+
style='vertical-align:middle;' /> 1 is then <font \"size=4\"><sup>φ(<var>d</var>)</sup>⁄<sub>(<var>d</var>-1)</sub></font>,
|
18
18
|
where φ is Euler's totient function.</p>\r\n\r\n\r\n<p>We further define the
|
19
19
|
<b>coresilience</b> of a number <var>n</var> <img src='images/symbol_gt.gif' width='10'
|
20
20
|
height='10' alt='>' border='0' style='vertical-align:middle;' /> 1 as <var>C</var>(<var>n</var>)
|
21
21
|
= <font \"size=4\"><sup>(<var>n</var> - φ(<var>n</var>))</sup>⁄<sub>(<var>n</var>
|
22
22
|
- 1)</sub></font>.\r\n</p>\r\n\r\n\r\n<p>The coresilience of a prime <var>p</var>
|
23
23
|
is <var>C</var>(<var>p</var>) = <font \"size=4\"><sup>1</sup>⁄<sub>(<var>p</var>
|
24
|
-
- 1)</sub></font>.</p>\r\n-->\n\nFind the sum of all **composite** integers 1 </sub></font>.</p>\r\n-->\n\nFind the sum of all **composite** integers 1  <var>n</var>  2
|
26
|
+
10<sup>11</sup>, for which <var>C</var>(<var>n</var>)
|
27
|
+
is a <dfn title=\"A fraction with numerator 1\">unit fraction</dfn>.\n\n"
|
data/data/problems/246.yml
CHANGED
@@ -3,12 +3,13 @@
|
|
3
3
|
:name: Tangents to an ellipse
|
4
4
|
:url: http://projecteuler.net/problem=246
|
5
5
|
:content: "A definition for an ellipse is: \n\rGiven a circle c with centre M and
|
6
|
-
radius r and a point G such that d(G,M)  and G(8000,1500). \n \rGiven
|
10
|
-
with centre M and radius 15000. \n\rThe locus of the points
|
11
|
-
from G and c form an ellipse e. \n\rFrom a point P outside
|
12
|
-
and t<sub>2</sub> to the ellipse are drawn. \n\rLet
|
13
|
-
and t<sub>2</sub> touch the ellipse be R and S.\n\n
|
14
|
-
how many lattice points P is angle
|
6
|
+
radius r and a point G such that d(G,M) r, the
|
7
|
+
locus of the points that are equidistant from c and G form an ellipse.\n\n\rThe
|
8
|
+
construction of the points of the ellipse is shown below.\r\r\n \n\nGiven are the points M(-2000,1500) and G(8000,1500). \n \rGiven
|
10
|
+
is also the circle c with centre M and radius 15000. \n\rThe locus of the points
|
11
|
+
that are equidistant from G and c form an ellipse e. \n\rFrom a point P outside
|
12
|
+
e the two tangents t<sub>1</sub> and t<sub>2</sub> to the ellipse are drawn. \n\rLet
|
13
|
+
the points where t<sub>1</sub> and t<sub>2</sub> touch the ellipse be R and S.\n\n
|
14
|
+
\n\nFor how many lattice points P is angle
|
15
|
+
RPS greater than 45 degrees?\n\n"
|
data/data/problems/247.yml
CHANGED
@@ -2,17 +2,16 @@
|
|
2
2
|
:id: 247
|
3
3
|
:name: Squares under a hyperbola
|
4
4
|
:url: http://projecteuler.net/problem=247
|
5
|
-
:content: "Consider the region constrained by 1 
|
6
|
+
<var>x</var> and 0  <var>y</var>  <sup>1</sup>/<sub><var>x</var></sub>.\n\nLet S<sub>1</sub> be
|
8
|
+
the largest square that can fit under the curve. \n\rLet S<sub>2</sub> be the largest
|
9
|
+
square that fits in the remaining area, and so on. \n\rLet the _index_ of S<sub><var>n</var></sub>
|
11
10
|
be the pair (left, below) indicating the number of squares to the left of S<sub><var>n</var></sub>
|
12
|
-
and the number of squares below S<sub><var>n</var></sub>.\n\n .\n\nWhat is the largest <var>n</var>
|
18
|
-
is (3,3)?\n\n"
|
11
|
+
and the number of squares below S<sub><var>n</var></sub>.\n\n \n\nThe diagram shows some such squares labelled by number.
|
13
|
+
\ \n\rS<sub>2</sub> has one square to its left and none below, so the index of
|
14
|
+
S<sub>2</sub> is (1,0). \n\rIt can be seen that the index of S<sub>32</sub> is
|
15
|
+
(1,1) as is the index of S<sub>50</sub>. \n\r50 is the largest <var>n</var> for
|
16
|
+
which the index of S<sub><var>n</var></sub> is (1,1).\n\nWhat is the largest <var>n</var>
|
17
|
+
for which the index of S<sub><var>n</var></sub> is (3,3)?\n\n"
|
data/data/problems/251.yml
CHANGED
@@ -5,11 +5,11 @@
|
|
5
5
|
:content: |+
|
6
6
|
A triplet of positive integers (<var>a</var>,<var>b</var>,<var>c</var>) is called a Cardano Triplet if it satisfies the condition:
|
7
7
|
|
8
|
-

|
9
9
|
|
10
10
|
For example, (2,1,5) is a Cardano Triplet.
|
11
11
|
|
12
|
-
There exist 149 Cardano Triplets for which <var>a</var>+<var>b</var>+<var>c</var>  1000.
|
13
13
|
|
14
|
-
Find how many Cardano Triplets exist such that <var>a</var>+<var>b</var>+<var>c</var>  110,000,000.
|
15
15
|
|
data/data/problems/252.yml
CHANGED
@@ -8,7 +8,7 @@
|
|
8
8
|
lie on the perimeter of the polygon).\n\nAs an example, the image below shows a
|
9
9
|
set of twenty points and a few such convex holes. \rThe convex hole shown as a red
|
10
10
|
heptagon has an area equal to 1049694.5 square units, which is the highest possible
|
11
|
-
area for a convex hole on the given set of points.\n\n \n\n<style
|
12
12
|
type=\"text/css\"><![CDATA[\r\ntable.p252 td {\r\n padding: 0px 3px 0px 3px;\r\n
|
13
13
|
\ vertical-align: bottom;\r\n text-align: left;\r\n}\r\n]]></style>\n\nFor our
|
14
14
|
example, we used the first 20 points (<var>T</var><sub>2<var>k</var><img src=\"%7B%7B%20images_dir%20%7D%7D/symbol_minus.gif\"
|
@@ -22,9 +22,8 @@
|
|
22
22
|
\ <td>=<sub> </sub>\n</td>\r\n <td>( <var>S</var><sub><var>n</var></sub> mod
|
23
23
|
2000 ) <img src=\"%7B%7B%20images_dir%20%7D%7D/symbol_minus.gif\" width=\"9\" height=\"3\"
|
24
24
|
alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 1000<sup> </sup>\n</td>\r\n
|
25
|
-
\ </tr>\r\n</table></center>\n\n_i.e._ (527, 144), ( , ( 488, 732),
|
26
|
+
( 454, 947),
|
27
|
+
…\n\nWhat is the maximum area for a convex hole on the set containing the first
|
28
|
+
500 points in the pseudo-random sequence? \n Specify your answer including one
|
29
|
+
digit after the decimal point.\n\n"
|
data/data/problems/254.yml
CHANGED
@@ -11,7 +11,7 @@
|
|
11
11
|
|
12
12
|
Define sg(<var>i</var>) as the sum of the digits of g(<var>i</var>). So sg(5) = 2 + 5 = 7.
|
13
13
|
|
14
|
-
Further, it can be verified that g(20) is 267 and  is 267 and  sg(<var>i</var>) for 1  <var>i</var>  20 is 156.
|
15
15
|
|
16
|
-
What is  sg(<var>i</var>) for 1  <var>i</var>  150?
|
17
17
|
|