euler-manager 0.0.6 → 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (303) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +13 -0
  3. data/data/images/sod_13.gif +4 -0
  4. data/data/problems/100.yml +1 -1
  5. data/data/problems/101.yml +16 -16
  6. data/data/problems/102.yml +2 -3
  7. data/data/problems/103.yml +16 -16
  8. data/data/problems/105.yml +2 -2
  9. data/data/problems/106.yml +2 -2
  10. data/data/problems/107.yml +15 -15
  11. data/data/problems/108.yml +13 -16
  12. data/data/problems/109.yml +16 -17
  13. data/data/problems/11.yml +22 -23
  14. data/data/problems/110.yml +9 -10
  15. data/data/problems/114.yml +30 -41
  16. data/data/problems/116.yml +19 -25
  17. data/data/problems/117.yml +24 -33
  18. data/data/problems/120.yml +3 -3
  19. data/data/problems/122.yml +18 -20
  20. data/data/problems/123.yml +2 -2
  21. data/data/problems/124.yml +18 -23
  22. data/data/problems/126.yml +10 -11
  23. data/data/problems/127.yml +7 -7
  24. data/data/problems/128.yml +1 -1
  25. data/data/problems/130.yml +6 -7
  26. data/data/problems/131.yml +1 -1
  27. data/data/problems/132.yml +1 -1
  28. data/data/problems/134.yml +2 -2
  29. data/data/problems/135.yml +2 -2
  30. data/data/problems/136.yml +2 -2
  31. data/data/problems/137.yml +4 -4
  32. data/data/problems/138.yml +4 -4
  33. data/data/problems/139.yml +1 -1
  34. data/data/problems/14.yml +12 -13
  35. data/data/problems/140.yml +3 -3
  36. data/data/problems/142.yml +1 -1
  37. data/data/problems/143.yml +2 -2
  38. data/data/problems/144.yml +3 -3
  39. data/data/problems/147.yml +1 -1
  40. data/data/problems/149.yml +11 -13
  41. data/data/problems/15.yml +3 -3
  42. data/data/problems/150.yml +8 -8
  43. data/data/problems/151.yml +1 -1
  44. data/data/problems/152.yml +1 -1
  45. data/data/problems/153.yml +24 -26
  46. data/data/problems/154.yml +10 -9
  47. data/data/problems/155.yml +3 -3
  48. data/data/problems/156.yml +7 -8
  49. data/data/problems/157.yml +3 -4
  50. data/data/problems/158.yml +4 -5
  51. data/data/problems/159.yml +3 -3
  52. data/data/problems/161.yml +5 -4
  53. data/data/problems/163.yml +10 -10
  54. data/data/problems/165.yml +1 -1
  55. data/data/problems/166.yml +7 -7
  56. data/data/problems/167.yml +3 -4
  57. data/data/problems/168.yml +5 -5
  58. data/data/problems/170.yml +2 -2
  59. data/data/problems/171.yml +3 -3
  60. data/data/problems/173.yml +1 -1
  61. data/data/problems/174.yml +3 -3
  62. data/data/problems/175.yml +4 -4
  63. data/data/problems/177.yml +1 -1
  64. data/data/problems/179.yml +1 -1
  65. data/data/problems/180.yml +8 -9
  66. data/data/problems/182.yml +22 -24
  67. data/data/problems/183.yml +14 -15
  68. data/data/problems/184.yml +2 -2
  69. data/data/problems/186.yml +10 -11
  70. data/data/problems/187.yml +6 -8
  71. data/data/problems/189.yml +10 -9
  72. data/data/problems/190.yml +1 -1
  73. data/data/problems/192.yml +11 -12
  74. data/data/problems/194.yml +8 -8
  75. data/data/problems/195.yml +2 -2
  76. data/data/problems/197.yml +5 -6
  77. data/data/problems/198.yml +11 -12
  78. data/data/problems/199.yml +7 -7
  79. data/data/problems/20.yml +8 -10
  80. data/data/problems/202.yml +1 -1
  81. data/data/problems/207.yml +4 -4
  82. data/data/problems/208.yml +4 -5
  83. data/data/problems/21.yml +5 -6
  84. data/data/problems/210.yml +4 -5
  85. data/data/problems/211.yml +1 -1
  86. data/data/problems/212.yml +22 -26
  87. data/data/problems/213.yml +5 -6
  88. data/data/problems/214.yml +8 -9
  89. data/data/problems/215.yml +4 -4
  90. data/data/problems/216.yml +5 -5
  91. data/data/problems/217.yml +8 -10
  92. data/data/problems/218.yml +1 -1
  93. data/data/problems/22.yml +1 -1
  94. data/data/problems/220.yml +15 -15
  95. data/data/problems/221.yml +4 -5
  96. data/data/problems/223.yml +5 -6
  97. data/data/problems/224.yml +5 -6
  98. data/data/problems/226.yml +8 -8
  99. data/data/problems/228.yml +4 -5
  100. data/data/problems/229.yml +16 -16
  101. data/data/problems/230.yml +4 -4
  102. data/data/problems/231.yml +4 -5
  103. data/data/problems/233.yml +1 -1
  104. data/data/problems/234.yml +9 -10
  105. data/data/problems/236.yml +4 -4
  106. data/data/problems/237.yml +3 -3
  107. data/data/problems/238.yml +3 -4
  108. data/data/problems/241.yml +4 -4
  109. data/data/problems/242.yml +2 -2
  110. data/data/problems/243.yml +12 -12
  111. data/data/problems/244.yml +10 -11
  112. data/data/problems/245.yml +14 -15
  113. data/data/problems/246.yml +10 -9
  114. data/data/problems/247.yml +12 -13
  115. data/data/problems/251.yml +3 -3
  116. data/data/problems/252.yml +6 -7
  117. data/data/problems/254.yml +2 -2
  118. data/data/problems/255.yml +35 -36
  119. data/data/problems/256.yml +16 -20
  120. data/data/problems/257.yml +9 -9
  121. data/data/problems/258.yml +5 -6
  122. data/data/problems/26.yml +1 -1
  123. data/data/problems/260.yml +6 -8
  124. data/data/problems/261.yml +6 -7
  125. data/data/problems/262.yml +1 -1
  126. data/data/problems/264.yml +10 -11
  127. data/data/problems/265.yml +1 -1
  128. data/data/problems/27.yml +10 -11
  129. data/data/problems/270.yml +3 -3
  130. data/data/problems/271.yml +5 -6
  131. data/data/problems/272.yml +6 -7
  132. data/data/problems/273.yml +3 -3
  133. data/data/problems/274.yml +15 -15
  134. data/data/problems/275.yml +3 -3
  135. data/data/problems/276.yml +3 -3
  136. data/data/problems/277.yml +3 -3
  137. data/data/problems/278.yml +15 -17
  138. data/data/problems/281.yml +4 -4
  139. data/data/problems/282.yml +2 -2
  140. data/data/problems/284.yml +7 -8
  141. data/data/problems/287.yml +18 -17
  142. data/data/problems/288.yml +1 -1
  143. data/data/problems/289.yml +1 -1
  144. data/data/problems/29.yml +12 -13
  145. data/data/problems/290.yml +1 -1
  146. data/data/problems/291.yml +3 -3
  147. data/data/problems/292.yml +1 -1
  148. data/data/problems/293.yml +7 -7
  149. data/data/problems/295.yml +8 -8
  150. data/data/problems/296.yml +4 -5
  151. data/data/problems/297.yml +4 -5
  152. data/data/problems/299.yml +11 -12
  153. data/data/problems/300.yml +10 -9
  154. data/data/problems/301.yml +2 -2
  155. data/data/problems/303.yml +3 -3
  156. data/data/problems/304.yml +6 -7
  157. data/data/problems/305.yml +3 -2
  158. data/data/problems/306.yml +8 -11
  159. data/data/problems/307.yml +2 -3
  160. data/data/problems/309.yml +8 -8
  161. data/data/problems/31.yml +1 -1
  162. data/data/problems/310.yml +6 -7
  163. data/data/problems/311.yml +11 -11
  164. data/data/problems/312.yml +5 -5
  165. data/data/problems/313.yml +4 -4
  166. data/data/problems/314.yml +4 -5
  167. data/data/problems/315.yml +26 -27
  168. data/data/problems/316.yml +2 -4
  169. data/data/problems/318.yml +27 -34
  170. data/data/problems/319.yml +11 -12
  171. data/data/problems/32.yml +1 -1
  172. data/data/problems/320.yml +1 -1
  173. data/data/problems/321.yml +3 -3
  174. data/data/problems/322.yml +4 -4
  175. data/data/problems/323.yml +7 -8
  176. data/data/problems/324.yml +8 -9
  177. data/data/problems/325.yml +1 -1
  178. data/data/problems/326.yml +2 -2
  179. data/data/problems/327.yml +27 -29
  180. data/data/problems/328.yml +2 -2
  181. data/data/problems/330.yml +13 -14
  182. data/data/problems/331.yml +12 -12
  183. data/data/problems/332.yml +10 -9
  184. data/data/problems/333.yml +15 -16
  185. data/data/problems/334.yml +14 -14
  186. data/data/problems/335.yml +2 -2
  187. data/data/problems/336.yml +5 -4
  188. data/data/problems/337.yml +7 -7
  189. data/data/problems/338.yml +21 -24
  190. data/data/problems/340.yml +6 -7
  191. data/data/problems/341.yml +3 -5
  192. data/data/problems/342.yml +6 -7
  193. data/data/problems/343.yml +8 -12
  194. data/data/problems/344.yml +1 -1
  195. data/data/problems/347.yml +8 -8
  196. data/data/problems/350.yml +5 -5
  197. data/data/problems/351.yml +1 -1
  198. data/data/problems/352.yml +25 -26
  199. data/data/problems/353.yml +1 -1
  200. data/data/problems/354.yml +6 -6
  201. data/data/problems/356.yml +2 -3
  202. data/data/problems/358.yml +13 -14
  203. data/data/problems/359.yml +1 -1
  204. data/data/problems/361.yml +2 -1
  205. data/data/problems/362.yml +11 -13
  206. data/data/problems/363.yml +6 -6
  207. data/data/problems/364.yml +3 -3
  208. data/data/problems/365.yml +2 -2
  209. data/data/problems/366.yml +4 -5
  210. data/data/problems/369.yml +1 -1
  211. data/data/problems/370.yml +3 -3
  212. data/data/problems/372.yml +6 -8
  213. data/data/problems/374.yml +5 -7
  214. data/data/problems/375.yml +5 -6
  215. data/data/problems/377.yml +2 -2
  216. data/data/problems/378.yml +2 -2
  217. data/data/problems/379.yml +7 -8
  218. data/data/problems/38.yml +9 -9
  219. data/data/problems/380.yml +12 -15
  220. data/data/problems/381.yml +8 -11
  221. data/data/problems/382.yml +6 -6
  222. data/data/problems/383.yml +4 -4
  223. data/data/problems/384.yml +7 -8
  224. data/data/problems/385.yml +8 -8
  225. data/data/problems/386.yml +2 -2
  226. data/data/problems/388.yml +5 -6
  227. data/data/problems/39.yml +1 -1
  228. data/data/problems/390.yml +4 -6
  229. data/data/problems/391.yml +11 -12
  230. data/data/problems/392.yml +1 -1
  231. data/data/problems/393.yml +2 -2
  232. data/data/problems/394.yml +6 -7
  233. data/data/problems/395.yml +5 -5
  234. data/data/problems/396.yml +15 -17
  235. data/data/problems/397.yml +5 -8
  236. data/data/problems/4.yml +1 -1
  237. data/data/problems/40.yml +1 -1
  238. data/data/problems/400.yml +5 -6
  239. data/data/problems/401.yml +2 -2
  240. data/data/problems/402.yml +7 -8
  241. data/data/problems/403.yml +9 -10
  242. data/data/problems/404.yml +5 -6
  243. data/data/problems/405.yml +7 -7
  244. data/data/problems/406.yml +8 -10
  245. data/data/problems/407.yml +9 -9
  246. data/data/problems/410.yml +5 -6
  247. data/data/problems/411.yml +11 -12
  248. data/data/problems/412.yml +9 -9
  249. data/data/problems/414.yml +13 -15
  250. data/data/problems/415.yml +2 -2
  251. data/data/problems/417.yml +4 -5
  252. data/data/problems/418.yml +7 -8
  253. data/data/problems/419.yml +8 -8
  254. data/data/problems/420.yml +5 -5
  255. data/data/problems/421.yml +11 -12
  256. data/data/problems/422.yml +9 -9
  257. data/data/problems/423.yml +5 -7
  258. data/data/problems/424.yml +8 -9
  259. data/data/problems/425.yml +2 -3
  260. data/data/problems/426.yml +3 -3
  261. data/data/problems/427.yml +8 -8
  262. data/data/problems/428.yml +16 -19
  263. data/data/problems/430.yml +4 -5
  264. data/data/problems/44.yml +3 -3
  265. data/data/problems/45.yml +2 -2
  266. data/data/problems/46.yml +8 -8
  267. data/data/problems/47.yml +6 -10
  268. data/data/problems/53.yml +8 -9
  269. data/data/problems/56.yml +1 -1
  270. data/data/problems/57.yml +5 -5
  271. data/data/problems/58.yml +1 -1
  272. data/data/problems/6.yml +1 -1
  273. data/data/problems/61.yml +4 -4
  274. data/data/problems/64.yml +39 -46
  275. data/data/problems/65.yml +13 -14
  276. data/data/problems/66.yml +10 -10
  277. data/data/problems/68.yml +4 -5
  278. data/data/problems/69.yml +2 -2
  279. data/data/problems/70.yml +3 -4
  280. data/data/problems/71.yml +3 -3
  281. data/data/problems/72.yml +3 -3
  282. data/data/problems/73.yml +3 -3
  283. data/data/problems/74.yml +15 -22
  284. data/data/problems/75.yml +1 -1
  285. data/data/problems/8.yml +14 -14
  286. data/data/problems/81.yml +7 -7
  287. data/data/problems/82.yml +4 -4
  288. data/data/problems/83.yml +4 -4
  289. data/data/problems/85.yml +1 -1
  290. data/data/problems/86.yml +8 -8
  291. data/data/problems/88.yml +22 -27
  292. data/data/problems/9.yml +6 -6
  293. data/data/problems/90.yml +13 -13
  294. data/data/problems/91.yml +8 -8
  295. data/data/problems/92.yml +7 -9
  296. data/data/problems/93.yml +9 -10
  297. data/data/problems/95.yml +1 -1
  298. data/data/problems/96.yml +17 -17
  299. data/data/problems/97.yml +2 -2
  300. data/data/problems/99.yml +2 -2
  301. data/lib/euler/problem.rb +6 -1
  302. data/lib/euler/version.rb +1 -1
  303. metadata +2 -2
@@ -2,9 +2,8 @@
2
2
  :id: 223
3
3
  :name: Almost right-angled triangles I
4
4
  :url: http://projecteuler.net/problem=223
5
- :content: "Let us call an integer sided triangle with sides <var>a</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
6
- <var>b</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
7
- <var>c</var> _barely acute_ if the sides satisfy \n <var>a</var><sup>2</sup> +
8
- <var>b</var><sup>2</sup> = <var>c</var><sup>2</sup> + 1.\n\nHow many barely acute
9
- triangles are there with perimeter ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
10
- 25,000,000?\n\n"
5
+ :content: "Let us call an integer sided triangle with sides <var>a</var> ![≤]({{ images_dir
6
+ }}/symbol_le.gif) <var>b</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>c</var>
7
+ _barely acute_ if the sides satisfy \n <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup>
8
+ = <var>c</var><sup>2</sup> + 1.\n\nHow many barely acute triangles are there with
9
+ perimeter ![≤]({{ images_dir }}/symbol_le.gif) 25,000,000?\n\n"
@@ -2,9 +2,8 @@
2
2
  :id: 224
3
3
  :name: Almost right-angled triangles II
4
4
  :url: http://projecteuler.net/problem=224
5
- :content: "Let us call an integer sided triangle with sides <var>a</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
6
- <var>b</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
7
- <var>c</var> _barely obtuse_ if the sides satisfy \n <var>a</var><sup>2</sup>
8
- + <var>b</var><sup>2</sup> = <var>c</var><sup>2</sup> - 1.\n\nHow many barely obtuse
9
- triangles are there with perimeter ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
10
- 75,000,000?\n\n"
5
+ :content: "Let us call an integer sided triangle with sides <var>a</var> ![≤]({{ images_dir
6
+ }}/symbol_le.gif) <var>b</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>c</var>
7
+ _barely obtuse_ if the sides satisfy \n <var>a</var><sup>2</sup> + <var>b</var><sup>2</sup>
8
+ = <var>c</var><sup>2</sup> - 1.\n\nHow many barely obtuse triangles are there with
9
+ perimeter ![≤]({{ images_dir }}/symbol_le.gif) 75,000,000?\n\n"
@@ -3,11 +3,11 @@
3
3
  :name: A Scoop of Blancmange
4
4
  :url: http://projecteuler.net/problem=226
5
5
  :content: "The _blancmange curve_ is the set of points (<var>x</var>,<var>y</var>)
6
- such that 0  ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>x</var>
7
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 1 and ![](/home/will/src/euler-manager/config/../data/images/p_226_formula.gif)
8
- , \nwhere <var>s</var>(<var>x</var>) = the distance from <var>x</var> to the nearest
9
- integer.\n\nThe area under the blancmange curve is equal to ½, shown in pink in
10
- the diagram below.\n\n ![blancmange curve](/home/will/src/euler-manager/config/../data/images/p_226_scoop2.gif)\n\nLet
11
- <var>C</var> be the circle with centre (¼,&frac12) and radius ¼, shown in black
12
- in the diagram.\n\nWhat area under the blancmange curve is enclosed by <var>C</var>?
13
- \ \nGive your answer rounded to eight decimal places in the form _0.abcdefgh_\n\n"
6
+ such that 0  ![≤]({{ images_dir }}/symbol_le.gif) <var>x</var>  ![≤]({{ images_dir
7
+ }}/symbol_le.gif) 1 and ![]({{ images_dir }}/p_226_formula.gif) , \nwhere <var>s</var>(<var>x</var>)
8
+ = the distance from <var>x</var> to the nearest integer.\n\nThe area under the blancmange
9
+ curve is equal to ½, shown in pink in the diagram below.\n\n ![blancmange curve]({{
10
+ images_dir }}/p_226_scoop2.gif)\n\nLet <var>C</var> be the circle with centre (¼,&frac12)
11
+ and radius ¼, shown in black in the diagram.\n\nWhat area under the blancmange curve
12
+ is enclosed by <var>C</var>? \nGive your answer rounded to eight decimal places
13
+ in the form _0.abcdefgh_\n\n"
@@ -5,9 +5,8 @@
5
5
  :content: "Let <var>S</var><sub>n</sub> be the regular <var>n</var>-sided polygon
6
6
  – or _shape_ – whose vertices \r\r<var>v</var><sub><var>k</var></sub> (<var>k</var> = 1,2,…,<var>n</var>)
7
7
  have coordinates:\n\n| | <var>x</var><sub><var>k</var></sub>   =  \r cos( <sup>2<var>k</var>-1</sup>/<sub><var>n</var></sub>
8
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)180° )
9
- |\n| | <var>y</var><sub><var>k</var></sub>   =  \r sin( <sup>2<var>k</var>-1</sup>/<sub><var>n</var></sub>
10
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)180° )
8
+ ![×]({{ images_dir }}/symbol_times.gif)180° ) |\n| | <var>y</var><sub><var>k</var></sub>   =
9
+  \r sin( <sup>2<var>k</var>-1</sup>/<sub><var>n</var></sub> ![×]({{ images_dir }}/symbol_times.gif)180° )
11
10
  |\n\nEach <var>S</var><sub><var>n</var></sub> is to be interpreted as a filled shape
12
11
  consisting of all points on the perimeter and in the interior.\n\nThe _Minkowski
13
12
  sum_, <var>S</var>+<var>T</var>, of two shapes <var>S</var> and <var>T</var> is
@@ -15,6 +14,6 @@
15
14
  where point addition is performed coordinate-wise: \r\r(<var>u</var>, <var>v</var>)
16
15
  + (<var>x</var>, <var>y</var>) = (<var>u</var>+<var>x</var>, <var>v</var>+<var>y</var>).\n\nFor
17
16
  example, the sum of <var>S</var><sub>3</sub> and <var>S</var><sub>4</sub> is the
18
- six-sided shape shown in pink below:\n\n ![picture showing S_3 + S_4](/home/will/src/euler-manager/config/../data/images/p_228.png)\n\nHow
19
- many sides does <var>S</var><sub>1864</sub> + <var>S</var><sub>1865</sub> + … + <var>S</var><sub>1909</sub>
17
+ six-sided shape shown in pink below:\n\n ![picture showing S_3 + S_4]({{ images_dir
18
+ }}/p_228.png)\n\nHow many sides does <var>S</var><sub>1864</sub> + <var>S</var><sub>1865</sub> + … + <var>S</var><sub>1909</sub>
20
19
  have?\n\n"
@@ -3,20 +3,20 @@
3
3
  :name: Four Representations using Squares
4
4
  :url: http://projecteuler.net/problem=229
5
5
  :content: "Consider the number 3600. It is very special, because\n\n\r3600 = 48<sup>2</sup>
6
- +     36<sup>2</sup> \n \n \n\r3600 = 20<sup>2</sup> + 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)40<sup>2</sup>
7
- \ \n \n \n\r3600 = 30<sup>2</sup> + 3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)30<sup>2</sup>
8
- \ \n \n \n\r3600 = 45<sup>2</sup> + 7 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)15<sup>2</sup>
6
+ +     36<sup>2</sup> \n \n \n\r3600 = 20<sup>2</sup> + 2 ![×]({{ images_dir }}/symbol_times.gif)40<sup>2</sup>
7
+ \ \n \n \n\r3600 = 30<sup>2</sup> + 3 ![×]({{ images_dir }}/symbol_times.gif)30<sup>2</sup>
8
+ \ \n \n \n\r3600 = 45<sup>2</sup> + 7 ![×]({{ images_dir }}/symbol_times.gif)15<sup>2</sup>
9
9
  \ \n \n \n\nSimilarly, we find that 88201 = 99<sup>2</sup> + 280<sup>2</sup> =
10
- 287<sup>2</sup> + 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)54<sup>2</sup>
11
- = 283<sup>2</sup> + 3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)52<sup>2</sup>
12
- = 197<sup>2</sup> + 7 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)84<sup>2</sup>.\n\nIn
13
- 1747, Euler proved which numbers are representable as a sum of two squares.\rWe
14
- are interested in the numbers <var>n</var> which admit representations of all of
15
- the following four types:\n\n<var>n</var> = <var>a<sub>1</sub></var><sup>2</sup>
16
- +   <var>b<sub>1</sub></var><sup>2</sup> \n \n \n<var>n</var> = <var>a<sub>2</sub></var><sup>2</sup>
17
- + 2 <var>b<sub>2</sub></var><sup>2</sup> \n \n \n<var>n</var> = <var>a<sub>3</sub></var><sup>2</sup>
18
- + 3 <var>b<sub>3</sub></var><sup>2</sup> \n \n \n<var>n</var> = <var>a<sub>7</sub></var><sup>2</sup>
19
- + 7 <var>b<sub>7</sub></var><sup>2</sup>,\r\n\nwhere the <var>a</var><sub><var>k</var></sub>
20
- and <var>b</var><sub><var>k</var></sub> are positive integers.\n\nThere are 75373
21
- such numbers that do not exceed 10<sup>7</sup>. \n\r\rHow many such numbers are
22
- there that do not exceed 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)10<sup>9</sup>?\n\n"
10
+ 287<sup>2</sup> + 2 ![×]({{ images_dir }}/symbol_times.gif)54<sup>2</sup> = 283<sup>2</sup>
11
+ + 3 ![×]({{ images_dir }}/symbol_times.gif)52<sup>2</sup> = 197<sup>2</sup> + 7
12
+ ![×]({{ images_dir }}/symbol_times.gif)84<sup>2</sup>.\n\nIn 1747, Euler proved
13
+ which numbers are representable as a sum of two squares.\rWe are interested in the
14
+ numbers <var>n</var> which admit representations of all of the following four types:\n\n<var>n</var>
15
+ = <var>a<sub>1</sub></var><sup>2</sup> +   <var>b<sub>1</sub></var><sup>2</sup>
16
+ \ \n \n \n<var>n</var> = <var>a<sub>2</sub></var><sup>2</sup> + 2 <var>b<sub>2</sub></var><sup>2</sup>
17
+ \ \n \n \n<var>n</var> = <var>a<sub>3</sub></var><sup>2</sup> + 3 <var>b<sub>3</sub></var><sup>2</sup>
18
+ \ \n \n \n<var>n</var> = <var>a<sub>7</sub></var><sup>2</sup> + 7 <var>b<sub>7</sub></var><sup>2</sup>,\r\n\nwhere
19
+ the <var>a</var><sub><var>k</var></sub> and <var>b</var><sub><var>k</var></sub>
20
+ are positive integers.\n\nThere are 75373 such numbers that do not exceed 10<sup>7</sup>.
21
+ \ \n\r\rHow many such numbers are there that do not exceed 2 ![×]({{ images_dir
22
+ }}/symbol_times.gif)10<sup>9</sup>?\n\n"
@@ -13,7 +13,7 @@
13
13
  fifth term, which is 9.\n\nNow we use for A the first 100 digits of π behind the
14
14
  decimal point:\n\n14159265358979323846264338327950288419716939937510 \n\r58209749445923078164062862089986280348253421170679\n\nand
15
15
  for B the next hundred digits:\n\n82148086513282306647093844609550582231725359408128
16
- \ \n\r48111745028410270193852110555964462294895493038196 .\n\nFind ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)<sub><var>n</var>
17
- = 0,1,...,17</sub>   10<sup><var>n</var></sup> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
18
- D<sub>A,B</sub>((127+19<var>n</var>) ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)7<sup><var>n</var></sup>)
19
- .\n\n"
16
+ \ \n\r48111745028410270193852110555964462294895493038196 .\n\nFind ![∑]({{ images_dir
17
+ }}/symbol_sum.gif)<sub><var>n</var> = 0,1,...,17</sub>   10<sup><var>n</var></sup>
18
+ ![×]({{ images_dir }}/symbol_times.gif) D<sub>A,B</sub>((127+19<var>n</var>) ![×]({{
19
+ images_dir }}/symbol_times.gif)7<sup><var>n</var></sup>) .\n\n"
@@ -3,10 +3,9 @@
3
3
  :name: The prime factorisation of binomial coefficients
4
4
  :url: http://projecteuler.net/problem=231
5
5
  :content: "The binomial coefficient <sup>10</sup>C<sub>3</sub> = 120. \n\r120 = 2<sup>3</sup>
6
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
7
- 5 = 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
8
- 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
9
- 3 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 5, and
10
- 2 + 2 + 2 + 3 + 5 = 14. \n\rSo the sum of the terms in the prime factorisation
6
+ ![×]({{ images_dir }}/symbol_times.gif) 3 ![×]({{ images_dir }}/symbol_times.gif)
7
+ 5 = 2 ![×]({{ images_dir }}/symbol_times.gif) 2 ![×]({{ images_dir }}/symbol_times.gif)
8
+ 2 ![×]({{ images_dir }}/symbol_times.gif) 3 ![×]({{ images_dir }}/symbol_times.gif)
9
+ 5, and 2 + 2 + 2 + 3 + 5 = 14. \n\rSo the sum of the terms in the prime factorisation
11
10
  of <sup>10</sup>C<sub>3</sub> is 14.\r \n \n \n\rFind the sum of the terms in
12
11
  the prime factorisation of <sup>20000000</sup>C<sub>15000000</sub>.\n\n"
@@ -7,5 +7,5 @@
7
7
 
8
8
  It can be shown that <var>f</var>(10000) = 36.
9
9
 
10
- What is the sum of all positive integers <var>N</var>  ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 10<sup>11</sup> such that <var>f</var>(<var>N</var>) = 420 ?
10
+ What is the sum of all positive integers <var>N</var>  ![≤]({{ images_dir }}/symbol_le.gif) 10<sup>11</sup> such that <var>f</var>(<var>N</var>) = 420 ?
11
11
 
@@ -2,17 +2,16 @@
2
2
  :id: 234
3
3
  :name: Semidivisible numbers
4
4
  :url: http://projecteuler.net/problem=234
5
- :content: "For an integer <var>n</var> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
6
- 4, we define the _lower prime square root_ of <var>n</var>, denoted by lps(<var>n</var>),
7
- as the largest prime ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
8
- ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)<var>n</var>
5
+ :content: "For an integer <var>n</var> ![≥]({{ images_dir }}/symbol_ge.gif) 4, we
6
+ define the _lower prime square root_ of <var>n</var>, denoted by lps(<var>n</var>),
7
+ as the largest prime ![≤]({{ images_dir }}/symbol_le.gif) ![√]({{ images_dir }}/symbol_radic.gif)<var>n</var>
9
8
  and the _upper prime square root_ of <var>n</var>, ups(<var>n</var>), as the smallest
10
- prime ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif) ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)<var>n</var>.\n\nSo,
9
+ prime ![≥]({{ images_dir }}/symbol_ge.gif) ![√]({{ images_dir }}/symbol_radic.gif)<var>n</var>.\n\nSo,
11
10
  for example, lps(4) = 2 = ups(4), lps(1000) = 31, ups(1000) = 37. \n\rLet us call
12
- an integer <var>n</var> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
13
- 4 _semidivisible_, if one of lps(<var>n</var>) and ups(<var>n</var>) divides <var>n</var>,
14
- but not both.\n\nThe sum of the semidivisible numbers not exceeding 15 is 30, the
15
- numbers are 8, 10 and 12. \n 15 is not semidivisible because it is a multiple of
16
- both lps(15) = 3 and ups(15) = 5. \n\rAs a further example, the sum of the 92 semidivisible
11
+ an integer <var>n</var> ![≥]({{ images_dir }}/symbol_ge.gif) 4 _semidivisible_,
12
+ if one of lps(<var>n</var>) and ups(<var>n</var>) divides <var>n</var>, but not
13
+ both.\n\nThe sum of the semidivisible numbers not exceeding 15 is 30, the numbers
14
+ are 8, 10 and 12. \n 15 is not semidivisible because it is a multiple of both lps(15)
15
+ = 3 and ups(15) = 5. \n\rAs a further example, the sum of the 92 semidivisible
17
16
  numbers up to 1000 is 34825.\n\nWhat is the sum of all semidivisible numbers not
18
17
  exceeding 999966663333 ?\n\n"
@@ -24,7 +24,7 @@
24
24
  found that each of the five per-product spoilage rates was worse (higher) for 'B'
25
25
  than for 'A' by the same factor (ratio of spoilage rates), <var>m</var>>1; and yet,
26
26
  paradoxically, the overall spoilage rate was worse for 'A' than for 'B', also by
27
- a factor of <var>m</var>.\n\nThere are thirty-five <var>m</var> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)1
28
- for which this surprising result could have occurred, the smallest of which is 1476/1475.\n\nWhat's
29
- the largest possible value of <var>m</var>? \n\rGive your answer as a fraction
30
- reduced to its lowest terms, in the form <var>u</var>/<var>v</var>.\n\n"
27
+ a factor of <var>m</var>.\n\nThere are thirty-five <var>m</var> ![>]({{ images_dir
28
+ }}/symbol_gt.gif)1 for which this surprising result could have occurred, the smallest
29
+ of which is 1476/1475.\n\nWhat's the largest possible value of <var>m</var>? \n\rGive
30
+ your answer as a fraction reduced to its lowest terms, in the form <var>u</var>/<var>v</var>.\n\n"
@@ -3,16 +3,16 @@
3
3
  :name: Tours on a 4 x n playing board
4
4
  :url: http://projecteuler.net/problem=237
5
5
  :content: |+
6
- Let T(_n_) be the number of tours over a 4 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) _n_ playing board such that:
6
+ Let T(_n_) be the number of tours over a 4 ![×]({{ images_dir }}/symbol_times.gif) _n_ playing board such that:
7
7
 
8
8
  - The tour starts in the top left corner.
9
9
  - The tour consists of moves that are up, down, left, or right one square.
10
10
  - The tour visits each square exactly once.
11
11
  - The tour ends in the bottom left corner.
12
12
 
13
- The diagram shows one tour over a 4 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 10 board:
13
+ The diagram shows one tour over a 4 ![×]({{ images_dir }}/symbol_times.gif) 10 board:
14
14
 
15
- ![](/home/will/src/euler-manager/config/../data/images/p_237.gif)
15
+ ![]({{ images_dir }}/p_237.gif)
16
16
 
17
17
  T(10) is 2329. What is T(10<sup>12</sup>) modulo 10<sup>8</sup>?
18
18
 
@@ -24,7 +24,6 @@
24
24
  **3** .\n\nNote that substring 025 starting at position **3** , has a sum of digits
25
25
  equal to 7, but there was an earlier substring (starting at position **1** ) with
26
26
  a sum of digits equal to 7, so <var>p</var>(7) = 1, _not_ 3.\n\nWe can verify that,
27
- for 0 k  ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 10<sup>3</sup>,
28
- ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif) <var>p</var>(<var>k</var>)
29
- = 4742.\n\nFind ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif) <var>p</var>(<var>k</var>),
30
- for 0 k  ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 2·10<sup>15</sup>.\n\n"
27
+ for 0 k  ![≤]({{ images_dir }}/symbol_le.gif) 10<sup>3</sup>, ![∑]({{ images_dir
28
+ }}/symbol_sum.gif) <var>p</var>(<var>k</var>) = 4742.\n\nFind ![∑]({{ images_dir
29
+ }}/symbol_sum.gif) <var>p</var>(<var>k</var>), for 0 k  ![≤]({{ images_dir }}/symbol_le.gif) 2·10<sup>15</sup>.\n\n"
@@ -6,9 +6,9 @@
6
6
  all divisors of <var>n</var>, so e.g. σ(6) = 1 + 2 + 3 + 6 = 12.\n\nA perfect number,
7
7
  as you probably know, is a number with σ(<var>n</var>) = 2<var>n</var>.\n\n| Let
8
8
  us define the **perfection quotient** of a positive integer as | <var>p</var>(<var>n</var>)
9
- | =  | \nσ(<var>n</var>) \n ![](/home/will/src/euler-manager/config/../data/images/blackdot.gif)
10
- \ \n<var>n</var>\n | . |\n\n<!--\r\n<p>Let us define the <b>perfection quotient</b>
11
- of a positive integer as <var>p</var>(<var>n</var>) = <font \"size=4\"> <sup>&sigma;(<var>n</var>)</sup>&frasl;<sub><var>n</var></sub></font>.</p>\r\n-->\n\nFind
12
- the sum of all positive integers <var>n</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
9
+ | =  | \nσ(<var>n</var>) \n ![]({{ images_dir }}/blackdot.gif) \n<var>n</var>\n
10
+ | . |\n\n<!--\r\n<p>Let us define the <b>perfection quotient</b> of a positive integer
11
+ as <var>p</var>(<var>n</var>) = <font \"size=4\"> <sup>&sigma;(<var>n</var>)</sup>&frasl;<sub><var>n</var></sub></font>.</p>\r\n-->\n\nFind
12
+ the sum of all positive integers <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif)
13
13
  10<sup>18</sup> for which <var>p</var>(<var>n</var>) has the form <var>k</var> +
14
14
  <sup>1</sup>⁄<sub>2</sub>, where <var>k</var> is an integer.\n\n"
@@ -8,7 +8,7 @@
8
8
  having an odd sum of elements, i.e.: {1,2,4}, {1,3,5}, {2,3,4} and {2,4,5}.\n\nWhen
9
9
  all three values <var>n</var>, <var>k</var> and <var>f</var>(<var>n</var>,<var>k</var>)
10
10
  are odd, we say that they make \n\ran _odd-triplet_ [<var>n</var>,<var>k</var>,<var>f</var>(<var>n</var>,<var>k</var>)].\n\nThere
11
- are exactly five odd-triplets with <var>n</var>  ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 10,
11
+ are exactly five odd-triplets with <var>n</var>  ![≤]({{ images_dir }}/symbol_le.gif) 10,
12
12
  namely: \n\r[1,1,<var>f</var>(1,1) = 1], [5,1,<var>f</var>(5,1) = 3], [5,5,<var>f</var>(5,5) = 1],
13
13
  [9,1,<var>f</var>(9,1) = 5] and [9,9,<var>f</var>(9,9) = 1].\n\nHow many odd-triplets
14
- are there with <var>n</var>  ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 10<sup>12</sup> ?\n\n"
14
+ are there with <var>n</var>  ![≤]({{ images_dir }}/symbol_le.gif) 10<sup>12</sup> ?\n\n"
@@ -4,15 +4,15 @@
4
4
  :url: http://projecteuler.net/problem=243
5
5
  :content: "A positive fraction whose numerator is less than its denominator is called
6
6
  a proper fraction. \n\rFor any denominator, <var>d</var>, there will be <var>d</var>
7
- ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)1 proper
8
- fractions; for example, with <var>d</var> = 12: \n<sup>1</sup>/<sub>12</sub> ,
9
- <sup>2</sup>/<sub>12</sub> , <sup>3</sup>/<sub>12</sub> , <sup>4</sup>/<sub>12</sub>
10
- , <sup>5</sup>/<sub>12</sub> , <sup>6</sup>/<sub>12</sub> , <sup>7</sup>/<sub>12</sub>
11
- , <sup>8</sup>/<sub>12</sub> , <sup>9</sup>/<sub>12</sub> , <sup>10</sup>/<sub>12</sub>
12
- , <sup>11</sup>/<sub>12</sub> .\n\nWe shall call a fraction that cannot be cancelled
13
- down a _resilient fraction_. \n\rFurthermore we shall define the _resilience_ of
14
- a denominator, <var>R</var>(<var>d</var>), to be the ratio of its proper fractions
15
- that are resilient; for example, <var>R</var>(12) = <sup>4</sup>/<sub>11</sub> .
16
- \ \n\rIn fact, <var>d</var> = 12 is the smallest denominator having a resilience
17
- <var>R</var>(<var>d</var>) 4/<sub>10</sub> .\n\nFind the smallest denominator <var>d</var>,
18
- having a resilience <var>R</var>(<var>d</var>) 15499/<sub>94744</sub> .\n\n"
7
+ ![−]({{ images_dir }}/symbol_minus.gif)1 proper fractions; for example, with <var>d</var> = 12:
8
+ \ \n<sup>1</sup>/<sub>12</sub> , <sup>2</sup>/<sub>12</sub> , <sup>3</sup>/<sub>12</sub>
9
+ , <sup>4</sup>/<sub>12</sub> , <sup>5</sup>/<sub>12</sub> , <sup>6</sup>/<sub>12</sub>
10
+ , <sup>7</sup>/<sub>12</sub> , <sup>8</sup>/<sub>12</sub> , <sup>9</sup>/<sub>12</sub>
11
+ , <sup>10</sup>/<sub>12</sub> , <sup>11</sup>/<sub>12</sub> .\n\nWe shall call a
12
+ fraction that cannot be cancelled down a _resilient fraction_. \n\rFurthermore
13
+ we shall define the _resilience_ of a denominator, <var>R</var>(<var>d</var>), to
14
+ be the ratio of its proper fractions that are resilient; for example, <var>R</var>(12)
15
+ = <sup>4</sup>/<sub>11</sub> . \n\rIn fact, <var>d</var> = 12 is the smallest denominator
16
+ having a resilience <var>R</var>(<var>d</var>) 4/<sub>10</sub> .\n\nFind the smallest
17
+ denominator <var>d</var>, having a resilience <var>R</var>(<var>d</var>) 15499/<sub>94744</sub>
18
+ .\n\n"
@@ -6,18 +6,17 @@
6
6
  tiles, we have seven red tiles and eight blue tiles.\n\nA move is denoted by the
7
7
  uppercase initial of the direction (Left, Right, Up, Down) in which the tile is
8
8
  slid, e.g. starting from configuration ( **S** ), by the sequence **LULUR** we reach
9
- the configuration ( **E** ):\n\n| ( **S** ) | ![](/home/will/src/euler-manager/config/../data/images/p_244_start.gif)
10
- | , ( **E** ) | ![](/home/will/src/euler-manager/config/../data/images/p_244_example.gif)
11
- |\n\nFor each path, its checksum is calculated by (pseudocode):\n\n\rchecksum =
12
- 0 \n\rchecksum = (checksum ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
13
- 243 + <var>m</var><sub>1</sub>) mod 100 000 007 \n\rchecksum = (checksum ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
14
- 243 + <var>m</var><sub>2</sub>) mod 100 000 007 \n\r   … \n\rchecksum = (checksum
15
- ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 243 +
16
- <var>m</var><sub><var>n</var></sub>) mod 100 000 007 \n\n\rwhere <var>m</var><sub><var>k</var></sub>
9
+ the configuration ( **E** ):\n\n| ( **S** ) | ![]({{ images_dir }}/p_244_start.gif)
10
+ | , ( **E** ) | ![]({{ images_dir }}/p_244_example.gif) |\n\nFor each path, its
11
+ checksum is calculated by (pseudocode):\n\n\rchecksum = 0 \n\rchecksum = (checksum
12
+ ![×]({{ images_dir }}/symbol_times.gif) 243 + <var>m</var><sub>1</sub>) mod 100 000 007
13
+ \ \n\rchecksum = (checksum ![×]({{ images_dir }}/symbol_times.gif) 243 + <var>m</var><sub>2</sub>)
14
+ mod 100 000 007 \n\r   … \n\rchecksum = (checksum ![×]({{ images_dir }}/symbol_times.gif)
15
+ 243 + <var>m</var><sub><var>n</var></sub>) mod 100 000 007 \n\n\rwhere <var>m</var><sub><var>k</var></sub>
17
16
  is the ASCII value of the <var>k</var><sup><var>th</var></sup> letter in the move
18
17
  sequence and the ASCII values for the moves are:\r\r\n\n| **L** | 76 |\n| **R**
19
18
  | 82 |\n| **U** | 85 |\n| **D** | 68 |\n\nFor the sequence **LULUR** given above,
20
19
  the checksum would be 19761398.\n\nNow, starting from configuration ( **S** ),\rfind
21
- all shortest ways to reach configuration ( **T** ).\n\n| ( **S** ) | ![](/home/will/src/euler-manager/config/../data/images/p_244_start.gif)
22
- | , ( **T** ) | ![](/home/will/src/euler-manager/config/../data/images/p_244_target.gif)
23
- |\n\nWhat is the sum of all checksums for the paths having the minimal length?\n\n"
20
+ all shortest ways to reach configuration ( **T** ).\n\n| ( **S** ) | ![]({{ images_dir
21
+ }}/p_244_start.gif) | , ( **T** ) | ![]({{ images_dir }}/p_244_target.gif) |\n\nWhat
22
+ is the sum of all checksums for the paths having the minimal length?\n\n"
@@ -5,24 +5,23 @@
5
5
  :content: "We shall call a fraction that cannot be cancelled down a resilient fraction.
6
6
  \ \n Furthermore we shall define the resilience of a denominator, <var>R</var>(<var>d</var>),
7
7
  to be the ratio of its proper fractions that are resilient; for example, <var>R</var>(12)
8
- = <sup>4</sup>⁄<sub>11</sub>.\n\n| The resilience of a number <var>d</var> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
9
- 1 is then | \nφ(<var>d</var>) \n ![](/home/will/src/euler-manager/config/../data/images/blackdot.gif)
10
- \ \n<var>d</var> - 1\n | , where φ is Euler's totient function. |\n\n| We further
11
- define the **coresilience** of a number <var>n</var> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
12
- 1 as <var>C</var>(<var>n</var>) | =  | \n<var>n</var> - φ(<var>n</var>) \n ![](/home/will/src/euler-manager/config/../data/images/blackdot.gif)
13
- \ \n<var>n</var> - 1\n | . |\n\n| The coresilience of a prime <var>p</var> is <var>C</var>(<var>p</var>)
14
- | =  | \n1 \n ![](/home/will/src/euler-manager/config/../data/images/blackdot.gif)
15
- \ \n<var>p</var> - 1\n | . |\n\n<!--\r\n<p>The resilience of a number <var>d</var>
16
- <img src='images/symbol_gt.gif' width='10' height='10' alt='&gt;' border='0' style='vertical-align:middle;'
17
- /> 1 is then <font \"size=4\"><sup>&phi;(<var>d</var>)</sup>&frasl;<sub>(<var>d</var>-1)</sub></font>,
8
+ = <sup>4</sup>⁄<sub>11</sub>.\n\n| The resilience of a number <var>d</var> ![>]({{
9
+ images_dir }}/symbol_gt.gif) 1 is then | \nφ(<var>d</var>) \n ![]({{ images_dir
10
+ }}/blackdot.gif) \n<var>d</var> - 1\n | , where φ is Euler's totient function.
11
+ |\n\n| We further define the **coresilience** of a number <var>n</var> ![>]({{ images_dir
12
+ }}/symbol_gt.gif) 1 as <var>C</var>(<var>n</var>) | =  | \n<var>n</var> - φ(<var>n</var>)
13
+ \ \n ![]({{ images_dir }}/blackdot.gif) \n<var>n</var> - 1\n | . |\n\n| The coresilience
14
+ of a prime <var>p</var> is <var>C</var>(<var>p</var>) | =  | \n1 \n ![]({{ images_dir
15
+ }}/blackdot.gif) \n<var>p</var> - 1\n | . |\n\n<!--\r\n<p>The resilience of a number
16
+ <var>d</var> <img src='images/symbol_gt.gif' width='10' height='10' alt='&gt;' border='0'
17
+ style='vertical-align:middle;' /> 1 is then <font \"size=4\"><sup>&phi;(<var>d</var>)</sup>&frasl;<sub>(<var>d</var>-1)</sub></font>,
18
18
  where &phi; is Euler's totient function.</p>\r\n\r\n\r\n<p>We further define the
19
19
  <b>coresilience</b> of a number <var>n</var> <img src='images/symbol_gt.gif' width='10'
20
20
  height='10' alt='&gt;' border='0' style='vertical-align:middle;' /> 1 as <var>C</var>(<var>n</var>)
21
21
  = <font \"size=4\"><sup>(<var>n</var> - &phi;(<var>n</var>))</sup>&frasl;<sub>(<var>n</var>
22
22
  - 1)</sub></font>.\r\n</p>\r\n\r\n\r\n<p>The coresilience of a prime <var>p</var>
23
23
  is <var>C</var>(<var>p</var>) = <font \"size=4\"><sup>1</sup>&frasl;<sub>(<var>p</var>
24
- - 1)</sub></font>.</p>\r\n-->\n\nFind the sum of all **composite** integers 1 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
25
- <var>n</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
26
- 2 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)10<sup>11</sup>,
27
- for which <var>C</var>(<var>n</var>) is a <dfn title=\"A fraction with numerator
28
- 1\">unit fraction</dfn>.\n\n"
24
+ - 1)</sub></font>.</p>\r\n-->\n\nFind the sum of all **composite** integers 1 ![<]({{
25
+ images_dir }}/symbol_lt.gif) <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif) 2
26
+ ![×]({{ images_dir }}/symbol_times.gif)10<sup>11</sup>, for which <var>C</var>(<var>n</var>)
27
+ is a <dfn title=\"A fraction with numerator 1\">unit fraction</dfn>.\n\n"
@@ -3,12 +3,13 @@
3
3
  :name: Tangents to an ellipse
4
4
  :url: http://projecteuler.net/problem=246
5
5
  :content: "A definition for an ellipse is: \n\rGiven a circle c with centre M and
6
- radius r and a point G such that d(G,M) ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)r,
7
- the locus of the points that are equidistant from c and G form an ellipse.\n\n\rThe
8
- construction of the points of the ellipse is shown below.\r\r\n ![](/home/will/src/euler-manager/config/../data/images/p_246_anim.gif)\n\nGiven
9
- are the points M(-2000,1500) and G(8000,1500). \n \rGiven is also the circle c
10
- with centre M and radius 15000. \n\rThe locus of the points that are equidistant
11
- from G and c form an ellipse e. \n\rFrom a point P outside e the two tangents t<sub>1</sub>
12
- and t<sub>2</sub> to the ellipse are drawn. \n\rLet the points where t<sub>1</sub>
13
- and t<sub>2</sub> touch the ellipse be R and S.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_246_ellipse.gif)\n\nFor
14
- how many lattice points P is angle RPS greater than 45 degrees?\n\n"
6
+ radius r and a point G such that d(G,M) ![<]({{ images_dir }}/symbol_lt.gif)r, the
7
+ locus of the points that are equidistant from c and G form an ellipse.\n\n\rThe
8
+ construction of the points of the ellipse is shown below.\r\r\n ![]({{ images_dir
9
+ }}/p_246_anim.gif)\n\nGiven are the points M(-2000,1500) and G(8000,1500). \n \rGiven
10
+ is also the circle c with centre M and radius 15000. \n\rThe locus of the points
11
+ that are equidistant from G and c form an ellipse e. \n\rFrom a point P outside
12
+ e the two tangents t<sub>1</sub> and t<sub>2</sub> to the ellipse are drawn. \n\rLet
13
+ the points where t<sub>1</sub> and t<sub>2</sub> touch the ellipse be R and S.\n\n
14
+ ![]({{ images_dir }}/p_246_ellipse.gif)\n\nFor how many lattice points P is angle
15
+ RPS greater than 45 degrees?\n\n"
@@ -2,17 +2,16 @@
2
2
  :id: 247
3
3
  :name: Squares under a hyperbola
4
4
  :url: http://projecteuler.net/problem=247
5
- :content: "Consider the region constrained by 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
6
- <var>x</var> and 0 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
7
- <var>y</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
8
- <sup>1</sup>/<sub><var>x</var></sub>.\n\nLet S<sub>1</sub> be the largest square
9
- that can fit under the curve. \n\rLet S<sub>2</sub> be the largest square that
10
- fits in the remaining area, and so on. \n\rLet the _index_ of S<sub><var>n</var></sub>
5
+ :content: "Consider the region constrained by 1 ![≤]({{ images_dir }}/symbol_le.gif)
6
+ <var>x</var> and 0 ![≤]({{ images_dir }}/symbol_le.gif) <var>y</var> ![≤]({{ images_dir
7
+ }}/symbol_le.gif) <sup>1</sup>/<sub><var>x</var></sub>.\n\nLet S<sub>1</sub> be
8
+ the largest square that can fit under the curve. \n\rLet S<sub>2</sub> be the largest
9
+ square that fits in the remaining area, and so on. \n\rLet the _index_ of S<sub><var>n</var></sub>
11
10
  be the pair (left, below) indicating the number of squares to the left of S<sub><var>n</var></sub>
12
- and the number of squares below S<sub><var>n</var></sub>.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_247_hypersquares.gif)\n\nThe
13
- diagram shows some such squares labelled by number. \n\rS<sub>2</sub> has one
14
- square to its left and none below, so the index of S<sub>2</sub> is (1,0). \n\rIt
15
- can be seen that the index of S<sub>32</sub> is (1,1) as is the index of S<sub>50</sub>.
16
- \ \n\r50 is the largest <var>n</var> for which the index of S<sub><var>n</var></sub>
17
- is (1,1).\n\nWhat is the largest <var>n</var> for which the index of S<sub><var>n</var></sub>
18
- is (3,3)?\n\n"
11
+ and the number of squares below S<sub><var>n</var></sub>.\n\n ![]({{ images_dir
12
+ }}/p_247_hypersquares.gif)\n\nThe diagram shows some such squares labelled by number.
13
+ \ \n\rS<sub>2</sub> has one square to its left and none below, so the index of
14
+ S<sub>2</sub> is (1,0). \n\rIt can be seen that the index of S<sub>32</sub> is
15
+ (1,1) as is the index of S<sub>50</sub>. \n\r50 is the largest <var>n</var> for
16
+ which the index of S<sub><var>n</var></sub> is (1,1).\n\nWhat is the largest <var>n</var>
17
+ for which the index of S<sub><var>n</var></sub> is (3,3)?\n\n"
@@ -5,11 +5,11 @@
5
5
  :content: |+
6
6
  A triplet of positive integers (<var>a</var>,<var>b</var>,<var>c</var>) is called a Cardano Triplet if it satisfies the condition:
7
7
 
8
- ![](/home/will/src/euler-manager/config/../data/images/p_251_cardano.gif)
8
+ ![]({{ images_dir }}/p_251_cardano.gif)
9
9
 
10
10
  For example, (2,1,5) is a Cardano Triplet.
11
11
 
12
- There exist 149 Cardano Triplets for which <var>a</var>+<var>b</var>+<var>c</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 1000.
12
+ There exist 149 Cardano Triplets for which <var>a</var>+<var>b</var>+<var>c</var> ![≤]({{ images_dir }}/symbol_le.gif) 1000.
13
13
 
14
- Find how many Cardano Triplets exist such that <var>a</var>+<var>b</var>+<var>c</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 110,000,000.
14
+ Find how many Cardano Triplets exist such that <var>a</var>+<var>b</var>+<var>c</var> ![≤]({{ images_dir }}/symbol_le.gif) 110,000,000.
15
15
 
@@ -8,7 +8,7 @@
8
8
  lie on the perimeter of the polygon).\n\nAs an example, the image below shows a
9
9
  set of twenty points and a few such convex holes. \rThe convex hole shown as a red
10
10
  heptagon has an area equal to 1049694.5 square units, which is the highest possible
11
- area for a convex hole on the given set of points.\n\n ![](/home/will/src/euler-manager/config/../data/images/p_252_convexhole.gif)\n\n<style
11
+ area for a convex hole on the given set of points.\n\n ![]({{ images_dir }}/p_252_convexhole.gif)\n\n<style
12
12
  type=\"text/css\"><![CDATA[\r\ntable.p252 td {\r\n padding: 0px 3px 0px 3px;\r\n
13
13
  \ vertical-align: bottom;\r\n text-align: left;\r\n}\r\n]]></style>\n\nFor our
14
14
  example, we used the first 20 points (<var>T</var><sub>2<var>k</var><img src=\"%7B%7B%20images_dir%20%7D%7D/symbol_minus.gif\"
@@ -22,9 +22,8 @@
22
22
  \ <td>=<sub> </sub>\n</td>\r\n <td>( <var>S</var><sub><var>n</var></sub> mod
23
23
  2000 ) <img src=\"%7B%7B%20images_dir%20%7D%7D/symbol_minus.gif\" width=\"9\" height=\"3\"
24
24
  alt=\"−\" border=\"0\" style=\"vertical-align:middle;\"> 1000<sup> </sup>\n</td>\r\n
25
- \ </tr>\r\n</table></center>\n\n_i.e._ (527, 144), ( ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)488, 732),
26
- ( ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)454,
27
- ![−](/home/will/src/euler-manager/config/../data/images/symbol_minus.gif)947), …\n\nWhat
28
- is the maximum area for a convex hole on the set containing the first 500 points
29
- in the pseudo-random sequence? \n Specify your answer including one digit after
30
- the decimal point.\n\n"
25
+ \ </tr>\r\n</table></center>\n\n_i.e._ (527, 144), ( ![−]({{ images_dir }}/symbol_minus.gif)488, 732),
26
+ ( ![−]({{ images_dir }}/symbol_minus.gif)454,  ![−]({{ images_dir }}/symbol_minus.gif)947),
27
+ …\n\nWhat is the maximum area for a convex hole on the set containing the first
28
+ 500 points in the pseudo-random sequence? \n Specify your answer including one
29
+ digit after the decimal point.\n\n"
@@ -11,7 +11,7 @@
11
11
 
12
12
  Define sg(<var>i</var>) as the sum of the digits of g(<var>i</var>). So sg(5) = 2 + 5 = 7.
13
13
 
14
- Further, it can be verified that g(20) is 267 and ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif) sg(<var>i</var>) for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>i</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 20 is 156.
14
+ Further, it can be verified that g(20) is 267 and ![∑]({{ images_dir }}/symbol_sum.gif) sg(<var>i</var>) for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>i</var> ![≤]({{ images_dir }}/symbol_le.gif) 20 is 156.
15
15
 
16
- What is ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif) sg(<var>i</var>) for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>i</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 150?
16
+ What is ![∑]({{ images_dir }}/symbol_sum.gif) sg(<var>i</var>) for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>i</var> ![≤]({{ images_dir }}/symbol_le.gif) 150?
17
17