euler-manager 0.0.6 → 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +13 -0
- data/data/images/sod_13.gif +4 -0
- data/data/problems/100.yml +1 -1
- data/data/problems/101.yml +16 -16
- data/data/problems/102.yml +2 -3
- data/data/problems/103.yml +16 -16
- data/data/problems/105.yml +2 -2
- data/data/problems/106.yml +2 -2
- data/data/problems/107.yml +15 -15
- data/data/problems/108.yml +13 -16
- data/data/problems/109.yml +16 -17
- data/data/problems/11.yml +22 -23
- data/data/problems/110.yml +9 -10
- data/data/problems/114.yml +30 -41
- data/data/problems/116.yml +19 -25
- data/data/problems/117.yml +24 -33
- data/data/problems/120.yml +3 -3
- data/data/problems/122.yml +18 -20
- data/data/problems/123.yml +2 -2
- data/data/problems/124.yml +18 -23
- data/data/problems/126.yml +10 -11
- data/data/problems/127.yml +7 -7
- data/data/problems/128.yml +1 -1
- data/data/problems/130.yml +6 -7
- data/data/problems/131.yml +1 -1
- data/data/problems/132.yml +1 -1
- data/data/problems/134.yml +2 -2
- data/data/problems/135.yml +2 -2
- data/data/problems/136.yml +2 -2
- data/data/problems/137.yml +4 -4
- data/data/problems/138.yml +4 -4
- data/data/problems/139.yml +1 -1
- data/data/problems/14.yml +12 -13
- data/data/problems/140.yml +3 -3
- data/data/problems/142.yml +1 -1
- data/data/problems/143.yml +2 -2
- data/data/problems/144.yml +3 -3
- data/data/problems/147.yml +1 -1
- data/data/problems/149.yml +11 -13
- data/data/problems/15.yml +3 -3
- data/data/problems/150.yml +8 -8
- data/data/problems/151.yml +1 -1
- data/data/problems/152.yml +1 -1
- data/data/problems/153.yml +24 -26
- data/data/problems/154.yml +10 -9
- data/data/problems/155.yml +3 -3
- data/data/problems/156.yml +7 -8
- data/data/problems/157.yml +3 -4
- data/data/problems/158.yml +4 -5
- data/data/problems/159.yml +3 -3
- data/data/problems/161.yml +5 -4
- data/data/problems/163.yml +10 -10
- data/data/problems/165.yml +1 -1
- data/data/problems/166.yml +7 -7
- data/data/problems/167.yml +3 -4
- data/data/problems/168.yml +5 -5
- data/data/problems/170.yml +2 -2
- data/data/problems/171.yml +3 -3
- data/data/problems/173.yml +1 -1
- data/data/problems/174.yml +3 -3
- data/data/problems/175.yml +4 -4
- data/data/problems/177.yml +1 -1
- data/data/problems/179.yml +1 -1
- data/data/problems/180.yml +8 -9
- data/data/problems/182.yml +22 -24
- data/data/problems/183.yml +14 -15
- data/data/problems/184.yml +2 -2
- data/data/problems/186.yml +10 -11
- data/data/problems/187.yml +6 -8
- data/data/problems/189.yml +10 -9
- data/data/problems/190.yml +1 -1
- data/data/problems/192.yml +11 -12
- data/data/problems/194.yml +8 -8
- data/data/problems/195.yml +2 -2
- data/data/problems/197.yml +5 -6
- data/data/problems/198.yml +11 -12
- data/data/problems/199.yml +7 -7
- data/data/problems/20.yml +8 -10
- data/data/problems/202.yml +1 -1
- data/data/problems/207.yml +4 -4
- data/data/problems/208.yml +4 -5
- data/data/problems/21.yml +5 -6
- data/data/problems/210.yml +4 -5
- data/data/problems/211.yml +1 -1
- data/data/problems/212.yml +22 -26
- data/data/problems/213.yml +5 -6
- data/data/problems/214.yml +8 -9
- data/data/problems/215.yml +4 -4
- data/data/problems/216.yml +5 -5
- data/data/problems/217.yml +8 -10
- data/data/problems/218.yml +1 -1
- data/data/problems/22.yml +1 -1
- data/data/problems/220.yml +15 -15
- data/data/problems/221.yml +4 -5
- data/data/problems/223.yml +5 -6
- data/data/problems/224.yml +5 -6
- data/data/problems/226.yml +8 -8
- data/data/problems/228.yml +4 -5
- data/data/problems/229.yml +16 -16
- data/data/problems/230.yml +4 -4
- data/data/problems/231.yml +4 -5
- data/data/problems/233.yml +1 -1
- data/data/problems/234.yml +9 -10
- data/data/problems/236.yml +4 -4
- data/data/problems/237.yml +3 -3
- data/data/problems/238.yml +3 -4
- data/data/problems/241.yml +4 -4
- data/data/problems/242.yml +2 -2
- data/data/problems/243.yml +12 -12
- data/data/problems/244.yml +10 -11
- data/data/problems/245.yml +14 -15
- data/data/problems/246.yml +10 -9
- data/data/problems/247.yml +12 -13
- data/data/problems/251.yml +3 -3
- data/data/problems/252.yml +6 -7
- data/data/problems/254.yml +2 -2
- data/data/problems/255.yml +35 -36
- data/data/problems/256.yml +16 -20
- data/data/problems/257.yml +9 -9
- data/data/problems/258.yml +5 -6
- data/data/problems/26.yml +1 -1
- data/data/problems/260.yml +6 -8
- data/data/problems/261.yml +6 -7
- data/data/problems/262.yml +1 -1
- data/data/problems/264.yml +10 -11
- data/data/problems/265.yml +1 -1
- data/data/problems/27.yml +10 -11
- data/data/problems/270.yml +3 -3
- data/data/problems/271.yml +5 -6
- data/data/problems/272.yml +6 -7
- data/data/problems/273.yml +3 -3
- data/data/problems/274.yml +15 -15
- data/data/problems/275.yml +3 -3
- data/data/problems/276.yml +3 -3
- data/data/problems/277.yml +3 -3
- data/data/problems/278.yml +15 -17
- data/data/problems/281.yml +4 -4
- data/data/problems/282.yml +2 -2
- data/data/problems/284.yml +7 -8
- data/data/problems/287.yml +18 -17
- data/data/problems/288.yml +1 -1
- data/data/problems/289.yml +1 -1
- data/data/problems/29.yml +12 -13
- data/data/problems/290.yml +1 -1
- data/data/problems/291.yml +3 -3
- data/data/problems/292.yml +1 -1
- data/data/problems/293.yml +7 -7
- data/data/problems/295.yml +8 -8
- data/data/problems/296.yml +4 -5
- data/data/problems/297.yml +4 -5
- data/data/problems/299.yml +11 -12
- data/data/problems/300.yml +10 -9
- data/data/problems/301.yml +2 -2
- data/data/problems/303.yml +3 -3
- data/data/problems/304.yml +6 -7
- data/data/problems/305.yml +3 -2
- data/data/problems/306.yml +8 -11
- data/data/problems/307.yml +2 -3
- data/data/problems/309.yml +8 -8
- data/data/problems/31.yml +1 -1
- data/data/problems/310.yml +6 -7
- data/data/problems/311.yml +11 -11
- data/data/problems/312.yml +5 -5
- data/data/problems/313.yml +4 -4
- data/data/problems/314.yml +4 -5
- data/data/problems/315.yml +26 -27
- data/data/problems/316.yml +2 -4
- data/data/problems/318.yml +27 -34
- data/data/problems/319.yml +11 -12
- data/data/problems/32.yml +1 -1
- data/data/problems/320.yml +1 -1
- data/data/problems/321.yml +3 -3
- data/data/problems/322.yml +4 -4
- data/data/problems/323.yml +7 -8
- data/data/problems/324.yml +8 -9
- data/data/problems/325.yml +1 -1
- data/data/problems/326.yml +2 -2
- data/data/problems/327.yml +27 -29
- data/data/problems/328.yml +2 -2
- data/data/problems/330.yml +13 -14
- data/data/problems/331.yml +12 -12
- data/data/problems/332.yml +10 -9
- data/data/problems/333.yml +15 -16
- data/data/problems/334.yml +14 -14
- data/data/problems/335.yml +2 -2
- data/data/problems/336.yml +5 -4
- data/data/problems/337.yml +7 -7
- data/data/problems/338.yml +21 -24
- data/data/problems/340.yml +6 -7
- data/data/problems/341.yml +3 -5
- data/data/problems/342.yml +6 -7
- data/data/problems/343.yml +8 -12
- data/data/problems/344.yml +1 -1
- data/data/problems/347.yml +8 -8
- data/data/problems/350.yml +5 -5
- data/data/problems/351.yml +1 -1
- data/data/problems/352.yml +25 -26
- data/data/problems/353.yml +1 -1
- data/data/problems/354.yml +6 -6
- data/data/problems/356.yml +2 -3
- data/data/problems/358.yml +13 -14
- data/data/problems/359.yml +1 -1
- data/data/problems/361.yml +2 -1
- data/data/problems/362.yml +11 -13
- data/data/problems/363.yml +6 -6
- data/data/problems/364.yml +3 -3
- data/data/problems/365.yml +2 -2
- data/data/problems/366.yml +4 -5
- data/data/problems/369.yml +1 -1
- data/data/problems/370.yml +3 -3
- data/data/problems/372.yml +6 -8
- data/data/problems/374.yml +5 -7
- data/data/problems/375.yml +5 -6
- data/data/problems/377.yml +2 -2
- data/data/problems/378.yml +2 -2
- data/data/problems/379.yml +7 -8
- data/data/problems/38.yml +9 -9
- data/data/problems/380.yml +12 -15
- data/data/problems/381.yml +8 -11
- data/data/problems/382.yml +6 -6
- data/data/problems/383.yml +4 -4
- data/data/problems/384.yml +7 -8
- data/data/problems/385.yml +8 -8
- data/data/problems/386.yml +2 -2
- data/data/problems/388.yml +5 -6
- data/data/problems/39.yml +1 -1
- data/data/problems/390.yml +4 -6
- data/data/problems/391.yml +11 -12
- data/data/problems/392.yml +1 -1
- data/data/problems/393.yml +2 -2
- data/data/problems/394.yml +6 -7
- data/data/problems/395.yml +5 -5
- data/data/problems/396.yml +15 -17
- data/data/problems/397.yml +5 -8
- data/data/problems/4.yml +1 -1
- data/data/problems/40.yml +1 -1
- data/data/problems/400.yml +5 -6
- data/data/problems/401.yml +2 -2
- data/data/problems/402.yml +7 -8
- data/data/problems/403.yml +9 -10
- data/data/problems/404.yml +5 -6
- data/data/problems/405.yml +7 -7
- data/data/problems/406.yml +8 -10
- data/data/problems/407.yml +9 -9
- data/data/problems/410.yml +5 -6
- data/data/problems/411.yml +11 -12
- data/data/problems/412.yml +9 -9
- data/data/problems/414.yml +13 -15
- data/data/problems/415.yml +2 -2
- data/data/problems/417.yml +4 -5
- data/data/problems/418.yml +7 -8
- data/data/problems/419.yml +8 -8
- data/data/problems/420.yml +5 -5
- data/data/problems/421.yml +11 -12
- data/data/problems/422.yml +9 -9
- data/data/problems/423.yml +5 -7
- data/data/problems/424.yml +8 -9
- data/data/problems/425.yml +2 -3
- data/data/problems/426.yml +3 -3
- data/data/problems/427.yml +8 -8
- data/data/problems/428.yml +16 -19
- data/data/problems/430.yml +4 -5
- data/data/problems/44.yml +3 -3
- data/data/problems/45.yml +2 -2
- data/data/problems/46.yml +8 -8
- data/data/problems/47.yml +6 -10
- data/data/problems/53.yml +8 -9
- data/data/problems/56.yml +1 -1
- data/data/problems/57.yml +5 -5
- data/data/problems/58.yml +1 -1
- data/data/problems/6.yml +1 -1
- data/data/problems/61.yml +4 -4
- data/data/problems/64.yml +39 -46
- data/data/problems/65.yml +13 -14
- data/data/problems/66.yml +10 -10
- data/data/problems/68.yml +4 -5
- data/data/problems/69.yml +2 -2
- data/data/problems/70.yml +3 -4
- data/data/problems/71.yml +3 -3
- data/data/problems/72.yml +3 -3
- data/data/problems/73.yml +3 -3
- data/data/problems/74.yml +15 -22
- data/data/problems/75.yml +1 -1
- data/data/problems/8.yml +14 -14
- data/data/problems/81.yml +7 -7
- data/data/problems/82.yml +4 -4
- data/data/problems/83.yml +4 -4
- data/data/problems/85.yml +1 -1
- data/data/problems/86.yml +8 -8
- data/data/problems/88.yml +22 -27
- data/data/problems/9.yml +6 -6
- data/data/problems/90.yml +13 -13
- data/data/problems/91.yml +8 -8
- data/data/problems/92.yml +7 -9
- data/data/problems/93.yml +9 -10
- data/data/problems/95.yml +1 -1
- data/data/problems/96.yml +17 -17
- data/data/problems/97.yml +2 -2
- data/data/problems/99.yml +2 -2
- data/lib/euler/problem.rb +6 -1
- data/lib/euler/version.rb +1 -1
- metadata +2 -2
data/data/problems/405.yml
CHANGED
@@ -5,10 +5,10 @@
|
|
5
5
|
:content: "We wish to tile a rectangle whose length is twice its width. \n\rLet <var>T</var>(0)
|
6
6
|
be the tiling consisting of a single rectangle. \n\rFor <var>n</var> > 0, let <var>T</var>(<var>n</var>)
|
7
7
|
be obtained from <var>T</var>(<var>n</var>-1) by replacing all tiles in the following
|
8
|
-
manner:\n\n \n\nThe following animation demonstrates
|
9
|
+
the tilings <var>T</var>(<var>n</var>) for <var>n</var> from 0 to 5:\n\n \n\nLet <var>f</var>(<var>n</var>) be the number of
|
11
|
+
points where four tiles meet in <var>T</var>(<var>n</var>). \n\rFor example, <var>f</var>(1)
|
12
|
+
= 0, <var>f</var>(4) = 82 and <var>f</var>(10<sup>9</sup>) mod 17<sup>7</sup> =
|
13
|
+
126897180.\n\nFind <var>f</var>(10<sup><var>k</var></sup>) for <var>k</var> = 10<sup>18</sup>,
|
14
|
+
give your answer modulo 17<sup>7</sup>.\n\n"
|
data/data/problems/406.yml
CHANGED
@@ -25,16 +25,14 @@
|
|
25
25
|
<var>a</var>, and <var>b</var>.\n\nLet C(<var>n</var>, <var>a</var>, <var>b</var>)
|
26
26
|
be the worst-case cost achieved by an optimal strategy for the given values of <var>n</var>,
|
27
27
|
<var>a</var>, and <var>b</var>.\n\nHere are a few examples: \n\rC(5, 2, 3) = 5
|
28
|
-
\ \n\rC(500, 2, 3)
|
29
|
+
= 13.22073197... \n\rC(20000, 5, 7) = 82 \n\rC(2000000, 5,
|
30
|
+
7) = 49.63755955...\n\nLet F<sub><var>k</var></sub>
|
31
|
+
be the Fibonacci numbers: F<sub><var>k</var></sub> = F<sub><var>k</var>-1</sub>
|
33
32
|
+ F<sub><var>k</var>-2</sub> with base cases F<sub>1</sub> = F<sub>2</sub> = 1.
|
34
|
-
\ \nFind <sub>1<img src=\"%7B%7B%20images_dir%20%7D%7D/symbol_le.gif\"
|
34
|
+
width=\"10\" height=\"12\" alt=\"≤\" border=\"0\" style=\"vertical-align:middle;\"><var>k</var><img
|
35
35
|
src=\"%7B%7B%20images_dir%20%7D%7D/symbol_le.gif\" width=\"10\" height=\"12\" alt=\"≤\"
|
36
|
-
border=\"0\" style=\"vertical-align:middle;\"
|
37
|
-
|
38
|
-
<var>k</var>,
|
39
|
-
F<sub><var>k</var></sub>),
|
36
|
+
border=\"0\" style=\"vertical-align:middle;\">30</sub> C(10<sup>12</sup>, <var>k</var>, F<sub><var>k</var></sub>),
|
40
38
|
and give your answer rounded to 8 decimal places behind the decimal point.\n\n"
|
data/data/problems/407.yml
CHANGED
@@ -2,12 +2,12 @@
|
|
2
2
|
:id: 407
|
3
3
|
:name: Idempotents
|
4
4
|
:url: http://projecteuler.net/problem=407
|
5
|
-
:content: "If we calculate <var>a</var><sup>2</sup> mod 6 for 0  <var>a</var>  5 we get: 0,1,4,3,4,1.\n\nThe
|
7
|
+
largest value of <var>a</var> such that <var>a</var><sup>2</sup>  <var>a</var> mod 6 is 4. \n\rLet's call M(<var>n</var>) the
|
9
|
+
largest value of <var>a</var>  <var>n</var>
|
10
|
+
such that <var>a</var><sup>2</sup>  <var>a</var>
|
11
|
+
(mod <var>n</var>). \n\rSo M(6) = 4.\n\nFind M(<var>n</var>)
|
12
|
+
for 1  <var>n</var> 
|
13
|
+
10<sup>7</sup>.\n\n"
|
data/data/problems/410.yml
CHANGED
@@ -8,9 +8,8 @@
|
|
8
8
|
P and Q is tangent to C.\n\nFor example, the quadruplet (<var>r</var>, <var>a</var>,
|
9
9
|
<var>b</var>, <var>c</var>) = (2, 6, 2, -7) satisfies this property.\n\nLet F(<var>R</var>,
|
10
10
|
<var>X</var>) be the number of the integer quadruplets (<var>r</var>, <var>a</var>,
|
11
|
-
<var>b</var>, <var>c</var>) with this property, and with 0  + F(10<sup>9</sup>, 10<sup>8</sup>).\n\n"
|
11
|
+
<var>b</var>, <var>c</var>) with this property, and with 0 
|
12
|
+
<var>r</var>  <var>R</var> and 0  <var>a</var>  <var>X</var>.\n\nWe
|
14
|
+
can verify that F(1, 5) = 10, F(2, 10) = 52 and F(10, 100) = 3384. \n\rFind F(10<sup>8</sup>,
|
15
|
+
10<sup>9</sup>) + F(10<sup>9</sup>, 10<sup>8</sup>).\n\n"
|
data/data/problems/411.yml
CHANGED
@@ -4,16 +4,15 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=411
|
5
5
|
:content: "Let <var>n</var> be a positive integer. Suppose there are stations at the
|
6
6
|
coordinates (<var>x</var>, <var>y</var>) = (2<sup><var>i</var></sup> mod <var>n</var>,
|
7
|
-
3<sup><var>i</var></sup> mod <var>n</var>) for 0 
|
7
|
+
3<sup><var>i</var></sup> mod <var>n</var>) for 0 
|
8
|
+
<var>i</var>  2<var>n</var>. We will consider
|
9
|
+
stations with the same coordinates as the same station.\n\nWe wish to form a path
|
10
|
+
from (0, 0) to (<var>n</var>, <var>n</var>) such that the x and y coordinates never
|
11
|
+
decrease. \n\rLet S(<var>n</var>) be the maximum number of stations such a path
|
12
|
+
can pass through.\n\nFor example, if <var>n</var> = 22, there are 11 distinct stations,
|
13
|
+
and a valid path can pass through at most 5 stations. Therefore, S(22) = 5.\rThe
|
14
|
+
case is illustrated below, with an example of an optimal path:\n\n\n\nIt can also be verified that S(123) = 14 and S(10000) =
|
16
|
+
48.\n\nFind  S(<var>k</var><sup>5</sup>) for
|
17
|
+
1  <var>k</var> 
|
19
18
|
30.\n\n"
|
data/data/problems/412.yml
CHANGED
@@ -2,14 +2,14 @@
|
|
2
2
|
:id: 412
|
3
3
|
:name: Gnomon numbering
|
4
4
|
:url: http://projecteuler.net/problem=412
|
5
|
-
:content: "For integers <var>m</var>, <var>n</var> (0  be an <var>m</var>  looks like this:\n\n <var>n</var> m),
|
6
|
+
let L(<var>m</var>, <var>n</var>) be an <var>m</var> <var>m</var>
|
7
|
+
grid with the top-right <var>n</var> <var>n</var>
|
8
|
+
grid removed.\n\nFor example, L(5, 3) looks like this:\n\n\n\nWe
|
9
9
|
want to number each cell of L(<var>m</var>, <var>n</var>) with consecutive integers
|
10
10
|
1, 2, 3, ... such that the number in every cell is smaller than the number below
|
11
|
-
it and to the left of it.\n\nFor example, here are two valid numberings of L(5, 3):\n\n be the number
|
13
|
-
<var>n</var>). \n\rIt can be verified that
|
14
|
-
=
|
15
|
-
76543217.\n\n"
|
11
|
+
it and to the left of it.\n\nFor example, here are two valid numberings of L(5, 3):\n\n\n\nLet LC(<var>m</var>, <var>n</var>) be the number
|
13
|
+
of valid numberings of L(<var>m</var>, <var>n</var>). \n\rIt can be verified that
|
14
|
+
LC(3, 0) = 42, LC(5, 3) = 250250, LC(6, 3) = 406029023400 and LC(10, 5) mod 76543217
|
15
|
+
= 61251715.\n\nFind LC(10000, 5000) mod 76543217.\n\n"
|
data/data/problems/414.yml
CHANGED
@@ -16,20 +16,18 @@
|
|
16
16
|
a Kaprekar constant exists in all cases; either the routine can end up in a cycle
|
17
17
|
for some input numbers or the constant the routine arrives at can be different for
|
18
18
|
different input numbers. \n\rHowever, it can be shown that for 5 digits and a base
|
19
|
-
b = 6t+3  <var>b</var><sup>5</sup>.
|
19
|
+
b = 6t+3 9, a Kaprekar constant exists. \n\rE.g.
|
20
|
+
base 15: (10,4,14,9,5)<sub>15</sub> \n\rbase 21: (14,6,20,13,7)<sub>21</sub>\n\nDefine
|
21
|
+
<var>C<sub>b</sub></var> to be the Kaprekar constant in base <var>b</var> for 5
|
22
|
+
digits.\rDefine the function <var>sb(i)</var> to be\n\n- 0 if i = <var>C<sub>b</sub></var>
|
23
|
+
or if <var>i</var> written in base <var>b</var> consists of 5 identical digits\r\n-
|
24
|
+
the number of iterations it takes the Kaprekar routine in base <var>b</var> to arrive
|
25
|
+
at <var>C<sub>b</sub></var>, otherwise\r\n\rNote that we can define <var>sb(i)</var>
|
26
|
+
for all integers <var>i</var>  <var>b</var><sup>5</sup>.
|
28
27
|
If <var>i</var> written in base <var>b</var> takes less than 5 digits, the number
|
29
28
|
is padded with leading zero digits until we have 5 digits before applying the Kaprekar
|
30
|
-
routine.\r\r\n\nDefine <var>S(b)</var> as the sum of <var>sb(i)</var> for 0 </var> as the sum of <var>sb(i)</var> for 0  <var>i</var>  <var>b</var><sup>5</sup>.
|
31
|
+
\ \n\rE.g. S(15) = 5274369 \n \rS(111) = 400668930299\n\nFind the sum of S(6k+3)
|
32
|
+
for 2  k 
|
33
|
+
300. \n\rGive the last 18 digits as your answer.\n\n"
|
data/data/problems/415.yml
CHANGED
@@ -9,8 +9,8 @@
|
|
9
9
|
the set {(0, 0), (1, 1), (2, 2), (4, 4)} is not a titanic set since the line passing
|
10
10
|
through any two points in the set also passes through the other two.\n\nFor any
|
11
11
|
positive integer <var>N</var>, let <var>T</var>(<var>N</var>) be the number of titanic
|
12
|
-
sets S whose every point (<var>x</var>, <var>y</var>) satisfies 0  satisfies 0  <var>x</var>, <var>y</var> 
|
14
14
|
<var>N</var>.\rIt can be verified that <var>T</var>(1) = 11, <var>T</var>(2) = 494,
|
15
15
|
<var>T</var>(4) = 33554178, <var>T</var>(111) mod 10<sup>8</sup> = 13500401 and
|
16
16
|
<var>T</var>(10<sup>5</sup>) mod 10<sup>8</sup> = 63259062.\n\nFind <var>T</var>(10<sup>11</sup>) mod 10<sup>8</sup>.\n\n"
|
data/data/problems/417.yml
CHANGED
@@ -13,8 +13,7 @@
|
|
13
13
|
fractions whose denominator has no other prime factors than 2 and/or 5 are not considered
|
14
14
|
to have a recurring cycle. \n\rWe define the length of the recurring cycle of those
|
15
15
|
unit fractions as 0.\n\nLet L(n) denote the length of the recurring cycle of 1/n.\rYou
|
16
|
-
are given that L(n) for 3  n  1 000 000 equals 55535191115.\n\nFind
|
18
|
+
L(n) for 3 
|
19
|
+
n  100 000 000\n\n"
|
data/data/problems/418.yml
CHANGED
@@ -4,11 +4,10 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=418
|
5
5
|
:content: "Let <var>n</var> be a positive integer. An integer triple (<var>a</var>,
|
6
6
|
<var>b</var>, <var>c</var>) is called a _factorisation triple_ of <var>n</var> if:\n\n-
|
7
|
-
1  = 142 and <var>f</var>(20!) = 4034872.\n\nFind <var>f</var>(43!).\n\n"
|
7
|
+
1  <var>a</var> 
|
8
|
+
<var>b</var>  <var>c</var>\n- <var>a</var>·<var>b</var>·<var>c</var>
|
9
|
+
= <var>n</var>.\r\n\nDefine <var>f</var>(<var>n</var>) to be <var>a</var> + <var>b</var>
|
10
|
+
+ <var>c</var> for the factorisation triple (<var>a</var>, <var>b</var>, <var>c</var>)
|
11
|
+
of <var>n</var> which minimises <var>c</var> / <var>a</var>. One can show that this
|
12
|
+
triple is unique.\n\nFor example, <var>f</var>(165) = 19, <var>f</var>(100100) =
|
13
|
+
142 and <var>f</var>(20!) = 4034872.\n\nFind <var>f</var>(43!).\n\n"
|
data/data/problems/419.yml
CHANGED
@@ -5,13 +5,13 @@
|
|
5
5
|
:content: "The **look and say** sequence goes 1, 11, 21, 1211, 111221, 312211, 13112221,
|
6
6
|
1113213211, ... \n\rThe sequence starts with 1 and all other members are obtained
|
7
7
|
by describing the previous member in terms of consecutive digits. \n\rIt helps
|
8
|
-
to do this out loud: \n\r1 is 'one one' 
|
9
|
+
11 \n\r11 is 'two ones'  21 \n\r21 is 'one
|
10
|
+
two and one one'  1211 \n\r1211 is 'one
|
11
|
+
one, one two and two ones'  111221 \n\r111221
|
12
|
+
is 'three ones, two twos and one one'  312211
|
13
|
+
\ \n\r...\n\nDefine A(n), B(n) and C(n) as the number of ones, twos and threes in
|
14
|
+
the n'th element of the sequence respectively. \n\rOne can verify that A(40) =
|
15
|
+
31254, B(40) = 20259 and C(40) = 11625.\n\nFind A(n), B(n) and C(n) for n = 10<sup>12</sup>.
|
16
16
|
\ \n \rGive your answer modulo 2<sup>30</sup> and separate your values for A, B
|
17
17
|
and C by a comma. \n \rE.g. for n = 40 the answer would be 31254,20259,11625\n\n"
|
data/data/problems/420.yml
CHANGED
@@ -4,9 +4,9 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=420
|
5
5
|
:content: "A _positive integer matrix_ is a matrix whose elements are all positive
|
6
6
|
integers. \n\rSome positive integer matrices can be expressed as a square of a
|
7
|
-
positive integer matrix in two different ways. Here is an example:\n\n  as the number of the 2x2 positive
|
9
|
-
have a <dfn title=\"the sum of the elements on the main diagonal\">trace</dfn>
|
10
|
-
than <var>N</var> and which can be expressed as a square of a positive integer
|
11
|
-
in two different ways. \n\rWe can verify that F(50) = 7 and F(1000) = 1019.\n\nFind
|
7
|
+
positive integer matrix in two different ways. Here is an example:\n\n \n\nWe define F(<var>N</var>) as the number of the 2x2 positive
|
9
|
+
integer matrices which have a <dfn title=\"the sum of the elements on the main diagonal\">trace</dfn>
|
10
|
+
less than <var>N</var> and which can be expressed as a square of a positive integer
|
11
|
+
matrix in two different ways. \n\rWe can verify that F(50) = 7 and F(1000) = 1019.\n\nFind
|
12
12
|
F(10<sup>7</sup>).\n\n"
|
data/data/problems/421.yml
CHANGED
@@ -3,16 +3,15 @@
|
|
3
3
|
:name: Prime factors of <var>n</var><sup>15</sup>+1
|
4
4
|
:url: http://projecteuler.net/problem=421
|
5
5
|
:content: "Numbers of the form <var>n</var><sup>15</sup>+1 are composite for every
|
6
|
-
integer <var>n</var>  1. \n\rFor positive integers
|
7
|
+
<var>n</var> and <var>m</var> let <var>s</var>(<var>n,m</var>) be defined as the
|
8
|
+
sum of the _distinct_ prime factors of <var>n</var><sup>15</sup>+1 not exceeding
|
9
|
+
<var>m</var>.\n\n\rE.g. 2<sup>15</sup>+1 = 3 3
|
10
|
+
11 331.
|
11
11
|
\ \n\rSo <var>s</var>(2,10) = 3 and <var>s</var>(2,1000) = 3+11+331 = 345. \n \n
|
12
|
-
\ \n\r\rAlso 10<sup>15</sup>+1 = 7  10<sup>11</sup>.\n\n"
|
12
|
+
\ \n\r\rAlso 10<sup>15</sup>+1 = 7 11 13 211 241 2161 9091. \n\rSo <var>s</var>(10,100) = 31 and <var>s</var>(10,1000)
|
16
|
+
= 483. \n\nFind ∑ <var>s</var>(<var>n</var>,10<sup>8</sup>) for 1  <var>n</var>  10<sup>11</sup>.\n\n"
|
data/data/problems/422.yml
CHANGED
@@ -5,16 +5,16 @@
|
|
5
5
|
:content: "Let H be the hyperbola defined by the equation 12<var>x</var><sup>2</sup>
|
6
6
|
+ 7<var>x</var><var>y</var> - 12<var>y</var><sup>2</sup> = 625.\n\nNext, define
|
7
7
|
X as the point (7, 1). It can be seen that X is in H.\n\nNow we define a sequence
|
8
|
-
of points in H, {P<sub><var>i</var></sub> : <var>i</var> 
|
9
9
|
1}, as:\n\n- P<sub>1</sub> = (13, 61/4).\r\n- P<sub>2</sub> = (-43/6, -4).\r\n-
|
10
10
|
For <var>i</var> > 2, P<sub><var>i</var></sub> is the unique point in H that is
|
11
11
|
different from P<sub><var>i</var>-1</sub> and such that line P<sub><var>i</var></sub>P<sub><var>i</var>-1</sub>
|
12
12
|
is parallel to line P<sub><var>i</var>-2</sub>X. It can be shown that P<sub><var>i</var></sub>
|
13
|
-
is well-defined, and that its coordinates are always rational.\r\n , P<sub>4</sub>
|
15
|
-
and P<sub>7</sub> = (17194218091/143327232, 274748766781/1719926784).\n\nFind
|
16
|
-
for <var>n</var> = 11<sup>14</sup> in the following format:
|
17
|
-
= (<var>a</var>/<var>b</var>, <var>c</var>/<var>d</var>)
|
18
|
-
in lowest terms and the denominators are positive, then
|
19
|
-
+ <var>b</var> + <var>c</var> + <var>d</var>) mod 1 000 000 007.\n\nFor
|
20
|
-
= 7, the answer would have been: 806236837.\n\n"
|
13
|
+
is well-defined, and that its coordinates are always rational.\r\n \n\nYou are given that P<sub>3</sub> = (-19/2, -229/24), P<sub>4</sub>
|
15
|
+
= (1267/144, -37/12) and P<sub>7</sub> = (17194218091/143327232, 274748766781/1719926784).\n\nFind
|
16
|
+
P<sub><var>n</var></sub> for <var>n</var> = 11<sup>14</sup> in the following format:
|
17
|
+
\ \nIf P<sub><var>n</var></sub> = (<var>a</var>/<var>b</var>, <var>c</var>/<var>d</var>)
|
18
|
+
where the fractions are in lowest terms and the denominators are positive, then
|
19
|
+
the answer is (<var>a</var> + <var>b</var> + <var>c</var> + <var>d</var>) mod 1 000 000 007.\n\nFor
|
20
|
+
<var>n</var> = 7, the answer would have been: 806236837.\n\n"
|
data/data/problems/423.yml
CHANGED
@@ -11,10 +11,8 @@
|
|
11
11
|
as the number of outcomes of throwing a 6-sided die <var>n</var> times such that
|
12
12
|
<var>c</var> does not exceed π(<var>n</var>).<sup>1</sup> \n\rFor example, C(3)
|
13
13
|
= 216, C(4) = 1290, C(11) = 361912500 and C(24) = 4727547363281250000.\n\nDefine
|
14
|
-
S(<var>L</var>) as  is the number of primes 
|
20
|
-
<var>n</var>.\n\n"
|
14
|
+
S(<var>L</var>) as  C(<var>n</var>) for 1  <var>n</var>  <var>L</var>.
|
16
|
+
\ \n\rFor example, S(50) mod 1 000 000 007 = 832833871.\n\nFind S(50 000 000) mod
|
17
|
+
1 000 000 007.\n\n<sup>1</sup> π denotes the **prime-counting function** , i.e.
|
18
|
+
π(<var>n</var>) is the number of primes  <var>n</var>.\n\n"
|
data/data/problems/424.yml
CHANGED
@@ -2,15 +2,14 @@
|
|
2
2
|
:id: 424
|
3
3
|
:name: Kakuro
|
4
4
|
:url: http://projecteuler.net/problem=424
|
5
|
-
:content: ",(vI),X,X,X,(hH),B,O,(vCA),(vJE),X,(hFE,vD),O,O,O,O,(hA),O,I,(hJC,vB),O,O,(hJC),H,O,O,O,X,X,X,(hJE),O,O,X\n\nThe
|
5
|
+
:content: "\n\nThe above is an example of a
|
6
|
+
cryptic kakuro (also known as cross sums, or even sums cross) puzzle, with its final
|
7
|
+
solution on the right. (The common rules of kakuro puzzles can be found easily on
|
8
|
+
numerous internet sites. Other related information can also be currently found at
|
9
|
+
[krazydad.com](http://krazydad.com/) whose author has provided the puzzle data for
|
10
|
+
this challenge.)\n\nThe downloadable text file ( [kakuro200.txt](project/kakuro200.txt))
|
11
|
+
contains the description of 200 such puzzles, a mix of 5x5 and 6x6 types. The first
|
12
|
+
puzzle in the file is the above example which is coded as follows:\n\n6,X,X,(vCC),(vI),X,X,X,(hH),B,O,(vCA),(vJE),X,(hFE,vD),O,O,O,O,(hA),O,I,(hJC,vB),O,O,(hJC),H,O,O,O,X,X,X,(hJE),O,O,X\n\nThe
|
14
13
|
first character is a numerical digit indicating the size of the information grid.
|
15
14
|
It would be either a 6 (for a 5x5 kakuro puzzle) or a 7 (for a 6x6 puzzle) followed
|
16
15
|
by a comma (,). The extra top line and left column are needed to insert information.\n\nThe
|
data/data/problems/425.yml
CHANGED
@@ -10,6 +10,5 @@
|
|
10
10
|
and P and no prime in the chain exceeds P.\n\nFor example, 127 is a 2's relative.
|
11
11
|
One of the possible chains is shown below: \n\r2 ↔ 3 ↔ 13 ↔ 113 ↔ 103 ↔ 107 ↔ 127
|
12
12
|
\ \n\rHowever, 11 and 103 are not 2's relatives.\n\nLet F(N) be the sum of the primes
|
13
|
-
.\n\n"
|
13
|
+
 N which are not 2's relatives. \n\rWe can
|
14
|
+
verify that F(10<sup>3</sup>) = 431 and F(10<sup>4</sup>) = 78728.\n\nFind F(10<sup>7</sup>).\n\n"
|
data/data/problems/426.yml
CHANGED
@@ -10,13 +10,13 @@
|
|
10
10
|
according to the following rule: Transfer the leftmost ball which has not been moved
|
11
11
|
to the nearest empty box to its right.\n\nAfter one turn the sequence (2, 2, 2,
|
12
12
|
1, 2) becomes (2, 2, 1, 2, 3) as can be seen below; note that we begin the new sequence
|
13
|
-
starting at the first occupied box.\n\n \n\nA
|
14
14
|
system like this is called a **Box-Ball System** or **BBS** for short.\n\nIt can
|
15
15
|
be shown that after a sufficient number of turns, the system evolves to a state
|
16
16
|
where the consecutive numbers of occupied boxes is invariant. In the example below,
|
17
17
|
the consecutive numbers of **occupied boxes** evolves to [1, 2, 3]; we shall call
|
18
|
-
this the final state.\n\n \n\nWe define
|
19
|
+
the sequence {<var>t</var><sub><var>i</var></sub>}:\n\n- <var>s</var><sub>0</sub>
|
20
20
|
= 290797\r\n- <var>s</var><sub><var>k</var>+1</sub> = <var>s</var><sub><var>k</var></sub><sup>2</sup>
|
21
21
|
mod 50515093\r\n- <var>t</var><sub><var>k</var></sub> = (<var>s</var><sub><var>k</var></sub>
|
22
22
|
mod 64) + 1\r\n\nStarting from the initial configuration (<var>t</var><sub>0</sub>,
|
data/data/problems/427.yml
CHANGED
@@ -4,13 +4,13 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=427
|
5
5
|
:content: "A sequence of integers S = {s<sub><var>i</var></sub>} is called an <var>n-sequence</var>
|
6
6
|
if it has <var>n</var> elements and each element s<sub><var>i</var></sub> satisfies
|
7
|
-
1  s<sub><var>i</var></sub>  <var>n</var>. Thus there are <var>n</var><sup><var>n</var></sup>
|
9
|
+
distinct <var>n</var>-sequences in total.\rFor example, the sequence S = {1, 5,
|
10
|
+
5, 10, 7, 7, 7, 2, 3, 7} is a 10-sequence.\n\nFor any sequence S, let L(S) be the
|
11
|
+
length of the longest contiguous subsequence of S with the same value.\rFor example,
|
12
|
+
for the given sequence S above, L(S) = 3, because of the three consecutive 7's.\n\nLet
|
13
|
+
<var>f</var>(<var>n</var>) =  L(S) for all
|
14
|
+
<var>n</var>-sequences S.\n\nFor example, <var>f</var>(3) = 45, <var>f</var>(7)
|
15
15
|
= 1403689 and <var>f</var>(11) = 481496895121.\n\nFind <var>f</var>(7 500 000) mod
|
16
16
|
1 000 000 009.\n\n"
|
data/data/problems/428.yml
CHANGED
@@ -7,22 +7,19 @@
|
|
7
7
|
|YZ| = <var>c</var> and |WZ| = <var>a</var> + <var>b</var> + <var>c</var>. \n\rLet
|
8
8
|
C<sub>in</sub> be the circle having the diameter XY. \n\rLet C<sub>out</sub> be
|
9
9
|
the circle having the diameter WZ.\n\nThe triplet (<var>a</var>, <var>b</var>, <var>c</var>)
|
10
|
-
is called a _necklace triplet_ if you can place <var>k</var> 
|
27
|
-
<var>n</var>.\rFor example, T(1) = 9, T(20) = 732 and T(3000) = 438106.\n\nFind
|
28
|
-
T(1 000 000 000).\n\n"
|
10
|
+
is called a _necklace triplet_ if you can place <var>k</var>  3 distinct circles C<sub>1</sub>, C<sub>2</sub>, ..., C<sub><var>k</var></sub>
|
12
|
+
such that:\n\n- C<sub><var>i</var></sub> has no common interior points with any
|
13
|
+
C<sub><var>j</var></sub> for 1  <var>i</var>,
|
14
|
+
<var>j</var>  <var>k</var> and <var>i</var>
|
15
|
+
 <var>j</var>,\r\n- C<sub><var>i</var></sub>
|
16
|
+
is tangent to both C<sub>in</sub> and C<sub>out</sub> for 1 
|
17
|
+
<var>i</var>  <var>k</var>,\r\n- C<sub><var>i</var></sub>
|
18
|
+
is tangent to C<sub><var>i</var>+1</sub> for 1 
|
19
|
+
<var>i</var> k, and\r\n- C<sub><var>k</var></sub> is tangent to C<sub>1</sub>.\r\n\nFor
|
20
|
+
example, (5, 5, 5) and (4, 3, 21) are necklace triplets, while it can be shown that
|
21
|
+
(2, 2, 5) is not.\n\n\n\nLet T(<var>n</var>)
|
22
|
+
be the number of necklace triplets (<var>a</var>, <var>b</var>, <var>c</var>) such
|
23
|
+
that <var>a</var>, <var>b</var> and <var>c</var> are positive integers, and <var>b</var>
|
24
|
+
 <var>n</var>.\rFor example, T(1) = 9, T(20) = 732
|
25
|
+
and T(3000) = 438106.\n\nFind T(1 000 000 000).\n\n"
|
data/data/problems/430.yml
CHANGED
@@ -9,10 +9,9 @@
|
|
9
9
|
uniformly at random. \n\rAll disks with an index from <var>A</var> to <var>B</var>
|
10
10
|
(inclusive) are flipped.\n\nThe following example shows the case <var>N</var> =
|
11
11
|
8. At the first turn <var>A</var> = 5 and <var>B</var> = 2, and at the second turn
|
12
|
-
<var>A</var> = 4 and <var>B</var> = 6.\n\n\n\nLet
|
13
13
|
E(<var>N</var>, <var>M</var>) be the expected number of disks that show their white
|
14
14
|
side after <var>M</var> turns. \n\rWe can verify that E(3, 1) = 10/9, E(3, 2) =
|
15
|
-
5/3, E(10, 4)   5.157 and E(100, 10)  51.893.\n\nFind E(10<sup>10</sup>, 4000). \n\rGive
|
17
|
+
your answer rounded to 2 decimal places behind the decimal point.\n\n"
|
data/data/problems/44.yml
CHANGED
@@ -3,11 +3,11 @@
|
|
3
3
|
:name: Pentagon numbers
|
4
4
|
:url: http://projecteuler.net/problem=44
|
5
5
|
:content: |+
|
6
|
-
Pentagonal numbers are generated by the formula, P<sub><var>n</var></sub>=<var>n</var>(3<var>n</var> 1)/2. The first ten pentagonal numbers are:
|
7
7
|
|
8
8
|
1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...
|
9
9
|
|
10
|
-
It can be seen that P<sub>4</sub> + P<sub>7</sub> = 22 + 70 = 92 = P<sub>8</sub>. However, their difference, 70  22 = 48, is not pentagonal.
|
11
11
|
|
12
|
-
Find the pair of pentagonal numbers, P<sub><var>j</var></sub> and P<sub><var>k</var></sub>, for which their sum and difference are pentagonal and D = |P<sub><var>k</var></sub>  P<sub><var>j</var></sub>| is minimised; what is the value of D?
|
13
13
|
|
data/data/problems/45.yml
CHANGED
@@ -6,8 +6,8 @@
|
|
6
6
|
Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:
|
7
7
|
|
8
8
|
| Triangle | | T<sub><i>n</i></sub>=_n_(_n_+1)/2 | | 1, 3, 6, 10, 15, ... |
|
9
|
-
| Pentagonal | | P<sub><i>n</i></sub>=_n_(3_n_ 1)/2 | | 1, 5, 12, 22, 35, ... |
|
10
|
+
| Hexagonal | | H<sub><i>n</i></sub>=_n_(2_n_ 1) | | 1, 6, 15, 28, 45, ... |
|
11
11
|
|
12
12
|
It can be verified that T<sub>285</sub> = P<sub>165</sub> = H<sub>143</sub> = 40755.
|
13
13
|
|
data/data/problems/46.yml
CHANGED
@@ -3,11 +3,11 @@
|
|
3
3
|
:name: Goldbach's other conjecture
|
4
4
|
:url: http://projecteuler.net/problem=46
|
5
5
|
:content: "It was proposed by Christian Goldbach that every odd composite number can
|
6
|
-
be written as the sum of a prime and twice a square.\n\n9 = 7 + 2 1<sup>2</sup> \n\r15 = 7 + 2 2<sup>2</sup>
|
8
|
+
\ \n\r21 = 3 + 2 3<sup>2</sup> \n\r25 =
|
9
|
+
7 + 2 3<sup>2</sup> \n\r27 = 19 + 2 2<sup>2</sup> \n\r33 = 31 + 2 1<sup>2</sup>\n\nIt turns out that the conjecture was false.\n\nWhat
|
12
|
+
is the smallest odd composite that cannot be written as the sum of a prime and twice
|
13
|
+
a square?\n\n"
|