euler-manager 0.0.6 → 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (303) hide show
  1. checksums.yaml +4 -4
  2. data/README.md +13 -0
  3. data/data/images/sod_13.gif +4 -0
  4. data/data/problems/100.yml +1 -1
  5. data/data/problems/101.yml +16 -16
  6. data/data/problems/102.yml +2 -3
  7. data/data/problems/103.yml +16 -16
  8. data/data/problems/105.yml +2 -2
  9. data/data/problems/106.yml +2 -2
  10. data/data/problems/107.yml +15 -15
  11. data/data/problems/108.yml +13 -16
  12. data/data/problems/109.yml +16 -17
  13. data/data/problems/11.yml +22 -23
  14. data/data/problems/110.yml +9 -10
  15. data/data/problems/114.yml +30 -41
  16. data/data/problems/116.yml +19 -25
  17. data/data/problems/117.yml +24 -33
  18. data/data/problems/120.yml +3 -3
  19. data/data/problems/122.yml +18 -20
  20. data/data/problems/123.yml +2 -2
  21. data/data/problems/124.yml +18 -23
  22. data/data/problems/126.yml +10 -11
  23. data/data/problems/127.yml +7 -7
  24. data/data/problems/128.yml +1 -1
  25. data/data/problems/130.yml +6 -7
  26. data/data/problems/131.yml +1 -1
  27. data/data/problems/132.yml +1 -1
  28. data/data/problems/134.yml +2 -2
  29. data/data/problems/135.yml +2 -2
  30. data/data/problems/136.yml +2 -2
  31. data/data/problems/137.yml +4 -4
  32. data/data/problems/138.yml +4 -4
  33. data/data/problems/139.yml +1 -1
  34. data/data/problems/14.yml +12 -13
  35. data/data/problems/140.yml +3 -3
  36. data/data/problems/142.yml +1 -1
  37. data/data/problems/143.yml +2 -2
  38. data/data/problems/144.yml +3 -3
  39. data/data/problems/147.yml +1 -1
  40. data/data/problems/149.yml +11 -13
  41. data/data/problems/15.yml +3 -3
  42. data/data/problems/150.yml +8 -8
  43. data/data/problems/151.yml +1 -1
  44. data/data/problems/152.yml +1 -1
  45. data/data/problems/153.yml +24 -26
  46. data/data/problems/154.yml +10 -9
  47. data/data/problems/155.yml +3 -3
  48. data/data/problems/156.yml +7 -8
  49. data/data/problems/157.yml +3 -4
  50. data/data/problems/158.yml +4 -5
  51. data/data/problems/159.yml +3 -3
  52. data/data/problems/161.yml +5 -4
  53. data/data/problems/163.yml +10 -10
  54. data/data/problems/165.yml +1 -1
  55. data/data/problems/166.yml +7 -7
  56. data/data/problems/167.yml +3 -4
  57. data/data/problems/168.yml +5 -5
  58. data/data/problems/170.yml +2 -2
  59. data/data/problems/171.yml +3 -3
  60. data/data/problems/173.yml +1 -1
  61. data/data/problems/174.yml +3 -3
  62. data/data/problems/175.yml +4 -4
  63. data/data/problems/177.yml +1 -1
  64. data/data/problems/179.yml +1 -1
  65. data/data/problems/180.yml +8 -9
  66. data/data/problems/182.yml +22 -24
  67. data/data/problems/183.yml +14 -15
  68. data/data/problems/184.yml +2 -2
  69. data/data/problems/186.yml +10 -11
  70. data/data/problems/187.yml +6 -8
  71. data/data/problems/189.yml +10 -9
  72. data/data/problems/190.yml +1 -1
  73. data/data/problems/192.yml +11 -12
  74. data/data/problems/194.yml +8 -8
  75. data/data/problems/195.yml +2 -2
  76. data/data/problems/197.yml +5 -6
  77. data/data/problems/198.yml +11 -12
  78. data/data/problems/199.yml +7 -7
  79. data/data/problems/20.yml +8 -10
  80. data/data/problems/202.yml +1 -1
  81. data/data/problems/207.yml +4 -4
  82. data/data/problems/208.yml +4 -5
  83. data/data/problems/21.yml +5 -6
  84. data/data/problems/210.yml +4 -5
  85. data/data/problems/211.yml +1 -1
  86. data/data/problems/212.yml +22 -26
  87. data/data/problems/213.yml +5 -6
  88. data/data/problems/214.yml +8 -9
  89. data/data/problems/215.yml +4 -4
  90. data/data/problems/216.yml +5 -5
  91. data/data/problems/217.yml +8 -10
  92. data/data/problems/218.yml +1 -1
  93. data/data/problems/22.yml +1 -1
  94. data/data/problems/220.yml +15 -15
  95. data/data/problems/221.yml +4 -5
  96. data/data/problems/223.yml +5 -6
  97. data/data/problems/224.yml +5 -6
  98. data/data/problems/226.yml +8 -8
  99. data/data/problems/228.yml +4 -5
  100. data/data/problems/229.yml +16 -16
  101. data/data/problems/230.yml +4 -4
  102. data/data/problems/231.yml +4 -5
  103. data/data/problems/233.yml +1 -1
  104. data/data/problems/234.yml +9 -10
  105. data/data/problems/236.yml +4 -4
  106. data/data/problems/237.yml +3 -3
  107. data/data/problems/238.yml +3 -4
  108. data/data/problems/241.yml +4 -4
  109. data/data/problems/242.yml +2 -2
  110. data/data/problems/243.yml +12 -12
  111. data/data/problems/244.yml +10 -11
  112. data/data/problems/245.yml +14 -15
  113. data/data/problems/246.yml +10 -9
  114. data/data/problems/247.yml +12 -13
  115. data/data/problems/251.yml +3 -3
  116. data/data/problems/252.yml +6 -7
  117. data/data/problems/254.yml +2 -2
  118. data/data/problems/255.yml +35 -36
  119. data/data/problems/256.yml +16 -20
  120. data/data/problems/257.yml +9 -9
  121. data/data/problems/258.yml +5 -6
  122. data/data/problems/26.yml +1 -1
  123. data/data/problems/260.yml +6 -8
  124. data/data/problems/261.yml +6 -7
  125. data/data/problems/262.yml +1 -1
  126. data/data/problems/264.yml +10 -11
  127. data/data/problems/265.yml +1 -1
  128. data/data/problems/27.yml +10 -11
  129. data/data/problems/270.yml +3 -3
  130. data/data/problems/271.yml +5 -6
  131. data/data/problems/272.yml +6 -7
  132. data/data/problems/273.yml +3 -3
  133. data/data/problems/274.yml +15 -15
  134. data/data/problems/275.yml +3 -3
  135. data/data/problems/276.yml +3 -3
  136. data/data/problems/277.yml +3 -3
  137. data/data/problems/278.yml +15 -17
  138. data/data/problems/281.yml +4 -4
  139. data/data/problems/282.yml +2 -2
  140. data/data/problems/284.yml +7 -8
  141. data/data/problems/287.yml +18 -17
  142. data/data/problems/288.yml +1 -1
  143. data/data/problems/289.yml +1 -1
  144. data/data/problems/29.yml +12 -13
  145. data/data/problems/290.yml +1 -1
  146. data/data/problems/291.yml +3 -3
  147. data/data/problems/292.yml +1 -1
  148. data/data/problems/293.yml +7 -7
  149. data/data/problems/295.yml +8 -8
  150. data/data/problems/296.yml +4 -5
  151. data/data/problems/297.yml +4 -5
  152. data/data/problems/299.yml +11 -12
  153. data/data/problems/300.yml +10 -9
  154. data/data/problems/301.yml +2 -2
  155. data/data/problems/303.yml +3 -3
  156. data/data/problems/304.yml +6 -7
  157. data/data/problems/305.yml +3 -2
  158. data/data/problems/306.yml +8 -11
  159. data/data/problems/307.yml +2 -3
  160. data/data/problems/309.yml +8 -8
  161. data/data/problems/31.yml +1 -1
  162. data/data/problems/310.yml +6 -7
  163. data/data/problems/311.yml +11 -11
  164. data/data/problems/312.yml +5 -5
  165. data/data/problems/313.yml +4 -4
  166. data/data/problems/314.yml +4 -5
  167. data/data/problems/315.yml +26 -27
  168. data/data/problems/316.yml +2 -4
  169. data/data/problems/318.yml +27 -34
  170. data/data/problems/319.yml +11 -12
  171. data/data/problems/32.yml +1 -1
  172. data/data/problems/320.yml +1 -1
  173. data/data/problems/321.yml +3 -3
  174. data/data/problems/322.yml +4 -4
  175. data/data/problems/323.yml +7 -8
  176. data/data/problems/324.yml +8 -9
  177. data/data/problems/325.yml +1 -1
  178. data/data/problems/326.yml +2 -2
  179. data/data/problems/327.yml +27 -29
  180. data/data/problems/328.yml +2 -2
  181. data/data/problems/330.yml +13 -14
  182. data/data/problems/331.yml +12 -12
  183. data/data/problems/332.yml +10 -9
  184. data/data/problems/333.yml +15 -16
  185. data/data/problems/334.yml +14 -14
  186. data/data/problems/335.yml +2 -2
  187. data/data/problems/336.yml +5 -4
  188. data/data/problems/337.yml +7 -7
  189. data/data/problems/338.yml +21 -24
  190. data/data/problems/340.yml +6 -7
  191. data/data/problems/341.yml +3 -5
  192. data/data/problems/342.yml +6 -7
  193. data/data/problems/343.yml +8 -12
  194. data/data/problems/344.yml +1 -1
  195. data/data/problems/347.yml +8 -8
  196. data/data/problems/350.yml +5 -5
  197. data/data/problems/351.yml +1 -1
  198. data/data/problems/352.yml +25 -26
  199. data/data/problems/353.yml +1 -1
  200. data/data/problems/354.yml +6 -6
  201. data/data/problems/356.yml +2 -3
  202. data/data/problems/358.yml +13 -14
  203. data/data/problems/359.yml +1 -1
  204. data/data/problems/361.yml +2 -1
  205. data/data/problems/362.yml +11 -13
  206. data/data/problems/363.yml +6 -6
  207. data/data/problems/364.yml +3 -3
  208. data/data/problems/365.yml +2 -2
  209. data/data/problems/366.yml +4 -5
  210. data/data/problems/369.yml +1 -1
  211. data/data/problems/370.yml +3 -3
  212. data/data/problems/372.yml +6 -8
  213. data/data/problems/374.yml +5 -7
  214. data/data/problems/375.yml +5 -6
  215. data/data/problems/377.yml +2 -2
  216. data/data/problems/378.yml +2 -2
  217. data/data/problems/379.yml +7 -8
  218. data/data/problems/38.yml +9 -9
  219. data/data/problems/380.yml +12 -15
  220. data/data/problems/381.yml +8 -11
  221. data/data/problems/382.yml +6 -6
  222. data/data/problems/383.yml +4 -4
  223. data/data/problems/384.yml +7 -8
  224. data/data/problems/385.yml +8 -8
  225. data/data/problems/386.yml +2 -2
  226. data/data/problems/388.yml +5 -6
  227. data/data/problems/39.yml +1 -1
  228. data/data/problems/390.yml +4 -6
  229. data/data/problems/391.yml +11 -12
  230. data/data/problems/392.yml +1 -1
  231. data/data/problems/393.yml +2 -2
  232. data/data/problems/394.yml +6 -7
  233. data/data/problems/395.yml +5 -5
  234. data/data/problems/396.yml +15 -17
  235. data/data/problems/397.yml +5 -8
  236. data/data/problems/4.yml +1 -1
  237. data/data/problems/40.yml +1 -1
  238. data/data/problems/400.yml +5 -6
  239. data/data/problems/401.yml +2 -2
  240. data/data/problems/402.yml +7 -8
  241. data/data/problems/403.yml +9 -10
  242. data/data/problems/404.yml +5 -6
  243. data/data/problems/405.yml +7 -7
  244. data/data/problems/406.yml +8 -10
  245. data/data/problems/407.yml +9 -9
  246. data/data/problems/410.yml +5 -6
  247. data/data/problems/411.yml +11 -12
  248. data/data/problems/412.yml +9 -9
  249. data/data/problems/414.yml +13 -15
  250. data/data/problems/415.yml +2 -2
  251. data/data/problems/417.yml +4 -5
  252. data/data/problems/418.yml +7 -8
  253. data/data/problems/419.yml +8 -8
  254. data/data/problems/420.yml +5 -5
  255. data/data/problems/421.yml +11 -12
  256. data/data/problems/422.yml +9 -9
  257. data/data/problems/423.yml +5 -7
  258. data/data/problems/424.yml +8 -9
  259. data/data/problems/425.yml +2 -3
  260. data/data/problems/426.yml +3 -3
  261. data/data/problems/427.yml +8 -8
  262. data/data/problems/428.yml +16 -19
  263. data/data/problems/430.yml +4 -5
  264. data/data/problems/44.yml +3 -3
  265. data/data/problems/45.yml +2 -2
  266. data/data/problems/46.yml +8 -8
  267. data/data/problems/47.yml +6 -10
  268. data/data/problems/53.yml +8 -9
  269. data/data/problems/56.yml +1 -1
  270. data/data/problems/57.yml +5 -5
  271. data/data/problems/58.yml +1 -1
  272. data/data/problems/6.yml +1 -1
  273. data/data/problems/61.yml +4 -4
  274. data/data/problems/64.yml +39 -46
  275. data/data/problems/65.yml +13 -14
  276. data/data/problems/66.yml +10 -10
  277. data/data/problems/68.yml +4 -5
  278. data/data/problems/69.yml +2 -2
  279. data/data/problems/70.yml +3 -4
  280. data/data/problems/71.yml +3 -3
  281. data/data/problems/72.yml +3 -3
  282. data/data/problems/73.yml +3 -3
  283. data/data/problems/74.yml +15 -22
  284. data/data/problems/75.yml +1 -1
  285. data/data/problems/8.yml +14 -14
  286. data/data/problems/81.yml +7 -7
  287. data/data/problems/82.yml +4 -4
  288. data/data/problems/83.yml +4 -4
  289. data/data/problems/85.yml +1 -1
  290. data/data/problems/86.yml +8 -8
  291. data/data/problems/88.yml +22 -27
  292. data/data/problems/9.yml +6 -6
  293. data/data/problems/90.yml +13 -13
  294. data/data/problems/91.yml +8 -8
  295. data/data/problems/92.yml +7 -9
  296. data/data/problems/93.yml +9 -10
  297. data/data/problems/95.yml +1 -1
  298. data/data/problems/96.yml +17 -17
  299. data/data/problems/97.yml +2 -2
  300. data/data/problems/99.yml +2 -2
  301. data/lib/euler/problem.rb +6 -1
  302. data/lib/euler/version.rb +1 -1
  303. metadata +2 -2
@@ -11,9 +11,8 @@
11
11
  \ <td>=<sub> </sub>\n</td>\r\n <td>\n<var>S</var><sub><var>n</var></sub><sup>2</sup>
12
12
  mod 50515093</td>\r\n </tr>\r\n</table></center>\n\nLet A(<var>i</var>, <var>j</var>)
13
13
  be the minimum of the numbers <var>S</var><sub><var>i</var></sub>, <var>S</var><sub><var>i</var>+1</sub>,
14
- ... , <var>S</var><sub><var>j</var></sub> for <var>i</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
15
- <var>j</var>. \n\rLet M(<var>N</var>) = ΣA(<var>i</var>, <var>j</var>) for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
16
- <var>i</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
17
- <var>j</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
18
- <var>N</var>. \n\rWe can verify that M(10) = 432256955 and M(10 000) = 3264567774119.\n\nFind
19
- M(2 000 000 000).\n\n"
14
+ ... , <var>S</var><sub><var>j</var></sub> for <var>i</var> ![≤]({{ images_dir }}/symbol_le.gif)
15
+ <var>j</var>. \n\rLet M(<var>N</var>) = ΣA(<var>i</var>, <var>j</var>) for 1 ![≤]({{
16
+ images_dir }}/symbol_le.gif) <var>i</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>j</var>
17
+ ![≤]({{ images_dir }}/symbol_le.gif) <var>N</var>. \n\rWe can verify that M(10)
18
+ = 432256955 and M(10 000) = 3264567774119.\n\nFind M(2 000 000 000).\n\n"
@@ -6,5 +6,5 @@
6
6
  and that have a digital sum equal to 5, namely: \n\r5, 14, 23, 32, 41, 113, 122,
7
7
  131, 212, 221, 311, 1112, 1121, 1211, 2111 and 11111. \n\rTheir sum is 17891.\n\nLet
8
8
  <var>f</var>(<var>n</var>) be the sum of all positive integers that do not have
9
- a zero in their digits and have a digital sum equal to <var>n</var>.\n\nFind ![](/home/will/src/euler-manager/config/../data/images/sod_13.gif).
10
- \ \n\rGive the last 9 digits as your answer.\n\n"
9
+ a zero in their digits and have a digital sum equal to <var>n</var>.\n\nFind ![]({{
10
+ images_dir }}/sod_13.gif). \n\rGive the last 9 digits as your answer.\n\n"
@@ -6,7 +6,7 @@
6
6
  so T(<var>n</var>) =\r | \n\n| <var>n</var> (<var>n</var>+1) |\n| 2 |\n\n | \r.\r
7
7
  |\n\nLet dT(<var>n</var>) be the number of divisors of T(<var>n</var>). \n\rE.g.:\rT(7)
8
8
  = 28 and dT(7) = 6.\n\nLet Tr(<var>n</var>) be the number of triples (<var>i</var>,
9
- <var>j</var>, <var>k</var>) such that 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
10
- <var>i n</var> and dT(<var>i</var>) > dT(<var>j</var>) > dT(<var>k</var>). \n\rTr(20)
9
+ <var>j</var>, <var>k</var>) such that 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>i
10
+ n</var> and dT(<var>i</var>) > dT(<var>j</var>) > dT(<var>k</var>). \n\rTr(20)
11
11
  = 14, Tr(100) = 5772 and Tr(1000) = 11174776.\n\nFind Tr(60 000 000). \n\rGive
12
12
  the last 18 digits of your answer.\n\n"
@@ -3,11 +3,10 @@
3
3
  :name: Least common multiple count
4
4
  :url: http://projecteuler.net/problem=379
5
5
  :content: "Let <var>f</var>(<var>n</var>) be the number of couples (<var>x</var>,<var>y</var>)
6
- with <var>x</var> and <var>y</var> positive integers, <var>x</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
7
- <var>y</var> and the least common multiple of <var>x</var> and <var>y</var> equal
8
- to <var>n</var>.\n\nLet <var>g</var> be the **summatory function** of <var>f</var>,
9
- i.e.: \r<var>g</var>(<var>n</var>) = ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)
10
- <var>f</var>(<var>i</var>) for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
11
- <var>i</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
12
- <var>n</var>.\n\nYou are given that <var>g</var>(10<sup>6</sup>) = 37429395.\n\nFind
13
- <var>g</var>(10<sup>12</sup>).\n\n"
6
+ with <var>x</var> and <var>y</var> positive integers, <var>x</var> ![≤]({{ images_dir
7
+ }}/symbol_le.gif) <var>y</var> and the least common multiple of <var>x</var> and
8
+ <var>y</var> equal to <var>n</var>.\n\nLet <var>g</var> be the **summatory function**
9
+ of <var>f</var>, i.e.: \r<var>g</var>(<var>n</var>) = ![∑]({{ images_dir }}/symbol_sum.gif)
10
+ <var>f</var>(<var>i</var>) for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>i</var>
11
+ ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var>.\n\nYou are given that <var>g</var>(10<sup>6</sup>)
12
+ = 37429395.\n\nFind <var>g</var>(10<sup>12</sup>).\n\n"
data/data/problems/38.yml CHANGED
@@ -2,13 +2,13 @@
2
2
  :id: 38
3
3
  :name: Pandigital multiples
4
4
  :url: http://projecteuler.net/problem=38
5
- :content: "Take the number 192 and multiply it by each of 1, 2, and 3:\n\n> 192 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
6
- 1 = 192 \n> \r192 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
7
- 2 = 384 \n> \r192 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)
8
- 3 = 576\n\nBy concatenating each product we get the 1 to 9 pandigital, 192384576.
9
- We will call 192384576 the concatenated product of 192 and (1,2,3)\n\nThe same can
10
- be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the
11
- pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).\n\nWhat
12
- is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated
13
- product of an integer with (1,2, ... , <var>n</var>) where <var>n</var> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
5
+ :content: "Take the number 192 and multiply it by each of 1, 2, and 3:\n\n> 192 ![×]({{
6
+ images_dir }}/symbol_times.gif) 1 = 192 \n> \r192 ![×]({{ images_dir }}/symbol_times.gif)
7
+ 2 = 384 \n> \r192 ![×]({{ images_dir }}/symbol_times.gif) 3 = 576\n\nBy concatenating
8
+ each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the
9
+ concatenated product of 192 and (1,2,3)\n\nThe same can be achieved by starting
10
+ with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which
11
+ is the concatenated product of 9 and (1,2,3,4,5).\n\nWhat is the largest 1 to 9
12
+ pandigital 9-digit number that can be formed as the concatenated product of an integer
13
+ with (1,2, ... , <var>n</var>) where <var>n</var> ![>]({{ images_dir }}/symbol_gt.gif)
14
14
  1?\n\n"
@@ -2,18 +2,15 @@
2
2
  :id: 380
3
3
  :name: Amazing Mazes!
4
4
  :url: http://projecteuler.net/problem=380
5
- :content: "An m ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)n
6
- maze is an m ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)n
7
- rectangular grid with walls placed between grid cells such that there is exactly
8
- one path from the top-left square to any other square. \nThe following are examples
9
- of a 9 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)12
10
- maze and a 15 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)20
11
- maze:\n\n![](/home/will/src/euler-manager/config/../data/images/p_380_mazes.gif)\n\nLet
12
- C(m,n) be the number of distinct m ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)n
13
- mazes. Mazes which can be formed by rotation and reflection from another maze are
14
- considered distinct.\n\nIt can be verified that C(1,1) = 1, C(2,2) = 4, C(3,4) =
15
- 2415, and C(9,12) = 2.5720e46 (in scientific notation rounded to 5 significant digits).
16
- \ \n\rFind C(100,500) and write your answer in scientific notation rounded to 5
17
- significant digits.\n\nWhen giving your answer, use a lowercase e to separate mantissa
18
- and exponent.\rE.g. if the answer is 1234567891011 then the answer format would
19
- be 1.2346e12.\n\n"
5
+ :content: "An m ![×]({{ images_dir }}/symbol_times.gif)n maze is an m ![×]({{ images_dir
6
+ }}/symbol_times.gif)n rectangular grid with walls placed between grid cells such
7
+ that there is exactly one path from the top-left square to any other square. \nThe
8
+ following are examples of a 9 ![×]({{ images_dir }}/symbol_times.gif)12 maze and
9
+ a 15 ![×]({{ images_dir }}/symbol_times.gif)20 maze:\n\n![]({{ images_dir }}/p_380_mazes.gif)\n\nLet
10
+ C(m,n) be the number of distinct m ![×]({{ images_dir }}/symbol_times.gif)n mazes.
11
+ Mazes which can be formed by rotation and reflection from another maze are considered
12
+ distinct.\n\nIt can be verified that C(1,1) = 1, C(2,2) = 4, C(3,4) = 2415, and
13
+ C(9,12) = 2.5720e46 (in scientific notation rounded to 5 significant digits). \n\rFind
14
+ C(100,500) and write your answer in scientific notation rounded to 5 significant
15
+ digits.\n\nWhen giving your answer, use a lowercase e to separate mantissa and exponent.\rE.g.
16
+ if the answer is 1234567891011 then the answer format would be 1.2346e12.\n\n"
@@ -2,14 +2,11 @@
2
2
  :id: 381
3
3
  :name: (prime-k) factorial
4
4
  :url: http://projecteuler.net/problem=381
5
- :content: "For a prime p let S(p) = ( ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)(p-k)!)
6
- mod(p) for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
7
- k ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 5.\n\nFor
8
- example, if p=7, \n\r(7-1)! + (7-2)! + (7-3)! + (7-4)! + (7-5)! = 6! + 5! + 4!
9
- + 3! + 2! = 720+120+24+6+2 = 872. \n \rAs 872 mod(7) = 4, S(7) = 4.\n\nIt can be
10
- verified that ![](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)S(p)
11
- = 480 for 5 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
12
- p ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 100.\n\nFind
13
- ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)S(p) for
14
- 5 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) p ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
15
- 10<sup>8</sup>.\n\n"
5
+ :content: "For a prime p let S(p) = ( ![∑]({{ images_dir }}/symbol_sum.gif)(p-k)!)
6
+ mod(p) for 1 ![≤]({{ images_dir }}/symbol_le.gif) k ![≤]({{ images_dir }}/symbol_le.gif)
7
+ 5.\n\nFor example, if p=7, \n\r(7-1)! + (7-2)! + (7-3)! + (7-4)! + (7-5)! = 6!
8
+ + 5! + 4! + 3! + 2! = 720+120+24+6+2 = 872. \n \rAs 872 mod(7) = 4, S(7) = 4.\n\nIt
9
+ can be verified that ![∑]({{ images_dir }}/symbol_sum.gif)S(p) = 480 for 5 ![≤]({{
10
+ images_dir }}/symbol_le.gif) p ![<]({{ images_dir }}/symbol_lt.gif) 100.\n\nFind
11
+ ![∑]({{ images_dir }}/symbol_sum.gif)S(p) for 5 ![≤]({{ images_dir }}/symbol_le.gif)
12
+ p ![<]({{ images_dir }}/symbol_lt.gif) 10<sup>8</sup>.\n\n"
@@ -12,9 +12,9 @@
12
12
  \ \n\rThe sets {1, 2, 3} and {2, 3, 4, 9} do not generate any polygon at all.\n\nConsider
13
13
  the sequence s, defined as follows:\n\n- s<sub>1</sub> = 1, s<sub>2</sub> = 2, s<sub>3</sub>
14
14
  = 3\r\n- s<sub><var>n</var></sub> = s<sub><var>n</var>-1</sub> + s<sub><var>n</var>-3</sub>
15
- for <var>n</var> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
16
- 3.\r\n\nLet U<sub><var>n</var></sub> be the set {s<sub>1</sub>, s<sub>2</sub>, ...,
17
- s<sub><var>n</var></sub>}. For example, U<sub>10</sub> = {1, 2, 3, 4, 6, 9, 13,
18
- 19, 28, 41}. \n\rLet f(<var>n</var>) be the number of subsets of U<sub><var>n</var></sub>
19
- which generate at least one polygon. \n\rFor example, f(5) = 7, f(10) = 501 and
20
- f(25) = 18635853.\n\nFind the last 9 digits of f(10<sup>18</sup>).\n\n"
15
+ for <var>n</var> ![>]({{ images_dir }}/symbol_gt.gif) 3.\r\n\nLet U<sub><var>n</var></sub>
16
+ be the set {s<sub>1</sub>, s<sub>2</sub>, ..., s<sub><var>n</var></sub>}. For example,
17
+ U<sub>10</sub> = {1, 2, 3, 4, 6, 9, 13, 19, 28, 41}. \n\rLet f(<var>n</var>) be
18
+ the number of subsets of U<sub><var>n</var></sub> which generate at least one polygon.
19
+ \ \n\rFor example, f(5) = 7, f(10) = 501 and f(25) = 18635853.\n\nFind the last
20
+ 9 digits of f(10<sup>18</sup>).\n\n"
@@ -5,7 +5,7 @@
5
5
  :content: "Let f<sub>5</sub>(<var>n</var>) be the largest integer <var>x</var> for
6
6
  which 5<sup><var>x</var></sup> divides <var>n</var>. \n\rFor example, f<sub>5</sub>(625000)
7
7
  = 7.\n\nLet T<sub>5</sub>(<var>n</var>) be the number of integers <var>i</var> which
8
- satisfy f<sub>5</sub>((2·<var>i</var>-1)!) 5(<var>i</var>!) and 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
9
- <var>i</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
10
- <var>n</var>. \n\rIt can be verified that T<sub>5</sub>(10<sup>3</sup>) = 68 and
11
- T<sub>5</sub>(10<sup>9</sup>) = 2408210.\n\nFind T<sub>5</sub>(10<sup>18</sup>).\n\n"
8
+ satisfy f<sub>5</sub>((2·<var>i</var>-1)!) 5(<var>i</var>!) and 1 ![≤]({{ images_dir
9
+ }}/symbol_le.gif) <var>i</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var>.
10
+ \ \n\rIt can be verified that T<sub>5</sub>(10<sup>3</sup>) = 68 and T<sub>5</sub>(10<sup>9</sup>)
11
+ = 2408210.\n\nFind T<sub>5</sub>(10<sup>18</sup>).\n\n"
@@ -6,7 +6,7 @@
6
6
  binary expansion of n (possibly overlapping).\r \nE.g.: a(5) = a(101<sub>2</sub>)
7
7
  = 0, a(6) = a(110<sub>2</sub>) = 1, a(7) = a(111<sub>2</sub>) = 2\n\nDefine the
8
8
  sequence b(n) = (-1)<sup>a(n)</sup>.\r \nThis sequence is called the **Rudin-Shapiro**
9
- sequence.\n\nAlso consider the summatory sequence of b(n): ![](/home/will/src/euler-manager/config/../data/images/p_384_formula.gif).\n\nThe
9
+ sequence.\n\nAlso consider the summatory sequence of b(n): ![]({{ images_dir }}/p_384_formula.gif).\n\nThe
10
10
  first couple of values of these sequences are:\r \n<tt>n    &amp;nbsp   0 &amp;nbsp
11
11
    1 &amp;nbsp   2 &amp;nbsp   3 &amp;nbsp   4 &amp;nbsp   5 &amp;nbsp   6 &amp;nbsp
12
12
    7\r\n<br>a(n) &amp;nbsp   0 &amp;nbsp   0 &amp;nbsp   0 &amp;nbsp   1 &amp;nbsp
@@ -15,10 +15,9 @@
15
15
    1\r\n<br>s(n) &amp;nbsp   1 &amp;nbsp   2 &amp;nbsp   3 &amp;nbsp   2 &amp;nbsp
16
16
    3 &amp;nbsp   4 &amp;nbsp   3 &amp;nbsp   4</tt>\n\nThe sequence s(n) has the
17
17
  remarkable property that all elements are positive and every positive integer k
18
- occurs exactly k times.\n\nDefine g(t,c), with 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
19
- c ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) t, as the
20
- index in s(n) for which t occurs for the c'th time in s(n).\r \nE.g.: g(3,3) =
21
- 6, g(4,2) = 7 and g(54321,12345) = 1220847710.\n\nLet F(n) be the fibonacci sequence
22
- defined by:\r \nF(0)=F(1)=1 and\r \nF(n)=F(n-1)+F(n-2) for n>1.\n\nDefine GF(t)=g(F(t),F(t-1)).\n\nFind
23
- ΣGF(t) for 2 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)t
24
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)45.\n\n"
18
+ occurs exactly k times.\n\nDefine g(t,c), with 1 ![≤]({{ images_dir }}/symbol_le.gif)
19
+ c ![≤]({{ images_dir }}/symbol_le.gif) t, as the index in s(n) for which t occurs
20
+ for the c'th time in s(n).\r \nE.g.: g(3,3) = 6, g(4,2) = 7 and g(54321,12345)
21
+ = 1220847710.\n\nLet F(n) be the fibonacci sequence defined by:\r \nF(0)=F(1)=1
22
+ and\r \nF(n)=F(n-1)+F(n-2) for n>1.\n\nDefine GF(t)=g(F(t),F(t-1)).\n\nFind ΣGF(t)
23
+ for 2 ![≤]({{ images_dir }}/symbol_le.gif)t ![≤]({{ images_dir }}/symbol_le.gif)45.\n\n"
@@ -3,14 +3,14 @@
3
3
  :name: Ellipses inside triangles
4
4
  :url: http://projecteuler.net/problem=385
5
5
  :content: "For any triangle <var>T</var> in the plane, it can be shown that there
6
- is a unique ellipse with largest area that is completely inside <var>T</var>.\n\n![](/home/will/src/euler-manager/config/../data/images/p_385_ellipsetriangle.png)\n\nFor
7
- a given <var>n</var>, consider triangles <var>T</var> such that: \n\r- the vertices
8
- of <var>T</var> have integer coordinates with absolute value ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
9
- n, and \n\r- the **foci** <sup>1</sup> of the largest-area ellipse inside <var>T</var>
10
- are ( ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)13,0)
11
- and (- ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)13,0).
12
- \ \n\rLet A(<var>n</var>) be the sum of the areas of all such triangles.\n\nFor
13
- example, if <var>n</var> = 8, there are two such triangles. Their vertices are (-4,-3),(-4,3),(8,0)
6
+ is a unique ellipse with largest area that is completely inside <var>T</var>.\n\n![]({{
7
+ images_dir }}/p_385_ellipsetriangle.png)\n\nFor a given <var>n</var>, consider triangles
8
+ <var>T</var> such that: \n\r- the vertices of <var>T</var> have integer coordinates
9
+ with absolute value ![≤]({{ images_dir }}/symbol_le.gif) n, and \n\r- the **foci**
10
+ <sup>1</sup> of the largest-area ellipse inside <var>T</var> are ( ![√]({{ images_dir
11
+ }}/symbol_radic.gif)13,0) and (- ![√]({{ images_dir }}/symbol_radic.gif)13,0). \n\rLet
12
+ A(<var>n</var>) be the sum of the areas of all such triangles.\n\nFor example, if
13
+ <var>n</var> = 8, there are two such triangles. Their vertices are (-4,-3),(-4,3),(8,0)
14
14
  and (4,3),(4,-3),(-8,0), and the area of each triangle is 36. Thus A(8) = 36 + 36
15
15
  = 72.\n\nIt can be verified that A(10) = 252, A(100) = 34632 and A(1000) = 3529008.\n\nFind
16
16
  A(1 000 000 000).\n\n<sup>1</sup>The **foci** (plural of **focus** ) of an ellipse
@@ -10,5 +10,5 @@
10
10
  15, 30}\r \n{2, 5, 6} is not an antichain of <var>S</var>(30).\r \n{2, 3, 5} is
11
11
  an antichain of <var>S</var>(30).\n\nLet <var>N</var>(<var>n</var>) be the maximum
12
12
  length of an antichain of <var>S</var>(<var>n</var>).\n\nFind Σ<var>N</var>(<var>n</var>)
13
- for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) <var>n</var>
14
- ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 10<sup>8</sup>\n\n"
13
+ for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif)
14
+ 10<sup>8</sup>\n\n"
@@ -2,9 +2,8 @@
2
2
  :id: 388
3
3
  :name: Distinct Lines
4
4
  :url: http://projecteuler.net/problem=388
5
- :content: "Consider all lattice points (a,b,c) with 0 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
6
- a,b,c ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) N.\n\nFrom
7
- the origin O(0,0,0) all lines are drawn to the other lattice points. \n\rLet D(N)
8
- be the number of _distinct_ such lines.\n\nYou are given that D(1 000 000) = 831909254469114121.\n\nFind
9
- D(10<sup>10</sup>). Give as your answer the first nine digits followed by the last
10
- nine digits.\n\n"
5
+ :content: "Consider all lattice points (a,b,c) with 0 ![≤]({{ images_dir }}/symbol_le.gif)
6
+ a,b,c ![≤]({{ images_dir }}/symbol_le.gif) N.\n\nFrom the origin O(0,0,0) all lines
7
+ are drawn to the other lattice points. \n\rLet D(N) be the number of _distinct_
8
+ such lines.\n\nYou are given that D(1 000 000) = 831909254469114121.\n\nFind D(10<sup>10</sup>).
9
+ Give as your answer the first nine digits followed by the last nine digits.\n\n"
data/data/problems/39.yml CHANGED
@@ -7,5 +7,5 @@
7
7
 
8
8
  {20,48,52}, {24,45,51}, {30,40,50}
9
9
 
10
- For which value of _p_ ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif) 1000, is the number of solutions maximised?
10
+ For which value of _p_ ![≤]({{ images_dir }}/symbol_le.gif) 1000, is the number of solutions maximised?
11
11
 
@@ -2,12 +2,10 @@
2
2
  :id: 390
3
3
  :name: Triangles with non rational sides and integral area
4
4
  :url: http://projecteuler.net/problem=390
5
- :content: "Consider the triangle with sides ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)5,
6
- ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)65 and
7
- ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)68.\rIt
5
+ :content: "Consider the triangle with sides ![√]({{ images_dir }}/symbol_radic.gif)5,
6
+ ![√]({{ images_dir }}/symbol_radic.gif)65 and ![√]({{ images_dir }}/symbol_radic.gif)68.\rIt
8
7
  can be shown that this triangle has area 9.\n\nS(n) is the sum of the areas of all
9
- triangles with sides ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)(1+b<sup>2</sup>),
10
- ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)(1+c<sup>2</sup>)
11
- and ![√](/home/will/src/euler-manager/config/../data/images/symbol_radic.gif)(b<sup>2</sup>+c<sup>2</sup>)
8
+ triangles with sides ![√]({{ images_dir }}/symbol_radic.gif)(1+b<sup>2</sup>), ![√]({{
9
+ images_dir }}/symbol_radic.gif)(1+c<sup>2</sup>) and ![√]({{ images_dir }}/symbol_radic.gif)(b<sup>2</sup>+c<sup>2</sup>)
12
10
  (for positive integers b and c ) that have an integral area not exceeding n.\n\nThe
13
11
  example triangle has b=2 and c=8.\n\nS(10<sup>6</sup>)=18018206.\n\nFind S(10<sup>10</sup>).\n\n"
@@ -5,21 +5,20 @@
5
5
  :content: "Let <var>s<sub>k</sub></var> be the number of 1’s when writing the numbers
6
6
  from 0 to <var>k</var> in binary. \n\rFor example, writing 0 to 5 in binary, we
7
7
  have 0, 1, 10, 11, 100, 101. There are seven 1’s, so <var>s</var><sub>5</sub> =
8
- 7. \n\rThe sequence S = {<var>s<sub>k</sub></var> : <var>k</var> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
9
- 0} starts {0, 1, 2, 4, 5, 7, 9, 12, ...}.\n\nA game is played by two players. Before
10
- the game starts, a number <var>n</var> is chosen. A counter <var>c</var> starts
11
- at 0. At each turn, the player chooses a number from 1 to <var>n</var> (inclusive)
12
- and increases <var>c</var> by that number. The resulting value of <var>c</var> must
13
- be a member of S. If there are no more valid moves, the player loses.\n\nFor example:
14
- \ \n\rLet <var>n</var> = 5. <var>c</var> starts at 0. \n\rPlayer 1 chooses 4, so
15
- <var>c</var> becomes 0 + 4 = 4. \n\rPlayer 2 chooses 5, so <var>c</var> becomes
8
+ 7. \n\rThe sequence S = {<var>s<sub>k</sub></var> : <var>k</var> ![≥]({{ images_dir
9
+ }}/symbol_ge.gif) 0} starts {0, 1, 2, 4, 5, 7, 9, 12, ...}.\n\nA game is played
10
+ by two players. Before the game starts, a number <var>n</var> is chosen. A counter
11
+ <var>c</var> starts at 0. At each turn, the player chooses a number from 1 to <var>n</var>
12
+ (inclusive) and increases <var>c</var> by that number. The resulting value of <var>c</var>
13
+ must be a member of S. If there are no more valid moves, the player loses.\n\nFor
14
+ example: \n\rLet <var>n</var> = 5. <var>c</var> starts at 0. \n\rPlayer 1 chooses
15
+ 4, so <var>c</var> becomes 0 + 4 = 4. \n\rPlayer 2 chooses 5, so <var>c</var> becomes
16
16
  4 + 5 = 9. \n\rPlayer 1 chooses 3, so <var>c</var> becomes 9 + 3 = 12. \n\retc.
17
17
  \ \n\rNote that <var>c</var> must always belong to S, and each player can increase
18
18
  <var>c</var> by at most <var>n</var>.\n\nLet M(<var>n</var>) be the highest number
19
19
  the first player can choose at her first turn to force a win, and M(<var>n</var>)
20
20
  = 0 if there is no such move. For example, M(2) = 2, M(7) = 1 and M(20) = 4.\n\nGiven
21
- Σ(M(<var>n</var>))<sup>3</sup> = 8150 for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
22
- <var>n</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
23
- 20.\n\nFind Σ(M(<var>n</var>))<sup>3</sup> for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
24
- <var>n</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
21
+ Σ(M(<var>n</var>))<sup>3</sup> = 8150 for 1 ![≤]({{ images_dir }}/symbol_le.gif)
22
+ <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif) 20.\n\nFind Σ(M(<var>n</var>))<sup>3</sup>
23
+ for 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>n</var> ![≤]({{ images_dir }}/symbol_le.gif)
25
24
  1000.\n\n"
@@ -14,7 +14,7 @@
14
14
  the origin\">unit circle</dfn>, black otherwise.\nFor this problem we would like
15
15
  you to find the postions of the remaining N inner horizontal and N inner vertical
16
16
  gridlines so that the area occupied by the red cells is minimized.\r\r\n\nE.g. here
17
- is a picture of the solution for N = 10:\n\n![](/home/will/src/euler-manager/config/../data/images/p392_gridlines.png)\n\n\r\r\rThe
17
+ is a picture of the solution for N = 10:\n\n![]({{ images_dir }}/p392_gridlines.png)\n\n\r\r\rThe
18
18
  area occupied by the red cells for N = 10 rounded to 10 digits behind the decimal
19
19
  point is 3.3469640797.\r\r\n\nFind the positions for N = 400. \n \rGive as your
20
20
  answer the area occupied by the red cells rounded to 10 digits behind the decimal
@@ -2,8 +2,8 @@
2
2
  :id: 393
3
3
  :name: Migrating ants
4
4
  :url: http://projecteuler.net/problem=393
5
- :content: "An <var>n</var> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif)<var>n</var>
6
- grid of squares contains <var>n</var><sup>2</sup> ants, one ant per square. \n\rAll
5
+ :content: "An <var>n</var> ![×]({{ images_dir }}/symbol_times.gif)<var>n</var> grid
6
+ of squares contains <var>n</var><sup>2</sup> ants, one ant per square. \n\rAll
7
7
  ants decide to move simultaneously to an adjacent square (usually 4 possibilities,
8
8
  except for ants on the edge of the grid or at the corners). \n\rWe define <var>f</var>(<var>n</var>)
9
9
  to be the number of ways this can happen without any ants ending on the same square
@@ -10,10 +10,9 @@
10
10
  divide the remaining pie into three pieces. \n \r- Going counterclockwise from
11
11
  the initial cut, he takes the first two pie pieces and eats them. \n\rWhen less
12
12
  than a fraction <var>F</var> of pie remains, he does not repeat this procedure.
13
- Instead, he eats all of the remaining pie.\n\n![](/home/will/src/euler-manager/config/../data/images/p_394_eatpie.gif)\n\nFor
14
- <var>x</var> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
15
- 1, let E(<var>x</var>) be the expected number of times Jeff repeats the procedure
16
- above with <var>F</var> = <sup>1</sup>/<sub><var>x</var></sub>. \n\rIt can be verified
17
- that E(1) = 1, E(2) ![≈](/home/will/src/euler-manager/config/../data/images/symbol_asymp.gif)
18
- 1.2676536759, and E(7.5) ![≈](/home/will/src/euler-manager/config/../data/images/symbol_asymp.gif)
19
- 2.1215732071.\n\nFind E(40) rounded to 10 decimal places behind the decimal point.\n\n"
13
+ Instead, he eats all of the remaining pie.\n\n![]({{ images_dir }}/p_394_eatpie.gif)\n\nFor
14
+ <var>x</var> ![≥]({{ images_dir }}/symbol_ge.gif) 1, let E(<var>x</var>) be the
15
+ expected number of times Jeff repeats the procedure above with <var>F</var> = <sup>1</sup>/<sub><var>x</var></sub>.
16
+ \ \n\rIt can be verified that E(1) = 1, E(2) ![≈]({{ images_dir }}/symbol_asymp.gif)
17
+ 1.2676536759, and E(7.5) ![≈]({{ images_dir }}/symbol_asymp.gif) 2.1215732071.\n\nFind
18
+ E(40) rounded to 10 decimal places behind the decimal point.\n\n"
@@ -11,8 +11,8 @@
11
11
  triangle, with one of its sides coinciding with that leg.\n3. Repeat this procedure
12
12
  for both squares, considering as their bases the sides touching the triangle.\n\rThe
13
13
  resulting figure, after an infinite number of iterations, is the Pythagorean tree.\r\r\r\n
14
- ![](/home/will/src/euler-manager/config/../data/images/p_395_pythagorean.gif)\n\nIt
15
- can be shown that there exists at least one rectangle, whose sides are parallel
16
- to the largest square of the Pythagorean tree, which encloses the Pythagorean tree
17
- completely.\n\nFind the smallest area possible for such a bounding rectangle, and
18
- give your answer rounded to 10 decimal places.\n\n"
14
+ ![]({{ images_dir }}/p_395_pythagorean.gif)\n\nIt can be shown that there exists
15
+ at least one rectangle, whose sides are parallel to the largest square of the Pythagorean
16
+ tree, which encloses the Pythagorean tree completely.\n\nFind the smallest area
17
+ possible for such a bounding rectangle, and give your answer rounded to 10 decimal
18
+ places.\n\n"
@@ -4,20 +4,18 @@
4
4
  :url: http://projecteuler.net/problem=396
5
5
  :content: "For any positive integer n, the **nth weak Goodstein sequence** {g<sub>1</sub>,
6
6
  g<sub>2</sub>, g<sub>3</sub>, ...} is defined as:\n\n- g<sub>1</sub> = <var>n</var>\n-
7
- for <var>k</var> ![>](/home/will/src/euler-manager/config/../data/images/symbol_gt.gif)
8
- 1, g<sub><var>k</var></sub> is obtained by writing g<sub><var>k</var>-1</sub> in
9
- base <var>k</var>, interpreting it as a base <var>k</var> + 1 number, and subtracting
10
- 1.\r\n\rThe sequence terminates when g<sub><var>k</var></sub> becomes 0.\r\r\n\nFor
11
- example, the 6th weak Goodstein sequence is {6, 11, 17, 25, ...}:\n\n- g<sub>1</sub>
12
- = 6.\r\n- g<sub>2</sub> = 11 since 6 = 110<sub>2</sub>, 110<sub>3</sub> = 12, and
13
- 12 - 1 = 11.\r\n- g<sub>3</sub> = 17 since 11 = 102<sub>3</sub>, 102<sub>4</sub>
14
- = 18, and 18 - 1 = 17.\r\n- g<sub>4</sub> = 25 since 17 = 101<sub>4</sub>, 101<sub>5</sub>
15
- = 26, and 26 - 1 = 25.\r\n\rand so on.\r\r\n\nIt can be shown that every weak Goodstein
16
- sequence terminates.\n\nLet G(<var>n</var>) be the number of nonzero elements in
17
- the <var>n</var>th weak Goodstein sequence. \n\rIt can be verified that G(2) =
18
- 3, G(4) = 21 and G(6) = 381. \n\rIt can also be verified that ΣG(<var>n</var>)
19
- = 2517 for 1 ![](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
20
- <var>n</var> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
21
- 8.\n\nFind the last 9 digits of ΣG(<var>n</var>) for 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
22
- <var>n</var> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
23
- 16.\n\n"
7
+ for <var>k</var> ![>]({{ images_dir }}/symbol_gt.gif) 1, g<sub><var>k</var></sub>
8
+ is obtained by writing g<sub><var>k</var>-1</sub> in base <var>k</var>, interpreting
9
+ it as a base <var>k</var> + 1 number, and subtracting 1.\r\n\rThe sequence terminates
10
+ when g<sub><var>k</var></sub> becomes 0.\r\r\n\nFor example, the 6th weak Goodstein
11
+ sequence is {6, 11, 17, 25, ...}:\n\n- g<sub>1</sub> = 6.\r\n- g<sub>2</sub> = 11
12
+ since 6 = 110<sub>2</sub>, 110<sub>3</sub> = 12, and 12 - 1 = 11.\r\n- g<sub>3</sub>
13
+ = 17 since 11 = 102<sub>3</sub>, 102<sub>4</sub> = 18, and 18 - 1 = 17.\r\n- g<sub>4</sub>
14
+ = 25 since 17 = 101<sub>4</sub>, 101<sub>5</sub> = 26, and 26 - 1 = 25.\r\n\rand
15
+ so on.\r\r\n\nIt can be shown that every weak Goodstein sequence terminates.\n\nLet
16
+ G(<var>n</var>) be the number of nonzero elements in the <var>n</var>th weak Goodstein
17
+ sequence. \n\rIt can be verified that G(2) = 3, G(4) = 21 and G(6) = 381. \n\rIt
18
+ can also be verified that ΣG(<var>n</var>) = 2517 for 1 ![≤]({{ images_dir }}/symbol_le.gif)
19
+ <var>n</var> ![<]({{ images_dir }}/symbol_lt.gif) 8.\n\nFind the last 9 digits of
20
+ ΣG(<var>n</var>) for 1 ![]({{ images_dir }}/symbol_le.gif) <var>n</var> ![<]({{
21
+ images_dir }}/symbol_lt.gif) 16.\n\n"
@@ -7,11 +7,8 @@
7
7
  and C(<var>c</var>, <var>c</var><sup>2</sup>/<var>k</var>) are chosen.\n\nLet F(<var>K</var>,
8
8
  <var>X</var>) be the number of the integer quadruplets (<var>k</var>, <var>a</var>,
9
9
  <var>b</var>, <var>c</var>) such that at least one angle of the triangle ABC is
10
- 45-degree, with 1 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
11
- <var>k</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
12
- <var>K</var> and -<var>X</var> ![](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
13
- <var>a</var> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
14
- <var>b</var> ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
15
- <var>c</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
16
- <var>X</var>.\n\nFor example, F(1, 10) = 41 and F(10, 100) = 12492. \n\rFind F(10<sup>6</sup>,
17
- 10<sup>9</sup>).\n\n"
10
+ 45-degree, with 1 ![≤]({{ images_dir }}/symbol_le.gif) <var>k</var> ![≤]({{ images_dir
11
+ }}/symbol_le.gif) <var>K</var> and -<var>X</var> ![≤]({{ images_dir }}/symbol_le.gif)
12
+ <var>a</var> ![<]({{ images_dir }}/symbol_lt.gif) <var>b</var> ![<]({{ images_dir
13
+ }}/symbol_lt.gif) <var>c</var> ![]({{ images_dir }}/symbol_le.gif) <var>X</var>.\n\nFor
14
+ example, F(1, 10) = 41 and F(10, 100) = 12492. \n\rFind F(10<sup>6</sup>, 10<sup>9</sup>).\n\n"
data/data/problems/4.yml CHANGED
@@ -3,7 +3,7 @@
3
3
  :name: Largest palindrome product
4
4
  :url: http://projecteuler.net/problem=4
5
5
  :content: |+
6
- A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) 99.
6
+ A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 ![×]({{ images_dir }}/symbol_times.gif) 99.
7
7
 
8
8
  Find the largest palindrome made from the product of two 3-digit numbers.
9
9
 
data/data/problems/40.yml CHANGED
@@ -11,5 +11,5 @@
11
11
 
12
12
  If _d_<sub><i>n</i></sub> represents the _n_<sup>th</sup> digit of the fractional part, find the value of the following expression.
13
13
 
14
- _d_<sub>1</sub> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) _d_<sub>10</sub> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) _d_<sub>100</sub> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) _d_<sub>1000</sub> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) _d_<sub>10000</sub> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) _d_<sub>100000</sub> ![×](/home/will/src/euler-manager/config/../data/images/symbol_times.gif) _d_<sub>1000000</sub>
14
+ _d_<sub>1</sub> ![×]({{ images_dir }}/symbol_times.gif) _d_<sub>10</sub> ![×]({{ images_dir }}/symbol_times.gif) _d_<sub>100</sub> ![×]({{ images_dir }}/symbol_times.gif) _d_<sub>1000</sub> ![×]({{ images_dir }}/symbol_times.gif) _d_<sub>10000</sub> ![×]({{ images_dir }}/symbol_times.gif) _d_<sub>100000</sub> ![×]({{ images_dir }}/symbol_times.gif) _d_<sub>1000000</sub>
15
15
 
@@ -9,9 +9,8 @@
9
9
  and removes that node along with the subtree rooted at that node. \n\rThe player
10
10
  who is forced to take the root node of the entire tree loses.\n\nHere are the winning
11
11
  moves of the first player on the first turn for T(<var>k</var>) from <var>k</var>=1
12
- to <var>k</var>=6.\n\n![](/home/will/src/euler-manager/config/../data/images/p400_winning.png)\n\n\r\r\r\rLet
13
- <var>f</var>(<var>k</var>) be the number of winning moves of the first player (i.e.
14
- the moves for which the second player has no winning strategy) on the first turn
15
- of the game when this game is played on T(<var>k</var>).\r\r\r\n\nFor example, <var>f</var>(5)
16
- = 1 and <var>f</var>(10) = 17.\n\nFind <var>f</var>(10000). Give the last 18 digits
17
- of your answer.\n\n"
12
+ to <var>k</var>=6.\n\n![]({{ images_dir }}/p400_winning.png)\n\n\r\r\r\rLet <var>f</var>(<var>k</var>)
13
+ be the number of winning moves of the first player (i.e. the moves for which the
14
+ second player has no winning strategy) on the first turn of the game when this game
15
+ is played on T(<var>k</var>).\r\r\r\n\nFor example, <var>f</var>(5) = 1 and <var>f</var>(10)
16
+ = 17.\n\nFind <var>f</var>(10000). Give the last 18 digits of your answer.\n\n"
@@ -5,6 +5,6 @@
5
5
  :content: "The divisors of 6 are 1,2,3 and 6. \n\rThe sum of the squares of these
6
6
  numbers is 1+4+9+36=50.\n\nLet sigma2(n) represent the sum of the squares of the
7
7
  divisors of n.\rThus sigma2(6)=50.\n\n\rLet SIGMA2 represent the summatory function
8
- of sigma2, that is SIGMA2(n)= ![∑](/home/will/src/euler-manager/config/../data/images/symbol_sum.gif)sigma2(i)
9
- for i=1 to n. \n\rThe first 6 values of SIGMA2 are: 1,6,16,37,63 and 113.\r\r\n\nFind
8
+ of sigma2, that is SIGMA2(n)= ![∑]({{ images_dir }}/symbol_sum.gif)sigma2(i) for
9
+ i=1 to n. \n\rThe first 6 values of SIGMA2 are: 1,6,16,37,63 and 113.\r\r\n\nFind
10
10
  SIGMA2(10<sup>15</sup>) modulo 10<sup>9</sup>.\n\n"
@@ -9,12 +9,11 @@
9
9
  such that <var>n</var><sup>4</sup> + <var>a</var><var>n</var><sup>3</sup> + <var>b</var><var>n</var><sup>2</sup>
10
10
  + <var>c</var><var>n</var> is a multiple of <var>m</var> for all integers <var>n</var>.
11
11
  For example, M(4, 2, 5) = 6.\n\nAlso, define S(<var>N</var>) as the sum of M(<var>a</var>,
12
- <var>b</var>, <var>c</var>) for all 0 ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
13
- <var>a</var>, <var>b</var>, <var>c</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
14
- <var>N</var>.\n\nWe can verify that S(10) = 1972 and S(10000) = 2024258331114.\n\nLet
15
- F<sub><var>k</var></sub> be the Fibonacci sequence: \n\rF<sub>0</sub> = 0, F<sub>1</sub>
16
- = 1 and \n\rF<sub><var>k</var></sub> = F<sub><var>k</var>-1</sub> + F<sub><var>k</var>-2</sub>
17
- for <var>k</var> ![≥](/home/will/src/euler-manager/config/../data/images/symbol_ge.gif)
18
- 2.\n\nFind the last 9 digits of Σ S(F<sub><var>k</var></sub>) for 2 ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
19
- <var>k</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
12
+ <var>b</var>, <var>c</var>) for all 0 ![<]({{ images_dir }}/symbol_lt.gif) <var>a</var>,
13
+ <var>b</var>, <var>c</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>N</var>.\n\nWe
14
+ can verify that S(10) = 1972 and S(10000) = 2024258331114.\n\nLet F<sub><var>k</var></sub>
15
+ be the Fibonacci sequence: \n\rF<sub>0</sub> = 0, F<sub>1</sub> = 1 and \n\rF<sub><var>k</var></sub>
16
+ = F<sub><var>k</var>-1</sub> + F<sub><var>k</var>-2</sub> for <var>k</var> ![≥]({{
17
+ images_dir }}/symbol_ge.gif) 2.\n\nFind the last 9 digits of Σ S(F<sub><var>k</var></sub>)
18
+ for 2 ![≤]({{ images_dir }}/symbol_le.gif) <var>k</var> ![≤]({{ images_dir }}/symbol_le.gif)
20
19
  1234567890123.\n\n"
@@ -5,13 +5,12 @@
5
5
  :content: "For integers <var>a</var> and <var>b</var>, we define <var>D</var>(<var>a</var>,
6
6
  <var>b</var>) as the domain enclosed by the parabola <var>y</var> = <var>x</var><sup>2</sup>
7
7
  and the line <var>y</var> = <var>a</var>·<var>x</var> + <var>b</var>: \n<var>D</var>(<var>a</var>,
8
- <var>b</var>) = { (<var>x</var>, <var>y</var>) | <var>x</var><sup>2</sup> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
9
- <var>y</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
10
- <var>a</var>·<var>x</var> + <var>b</var> }.\n\nL(<var>a</var>, <var>b</var>) is
11
- defined as the number of lattice points contained in <var>D</var>(<var>a</var>,
12
- <var>b</var>). \n\rFor example, L(1, 2) = 8 and L(2, -1) = 1.\n\nWe also define
13
- S(<var>N</var>) as the sum of L(<var>a</var>, <var>b</var>) for all the pairs (<var>a</var>,
14
- <var>b</var>) such that the area of <var>D</var>(<var>a</var>, <var>b</var>) is
15
- a rational number and |<var>a</var>|,|<var>b</var>| ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
16
- <var>N</var>. \n\rWe can verify that S(5) = 344 and S(100) = 26709528.\n\nFind
17
- S(10<sup>12</sup>). Give your answer mod 10<sup>8</sup>.\n\n"
8
+ <var>b</var>) = { (<var>x</var>, <var>y</var>) | <var>x</var><sup>2</sup> ![≤]({{
9
+ images_dir }}/symbol_le.gif) <var>y</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>a</var>·<var>x</var>
10
+ + <var>b</var> }.\n\nL(<var>a</var>, <var>b</var>) is defined as the number of lattice
11
+ points contained in <var>D</var>(<var>a</var>, <var>b</var>). \n\rFor example,
12
+ L(1, 2) = 8 and L(2, -1) = 1.\n\nWe also define S(<var>N</var>) as the sum of L(<var>a</var>,
13
+ <var>b</var>) for all the pairs (<var>a</var>, <var>b</var>) such that the area
14
+ of <var>D</var>(<var>a</var>, <var>b</var>) is a rational number and |<var>a</var>|,|<var>b</var>|
15
+ ![≤]({{ images_dir }}/symbol_le.gif) <var>N</var>. \n\rWe can verify that S(5)
16
+ = 344 and S(100) = 26709528.\n\nFind S(10<sup>12</sup>). Give your answer mod 10<sup>8</sup>.\n\n"
@@ -5,15 +5,14 @@
5
5
  :content: "E<sub><var>a</var></sub> is an ellipse with an equation of the form x<sup>2</sup>
6
6
  + 4y<sup>2</sup> = 4<var>a</var><sup>2</sup>. \n\rE<sub><var>a</var></sub>' is
7
7
  the rotated image of E<sub><var>a</var></sub> by θ degrees counterclockwise around
8
- the origin O(0, 0) for 0° ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif)
9
- θ ![<](/home/will/src/euler-manager/config/../data/images/symbol_lt.gif) 90°.\n\n
10
- ![](/home/will/src/euler-manager/config/../data/images/p_404_c_ellipse.gif)\n\n<var>b</var>
8
+ the origin O(0, 0) for 0° ![<]({{ images_dir }}/symbol_lt.gif) θ ![<]({{ images_dir
9
+ }}/symbol_lt.gif) 90°.\n\n ![]({{ images_dir }}/p_404_c_ellipse.gif)\n\n<var>b</var>
11
10
  is the distance to the origin of the two intersection points closest to the origin
12
11
  and <var>c</var> is the distance of the two other intersection points. \n\rWe call
13
12
  an ordered triplet (<var>a</var>, <var>b</var>, <var>c</var>) a _canonical ellipsoidal
14
13
  triplet_ if <var>a</var>, <var>b</var> and <var>c</var> are positive integers. \n\rFor
15
14
  example, (209, 247, 286) is a canonical ellipsoidal triplet.\n\nLet C(<var>N</var>)
16
15
  be the number of distinct canonical ellipsoidal triplets (<var>a</var>, <var>b</var>,
17
- <var>c</var>) for <var>a</var> ![≤](/home/will/src/euler-manager/config/../data/images/symbol_le.gif)
18
- <var>N</var>. \n\rIt can be verified that C(10<sup>3</sup>) = 7, C(10<sup>4</sup>)
19
- = 106 and C(10<sup>6</sup>) = 11845.\n\nFind C(10<sup>17</sup>).\n\n"
16
+ <var>c</var>) for <var>a</var> ![≤]({{ images_dir }}/symbol_le.gif) <var>N</var>.
17
+ \ \n\rIt can be verified that C(10<sup>3</sup>) = 7, C(10<sup>4</sup>) = 106 and
18
+ C(10<sup>6</sup>) = 11845.\n\nFind C(10<sup>17</sup>).\n\n"