euler-manager 0.0.6 → 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +13 -0
- data/data/images/sod_13.gif +4 -0
- data/data/problems/100.yml +1 -1
- data/data/problems/101.yml +16 -16
- data/data/problems/102.yml +2 -3
- data/data/problems/103.yml +16 -16
- data/data/problems/105.yml +2 -2
- data/data/problems/106.yml +2 -2
- data/data/problems/107.yml +15 -15
- data/data/problems/108.yml +13 -16
- data/data/problems/109.yml +16 -17
- data/data/problems/11.yml +22 -23
- data/data/problems/110.yml +9 -10
- data/data/problems/114.yml +30 -41
- data/data/problems/116.yml +19 -25
- data/data/problems/117.yml +24 -33
- data/data/problems/120.yml +3 -3
- data/data/problems/122.yml +18 -20
- data/data/problems/123.yml +2 -2
- data/data/problems/124.yml +18 -23
- data/data/problems/126.yml +10 -11
- data/data/problems/127.yml +7 -7
- data/data/problems/128.yml +1 -1
- data/data/problems/130.yml +6 -7
- data/data/problems/131.yml +1 -1
- data/data/problems/132.yml +1 -1
- data/data/problems/134.yml +2 -2
- data/data/problems/135.yml +2 -2
- data/data/problems/136.yml +2 -2
- data/data/problems/137.yml +4 -4
- data/data/problems/138.yml +4 -4
- data/data/problems/139.yml +1 -1
- data/data/problems/14.yml +12 -13
- data/data/problems/140.yml +3 -3
- data/data/problems/142.yml +1 -1
- data/data/problems/143.yml +2 -2
- data/data/problems/144.yml +3 -3
- data/data/problems/147.yml +1 -1
- data/data/problems/149.yml +11 -13
- data/data/problems/15.yml +3 -3
- data/data/problems/150.yml +8 -8
- data/data/problems/151.yml +1 -1
- data/data/problems/152.yml +1 -1
- data/data/problems/153.yml +24 -26
- data/data/problems/154.yml +10 -9
- data/data/problems/155.yml +3 -3
- data/data/problems/156.yml +7 -8
- data/data/problems/157.yml +3 -4
- data/data/problems/158.yml +4 -5
- data/data/problems/159.yml +3 -3
- data/data/problems/161.yml +5 -4
- data/data/problems/163.yml +10 -10
- data/data/problems/165.yml +1 -1
- data/data/problems/166.yml +7 -7
- data/data/problems/167.yml +3 -4
- data/data/problems/168.yml +5 -5
- data/data/problems/170.yml +2 -2
- data/data/problems/171.yml +3 -3
- data/data/problems/173.yml +1 -1
- data/data/problems/174.yml +3 -3
- data/data/problems/175.yml +4 -4
- data/data/problems/177.yml +1 -1
- data/data/problems/179.yml +1 -1
- data/data/problems/180.yml +8 -9
- data/data/problems/182.yml +22 -24
- data/data/problems/183.yml +14 -15
- data/data/problems/184.yml +2 -2
- data/data/problems/186.yml +10 -11
- data/data/problems/187.yml +6 -8
- data/data/problems/189.yml +10 -9
- data/data/problems/190.yml +1 -1
- data/data/problems/192.yml +11 -12
- data/data/problems/194.yml +8 -8
- data/data/problems/195.yml +2 -2
- data/data/problems/197.yml +5 -6
- data/data/problems/198.yml +11 -12
- data/data/problems/199.yml +7 -7
- data/data/problems/20.yml +8 -10
- data/data/problems/202.yml +1 -1
- data/data/problems/207.yml +4 -4
- data/data/problems/208.yml +4 -5
- data/data/problems/21.yml +5 -6
- data/data/problems/210.yml +4 -5
- data/data/problems/211.yml +1 -1
- data/data/problems/212.yml +22 -26
- data/data/problems/213.yml +5 -6
- data/data/problems/214.yml +8 -9
- data/data/problems/215.yml +4 -4
- data/data/problems/216.yml +5 -5
- data/data/problems/217.yml +8 -10
- data/data/problems/218.yml +1 -1
- data/data/problems/22.yml +1 -1
- data/data/problems/220.yml +15 -15
- data/data/problems/221.yml +4 -5
- data/data/problems/223.yml +5 -6
- data/data/problems/224.yml +5 -6
- data/data/problems/226.yml +8 -8
- data/data/problems/228.yml +4 -5
- data/data/problems/229.yml +16 -16
- data/data/problems/230.yml +4 -4
- data/data/problems/231.yml +4 -5
- data/data/problems/233.yml +1 -1
- data/data/problems/234.yml +9 -10
- data/data/problems/236.yml +4 -4
- data/data/problems/237.yml +3 -3
- data/data/problems/238.yml +3 -4
- data/data/problems/241.yml +4 -4
- data/data/problems/242.yml +2 -2
- data/data/problems/243.yml +12 -12
- data/data/problems/244.yml +10 -11
- data/data/problems/245.yml +14 -15
- data/data/problems/246.yml +10 -9
- data/data/problems/247.yml +12 -13
- data/data/problems/251.yml +3 -3
- data/data/problems/252.yml +6 -7
- data/data/problems/254.yml +2 -2
- data/data/problems/255.yml +35 -36
- data/data/problems/256.yml +16 -20
- data/data/problems/257.yml +9 -9
- data/data/problems/258.yml +5 -6
- data/data/problems/26.yml +1 -1
- data/data/problems/260.yml +6 -8
- data/data/problems/261.yml +6 -7
- data/data/problems/262.yml +1 -1
- data/data/problems/264.yml +10 -11
- data/data/problems/265.yml +1 -1
- data/data/problems/27.yml +10 -11
- data/data/problems/270.yml +3 -3
- data/data/problems/271.yml +5 -6
- data/data/problems/272.yml +6 -7
- data/data/problems/273.yml +3 -3
- data/data/problems/274.yml +15 -15
- data/data/problems/275.yml +3 -3
- data/data/problems/276.yml +3 -3
- data/data/problems/277.yml +3 -3
- data/data/problems/278.yml +15 -17
- data/data/problems/281.yml +4 -4
- data/data/problems/282.yml +2 -2
- data/data/problems/284.yml +7 -8
- data/data/problems/287.yml +18 -17
- data/data/problems/288.yml +1 -1
- data/data/problems/289.yml +1 -1
- data/data/problems/29.yml +12 -13
- data/data/problems/290.yml +1 -1
- data/data/problems/291.yml +3 -3
- data/data/problems/292.yml +1 -1
- data/data/problems/293.yml +7 -7
- data/data/problems/295.yml +8 -8
- data/data/problems/296.yml +4 -5
- data/data/problems/297.yml +4 -5
- data/data/problems/299.yml +11 -12
- data/data/problems/300.yml +10 -9
- data/data/problems/301.yml +2 -2
- data/data/problems/303.yml +3 -3
- data/data/problems/304.yml +6 -7
- data/data/problems/305.yml +3 -2
- data/data/problems/306.yml +8 -11
- data/data/problems/307.yml +2 -3
- data/data/problems/309.yml +8 -8
- data/data/problems/31.yml +1 -1
- data/data/problems/310.yml +6 -7
- data/data/problems/311.yml +11 -11
- data/data/problems/312.yml +5 -5
- data/data/problems/313.yml +4 -4
- data/data/problems/314.yml +4 -5
- data/data/problems/315.yml +26 -27
- data/data/problems/316.yml +2 -4
- data/data/problems/318.yml +27 -34
- data/data/problems/319.yml +11 -12
- data/data/problems/32.yml +1 -1
- data/data/problems/320.yml +1 -1
- data/data/problems/321.yml +3 -3
- data/data/problems/322.yml +4 -4
- data/data/problems/323.yml +7 -8
- data/data/problems/324.yml +8 -9
- data/data/problems/325.yml +1 -1
- data/data/problems/326.yml +2 -2
- data/data/problems/327.yml +27 -29
- data/data/problems/328.yml +2 -2
- data/data/problems/330.yml +13 -14
- data/data/problems/331.yml +12 -12
- data/data/problems/332.yml +10 -9
- data/data/problems/333.yml +15 -16
- data/data/problems/334.yml +14 -14
- data/data/problems/335.yml +2 -2
- data/data/problems/336.yml +5 -4
- data/data/problems/337.yml +7 -7
- data/data/problems/338.yml +21 -24
- data/data/problems/340.yml +6 -7
- data/data/problems/341.yml +3 -5
- data/data/problems/342.yml +6 -7
- data/data/problems/343.yml +8 -12
- data/data/problems/344.yml +1 -1
- data/data/problems/347.yml +8 -8
- data/data/problems/350.yml +5 -5
- data/data/problems/351.yml +1 -1
- data/data/problems/352.yml +25 -26
- data/data/problems/353.yml +1 -1
- data/data/problems/354.yml +6 -6
- data/data/problems/356.yml +2 -3
- data/data/problems/358.yml +13 -14
- data/data/problems/359.yml +1 -1
- data/data/problems/361.yml +2 -1
- data/data/problems/362.yml +11 -13
- data/data/problems/363.yml +6 -6
- data/data/problems/364.yml +3 -3
- data/data/problems/365.yml +2 -2
- data/data/problems/366.yml +4 -5
- data/data/problems/369.yml +1 -1
- data/data/problems/370.yml +3 -3
- data/data/problems/372.yml +6 -8
- data/data/problems/374.yml +5 -7
- data/data/problems/375.yml +5 -6
- data/data/problems/377.yml +2 -2
- data/data/problems/378.yml +2 -2
- data/data/problems/379.yml +7 -8
- data/data/problems/38.yml +9 -9
- data/data/problems/380.yml +12 -15
- data/data/problems/381.yml +8 -11
- data/data/problems/382.yml +6 -6
- data/data/problems/383.yml +4 -4
- data/data/problems/384.yml +7 -8
- data/data/problems/385.yml +8 -8
- data/data/problems/386.yml +2 -2
- data/data/problems/388.yml +5 -6
- data/data/problems/39.yml +1 -1
- data/data/problems/390.yml +4 -6
- data/data/problems/391.yml +11 -12
- data/data/problems/392.yml +1 -1
- data/data/problems/393.yml +2 -2
- data/data/problems/394.yml +6 -7
- data/data/problems/395.yml +5 -5
- data/data/problems/396.yml +15 -17
- data/data/problems/397.yml +5 -8
- data/data/problems/4.yml +1 -1
- data/data/problems/40.yml +1 -1
- data/data/problems/400.yml +5 -6
- data/data/problems/401.yml +2 -2
- data/data/problems/402.yml +7 -8
- data/data/problems/403.yml +9 -10
- data/data/problems/404.yml +5 -6
- data/data/problems/405.yml +7 -7
- data/data/problems/406.yml +8 -10
- data/data/problems/407.yml +9 -9
- data/data/problems/410.yml +5 -6
- data/data/problems/411.yml +11 -12
- data/data/problems/412.yml +9 -9
- data/data/problems/414.yml +13 -15
- data/data/problems/415.yml +2 -2
- data/data/problems/417.yml +4 -5
- data/data/problems/418.yml +7 -8
- data/data/problems/419.yml +8 -8
- data/data/problems/420.yml +5 -5
- data/data/problems/421.yml +11 -12
- data/data/problems/422.yml +9 -9
- data/data/problems/423.yml +5 -7
- data/data/problems/424.yml +8 -9
- data/data/problems/425.yml +2 -3
- data/data/problems/426.yml +3 -3
- data/data/problems/427.yml +8 -8
- data/data/problems/428.yml +16 -19
- data/data/problems/430.yml +4 -5
- data/data/problems/44.yml +3 -3
- data/data/problems/45.yml +2 -2
- data/data/problems/46.yml +8 -8
- data/data/problems/47.yml +6 -10
- data/data/problems/53.yml +8 -9
- data/data/problems/56.yml +1 -1
- data/data/problems/57.yml +5 -5
- data/data/problems/58.yml +1 -1
- data/data/problems/6.yml +1 -1
- data/data/problems/61.yml +4 -4
- data/data/problems/64.yml +39 -46
- data/data/problems/65.yml +13 -14
- data/data/problems/66.yml +10 -10
- data/data/problems/68.yml +4 -5
- data/data/problems/69.yml +2 -2
- data/data/problems/70.yml +3 -4
- data/data/problems/71.yml +3 -3
- data/data/problems/72.yml +3 -3
- data/data/problems/73.yml +3 -3
- data/data/problems/74.yml +15 -22
- data/data/problems/75.yml +1 -1
- data/data/problems/8.yml +14 -14
- data/data/problems/81.yml +7 -7
- data/data/problems/82.yml +4 -4
- data/data/problems/83.yml +4 -4
- data/data/problems/85.yml +1 -1
- data/data/problems/86.yml +8 -8
- data/data/problems/88.yml +22 -27
- data/data/problems/9.yml +6 -6
- data/data/problems/90.yml +13 -13
- data/data/problems/91.yml +8 -8
- data/data/problems/92.yml +7 -9
- data/data/problems/93.yml +9 -10
- data/data/problems/95.yml +1 -1
- data/data/problems/96.yml +17 -17
- data/data/problems/97.yml +2 -2
- data/data/problems/99.yml +2 -2
- data/lib/euler/problem.rb +6 -1
- data/lib/euler/version.rb +1 -1
- metadata +2 -2
data/data/problems/375.yml
CHANGED
@@ -11,9 +11,8 @@
|
|
11
11
|
\ <td>=<sub> </sub>\n</td>\r\n <td>\n<var>S</var><sub><var>n</var></sub><sup>2</sup>
|
12
12
|
mod 50515093</td>\r\n </tr>\r\n</table></center>\n\nLet A(<var>i</var>, <var>j</var>)
|
13
13
|
be the minimum of the numbers <var>S</var><sub><var>i</var></sub>, <var>S</var><sub><var>i</var>+1</sub>,
|
14
|
-
... , <var>S</var><sub><var>j</var></sub> for <var>i</var>  = ΣA(<var>i</var>, <var>j</var>) for 1 .\n\n"
|
14
|
+
... , <var>S</var><sub><var>j</var></sub> for <var>i</var> 
|
15
|
+
<var>j</var>. \n\rLet M(<var>N</var>) = ΣA(<var>i</var>, <var>j</var>) for 1  <var>i</var>  <var>j</var>
|
17
|
+
 <var>N</var>. \n\rWe can verify that M(10)
|
18
|
+
= 432256955 and M(10 000) = 3264567774119.\n\nFind M(2 000 000 000).\n\n"
|
data/data/problems/377.yml
CHANGED
@@ -6,5 +6,5 @@
|
|
6
6
|
and that have a digital sum equal to 5, namely: \n\r5, 14, 23, 32, 41, 113, 122,
|
7
7
|
131, 212, 221, 311, 1112, 1121, 1211, 2111 and 11111. \n\rTheir sum is 17891.\n\nLet
|
8
8
|
<var>f</var>(<var>n</var>) be the sum of all positive integers that do not have
|
9
|
-
a zero in their digits and have a digital sum equal to <var>n</var>.\n\nFind . \n\rGive the last 9 digits as your answer.\n\n"
|
data/data/problems/378.yml
CHANGED
@@ -6,7 +6,7 @@
|
|
6
6
|
so T(<var>n</var>) =\r | \n\n| <var>n</var> (<var>n</var>+1) |\n| 2 |\n\n | \r.\r
|
7
7
|
|\n\nLet dT(<var>n</var>) be the number of divisors of T(<var>n</var>). \n\rE.g.:\rT(7)
|
8
8
|
= 28 and dT(7) = 6.\n\nLet Tr(<var>n</var>) be the number of triples (<var>i</var>,
|
9
|
-
<var>j</var>, <var>k</var>) such that 1  such that 1  <var>i
|
10
|
+
n</var> and dT(<var>i</var>) > dT(<var>j</var>) > dT(<var>k</var>). \n\rTr(20)
|
11
11
|
= 14, Tr(100) = 5772 and Tr(1000) = 11174776.\n\nFind Tr(60 000 000). \n\rGive
|
12
12
|
the last 18 digits of your answer.\n\n"
|
data/data/problems/379.yml
CHANGED
@@ -3,11 +3,10 @@
|
|
3
3
|
:name: Least common multiple count
|
4
4
|
:url: http://projecteuler.net/problem=379
|
5
5
|
:content: "Let <var>f</var>(<var>n</var>) be the number of couples (<var>x</var>,<var>y</var>)
|
6
|
-
with <var>x</var> and <var>y</var> positive integers, <var>x</var>  =  for 1 .\n\n"
|
6
|
+
with <var>x</var> and <var>y</var> positive integers, <var>x</var>  <var>y</var> and the least common multiple of <var>x</var> and
|
8
|
+
<var>y</var> equal to <var>n</var>.\n\nLet <var>g</var> be the **summatory function**
|
9
|
+
of <var>f</var>, i.e.: \r<var>g</var>(<var>n</var>) = 
|
10
|
+
<var>f</var>(<var>i</var>) for 1  <var>i</var>
|
11
|
+
 <var>n</var>.\n\nYou are given that <var>g</var>(10<sup>6</sup>)
|
12
|
+
= 37429395.\n\nFind <var>g</var>(10<sup>12</sup>).\n\n"
|
data/data/problems/38.yml
CHANGED
@@ -2,13 +2,13 @@
|
|
2
2
|
:id: 38
|
3
3
|
:name: Pandigital multiples
|
4
4
|
:url: http://projecteuler.net/problem=38
|
5
|
-
:content: "Take the number 192 and multiply it by each of 1, 2, and 3:\n\n> 192  1 = 192 \n> \r192 
|
7
|
+
2 = 384 \n> \r192  3 = 576\n\nBy concatenating
|
8
|
+
each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the
|
9
|
+
concatenated product of 192 and (1,2,3)\n\nThe same can be achieved by starting
|
10
|
+
with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which
|
11
|
+
is the concatenated product of 9 and (1,2,3,4,5).\n\nWhat is the largest 1 to 9
|
12
|
+
pandigital 9-digit number that can be formed as the concatenated product of an integer
|
13
|
+
with (1,2, ... , <var>n</var>) where <var>n</var> 
|
14
14
|
1?\n\n"
|
data/data/problems/380.yml
CHANGED
@@ -2,18 +2,15 @@
|
|
2
2
|
:id: 380
|
3
3
|
:name: Amazing Mazes!
|
4
4
|
:url: http://projecteuler.net/problem=380
|
5
|
-
:content: "An m n maze is an m n rectangular grid with walls placed between grid cells such
|
7
|
+
that there is exactly one path from the top-left square to any other square. \nThe
|
8
|
+
following are examples of a 9 12 maze and
|
9
|
+
a 15 20 maze:\n\n\n\nLet
|
10
|
+
C(m,n) be the number of distinct m n mazes.
|
11
|
+
Mazes which can be formed by rotation and reflection from another maze are considered
|
12
|
+
distinct.\n\nIt can be verified that C(1,1) = 1, C(2,2) = 4, C(3,4) = 2415, and
|
13
|
+
C(9,12) = 2.5720e46 (in scientific notation rounded to 5 significant digits). \n\rFind
|
14
|
+
C(100,500) and write your answer in scientific notation rounded to 5 significant
|
15
|
+
digits.\n\nWhen giving your answer, use a lowercase e to separate mantissa and exponent.\rE.g.
|
16
|
+
if the answer is 1234567891011 then the answer format would be 1.2346e12.\n\n"
|
data/data/problems/381.yml
CHANGED
@@ -2,14 +2,11 @@
|
|
2
2
|
:id: 381
|
3
3
|
:name: (prime-k) factorial
|
4
4
|
:url: http://projecteuler.net/problem=381
|
5
|
-
:content: "For a prime p let S(p) = (  for 1 S(p) for
|
14
|
-
5  p 
|
15
|
-
10<sup>8</sup>.\n\n"
|
5
|
+
:content: "For a prime p let S(p) = ( (p-k)!)
|
6
|
+
mod(p) for 1  k 
|
7
|
+
5.\n\nFor example, if p=7, \n\r(7-1)! + (7-2)! + (7-3)! + (7-4)! + (7-5)! = 6!
|
8
|
+
+ 5! + 4! + 3! + 2! = 720+120+24+6+2 = 872. \n \rAs 872 mod(7) = 4, S(7) = 4.\n\nIt
|
9
|
+
can be verified that S(p) = 480 for 5  p  100.\n\nFind
|
11
|
+
S(p) for 5 
|
12
|
+
p  10<sup>8</sup>.\n\n"
|
data/data/problems/382.yml
CHANGED
@@ -12,9 +12,9 @@
|
|
12
12
|
\ \n\rThe sets {1, 2, 3} and {2, 3, 4, 9} do not generate any polygon at all.\n\nConsider
|
13
13
|
the sequence s, defined as follows:\n\n- s<sub>1</sub> = 1, s<sub>2</sub> = 2, s<sub>3</sub>
|
14
14
|
= 3\r\n- s<sub><var>n</var></sub> = s<sub><var>n</var>-1</sub> + s<sub><var>n</var>-3</sub>
|
15
|
-
for <var>n</var>  3.\r\n\nLet U<sub><var>n</var></sub>
|
16
|
+
be the set {s<sub>1</sub>, s<sub>2</sub>, ..., s<sub><var>n</var></sub>}. For example,
|
17
|
+
U<sub>10</sub> = {1, 2, 3, 4, 6, 9, 13, 19, 28, 41}. \n\rLet f(<var>n</var>) be
|
18
|
+
the number of subsets of U<sub><var>n</var></sub> which generate at least one polygon.
|
19
|
+
\ \n\rFor example, f(5) = 7, f(10) = 501 and f(25) = 18635853.\n\nFind the last
|
20
|
+
9 digits of f(10<sup>18</sup>).\n\n"
|
data/data/problems/383.yml
CHANGED
@@ -5,7 +5,7 @@
|
|
5
5
|
:content: "Let f<sub>5</sub>(<var>n</var>) be the largest integer <var>x</var> for
|
6
6
|
which 5<sup><var>x</var></sup> divides <var>n</var>. \n\rFor example, f<sub>5</sub>(625000)
|
7
7
|
= 7.\n\nLet T<sub>5</sub>(<var>n</var>) be the number of integers <var>i</var> which
|
8
|
-
satisfy f<sub>5</sub>((2·<var>i</var>-1)!) 5(<var>i</var>!) and 1 !) 5(<var>i</var>!) and 1  <var>i</var>  <var>n</var>.
|
10
|
+
\ \n\rIt can be verified that T<sub>5</sub>(10<sup>3</sup>) = 68 and T<sub>5</sub>(10<sup>9</sup>)
|
11
|
+
= 2408210.\n\nFind T<sub>5</sub>(10<sup>18</sup>).\n\n"
|
data/data/problems/384.yml
CHANGED
@@ -6,7 +6,7 @@
|
|
6
6
|
binary expansion of n (possibly overlapping).\r \nE.g.: a(5) = a(101<sub>2</sub>)
|
7
7
|
= 0, a(6) = a(110<sub>2</sub>) = 1, a(7) = a(111<sub>2</sub>) = 2\n\nDefine the
|
8
8
|
sequence b(n) = (-1)<sup>a(n)</sup>.\r \nThis sequence is called the **Rudin-Shapiro**
|
9
|
-
sequence.\n\nAlso consider the summatory sequence of b(n): : .\n\nThe
|
10
10
|
first couple of values of these sequences are:\r \n<tt>n &nbsp 0 &nbsp
|
11
11
|
1 &nbsp 2 &nbsp 3 &nbsp 4 &nbsp 5 &nbsp 6 &nbsp
|
12
12
|
7\r\n<br>a(n) &nbsp 0 &nbsp 0 &nbsp 0 &nbsp 1 &nbsp
|
@@ -15,10 +15,9 @@
|
|
15
15
|
1\r\n<br>s(n) &nbsp 1 &nbsp 2 &nbsp 3 &nbsp 2 &nbsp
|
16
16
|
3 &nbsp 4 &nbsp 3 &nbsp 4</tt>\n\nThe sequence s(n) has the
|
17
17
|
remarkable property that all elements are positive and every positive integer k
|
18
|
-
occurs exactly k times.\n\nDefine g(t,c), with 1 45.\n\n"
|
18
|
+
occurs exactly k times.\n\nDefine g(t,c), with 1 
|
19
|
+
c  t, as the index in s(n) for which t occurs
|
20
|
+
for the c'th time in s(n).\r \nE.g.: g(3,3) = 6, g(4,2) = 7 and g(54321,12345)
|
21
|
+
= 1220847710.\n\nLet F(n) be the fibonacci sequence defined by:\r \nF(0)=F(1)=1
|
22
|
+
and\r \nF(n)=F(n-1)+F(n-2) for n>1.\n\nDefine GF(t)=g(F(t),F(t-1)).\n\nFind ΣGF(t)
|
23
|
+
for 2 t 45.\n\n"
|
data/data/problems/385.yml
CHANGED
@@ -3,14 +3,14 @@
|
|
3
3
|
:name: Ellipses inside triangles
|
4
4
|
:url: http://projecteuler.net/problem=385
|
5
5
|
:content: "For any triangle <var>T</var> in the plane, it can be shown that there
|
6
|
-
is a unique ellipse with largest area that is completely inside <var>T</var>.\n\n\n\nFor a given <var>n</var>, consider triangles
|
8
|
+
<var>T</var> such that: \n\r- the vertices of <var>T</var> have integer coordinates
|
9
|
+
with absolute value  n, and \n\r- the **foci**
|
10
|
+
<sup>1</sup> of the largest-area ellipse inside <var>T</var> are ( 13,0) and (- 13,0). \n\rLet
|
12
|
+
A(<var>n</var>) be the sum of the areas of all such triangles.\n\nFor example, if
|
13
|
+
<var>n</var> = 8, there are two such triangles. Their vertices are (-4,-3),(-4,3),(8,0)
|
14
14
|
and (4,3),(4,-3),(-8,0), and the area of each triangle is 36. Thus A(8) = 36 + 36
|
15
15
|
= 72.\n\nIt can be verified that A(10) = 252, A(100) = 34632 and A(1000) = 3529008.\n\nFind
|
16
16
|
A(1 000 000 000).\n\n<sup>1</sup>The **foci** (plural of **focus** ) of an ellipse
|
data/data/problems/386.yml
CHANGED
@@ -10,5 +10,5 @@
|
|
10
10
|
15, 30}\r \n{2, 5, 6} is not an antichain of <var>S</var>(30).\r \n{2, 3, 5} is
|
11
11
|
an antichain of <var>S</var>(30).\n\nLet <var>N</var>(<var>n</var>) be the maximum
|
12
12
|
length of an antichain of <var>S</var>(<var>n</var>).\n\nFind Σ<var>N</var>(<var>n</var>)
|
13
|
-
for 1  <var>n</var> 
|
14
|
+
10<sup>8</sup>\n\n"
|
data/data/problems/388.yml
CHANGED
@@ -2,9 +2,8 @@
|
|
2
2
|
:id: 388
|
3
3
|
:name: Distinct Lines
|
4
4
|
:url: http://projecteuler.net/problem=388
|
5
|
-
:content: "Consider all lattice points (a,b,c) with 0  with 0 
|
6
|
+
a,b,c  N.\n\nFrom the origin O(0,0,0) all lines
|
7
|
+
are drawn to the other lattice points. \n\rLet D(N) be the number of _distinct_
|
8
|
+
such lines.\n\nYou are given that D(1 000 000) = 831909254469114121.\n\nFind D(10<sup>10</sup>).
|
9
|
+
Give as your answer the first nine digits followed by the last nine digits.\n\n"
|
data/data/problems/39.yml
CHANGED
@@ -7,5 +7,5 @@
|
|
7
7
|
|
8
8
|
{20,48,52}, {24,45,51}, {30,40,50}
|
9
9
|
|
10
|
-
For which value of _p_  1000, is the number of solutions maximised?
|
11
11
|
|
data/data/problems/390.yml
CHANGED
@@ -2,12 +2,10 @@
|
|
2
2
|
:id: 390
|
3
3
|
:name: Triangles with non rational sides and integral area
|
4
4
|
:url: http://projecteuler.net/problem=390
|
5
|
-
:content: "Consider the triangle with sides 68.\rIt
|
5
|
+
:content: "Consider the triangle with sides 5,
|
6
|
+
65 and 68.\rIt
|
8
7
|
can be shown that this triangle has area 9.\n\nS(n) is the sum of the areas of all
|
9
|
-
triangles with sides (b<sup>2</sup>+c<sup>2</sup>)
|
8
|
+
triangles with sides (1+b<sup>2</sup>), (1+c<sup>2</sup>) and (b<sup>2</sup>+c<sup>2</sup>)
|
12
10
|
(for positive integers b and c ) that have an integral area not exceeding n.\n\nThe
|
13
11
|
example triangle has b=2 and c=8.\n\nS(10<sup>6</sup>)=18018206.\n\nFind S(10<sup>10</sup>).\n\n"
|
data/data/problems/391.yml
CHANGED
@@ -5,21 +5,20 @@
|
|
5
5
|
:content: "Let <var>s<sub>k</sub></var> be the number of 1’s when writing the numbers
|
6
6
|
from 0 to <var>k</var> in binary. \n\rFor example, writing 0 to 5 in binary, we
|
7
7
|
have 0, 1, 10, 11, 100, 101. There are seven 1’s, so <var>s</var><sub>5</sub> =
|
8
|
-
7. \n\rThe sequence S = {<var>s<sub>k</sub></var> : <var>k</var>  0} starts {0, 1, 2, 4, 5, 7, 9, 12, ...}.\n\nA game is played
|
10
|
+
by two players. Before the game starts, a number <var>n</var> is chosen. A counter
|
11
|
+
<var>c</var> starts at 0. At each turn, the player chooses a number from 1 to <var>n</var>
|
12
|
+
(inclusive) and increases <var>c</var> by that number. The resulting value of <var>c</var>
|
13
|
+
must be a member of S. If there are no more valid moves, the player loses.\n\nFor
|
14
|
+
example: \n\rLet <var>n</var> = 5. <var>c</var> starts at 0. \n\rPlayer 1 chooses
|
15
|
+
4, so <var>c</var> becomes 0 + 4 = 4. \n\rPlayer 2 chooses 5, so <var>c</var> becomes
|
16
16
|
4 + 5 = 9. \n\rPlayer 1 chooses 3, so <var>c</var> becomes 9 + 3 = 12. \n\retc.
|
17
17
|
\ \n\rNote that <var>c</var> must always belong to S, and each player can increase
|
18
18
|
<var>c</var> by at most <var>n</var>.\n\nLet M(<var>n</var>) be the highest number
|
19
19
|
the first player can choose at her first turn to force a win, and M(<var>n</var>)
|
20
20
|
= 0 if there is no such move. For example, M(2) = 2, M(7) = 1 and M(20) = 4.\n\nGiven
|
21
|
-
Σ(M(<var>n</var>))<sup>3</sup> = 8150 for 1 
|
21
|
+
Σ(M(<var>n</var>))<sup>3</sup> = 8150 for 1 
|
22
|
+
<var>n</var>  20.\n\nFind Σ(M(<var>n</var>))<sup>3</sup>
|
23
|
+
for 1  <var>n</var> 
|
25
24
|
1000.\n\n"
|
data/data/problems/392.yml
CHANGED
@@ -14,7 +14,7 @@
|
|
14
14
|
the origin\">unit circle</dfn>, black otherwise.\nFor this problem we would like
|
15
15
|
you to find the postions of the remaining N inner horizontal and N inner vertical
|
16
16
|
gridlines so that the area occupied by the red cells is minimized.\r\r\n\nE.g. here
|
17
|
-
is a picture of the solution for N = 10:\n\n\n\n\r\r\rThe
|
18
18
|
area occupied by the red cells for N = 10 rounded to 10 digits behind the decimal
|
19
19
|
point is 3.3469640797.\r\r\n\nFind the positions for N = 400. \n \rGive as your
|
20
20
|
answer the area occupied by the red cells rounded to 10 digits behind the decimal
|
data/data/problems/393.yml
CHANGED
@@ -2,8 +2,8 @@
|
|
2
2
|
:id: 393
|
3
3
|
:name: Migrating ants
|
4
4
|
:url: http://projecteuler.net/problem=393
|
5
|
-
:content: "An <var>n</var> <var>n</var> grid
|
6
|
+
of squares contains <var>n</var><sup>2</sup> ants, one ant per square. \n\rAll
|
7
7
|
ants decide to move simultaneously to an adjacent square (usually 4 possibilities,
|
8
8
|
except for ants on the edge of the grid or at the corners). \n\rWe define <var>f</var>(<var>n</var>)
|
9
9
|
to be the number of ways this can happen without any ants ending on the same square
|
data/data/problems/394.yml
CHANGED
@@ -10,10 +10,9 @@
|
|
10
10
|
divide the remaining pie into three pieces. \n \r- Going counterclockwise from
|
11
11
|
the initial cut, he takes the first two pie pieces and eats them. \n\rWhen less
|
12
12
|
than a fraction <var>F</var> of pie remains, he does not repeat this procedure.
|
13
|
-
Instead, he eats all of the remaining pie.\n\n rounded to 10 decimal places behind the decimal point.\n\n"
|
13
|
+
Instead, he eats all of the remaining pie.\n\n\n\nFor
|
14
|
+
<var>x</var>  1, let E(<var>x</var>) be the
|
15
|
+
expected number of times Jeff repeats the procedure above with <var>F</var> = <sup>1</sup>/<sub><var>x</var></sub>.
|
16
|
+
\ \n\rIt can be verified that E(1) = 1, E(2) 
|
17
|
+
1.2676536759, and E(7.5)  2.1215732071.\n\nFind
|
18
|
+
E(40) rounded to 10 decimal places behind the decimal point.\n\n"
|
data/data/problems/395.yml
CHANGED
@@ -11,8 +11,8 @@
|
|
11
11
|
triangle, with one of its sides coinciding with that leg.\n3. Repeat this procedure
|
12
12
|
for both squares, considering as their bases the sides touching the triangle.\n\rThe
|
13
13
|
resulting figure, after an infinite number of iterations, is the Pythagorean tree.\r\r\r\n
|
14
|
-
\n\nIt can be shown that there exists
|
15
|
+
at least one rectangle, whose sides are parallel to the largest square of the Pythagorean
|
16
|
+
tree, which encloses the Pythagorean tree completely.\n\nFind the smallest area
|
17
|
+
possible for such a bounding rectangle, and give your answer rounded to 10 decimal
|
18
|
+
places.\n\n"
|
data/data/problems/396.yml
CHANGED
@@ -4,20 +4,18 @@
|
|
4
4
|
:url: http://projecteuler.net/problem=396
|
5
5
|
:content: "For any positive integer n, the **nth weak Goodstein sequence** {g<sub>1</sub>,
|
6
6
|
g<sub>2</sub>, g<sub>3</sub>, ...} is defined as:\n\n- g<sub>1</sub> = <var>n</var>\n-
|
7
|
-
for <var>k</var> 
|
23
|
-
16.\n\n"
|
7
|
+
for <var>k</var>  1, g<sub><var>k</var></sub>
|
8
|
+
is obtained by writing g<sub><var>k</var>-1</sub> in base <var>k</var>, interpreting
|
9
|
+
it as a base <var>k</var> + 1 number, and subtracting 1.\r\n\rThe sequence terminates
|
10
|
+
when g<sub><var>k</var></sub> becomes 0.\r\r\n\nFor example, the 6th weak Goodstein
|
11
|
+
sequence is {6, 11, 17, 25, ...}:\n\n- g<sub>1</sub> = 6.\r\n- g<sub>2</sub> = 11
|
12
|
+
since 6 = 110<sub>2</sub>, 110<sub>3</sub> = 12, and 12 - 1 = 11.\r\n- g<sub>3</sub>
|
13
|
+
= 17 since 11 = 102<sub>3</sub>, 102<sub>4</sub> = 18, and 18 - 1 = 17.\r\n- g<sub>4</sub>
|
14
|
+
= 25 since 17 = 101<sub>4</sub>, 101<sub>5</sub> = 26, and 26 - 1 = 25.\r\n\rand
|
15
|
+
so on.\r\r\n\nIt can be shown that every weak Goodstein sequence terminates.\n\nLet
|
16
|
+
G(<var>n</var>) be the number of nonzero elements in the <var>n</var>th weak Goodstein
|
17
|
+
sequence. \n\rIt can be verified that G(2) = 3, G(4) = 21 and G(6) = 381. \n\rIt
|
18
|
+
can also be verified that ΣG(<var>n</var>) = 2517 for 1 
|
19
|
+
<var>n</var>  8.\n\nFind the last 9 digits of
|
20
|
+
ΣG(<var>n</var>) for 1  <var>n</var>  16.\n\n"
|
data/data/problems/397.yml
CHANGED
@@ -7,11 +7,8 @@
|
|
7
7
|
and C(<var>c</var>, <var>c</var><sup>2</sup>/<var>k</var>) are chosen.\n\nLet F(<var>K</var>,
|
8
8
|
<var>X</var>) be the number of the integer quadruplets (<var>k</var>, <var>a</var>,
|
9
9
|
<var>b</var>, <var>c</var>) such that at least one angle of the triangle ABC is
|
10
|
-
45-degree, with 1 
|
16
|
-
<var>X</var>.\n\nFor example, F(1, 10) = 41 and F(10, 100) = 12492. \n\rFind F(10<sup>6</sup>,
|
17
|
-
10<sup>9</sup>).\n\n"
|
10
|
+
45-degree, with 1  <var>k</var>  <var>K</var> and -<var>X</var> 
|
12
|
+
<var>a</var>  <var>b</var>  <var>c</var>  <var>X</var>.\n\nFor
|
14
|
+
example, F(1, 10) = 41 and F(10, 100) = 12492. \n\rFind F(10<sup>6</sup>, 10<sup>9</sup>).\n\n"
|
data/data/problems/4.yml
CHANGED
@@ -3,7 +3,7 @@
|
|
3
3
|
:name: Largest palindrome product
|
4
4
|
:url: http://projecteuler.net/problem=4
|
5
5
|
:content: |+
|
6
|
-
A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91  99.
|
7
7
|
|
8
8
|
Find the largest palindrome made from the product of two 3-digit numbers.
|
9
9
|
|
data/data/problems/40.yml
CHANGED
@@ -11,5 +11,5 @@
|
|
11
11
|
|
12
12
|
If _d_<sub><i>n</i></sub> represents the _n_<sup>th</sup> digit of the fractional part, find the value of the following expression.
|
13
13
|
|
14
|
-
_d_<sub>1</sub>  _d_<sub>10</sub>  _d_<sub>100</sub>  _d_<sub>1000</sub>  _d_<sub>10000</sub>  _d_<sub>100000</sub>  _d_<sub>1000000</sub>
|
15
15
|
|
data/data/problems/400.yml
CHANGED
@@ -9,9 +9,8 @@
|
|
9
9
|
and removes that node along with the subtree rooted at that node. \n\rThe player
|
10
10
|
who is forced to take the root node of the entire tree loses.\n\nHere are the winning
|
11
11
|
moves of the first player on the first turn for T(<var>k</var>) from <var>k</var>=1
|
12
|
-
to <var>k</var>=6.\n\n\n\n\r\r\r\rLet <var>f</var>(<var>k</var>)
|
13
|
+
be the number of winning moves of the first player (i.e. the moves for which the
|
14
|
+
second player has no winning strategy) on the first turn of the game when this game
|
15
|
+
is played on T(<var>k</var>).\r\r\r\n\nFor example, <var>f</var>(5) = 1 and <var>f</var>(10)
|
16
|
+
= 17.\n\nFind <var>f</var>(10000). Give the last 18 digits of your answer.\n\n"
|
data/data/problems/401.yml
CHANGED
@@ -5,6 +5,6 @@
|
|
5
5
|
:content: "The divisors of 6 are 1,2,3 and 6. \n\rThe sum of the squares of these
|
6
6
|
numbers is 1+4+9+36=50.\n\nLet sigma2(n) represent the sum of the squares of the
|
7
7
|
divisors of n.\rThus sigma2(6)=50.\n\n\rLet SIGMA2 represent the summatory function
|
8
|
-
of sigma2, that is SIGMA2(n)= = sigma2(i) for
|
9
|
+
i=1 to n. \n\rThe first 6 values of SIGMA2 are: 1,6,16,37,63 and 113.\r\r\n\nFind
|
10
10
|
SIGMA2(10<sup>15</sup>) modulo 10<sup>9</sup>.\n\n"
|
data/data/problems/402.yml
CHANGED
@@ -9,12 +9,11 @@
|
|
9
9
|
such that <var>n</var><sup>4</sup> + <var>a</var><var>n</var><sup>3</sup> + <var>b</var><var>n</var><sup>2</sup>
|
10
10
|
+ <var>c</var><var>n</var> is a multiple of <var>m</var> for all integers <var>n</var>.
|
11
11
|
For example, M(4, 2, 5) = 6.\n\nAlso, define S(<var>N</var>) as the sum of M(<var>a</var>,
|
12
|
-
<var>b</var>, <var>c</var>) for all 0 
|
12
|
+
<var>b</var>, <var>c</var>) for all 0  <var>a</var>,
|
13
|
+
<var>b</var>, <var>c</var>  <var>N</var>.\n\nWe
|
14
|
+
can verify that S(10) = 1972 and S(10000) = 2024258331114.\n\nLet F<sub><var>k</var></sub>
|
15
|
+
be the Fibonacci sequence: \n\rF<sub>0</sub> = 0, F<sub>1</sub> = 1 and \n\rF<sub><var>k</var></sub>
|
16
|
+
= F<sub><var>k</var>-1</sub> + F<sub><var>k</var>-2</sub> for <var>k</var>  2.\n\nFind the last 9 digits of Σ S(F<sub><var>k</var></sub>)
|
18
|
+
for 2  <var>k</var> 
|
20
19
|
1234567890123.\n\n"
|
data/data/problems/403.yml
CHANGED
@@ -5,13 +5,12 @@
|
|
5
5
|
:content: "For integers <var>a</var> and <var>b</var>, we define <var>D</var>(<var>a</var>,
|
6
6
|
<var>b</var>) as the domain enclosed by the parabola <var>y</var> = <var>x</var><sup>2</sup>
|
7
7
|
and the line <var>y</var> = <var>a</var>·<var>x</var> + <var>b</var>: \n<var>D</var>(<var>a</var>,
|
8
|
-
<var>b</var>) = { (<var>x</var>, <var>y</var>) | <var>x</var><sup>2</sup> . Give your answer mod 10<sup>8</sup>.\n\n"
|
8
|
+
<var>b</var>) = { (<var>x</var>, <var>y</var>) | <var>x</var><sup>2</sup>  <var>y</var>  <var>a</var>·<var>x</var>
|
10
|
+
+ <var>b</var> }.\n\nL(<var>a</var>, <var>b</var>) is defined as the number of lattice
|
11
|
+
points contained in <var>D</var>(<var>a</var>, <var>b</var>). \n\rFor example,
|
12
|
+
L(1, 2) = 8 and L(2, -1) = 1.\n\nWe also define S(<var>N</var>) as the sum of L(<var>a</var>,
|
13
|
+
<var>b</var>) for all the pairs (<var>a</var>, <var>b</var>) such that the area
|
14
|
+
of <var>D</var>(<var>a</var>, <var>b</var>) is a rational number and |<var>a</var>|,|<var>b</var>|
|
15
|
+
 <var>N</var>. \n\rWe can verify that S(5)
|
16
|
+
= 344 and S(100) = 26709528.\n\nFind S(10<sup>12</sup>). Give your answer mod 10<sup>8</sup>.\n\n"
|
data/data/problems/404.yml
CHANGED
@@ -5,15 +5,14 @@
|
|
5
5
|
:content: "E<sub><var>a</var></sub> is an ellipse with an equation of the form x<sup>2</sup>
|
6
6
|
+ 4y<sup>2</sup> = 4<var>a</var><sup>2</sup>. \n\rE<sub><var>a</var></sub>' is
|
7
7
|
the rotated image of E<sub><var>a</var></sub> by θ degrees counterclockwise around
|
8
|
-
the origin O(0, 0) for 0° \n\n<var>b</var>
|
8
|
+
the origin O(0, 0) for 0°  θ  90°.\n\n \n\n<var>b</var>
|
11
10
|
is the distance to the origin of the two intersection points closest to the origin
|
12
11
|
and <var>c</var> is the distance of the two other intersection points. \n\rWe call
|
13
12
|
an ordered triplet (<var>a</var>, <var>b</var>, <var>c</var>) a _canonical ellipsoidal
|
14
13
|
triplet_ if <var>a</var>, <var>b</var> and <var>c</var> are positive integers. \n\rFor
|
15
14
|
example, (209, 247, 286) is a canonical ellipsoidal triplet.\n\nLet C(<var>N</var>)
|
16
15
|
be the number of distinct canonical ellipsoidal triplets (<var>a</var>, <var>b</var>,
|
17
|
-
<var>c</var>) for <var>a</var>  for <var>a</var>  <var>N</var>.
|
17
|
+
\ \n\rIt can be verified that C(10<sup>3</sup>) = 7, C(10<sup>4</sup>) = 106 and
|
18
|
+
C(10<sup>6</sup>) = 11845.\n\nFind C(10<sup>17</sup>).\n\n"
|