xinference 1.10.0__py3-none-any.whl → 1.10.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (317) hide show
  1. xinference/_version.py +3 -3
  2. xinference/api/restful_api.py +11 -28
  3. xinference/client/restful/async_restful_client.py +20 -3
  4. xinference/client/restful/restful_client.py +20 -3
  5. xinference/core/supervisor.py +87 -53
  6. xinference/core/worker.py +10 -0
  7. xinference/deploy/cmdline.py +15 -0
  8. xinference/model/audio/core.py +21 -6
  9. xinference/model/audio/indextts2.py +166 -0
  10. xinference/model/audio/model_spec.json +38 -1
  11. xinference/model/image/model_spec.json +69 -0
  12. xinference/model/image/stable_diffusion/core.py +13 -4
  13. xinference/model/llm/__init__.py +4 -0
  14. xinference/model/llm/llm_family.json +464 -2
  15. xinference/model/llm/sglang/core.py +30 -11
  16. xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
  17. xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
  18. xinference/model/llm/utils.py +12 -9
  19. xinference/model/llm/vllm/core.py +93 -17
  20. xinference/thirdparty/audiotools/__init__.py +10 -0
  21. xinference/thirdparty/audiotools/core/__init__.py +4 -0
  22. xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
  23. xinference/thirdparty/audiotools/core/display.py +194 -0
  24. xinference/thirdparty/audiotools/core/dsp.py +390 -0
  25. xinference/thirdparty/audiotools/core/effects.py +647 -0
  26. xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
  27. xinference/thirdparty/audiotools/core/loudness.py +320 -0
  28. xinference/thirdparty/audiotools/core/playback.py +252 -0
  29. xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
  30. xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
  31. xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
  32. xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
  33. xinference/thirdparty/audiotools/core/util.py +671 -0
  34. xinference/thirdparty/audiotools/core/whisper.py +97 -0
  35. xinference/thirdparty/audiotools/data/__init__.py +3 -0
  36. xinference/thirdparty/audiotools/data/datasets.py +517 -0
  37. xinference/thirdparty/audiotools/data/preprocess.py +81 -0
  38. xinference/thirdparty/audiotools/data/transforms.py +1592 -0
  39. xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
  40. xinference/thirdparty/audiotools/metrics/distance.py +131 -0
  41. xinference/thirdparty/audiotools/metrics/quality.py +159 -0
  42. xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
  43. xinference/thirdparty/audiotools/ml/__init__.py +5 -0
  44. xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
  45. xinference/thirdparty/audiotools/ml/decorators.py +440 -0
  46. xinference/thirdparty/audiotools/ml/experiment.py +90 -0
  47. xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
  48. xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
  49. xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
  50. xinference/thirdparty/audiotools/post.py +140 -0
  51. xinference/thirdparty/audiotools/preference.py +600 -0
  52. xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
  53. xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
  54. xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
  55. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
  56. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
  57. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
  58. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
  59. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  60. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
  61. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
  62. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
  63. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
  64. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
  65. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
  66. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
  67. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
  68. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
  69. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
  70. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
  71. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
  72. xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
  73. xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
  74. xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
  75. xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
  76. xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
  77. xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
  78. xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
  79. xinference/thirdparty/indextts/__init__.py +0 -0
  80. xinference/thirdparty/indextts/cli.py +65 -0
  81. xinference/thirdparty/indextts/gpt/__init__.py +0 -0
  82. xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
  83. xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
  84. xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
  85. xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
  86. xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
  87. xinference/thirdparty/indextts/gpt/model.py +713 -0
  88. xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
  89. xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
  90. xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
  91. xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
  92. xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
  93. xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
  94. xinference/thirdparty/indextts/infer.py +690 -0
  95. xinference/thirdparty/indextts/infer_v2.py +739 -0
  96. xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
  97. xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
  98. xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
  99. xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
  100. xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
  101. xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
  102. xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
  103. xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
  104. xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
  105. xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
  106. xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
  107. xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
  108. xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
  109. xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
  110. xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
  111. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
  112. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
  113. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
  114. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
  115. xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
  116. xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
  117. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
  118. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
  119. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  120. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
  121. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
  122. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
  123. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
  124. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
  125. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
  126. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
  127. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
  128. xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
  129. xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
  130. xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
  131. xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
  132. xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
  133. xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
  134. xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
  135. xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
  136. xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
  137. xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
  138. xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
  139. xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
  140. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
  141. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
  142. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
  143. xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
  144. xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
  145. xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
  146. xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
  147. xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
  148. xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
  149. xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
  150. xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
  151. xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
  152. xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
  153. xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
  154. xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
  155. xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
  156. xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
  157. xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
  158. xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
  159. xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
  160. xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
  161. xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
  162. xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
  163. xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
  164. xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
  165. xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
  166. xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
  167. xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
  168. xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
  169. xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
  170. xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
  171. xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
  172. xinference/thirdparty/indextts/utils/__init__.py +0 -0
  173. xinference/thirdparty/indextts/utils/arch_util.py +120 -0
  174. xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
  175. xinference/thirdparty/indextts/utils/common.py +121 -0
  176. xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
  177. xinference/thirdparty/indextts/utils/front.py +536 -0
  178. xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
  179. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
  180. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
  181. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
  182. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
  183. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
  184. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
  185. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
  186. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
  187. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
  188. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
  189. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
  190. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
  191. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
  192. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
  193. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
  194. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
  195. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
  196. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
  197. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
  198. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
  199. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
  200. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
  201. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
  202. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
  203. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
  204. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
  205. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
  206. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
  207. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
  208. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
  209. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
  210. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
  211. xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
  212. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
  213. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
  214. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
  215. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
  216. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
  217. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
  218. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
  219. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
  220. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
  221. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
  222. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
  223. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
  224. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
  225. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
  226. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
  227. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
  228. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
  229. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
  230. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
  231. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
  232. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
  233. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
  234. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
  235. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
  236. xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
  237. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
  238. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
  239. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
  240. xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
  241. xinference/thirdparty/indextts/utils/text_utils.py +41 -0
  242. xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
  243. xinference/thirdparty/indextts/utils/utils.py +93 -0
  244. xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
  245. xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
  246. xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
  247. xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
  248. xinference/ui/gradio/media_interface.py +66 -8
  249. xinference/ui/web/ui/build/asset-manifest.json +6 -6
  250. xinference/ui/web/ui/build/index.html +1 -1
  251. xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
  252. xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
  253. xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
  254. xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
  255. xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
  256. xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
  257. xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
  258. xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
  259. xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
  260. xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
  261. xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
  262. xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
  263. xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
  264. xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
  265. xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
  266. xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
  267. xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
  268. xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
  269. xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
  270. xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
  271. xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
  272. xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
  273. xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
  274. xinference/ui/web/ui/package-lock.json +0 -34
  275. xinference/ui/web/ui/package.json +0 -1
  276. xinference/ui/web/ui/src/locales/en.json +9 -3
  277. xinference/ui/web/ui/src/locales/ja.json +9 -3
  278. xinference/ui/web/ui/src/locales/ko.json +9 -3
  279. xinference/ui/web/ui/src/locales/zh.json +9 -3
  280. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/METADATA +18 -2
  281. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/RECORD +285 -67
  282. xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
  283. xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
  284. xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
  285. xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
  286. xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
  287. xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
  288. xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
  289. xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
  290. xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
  291. xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
  292. xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
  293. xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
  294. xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
  295. xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
  296. xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
  297. xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
  298. xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
  299. xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
  300. xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
  301. xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
  302. xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
  303. xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
  304. xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
  305. xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
  306. xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
  307. xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
  308. xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
  309. xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
  310. xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
  311. xinference/ui/web/ui/node_modules/select/bower.json +0 -13
  312. xinference/ui/web/ui/node_modules/select/package.json +0 -29
  313. xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
  314. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
  315. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
  316. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
  317. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,219 @@
1
+ # Copyright (c) 2023 Amphion.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ # This code is borrowed from https://github.com/yl4579/PitchExtractor/blob/main/model.py
7
+
8
+ """
9
+ Implementation of model from:
10
+ Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
11
+ Convolutional Recurrent Neural Networks" (2019)
12
+ Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
13
+ """
14
+ import torch
15
+ from torch import nn
16
+
17
+
18
+ class JDCNet(nn.Module):
19
+ """
20
+ Joint Detection and Classification Network model for singing voice melody.
21
+ """
22
+
23
+ def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
24
+ super().__init__()
25
+ self.num_class = num_class
26
+
27
+ # input = (b, 1, 31, 513), b = batch size
28
+ self.conv_block = nn.Sequential(
29
+ nn.Conv2d(
30
+ in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False
31
+ ), # out: (b, 64, 31, 513)
32
+ nn.BatchNorm2d(num_features=64),
33
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
34
+ nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
35
+ )
36
+
37
+ # res blocks
38
+ self.res_block1 = ResBlock(
39
+ in_channels=64, out_channels=128
40
+ ) # (b, 128, 31, 128)
41
+ self.res_block2 = ResBlock(
42
+ in_channels=128, out_channels=192
43
+ ) # (b, 192, 31, 32)
44
+ self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
45
+
46
+ # pool block
47
+ self.pool_block = nn.Sequential(
48
+ nn.BatchNorm2d(num_features=256),
49
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
50
+ nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
51
+ nn.Dropout(p=0.2),
52
+ )
53
+
54
+ # maxpool layers (for auxiliary network inputs)
55
+ # in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
56
+ self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
57
+ # in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
58
+ self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
59
+ # in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
60
+ self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
61
+
62
+ # in = (b, 640, 31, 2), out = (b, 256, 31, 2)
63
+ self.detector_conv = nn.Sequential(
64
+ nn.Conv2d(640, 256, 1, bias=False),
65
+ nn.BatchNorm2d(256),
66
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
67
+ nn.Dropout(p=0.2),
68
+ )
69
+
70
+ # input: (b, 31, 512) - resized from (b, 256, 31, 2)
71
+ self.bilstm_classifier = nn.LSTM(
72
+ input_size=512, hidden_size=256, batch_first=True, bidirectional=True
73
+ ) # (b, 31, 512)
74
+
75
+ # input: (b, 31, 512) - resized from (b, 256, 31, 2)
76
+ self.bilstm_detector = nn.LSTM(
77
+ input_size=512, hidden_size=256, batch_first=True, bidirectional=True
78
+ ) # (b, 31, 512)
79
+
80
+ # input: (b * 31, 512)
81
+ self.classifier = nn.Linear(
82
+ in_features=512, out_features=self.num_class
83
+ ) # (b * 31, num_class)
84
+
85
+ # input: (b * 31, 512)
86
+ self.detector = nn.Linear(
87
+ in_features=512, out_features=2
88
+ ) # (b * 31, 2) - binary classifier
89
+
90
+ # initialize weights
91
+ self.apply(self.init_weights)
92
+
93
+ def get_feature_GAN(self, x):
94
+ seq_len = x.shape[-2]
95
+ x = x.float().transpose(-1, -2)
96
+
97
+ convblock_out = self.conv_block(x)
98
+
99
+ resblock1_out = self.res_block1(convblock_out)
100
+ resblock2_out = self.res_block2(resblock1_out)
101
+ resblock3_out = self.res_block3(resblock2_out)
102
+ poolblock_out = self.pool_block[0](resblock3_out)
103
+ poolblock_out = self.pool_block[1](poolblock_out)
104
+
105
+ return poolblock_out.transpose(-1, -2)
106
+
107
+ def get_feature(self, x):
108
+ seq_len = x.shape[-2]
109
+ x = x.float().transpose(-1, -2)
110
+
111
+ convblock_out = self.conv_block(x)
112
+
113
+ resblock1_out = self.res_block1(convblock_out)
114
+ resblock2_out = self.res_block2(resblock1_out)
115
+ resblock3_out = self.res_block3(resblock2_out)
116
+ poolblock_out = self.pool_block[0](resblock3_out)
117
+ poolblock_out = self.pool_block[1](poolblock_out)
118
+
119
+ return self.pool_block[2](poolblock_out)
120
+
121
+ def forward(self, x):
122
+ """
123
+ Returns:
124
+ classification_prediction, detection_prediction
125
+ sizes: (b, 31, 722), (b, 31, 2)
126
+ """
127
+ ###############################
128
+ # forward pass for classifier #
129
+ ###############################
130
+ seq_len = x.shape[-1]
131
+ x = x.float().transpose(-1, -2)
132
+
133
+ convblock_out = self.conv_block(x)
134
+
135
+ resblock1_out = self.res_block1(convblock_out)
136
+ resblock2_out = self.res_block2(resblock1_out)
137
+ resblock3_out = self.res_block3(resblock2_out)
138
+
139
+ poolblock_out = self.pool_block[0](resblock3_out)
140
+ poolblock_out = self.pool_block[1](poolblock_out)
141
+ GAN_feature = poolblock_out.transpose(-1, -2)
142
+ poolblock_out = self.pool_block[2](poolblock_out)
143
+
144
+ # (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
145
+ classifier_out = (
146
+ poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
147
+ )
148
+ classifier_out, _ = self.bilstm_classifier(
149
+ classifier_out
150
+ ) # ignore the hidden states
151
+
152
+ classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
153
+ classifier_out = self.classifier(classifier_out)
154
+ classifier_out = classifier_out.view(
155
+ (-1, seq_len, self.num_class)
156
+ ) # (b, 31, num_class)
157
+
158
+ # sizes: (b, 31, 722), (b, 31, 2)
159
+ # classifier output consists of predicted pitch classes per frame
160
+ # detector output consists of: (isvoice, notvoice) estimates per frame
161
+ return torch.abs(classifier_out.squeeze(-1)), GAN_feature, poolblock_out
162
+
163
+ @staticmethod
164
+ def init_weights(m):
165
+ if isinstance(m, nn.Linear):
166
+ nn.init.kaiming_uniform_(m.weight)
167
+ if m.bias is not None:
168
+ nn.init.constant_(m.bias, 0)
169
+ elif isinstance(m, nn.Conv2d):
170
+ nn.init.xavier_normal_(m.weight)
171
+ elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
172
+ for p in m.parameters():
173
+ if p.data is None:
174
+ continue
175
+
176
+ if len(p.shape) >= 2:
177
+ nn.init.orthogonal_(p.data)
178
+ else:
179
+ nn.init.normal_(p.data)
180
+
181
+
182
+ class ResBlock(nn.Module):
183
+ def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
184
+ super().__init__()
185
+ self.downsample = in_channels != out_channels
186
+
187
+ # BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
188
+ self.pre_conv = nn.Sequential(
189
+ nn.BatchNorm2d(num_features=in_channels),
190
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
191
+ nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
192
+ )
193
+
194
+ # conv layers
195
+ self.conv = nn.Sequential(
196
+ nn.Conv2d(
197
+ in_channels=in_channels,
198
+ out_channels=out_channels,
199
+ kernel_size=3,
200
+ padding=1,
201
+ bias=False,
202
+ ),
203
+ nn.BatchNorm2d(out_channels),
204
+ nn.LeakyReLU(leaky_relu_slope, inplace=True),
205
+ nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
206
+ )
207
+
208
+ # 1 x 1 convolution layer to match the feature dimensions
209
+ self.conv1by1 = None
210
+ if self.downsample:
211
+ self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
212
+
213
+ def forward(self, x):
214
+ x = self.pre_conv(x)
215
+ if self.downsample:
216
+ x = self.conv(x) + self.conv1by1(x)
217
+ else:
218
+ x = self.conv(x) + x
219
+ return x
@@ -0,0 +1,437 @@
1
+ # Copyright (c) 2023 Amphion.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ # This code is modified from https://github.com/sh-lee-prml/HierSpeechpp/blob/main/ttv_v1/attentions.py
7
+
8
+ import copy
9
+ import math
10
+ import numpy as np
11
+ import torch
12
+ from torch import nn
13
+ from torch.nn import functional as F
14
+
15
+ from . import commons
16
+
17
+
18
+ class LayerNorm(nn.Module):
19
+ def __init__(self, channels, eps=1e-5):
20
+ super().__init__()
21
+ self.channels = channels
22
+ self.eps = eps
23
+
24
+ self.gamma = nn.Parameter(torch.ones(channels))
25
+ self.beta = nn.Parameter(torch.zeros(channels))
26
+
27
+ def forward(self, x):
28
+ x = x.transpose(1, -1)
29
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
30
+ return x.transpose(1, -1)
31
+
32
+
33
+ class Encoder(nn.Module):
34
+ def __init__(
35
+ self,
36
+ hidden_channels,
37
+ filter_channels,
38
+ n_heads,
39
+ n_layers,
40
+ kernel_size=1,
41
+ p_dropout=0.0,
42
+ window_size=4,
43
+ **kwargs
44
+ ):
45
+ super().__init__()
46
+ self.hidden_channels = hidden_channels
47
+ self.filter_channels = filter_channels
48
+ self.n_heads = n_heads
49
+ self.n_layers = n_layers
50
+ self.kernel_size = kernel_size
51
+ self.p_dropout = p_dropout
52
+ self.window_size = window_size
53
+
54
+ self.drop = nn.Dropout(p_dropout)
55
+ self.attn_layers = nn.ModuleList()
56
+ self.norm_layers_1 = nn.ModuleList()
57
+ self.ffn_layers = nn.ModuleList()
58
+ self.norm_layers_2 = nn.ModuleList()
59
+ for i in range(self.n_layers):
60
+ self.attn_layers.append(
61
+ MultiHeadAttention(
62
+ hidden_channels,
63
+ hidden_channels,
64
+ n_heads,
65
+ p_dropout=p_dropout,
66
+ window_size=window_size,
67
+ )
68
+ )
69
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
70
+ self.ffn_layers.append(
71
+ FFN(
72
+ hidden_channels,
73
+ hidden_channels,
74
+ filter_channels,
75
+ kernel_size,
76
+ p_dropout=p_dropout,
77
+ )
78
+ )
79
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
80
+
81
+ def forward(self, x, x_mask):
82
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
83
+ x = x * x_mask
84
+ for i in range(self.n_layers):
85
+ y = self.attn_layers[i](x, x, attn_mask)
86
+ y = self.drop(y)
87
+ x = self.norm_layers_1[i](x + y)
88
+
89
+ y = self.ffn_layers[i](x, x_mask)
90
+ y = self.drop(y)
91
+ x = self.norm_layers_2[i](x + y)
92
+ x = x * x_mask
93
+ return x
94
+
95
+
96
+ class Decoder(nn.Module):
97
+ def __init__(
98
+ self,
99
+ hidden_channels,
100
+ filter_channels,
101
+ n_heads,
102
+ n_layers,
103
+ kernel_size=1,
104
+ p_dropout=0.0,
105
+ proximal_bias=False,
106
+ proximal_init=True,
107
+ **kwargs
108
+ ):
109
+ super().__init__()
110
+ self.hidden_channels = hidden_channels
111
+ self.filter_channels = filter_channels
112
+ self.n_heads = n_heads
113
+ self.n_layers = n_layers
114
+ self.kernel_size = kernel_size
115
+ self.p_dropout = p_dropout
116
+ self.proximal_bias = proximal_bias
117
+ self.proximal_init = proximal_init
118
+
119
+ self.drop = nn.Dropout(p_dropout)
120
+ self.self_attn_layers = nn.ModuleList()
121
+ self.norm_layers_0 = nn.ModuleList()
122
+ self.encdec_attn_layers = nn.ModuleList()
123
+ self.norm_layers_1 = nn.ModuleList()
124
+ self.ffn_layers = nn.ModuleList()
125
+ self.norm_layers_2 = nn.ModuleList()
126
+ for i in range(self.n_layers):
127
+ self.self_attn_layers.append(
128
+ MultiHeadAttention(
129
+ hidden_channels,
130
+ hidden_channels,
131
+ n_heads,
132
+ p_dropout=p_dropout,
133
+ proximal_bias=proximal_bias,
134
+ proximal_init=proximal_init,
135
+ )
136
+ )
137
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
138
+ self.encdec_attn_layers.append(
139
+ MultiHeadAttention(
140
+ hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
141
+ )
142
+ )
143
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
144
+ self.ffn_layers.append(
145
+ FFN(
146
+ hidden_channels,
147
+ hidden_channels,
148
+ filter_channels,
149
+ kernel_size,
150
+ p_dropout=p_dropout,
151
+ causal=True,
152
+ )
153
+ )
154
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
155
+
156
+ def forward(self, x, x_mask, h, h_mask):
157
+ """
158
+ x: decoder input
159
+ h: encoder output
160
+ """
161
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
162
+ device=x.device, dtype=x.dtype
163
+ )
164
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
165
+ x = x * x_mask
166
+ for i in range(self.n_layers):
167
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
168
+ y = self.drop(y)
169
+ x = self.norm_layers_0[i](x + y)
170
+
171
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
172
+ y = self.drop(y)
173
+ x = self.norm_layers_1[i](x + y)
174
+
175
+ y = self.ffn_layers[i](x, x_mask)
176
+ y = self.drop(y)
177
+ x = self.norm_layers_2[i](x + y)
178
+ x = x * x_mask
179
+ return x
180
+
181
+
182
+ class MultiHeadAttention(nn.Module):
183
+ def __init__(
184
+ self,
185
+ channels,
186
+ out_channels,
187
+ n_heads,
188
+ p_dropout=0.0,
189
+ window_size=None,
190
+ heads_share=True,
191
+ block_length=None,
192
+ proximal_bias=False,
193
+ proximal_init=False,
194
+ ):
195
+ super().__init__()
196
+ assert channels % n_heads == 0
197
+
198
+ self.channels = channels
199
+ self.out_channels = out_channels
200
+ self.n_heads = n_heads
201
+ self.p_dropout = p_dropout
202
+ self.window_size = window_size
203
+ self.heads_share = heads_share
204
+ self.block_length = block_length
205
+ self.proximal_bias = proximal_bias
206
+ self.proximal_init = proximal_init
207
+ self.attn = None
208
+
209
+ self.k_channels = channels // n_heads
210
+ self.conv_q = nn.Conv1d(channels, channels, 1)
211
+ self.conv_k = nn.Conv1d(channels, channels, 1)
212
+ self.conv_v = nn.Conv1d(channels, channels, 1)
213
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
214
+ self.drop = nn.Dropout(p_dropout)
215
+
216
+ if window_size is not None:
217
+ n_heads_rel = 1 if heads_share else n_heads
218
+ rel_stddev = self.k_channels**-0.5
219
+ self.emb_rel_k = nn.Parameter(
220
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
221
+ * rel_stddev
222
+ )
223
+ self.emb_rel_v = nn.Parameter(
224
+ torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
225
+ * rel_stddev
226
+ )
227
+
228
+ nn.init.xavier_uniform_(self.conv_q.weight)
229
+ nn.init.xavier_uniform_(self.conv_k.weight)
230
+ nn.init.xavier_uniform_(self.conv_v.weight)
231
+ if proximal_init:
232
+ with torch.no_grad():
233
+ self.conv_k.weight.copy_(self.conv_q.weight)
234
+ self.conv_k.bias.copy_(self.conv_q.bias)
235
+
236
+ def forward(self, x, c, attn_mask=None):
237
+ q = self.conv_q(x)
238
+ k = self.conv_k(c)
239
+ v = self.conv_v(c)
240
+
241
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
242
+
243
+ x = self.conv_o(x)
244
+ return x
245
+
246
+ def attention(self, query, key, value, mask=None):
247
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
248
+ b, d, t_s, t_t = (*key.size(), query.size(2))
249
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
250
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
251
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
252
+
253
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
254
+ if self.window_size is not None:
255
+ assert (
256
+ t_s == t_t
257
+ ), "Relative attention is only available for self-attention."
258
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
259
+ rel_logits = self._matmul_with_relative_keys(
260
+ query / math.sqrt(self.k_channels), key_relative_embeddings
261
+ )
262
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
263
+ scores = scores + scores_local
264
+ if self.proximal_bias:
265
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
266
+ scores = scores + self._attention_bias_proximal(t_s).to(
267
+ device=scores.device, dtype=scores.dtype
268
+ )
269
+ if mask is not None:
270
+ scores = scores.masked_fill(mask == 0, -1e4)
271
+ if self.block_length is not None:
272
+ assert (
273
+ t_s == t_t
274
+ ), "Local attention is only available for self-attention."
275
+ block_mask = (
276
+ torch.ones_like(scores)
277
+ .triu(-self.block_length)
278
+ .tril(self.block_length)
279
+ )
280
+ scores = scores.masked_fill(block_mask == 0, -1e4)
281
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
282
+ p_attn = self.drop(p_attn)
283
+ output = torch.matmul(p_attn, value)
284
+ if self.window_size is not None:
285
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
286
+ value_relative_embeddings = self._get_relative_embeddings(
287
+ self.emb_rel_v, t_s
288
+ )
289
+ output = output + self._matmul_with_relative_values(
290
+ relative_weights, value_relative_embeddings
291
+ )
292
+ output = (
293
+ output.transpose(2, 3).contiguous().view(b, d, t_t)
294
+ ) # [b, n_h, t_t, d_k] -> [b, d, t_t]
295
+ return output, p_attn
296
+
297
+ def _matmul_with_relative_values(self, x, y):
298
+ """
299
+ x: [b, h, l, m]
300
+ y: [h or 1, m, d]
301
+ ret: [b, h, l, d]
302
+ """
303
+ ret = torch.matmul(x, y.unsqueeze(0))
304
+ return ret
305
+
306
+ def _matmul_with_relative_keys(self, x, y):
307
+ """
308
+ x: [b, h, l, d]
309
+ y: [h or 1, m, d]
310
+ ret: [b, h, l, m]
311
+ """
312
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
313
+ return ret
314
+
315
+ def _get_relative_embeddings(self, relative_embeddings, length):
316
+ max_relative_position = 2 * self.window_size + 1
317
+ # Pad first before slice to avoid using cond ops.
318
+ pad_length = max(length - (self.window_size + 1), 0)
319
+ slice_start_position = max((self.window_size + 1) - length, 0)
320
+ slice_end_position = slice_start_position + 2 * length - 1
321
+ if pad_length > 0:
322
+ padded_relative_embeddings = F.pad(
323
+ relative_embeddings,
324
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
325
+ )
326
+ else:
327
+ padded_relative_embeddings = relative_embeddings
328
+ used_relative_embeddings = padded_relative_embeddings[
329
+ :, slice_start_position:slice_end_position
330
+ ]
331
+ return used_relative_embeddings
332
+
333
+ def _relative_position_to_absolute_position(self, x):
334
+ """
335
+ x: [b, h, l, 2*l-1]
336
+ ret: [b, h, l, l]
337
+ """
338
+ batch, heads, length, _ = x.size()
339
+ # Concat columns of pad to shift from relative to absolute indexing.
340
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
341
+
342
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
343
+ x_flat = x.view([batch, heads, length * 2 * length])
344
+ x_flat = F.pad(
345
+ x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
346
+ )
347
+
348
+ # Reshape and slice out the padded elements.
349
+ x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
350
+ :, :, :length, length - 1 :
351
+ ]
352
+ return x_final
353
+
354
+ def _absolute_position_to_relative_position(self, x):
355
+ """
356
+ x: [b, h, l, l]
357
+ ret: [b, h, l, 2*l-1]
358
+ """
359
+ batch, heads, length, _ = x.size()
360
+ # padd along column
361
+ x = F.pad(
362
+ x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
363
+ )
364
+ x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
365
+ # add 0's in the beginning that will skew the elements after reshape
366
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
367
+ x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
368
+ return x_final
369
+
370
+ def _attention_bias_proximal(self, length):
371
+ """Bias for self-attention to encourage attention to close positions.
372
+ Args:
373
+ length: an integer scalar.
374
+ Returns:
375
+ a Tensor with shape [1, 1, length, length]
376
+ """
377
+ r = torch.arange(length, dtype=torch.float32)
378
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
379
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
380
+
381
+
382
+ class FFN(nn.Module):
383
+ def __init__(
384
+ self,
385
+ in_channels,
386
+ out_channels,
387
+ filter_channels,
388
+ kernel_size,
389
+ p_dropout=0.0,
390
+ activation=None,
391
+ causal=False,
392
+ ):
393
+ super().__init__()
394
+ self.in_channels = in_channels
395
+ self.out_channels = out_channels
396
+ self.filter_channels = filter_channels
397
+ self.kernel_size = kernel_size
398
+ self.p_dropout = p_dropout
399
+ self.activation = activation
400
+ self.causal = causal
401
+
402
+ if causal:
403
+ self.padding = self._causal_padding
404
+ else:
405
+ self.padding = self._same_padding
406
+
407
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
408
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
409
+ self.drop = nn.Dropout(p_dropout)
410
+
411
+ def forward(self, x, x_mask):
412
+ x = self.conv_1(self.padding(x * x_mask))
413
+ if self.activation == "gelu":
414
+ x = x * torch.sigmoid(1.702 * x)
415
+ else:
416
+ x = torch.relu(x)
417
+ x = self.drop(x)
418
+ x = self.conv_2(self.padding(x * x_mask))
419
+ return x * x_mask
420
+
421
+ def _causal_padding(self, x):
422
+ if self.kernel_size == 1:
423
+ return x
424
+ pad_l = self.kernel_size - 1
425
+ pad_r = 0
426
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
427
+ x = F.pad(x, commons.convert_pad_shape(padding))
428
+ return x
429
+
430
+ def _same_padding(self, x):
431
+ if self.kernel_size == 1:
432
+ return x
433
+ pad_l = (self.kernel_size - 1) // 2
434
+ pad_r = self.kernel_size // 2
435
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
436
+ x = F.pad(x, commons.convert_pad_shape(padding))
437
+ return x