xinference 1.10.0__py3-none-any.whl → 1.10.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (317) hide show
  1. xinference/_version.py +3 -3
  2. xinference/api/restful_api.py +11 -28
  3. xinference/client/restful/async_restful_client.py +20 -3
  4. xinference/client/restful/restful_client.py +20 -3
  5. xinference/core/supervisor.py +87 -53
  6. xinference/core/worker.py +10 -0
  7. xinference/deploy/cmdline.py +15 -0
  8. xinference/model/audio/core.py +21 -6
  9. xinference/model/audio/indextts2.py +166 -0
  10. xinference/model/audio/model_spec.json +38 -1
  11. xinference/model/image/model_spec.json +69 -0
  12. xinference/model/image/stable_diffusion/core.py +13 -4
  13. xinference/model/llm/__init__.py +4 -0
  14. xinference/model/llm/llm_family.json +464 -2
  15. xinference/model/llm/sglang/core.py +30 -11
  16. xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
  17. xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
  18. xinference/model/llm/utils.py +12 -9
  19. xinference/model/llm/vllm/core.py +93 -17
  20. xinference/thirdparty/audiotools/__init__.py +10 -0
  21. xinference/thirdparty/audiotools/core/__init__.py +4 -0
  22. xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
  23. xinference/thirdparty/audiotools/core/display.py +194 -0
  24. xinference/thirdparty/audiotools/core/dsp.py +390 -0
  25. xinference/thirdparty/audiotools/core/effects.py +647 -0
  26. xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
  27. xinference/thirdparty/audiotools/core/loudness.py +320 -0
  28. xinference/thirdparty/audiotools/core/playback.py +252 -0
  29. xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
  30. xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
  31. xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
  32. xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
  33. xinference/thirdparty/audiotools/core/util.py +671 -0
  34. xinference/thirdparty/audiotools/core/whisper.py +97 -0
  35. xinference/thirdparty/audiotools/data/__init__.py +3 -0
  36. xinference/thirdparty/audiotools/data/datasets.py +517 -0
  37. xinference/thirdparty/audiotools/data/preprocess.py +81 -0
  38. xinference/thirdparty/audiotools/data/transforms.py +1592 -0
  39. xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
  40. xinference/thirdparty/audiotools/metrics/distance.py +131 -0
  41. xinference/thirdparty/audiotools/metrics/quality.py +159 -0
  42. xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
  43. xinference/thirdparty/audiotools/ml/__init__.py +5 -0
  44. xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
  45. xinference/thirdparty/audiotools/ml/decorators.py +440 -0
  46. xinference/thirdparty/audiotools/ml/experiment.py +90 -0
  47. xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
  48. xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
  49. xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
  50. xinference/thirdparty/audiotools/post.py +140 -0
  51. xinference/thirdparty/audiotools/preference.py +600 -0
  52. xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
  53. xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
  54. xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
  55. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
  56. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
  57. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
  58. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
  59. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  60. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
  61. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
  62. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
  63. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
  64. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
  65. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
  66. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
  67. xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
  68. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
  69. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
  70. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
  71. xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
  72. xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
  73. xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
  74. xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
  75. xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
  76. xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
  77. xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
  78. xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
  79. xinference/thirdparty/indextts/__init__.py +0 -0
  80. xinference/thirdparty/indextts/cli.py +65 -0
  81. xinference/thirdparty/indextts/gpt/__init__.py +0 -0
  82. xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
  83. xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
  84. xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
  85. xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
  86. xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
  87. xinference/thirdparty/indextts/gpt/model.py +713 -0
  88. xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
  89. xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
  90. xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
  91. xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
  92. xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
  93. xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
  94. xinference/thirdparty/indextts/infer.py +690 -0
  95. xinference/thirdparty/indextts/infer_v2.py +739 -0
  96. xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
  97. xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
  98. xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
  99. xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
  100. xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
  101. xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
  102. xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
  103. xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
  104. xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
  105. xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
  106. xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
  107. xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
  108. xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
  109. xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
  110. xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
  111. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
  112. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
  113. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
  114. xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
  115. xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
  116. xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
  117. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
  118. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
  119. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
  120. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
  121. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
  122. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
  123. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
  124. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
  125. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
  126. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
  127. xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
  128. xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
  129. xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
  130. xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
  131. xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
  132. xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
  133. xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
  134. xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
  135. xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
  136. xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
  137. xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
  138. xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
  139. xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
  140. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
  141. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
  142. xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
  143. xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
  144. xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
  145. xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
  146. xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
  147. xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
  148. xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
  149. xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
  150. xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
  151. xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
  152. xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
  153. xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
  154. xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
  155. xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
  156. xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
  157. xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
  158. xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
  159. xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
  160. xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
  161. xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
  162. xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
  163. xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
  164. xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
  165. xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
  166. xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
  167. xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
  168. xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
  169. xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
  170. xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
  171. xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
  172. xinference/thirdparty/indextts/utils/__init__.py +0 -0
  173. xinference/thirdparty/indextts/utils/arch_util.py +120 -0
  174. xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
  175. xinference/thirdparty/indextts/utils/common.py +121 -0
  176. xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
  177. xinference/thirdparty/indextts/utils/front.py +536 -0
  178. xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
  179. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
  180. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
  181. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
  182. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
  183. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
  184. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
  185. xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
  186. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
  187. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
  188. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
  189. xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
  190. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
  191. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
  192. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
  193. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
  194. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
  195. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
  196. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
  197. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
  198. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
  199. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
  200. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
  201. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
  202. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
  203. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
  204. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
  205. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
  206. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
  207. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
  208. xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
  209. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
  210. xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
  211. xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
  212. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
  213. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
  214. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
  215. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
  216. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
  217. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
  218. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
  219. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
  220. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
  221. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
  222. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
  223. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
  224. xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
  225. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
  226. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
  227. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
  228. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
  229. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
  230. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
  231. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
  232. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
  233. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
  234. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
  235. xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
  236. xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
  237. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
  238. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
  239. xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
  240. xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
  241. xinference/thirdparty/indextts/utils/text_utils.py +41 -0
  242. xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
  243. xinference/thirdparty/indextts/utils/utils.py +93 -0
  244. xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
  245. xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
  246. xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
  247. xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
  248. xinference/ui/gradio/media_interface.py +66 -8
  249. xinference/ui/web/ui/build/asset-manifest.json +6 -6
  250. xinference/ui/web/ui/build/index.html +1 -1
  251. xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
  252. xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
  253. xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
  254. xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
  255. xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
  256. xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
  257. xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
  258. xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
  259. xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
  260. xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
  261. xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
  262. xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
  263. xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
  264. xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
  265. xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
  266. xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
  267. xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
  268. xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
  269. xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
  270. xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
  271. xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
  272. xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
  273. xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
  274. xinference/ui/web/ui/package-lock.json +0 -34
  275. xinference/ui/web/ui/package.json +0 -1
  276. xinference/ui/web/ui/src/locales/en.json +9 -3
  277. xinference/ui/web/ui/src/locales/ja.json +9 -3
  278. xinference/ui/web/ui/src/locales/ko.json +9 -3
  279. xinference/ui/web/ui/src/locales/zh.json +9 -3
  280. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/METADATA +18 -2
  281. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/RECORD +285 -67
  282. xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
  283. xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
  284. xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
  285. xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
  286. xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
  287. xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
  288. xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
  289. xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
  290. xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
  291. xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
  292. xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
  293. xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
  294. xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
  295. xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
  296. xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
  297. xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
  298. xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
  299. xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
  300. xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
  301. xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
  302. xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
  303. xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
  304. xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
  305. xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
  306. xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
  307. xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
  308. xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
  309. xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
  310. xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
  311. xinference/ui/web/ui/node_modules/select/bower.json +0 -13
  312. xinference/ui/web/ui/node_modules/select/package.json +0 -29
  313. xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
  314. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
  315. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
  316. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
  317. {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,451 @@
1
+ # Copyright (c) 2022 NVIDIA CORPORATION.
2
+ # Licensed under the MIT license.
3
+
4
+ # Adapted from https://github.com/jik876/hifi-gan under the MIT license.
5
+ # LICENSE is in incl_licenses directory.
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+ from torch.nn import Conv1d, Conv2d, ConvTranspose1d
10
+ from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
11
+
12
+ import indextts.BigVGAN.activations as activations
13
+
14
+ from indextts.BigVGAN.ECAPA_TDNN import ECAPA_TDNN
15
+ from indextts.BigVGAN.utils import get_padding, init_weights
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class AMPBlock1(torch.nn.Module):
21
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
22
+ super(AMPBlock1, self).__init__()
23
+ self.h = h
24
+
25
+ self.convs1 = nn.ModuleList([
26
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
27
+ padding=get_padding(kernel_size, dilation[0]))),
28
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
29
+ padding=get_padding(kernel_size, dilation[1]))),
30
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
31
+ padding=get_padding(kernel_size, dilation[2])))
32
+ ])
33
+ self.convs1.apply(init_weights)
34
+
35
+ self.convs2 = nn.ModuleList([
36
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
37
+ padding=get_padding(kernel_size, 1))),
38
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
39
+ padding=get_padding(kernel_size, 1))),
40
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
41
+ padding=get_padding(kernel_size, 1)))
42
+ ])
43
+ self.convs2.apply(init_weights)
44
+
45
+ self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
46
+ if self.h.get("use_cuda_kernel", False):
47
+ from indextts.BigVGAN.alias_free_activation.cuda.activation1d import Activation1d
48
+ else:
49
+ from indextts.BigVGAN.alias_free_torch import Activation1d
50
+ if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
51
+ self.activations = nn.ModuleList([
52
+ Activation1d(
53
+ activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
54
+ for _ in range(self.num_layers)
55
+ ])
56
+ elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
57
+ self.activations = nn.ModuleList([
58
+ Activation1d(
59
+ activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
60
+ for _ in range(self.num_layers)
61
+ ])
62
+ else:
63
+ raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
64
+
65
+ def forward(self, x):
66
+ acts1, acts2 = self.activations[::2], self.activations[1::2]
67
+ for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
68
+ xt = a1(x)
69
+ xt = c1(xt)
70
+ xt = a2(xt)
71
+ xt = c2(xt)
72
+ x = xt + x
73
+
74
+ return x
75
+
76
+ def remove_weight_norm(self):
77
+ for l in self.convs1:
78
+ remove_weight_norm(l)
79
+ for l in self.convs2:
80
+ remove_weight_norm(l)
81
+
82
+
83
+ class AMPBlock2(torch.nn.Module):
84
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
85
+ super(AMPBlock2, self).__init__()
86
+ self.h = h
87
+
88
+ self.convs = nn.ModuleList([
89
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
90
+ padding=get_padding(kernel_size, dilation[0]))),
91
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
92
+ padding=get_padding(kernel_size, dilation[1])))
93
+ ])
94
+ self.convs.apply(init_weights)
95
+
96
+ self.num_layers = len(self.convs) # total number of conv layers
97
+ if self.h.get("use_cuda_kernel", False):
98
+ from indextts.BigVGAN.alias_free_activation.cuda.activation1d import Activation1d
99
+ else:
100
+ from indextts.BigVGAN.alias_free_torch import Activation1d
101
+
102
+ if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
103
+ self.activations = nn.ModuleList([
104
+ Activation1d(
105
+ activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
106
+ for _ in range(self.num_layers)
107
+ ])
108
+ elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
109
+ self.activations = nn.ModuleList([
110
+ Activation1d(
111
+ activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
112
+ for _ in range(self.num_layers)
113
+ ])
114
+ else:
115
+ raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
116
+
117
+ def forward(self, x):
118
+ for c, a in zip(self.convs, self.activations):
119
+ xt = a(x)
120
+ xt = c(xt)
121
+ x = xt + x
122
+
123
+ return x
124
+
125
+ def remove_weight_norm(self):
126
+ for l in self.convs:
127
+ remove_weight_norm(l)
128
+
129
+
130
+ class BigVGAN(torch.nn.Module):
131
+ # this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
132
+ def __init__(self, h, use_cuda_kernel=False):
133
+ """
134
+ Args:
135
+ h (dict)
136
+ use_cuda_kernel (bool): whether to use custom cuda kernel for anti-aliased activation
137
+ """
138
+ super(BigVGAN, self).__init__()
139
+ self.h = h
140
+ self.h["use_cuda_kernel"] = use_cuda_kernel
141
+
142
+ self.num_kernels = len(h.resblock_kernel_sizes)
143
+ self.num_upsamples = len(h.upsample_rates)
144
+
145
+ self.feat_upsample = h.feat_upsample
146
+ self.cond_in_each_up_layer = h.cond_d_vector_in_each_upsampling_layer
147
+
148
+ # pre conv
149
+ self.conv_pre = weight_norm(Conv1d(h.gpt_dim, h.upsample_initial_channel, 7, 1, padding=3))
150
+
151
+ # define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
152
+ resblock = AMPBlock1 if h.resblock == "1" else AMPBlock2
153
+
154
+ # transposed conv-based upsamplers. does not apply anti-aliasing
155
+ self.ups = nn.ModuleList()
156
+ for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
157
+ self.ups.append(nn.ModuleList([
158
+ weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
159
+ h.upsample_initial_channel // (2 ** (i + 1)),
160
+ k, u, padding=(k - u) // 2))
161
+ ]))
162
+
163
+ # residual blocks using anti-aliased multi-periodicity composition modules (AMP)
164
+ self.resblocks = nn.ModuleList()
165
+ for i in range(len(self.ups)):
166
+ ch = h.upsample_initial_channel // (2 ** (i + 1))
167
+ for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
168
+ self.resblocks.append(resblock(self.h, ch, k, d, activation=h.activation))
169
+ if use_cuda_kernel:
170
+ from indextts.BigVGAN.alias_free_activation.cuda.activation1d import Activation1d
171
+ else:
172
+ from indextts.BigVGAN.alias_free_torch import Activation1d
173
+
174
+ # post conv
175
+ if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
176
+ activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
177
+ self.activation_post = Activation1d(activation=activation_post)
178
+ elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
179
+ activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
180
+ self.activation_post = Activation1d(activation=activation_post)
181
+ else:
182
+ raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
183
+
184
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
185
+
186
+ # weight initialization
187
+ for i in range(len(self.ups)):
188
+ self.ups[i].apply(init_weights)
189
+ self.conv_post.apply(init_weights)
190
+
191
+ self.speaker_encoder = ECAPA_TDNN(h.num_mels, lin_neurons=h.speaker_embedding_dim)
192
+ self.cond_layer = nn.Conv1d(h.speaker_embedding_dim, h.upsample_initial_channel, 1)
193
+ if self.cond_in_each_up_layer:
194
+ self.conds = nn.ModuleList()
195
+ for i in range(len(self.ups)):
196
+ ch = h.upsample_initial_channel // (2 ** (i + 1))
197
+ self.conds.append(nn.Conv1d(h.speaker_embedding_dim, ch, 1))
198
+
199
+ # self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
200
+
201
+ def forward(self, x, mel_ref, lens=None):
202
+ speaker_embedding = self.speaker_encoder(mel_ref, lens)
203
+ n_batch = x.size(0)
204
+ contrastive_loss = None
205
+ if n_batch * 2 == speaker_embedding.size(0):
206
+ spe_emb_chunk1, spe_emb_chunk2 = speaker_embedding[:n_batch, :, :], speaker_embedding[n_batch:, :, :]
207
+ contrastive_loss = self.cal_clip_loss(spe_emb_chunk1.squeeze(1), spe_emb_chunk2.squeeze(1), self.logit_scale.exp())
208
+
209
+ speaker_embedding = speaker_embedding[:n_batch, :, :]
210
+ speaker_embedding = speaker_embedding.transpose(1, 2)
211
+
212
+ # upsample feat
213
+ if self.feat_upsample:
214
+ x = torch.nn.functional.interpolate(
215
+ x.transpose(1, 2),
216
+ scale_factor=[4],
217
+ mode="linear",
218
+ ).squeeze(1)
219
+ else:
220
+ x = x.transpose(1, 2)
221
+
222
+ ### bigVGAN ###
223
+ # pre conv
224
+ x = self.conv_pre(x)
225
+
226
+ x = x + self.cond_layer(speaker_embedding)
227
+
228
+ for i in range(self.num_upsamples):
229
+ # upsampling
230
+ for i_up in range(len(self.ups[i])):
231
+ x = self.ups[i][i_up](x)
232
+
233
+ if self.cond_in_each_up_layer:
234
+ x = x + self.conds[i](speaker_embedding)
235
+
236
+ # AMP blocks
237
+ xs = None
238
+ for j in range(self.num_kernels):
239
+ if xs is None:
240
+ xs = self.resblocks[i * self.num_kernels + j](x)
241
+ else:
242
+ xs += self.resblocks[i * self.num_kernels + j](x)
243
+ x = xs / self.num_kernels
244
+
245
+ # post conv
246
+ x = self.activation_post(x)
247
+ x = self.conv_post(x)
248
+ x = torch.tanh(x)
249
+
250
+ return x, contrastive_loss
251
+
252
+ def remove_weight_norm(self):
253
+ print('Removing weight norm...')
254
+ for l in self.ups:
255
+ for l_i in l:
256
+ remove_weight_norm(l_i)
257
+ for l in self.resblocks:
258
+ l.remove_weight_norm()
259
+ remove_weight_norm(self.conv_pre)
260
+ remove_weight_norm(self.conv_post)
261
+
262
+ def cal_clip_loss(self, image_features, text_features, logit_scale):
263
+ device = image_features.device
264
+ logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale)
265
+ labels = torch.arange(logits_per_image.shape[0], device=device, dtype=torch.long)
266
+ total_loss = (
267
+ F.cross_entropy(logits_per_image, labels) +
268
+ F.cross_entropy(logits_per_text, labels)
269
+ ) / 2
270
+ return total_loss
271
+
272
+ def get_logits(self, image_features, text_features, logit_scale):
273
+ logits_per_image = logit_scale * image_features @ text_features.T
274
+ logits_per_text = logit_scale * text_features @ image_features.T
275
+ return logits_per_image, logits_per_text
276
+
277
+
278
+ class DiscriminatorP(torch.nn.Module):
279
+ def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
280
+ super(DiscriminatorP, self).__init__()
281
+ self.period = period
282
+ self.d_mult = h.discriminator_channel_mult
283
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
284
+ self.convs = nn.ModuleList([
285
+ norm_f(Conv2d(1, int(32 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
286
+ norm_f(Conv2d(int(32 * self.d_mult), int(128 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
287
+ norm_f(Conv2d(int(128 * self.d_mult), int(512 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
288
+ norm_f(Conv2d(int(512 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
289
+ norm_f(Conv2d(int(1024 * self.d_mult), int(1024 * self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
290
+ ])
291
+ self.conv_post = norm_f(Conv2d(int(1024 * self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
292
+
293
+ def forward(self, x):
294
+ fmap = []
295
+
296
+ # 1d to 2d
297
+ b, c, t = x.shape
298
+ if t % self.period != 0: # pad first
299
+ n_pad = self.period - (t % self.period)
300
+ x = F.pad(x, (0, n_pad), "reflect")
301
+ t = t + n_pad
302
+ x = x.view(b, c, t // self.period, self.period)
303
+
304
+ for l in self.convs:
305
+ x = l(x)
306
+ x = F.leaky_relu(x, LRELU_SLOPE)
307
+ fmap.append(x)
308
+ x = self.conv_post(x)
309
+ fmap.append(x)
310
+ x = torch.flatten(x, 1, -1)
311
+
312
+ return x, fmap
313
+
314
+
315
+ class MultiPeriodDiscriminator(torch.nn.Module):
316
+ def __init__(self, h):
317
+ super(MultiPeriodDiscriminator, self).__init__()
318
+ self.mpd_reshapes = h.mpd_reshapes
319
+ print("mpd_reshapes: {}".format(self.mpd_reshapes))
320
+ discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
321
+ self.discriminators = nn.ModuleList(discriminators)
322
+
323
+ def forward(self, y, y_hat):
324
+ y_d_rs = []
325
+ y_d_gs = []
326
+ fmap_rs = []
327
+ fmap_gs = []
328
+ for i, d in enumerate(self.discriminators):
329
+ y_d_r, fmap_r = d(y)
330
+ y_d_g, fmap_g = d(y_hat)
331
+ y_d_rs.append(y_d_r)
332
+ fmap_rs.append(fmap_r)
333
+ y_d_gs.append(y_d_g)
334
+ fmap_gs.append(fmap_g)
335
+
336
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
337
+
338
+
339
+ class DiscriminatorR(nn.Module):
340
+ def __init__(self, cfg, resolution):
341
+ super().__init__()
342
+
343
+ self.resolution = resolution
344
+ assert len(self.resolution) == 3, \
345
+ "MRD layer requires list with len=3, got {}".format(self.resolution)
346
+ self.lrelu_slope = LRELU_SLOPE
347
+
348
+ norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
349
+ if hasattr(cfg, "mrd_use_spectral_norm"):
350
+ print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
351
+ norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
352
+ self.d_mult = cfg.discriminator_channel_mult
353
+ if hasattr(cfg, "mrd_channel_mult"):
354
+ print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
355
+ self.d_mult = cfg.mrd_channel_mult
356
+
357
+ self.convs = nn.ModuleList([
358
+ norm_f(nn.Conv2d(1, int(32 * self.d_mult), (3, 9), padding=(1, 4))),
359
+ norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
360
+ norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
361
+ norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
362
+ norm_f(nn.Conv2d(int(32 * self.d_mult), int(32 * self.d_mult), (3, 3), padding=(1, 1))),
363
+ ])
364
+ self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
365
+
366
+ def forward(self, x):
367
+ fmap = []
368
+
369
+ x = self.spectrogram(x)
370
+ x = x.unsqueeze(1)
371
+ for l in self.convs:
372
+ x = l(x)
373
+ x = F.leaky_relu(x, self.lrelu_slope)
374
+ fmap.append(x)
375
+ x = self.conv_post(x)
376
+ fmap.append(x)
377
+ x = torch.flatten(x, 1, -1)
378
+
379
+ return x, fmap
380
+
381
+ def spectrogram(self, x):
382
+ n_fft, hop_length, win_length = self.resolution
383
+ x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
384
+ x = x.squeeze(1)
385
+ x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
386
+ x = torch.view_as_real(x) # [B, F, TT, 2]
387
+ mag = torch.norm(x, p=2, dim=-1) # [B, F, TT]
388
+
389
+ return mag
390
+
391
+
392
+ class MultiResolutionDiscriminator(nn.Module):
393
+ def __init__(self, cfg, debug=False):
394
+ super().__init__()
395
+ self.resolutions = cfg.resolutions
396
+ assert len(self.resolutions) == 3, \
397
+ "MRD requires list of list with len=3, each element having a list with len=3. got {}".\
398
+ format(self.resolutions)
399
+ self.discriminators = nn.ModuleList(
400
+ [DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
401
+ )
402
+
403
+ def forward(self, y, y_hat):
404
+ y_d_rs = []
405
+ y_d_gs = []
406
+ fmap_rs = []
407
+ fmap_gs = []
408
+
409
+ for i, d in enumerate(self.discriminators):
410
+ y_d_r, fmap_r = d(x=y)
411
+ y_d_g, fmap_g = d(x=y_hat)
412
+ y_d_rs.append(y_d_r)
413
+ fmap_rs.append(fmap_r)
414
+ y_d_gs.append(y_d_g)
415
+ fmap_gs.append(fmap_g)
416
+
417
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
418
+
419
+
420
+ def feature_loss(fmap_r, fmap_g):
421
+ loss = 0
422
+ for dr, dg in zip(fmap_r, fmap_g):
423
+ for rl, gl in zip(dr, dg):
424
+ loss += torch.mean(torch.abs(rl - gl))
425
+
426
+ return loss * 2
427
+
428
+
429
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
430
+ loss = 0
431
+ r_losses = []
432
+ g_losses = []
433
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
434
+ r_loss = torch.mean((1 - dr)**2)
435
+ g_loss = torch.mean(dg**2)
436
+ loss += (r_loss + g_loss)
437
+ r_losses.append(r_loss.item())
438
+ g_losses.append(g_loss.item())
439
+
440
+ return loss, r_losses, g_losses
441
+
442
+
443
+ def generator_loss(disc_outputs):
444
+ loss = 0
445
+ gen_losses = []
446
+ for dg in disc_outputs:
447
+ l = torch.mean((1 - dg)**2)
448
+ gen_losses.append(l)
449
+ loss += l
450
+
451
+ return loss, gen_losses