xinference 1.10.0__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +11 -28
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/core/supervisor.py +87 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +38 -1
- xinference/model/image/model_spec.json +69 -0
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/llm_family.json +464 -2
- xinference/model/llm/sglang/core.py +30 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +12 -9
- xinference/model/llm/vllm/core.py +93 -17
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/METADATA +18 -2
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/RECORD +285 -67
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,515 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import os
|
|
7
|
+
import torch
|
|
8
|
+
import json
|
|
9
|
+
import json5
|
|
10
|
+
import time
|
|
11
|
+
import accelerate
|
|
12
|
+
import random
|
|
13
|
+
import numpy as np
|
|
14
|
+
import shutil
|
|
15
|
+
|
|
16
|
+
from pathlib import Path
|
|
17
|
+
from tqdm import tqdm
|
|
18
|
+
from glob import glob
|
|
19
|
+
from accelerate.logging import get_logger
|
|
20
|
+
from torch.utils.data import DataLoader
|
|
21
|
+
|
|
22
|
+
from models.vocoders.vocoder_dataset import (
|
|
23
|
+
VocoderDataset,
|
|
24
|
+
VocoderCollator,
|
|
25
|
+
VocoderConcatDataset,
|
|
26
|
+
)
|
|
27
|
+
|
|
28
|
+
from models.vocoders.gan.generator import bigvgan, hifigan, melgan, nsfhifigan, apnet
|
|
29
|
+
from models.vocoders.flow.waveglow import waveglow
|
|
30
|
+
from models.vocoders.diffusion.diffwave import diffwave
|
|
31
|
+
from models.vocoders.autoregressive.wavenet import wavenet
|
|
32
|
+
from models.vocoders.autoregressive.wavernn import wavernn
|
|
33
|
+
|
|
34
|
+
from models.vocoders.gan import gan_vocoder_inference
|
|
35
|
+
from models.vocoders.diffusion import diffusion_vocoder_inference
|
|
36
|
+
|
|
37
|
+
from utils.io import save_audio
|
|
38
|
+
|
|
39
|
+
_vocoders = {
|
|
40
|
+
"diffwave": diffwave.DiffWave,
|
|
41
|
+
"wavernn": wavernn.WaveRNN,
|
|
42
|
+
"wavenet": wavenet.WaveNet,
|
|
43
|
+
"waveglow": waveglow.WaveGlow,
|
|
44
|
+
"nsfhifigan": nsfhifigan.NSFHiFiGAN,
|
|
45
|
+
"bigvgan": bigvgan.BigVGAN,
|
|
46
|
+
"hifigan": hifigan.HiFiGAN,
|
|
47
|
+
"melgan": melgan.MelGAN,
|
|
48
|
+
"apnet": apnet.APNet,
|
|
49
|
+
}
|
|
50
|
+
|
|
51
|
+
# Forward call for generalized Inferencor
|
|
52
|
+
_vocoder_forward_funcs = {
|
|
53
|
+
# "world": world_inference.synthesis_audios,
|
|
54
|
+
# "wavernn": wavernn_inference.synthesis_audios,
|
|
55
|
+
# "wavenet": wavenet_inference.synthesis_audios,
|
|
56
|
+
"diffwave": diffusion_vocoder_inference.vocoder_inference,
|
|
57
|
+
"nsfhifigan": gan_vocoder_inference.vocoder_inference,
|
|
58
|
+
"bigvgan": gan_vocoder_inference.vocoder_inference,
|
|
59
|
+
"melgan": gan_vocoder_inference.vocoder_inference,
|
|
60
|
+
"hifigan": gan_vocoder_inference.vocoder_inference,
|
|
61
|
+
"apnet": gan_vocoder_inference.vocoder_inference,
|
|
62
|
+
}
|
|
63
|
+
|
|
64
|
+
# APIs for other tasks. e.g. SVC, TTS, TTA...
|
|
65
|
+
_vocoder_infer_funcs = {
|
|
66
|
+
# "world": world_inference.synthesis_audios,
|
|
67
|
+
# "wavernn": wavernn_inference.synthesis_audios,
|
|
68
|
+
# "wavenet": wavenet_inference.synthesis_audios,
|
|
69
|
+
"diffwave": diffusion_vocoder_inference.synthesis_audios,
|
|
70
|
+
"nsfhifigan": gan_vocoder_inference.synthesis_audios,
|
|
71
|
+
"bigvgan": gan_vocoder_inference.synthesis_audios,
|
|
72
|
+
"melgan": gan_vocoder_inference.synthesis_audios,
|
|
73
|
+
"hifigan": gan_vocoder_inference.synthesis_audios,
|
|
74
|
+
"apnet": gan_vocoder_inference.synthesis_audios,
|
|
75
|
+
}
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
class VocoderInference(object):
|
|
79
|
+
def __init__(self, args=None, cfg=None, infer_type="from_dataset"):
|
|
80
|
+
super().__init__()
|
|
81
|
+
|
|
82
|
+
start = time.monotonic_ns()
|
|
83
|
+
self.args = args
|
|
84
|
+
self.cfg = cfg
|
|
85
|
+
self.infer_type = infer_type
|
|
86
|
+
|
|
87
|
+
# Init accelerator
|
|
88
|
+
self.accelerator = accelerate.Accelerator()
|
|
89
|
+
self.accelerator.wait_for_everyone()
|
|
90
|
+
|
|
91
|
+
# Get logger
|
|
92
|
+
with self.accelerator.main_process_first():
|
|
93
|
+
self.logger = get_logger("inference", log_level=args.log_level)
|
|
94
|
+
|
|
95
|
+
# Log some info
|
|
96
|
+
self.logger.info("=" * 56)
|
|
97
|
+
self.logger.info("||\t\t" + "New inference process started." + "\t\t||")
|
|
98
|
+
self.logger.info("=" * 56)
|
|
99
|
+
self.logger.info("\n")
|
|
100
|
+
|
|
101
|
+
self.vocoder_dir = args.vocoder_dir
|
|
102
|
+
self.logger.debug(f"Vocoder dir: {args.vocoder_dir}")
|
|
103
|
+
|
|
104
|
+
os.makedirs(args.output_dir, exist_ok=True)
|
|
105
|
+
if os.path.exists(os.path.join(args.output_dir, "pred")):
|
|
106
|
+
shutil.rmtree(os.path.join(args.output_dir, "pred"))
|
|
107
|
+
if os.path.exists(os.path.join(args.output_dir, "gt")):
|
|
108
|
+
shutil.rmtree(os.path.join(args.output_dir, "gt"))
|
|
109
|
+
os.makedirs(os.path.join(args.output_dir, "pred"), exist_ok=True)
|
|
110
|
+
os.makedirs(os.path.join(args.output_dir, "gt"), exist_ok=True)
|
|
111
|
+
|
|
112
|
+
# Set random seed
|
|
113
|
+
with self.accelerator.main_process_first():
|
|
114
|
+
start = time.monotonic_ns()
|
|
115
|
+
self._set_random_seed(self.cfg.train.random_seed)
|
|
116
|
+
end = time.monotonic_ns()
|
|
117
|
+
self.logger.debug(
|
|
118
|
+
f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
|
|
119
|
+
)
|
|
120
|
+
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")
|
|
121
|
+
|
|
122
|
+
# Setup inference mode
|
|
123
|
+
if self.infer_type == "infer_from_dataset":
|
|
124
|
+
self.cfg.dataset = self.args.infer_datasets
|
|
125
|
+
elif self.infer_type == "infer_from_feature":
|
|
126
|
+
self._build_tmp_dataset_from_feature()
|
|
127
|
+
self.cfg.dataset = ["tmp"]
|
|
128
|
+
elif self.infer_type == "infer_from_audio":
|
|
129
|
+
self._build_tmp_dataset_from_audio()
|
|
130
|
+
self.cfg.dataset = ["tmp"]
|
|
131
|
+
|
|
132
|
+
# Setup data loader
|
|
133
|
+
with self.accelerator.main_process_first():
|
|
134
|
+
self.logger.info("Building dataset...")
|
|
135
|
+
start = time.monotonic_ns()
|
|
136
|
+
self.test_dataloader = self._build_dataloader()
|
|
137
|
+
end = time.monotonic_ns()
|
|
138
|
+
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")
|
|
139
|
+
|
|
140
|
+
# Build model
|
|
141
|
+
with self.accelerator.main_process_first():
|
|
142
|
+
self.logger.info("Building model...")
|
|
143
|
+
start = time.monotonic_ns()
|
|
144
|
+
self.model = self._build_model()
|
|
145
|
+
end = time.monotonic_ns()
|
|
146
|
+
self.logger.info(f"Building model done in {(end - start) / 1e6:.3f}ms")
|
|
147
|
+
|
|
148
|
+
# Init with accelerate
|
|
149
|
+
self.logger.info("Initializing accelerate...")
|
|
150
|
+
start = time.monotonic_ns()
|
|
151
|
+
self.accelerator = accelerate.Accelerator()
|
|
152
|
+
(self.model, self.test_dataloader) = self.accelerator.prepare(
|
|
153
|
+
self.model, self.test_dataloader
|
|
154
|
+
)
|
|
155
|
+
end = time.monotonic_ns()
|
|
156
|
+
self.accelerator.wait_for_everyone()
|
|
157
|
+
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.3f}ms")
|
|
158
|
+
|
|
159
|
+
with self.accelerator.main_process_first():
|
|
160
|
+
self.logger.info("Loading checkpoint...")
|
|
161
|
+
start = time.monotonic_ns()
|
|
162
|
+
if os.path.isdir(args.vocoder_dir):
|
|
163
|
+
if os.path.isdir(os.path.join(args.vocoder_dir, "checkpoint")):
|
|
164
|
+
self._load_model(os.path.join(args.vocoder_dir, "checkpoint"))
|
|
165
|
+
else:
|
|
166
|
+
self._load_model(os.path.join(args.vocoder_dir))
|
|
167
|
+
else:
|
|
168
|
+
self._load_model(os.path.join(args.vocoder_dir))
|
|
169
|
+
end = time.monotonic_ns()
|
|
170
|
+
self.logger.info(f"Loading checkpoint done in {(end - start) / 1e6:.3f}ms")
|
|
171
|
+
|
|
172
|
+
self.model.eval()
|
|
173
|
+
self.accelerator.wait_for_everyone()
|
|
174
|
+
|
|
175
|
+
def _build_tmp_dataset_from_feature(self):
|
|
176
|
+
if os.path.exists(os.path.join(self.cfg.preprocess.processed_dir, "tmp")):
|
|
177
|
+
shutil.rmtree(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
|
|
178
|
+
|
|
179
|
+
utts = []
|
|
180
|
+
mels = glob(os.path.join(self.args.feature_folder, "mels", "*.npy"))
|
|
181
|
+
for i, mel in enumerate(mels):
|
|
182
|
+
uid = mel.split("/")[-1].split(".")[0]
|
|
183
|
+
utt = {"Dataset": "tmp", "Uid": uid, "index": i}
|
|
184
|
+
utts.append(utt)
|
|
185
|
+
|
|
186
|
+
os.makedirs(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
|
|
187
|
+
with open(
|
|
188
|
+
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "test.json"), "w"
|
|
189
|
+
) as f:
|
|
190
|
+
json.dump(utts, f)
|
|
191
|
+
|
|
192
|
+
meta_info = {"dataset": "tmp", "test": {"size": len(utts)}}
|
|
193
|
+
|
|
194
|
+
with open(
|
|
195
|
+
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "meta_info.json"),
|
|
196
|
+
"w",
|
|
197
|
+
) as f:
|
|
198
|
+
json.dump(meta_info, f)
|
|
199
|
+
|
|
200
|
+
features = glob(os.path.join(self.args.feature_folder, "*"))
|
|
201
|
+
for feature in features:
|
|
202
|
+
feature_name = feature.split("/")[-1]
|
|
203
|
+
if os.path.isfile(feature):
|
|
204
|
+
continue
|
|
205
|
+
shutil.copytree(
|
|
206
|
+
os.path.join(self.args.feature_folder, feature_name),
|
|
207
|
+
os.path.join(self.cfg.preprocess.processed_dir, "tmp", feature_name),
|
|
208
|
+
)
|
|
209
|
+
|
|
210
|
+
def _build_tmp_dataset_from_audio(self):
|
|
211
|
+
if os.path.exists(os.path.join(self.cfg.preprocess.processed_dir, "tmp")):
|
|
212
|
+
shutil.rmtree(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
|
|
213
|
+
|
|
214
|
+
utts = []
|
|
215
|
+
audios = glob(os.path.join(self.args.audio_folder, "*"))
|
|
216
|
+
for i, audio in enumerate(audios):
|
|
217
|
+
uid = audio.split("/")[-1].split(".")[0]
|
|
218
|
+
utt = {"Dataset": "tmp", "Uid": uid, "index": i, "Path": audio}
|
|
219
|
+
utts.append(utt)
|
|
220
|
+
|
|
221
|
+
os.makedirs(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
|
|
222
|
+
with open(
|
|
223
|
+
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "test.json"), "w"
|
|
224
|
+
) as f:
|
|
225
|
+
json.dump(utts, f)
|
|
226
|
+
|
|
227
|
+
meta_info = {"dataset": "tmp", "test": {"size": len(utts)}}
|
|
228
|
+
|
|
229
|
+
with open(
|
|
230
|
+
os.path.join(self.cfg.preprocess.processed_dir, "tmp", "meta_info.json"),
|
|
231
|
+
"w",
|
|
232
|
+
) as f:
|
|
233
|
+
json.dump(meta_info, f)
|
|
234
|
+
|
|
235
|
+
from processors import acoustic_extractor
|
|
236
|
+
|
|
237
|
+
acoustic_extractor.extract_utt_acoustic_features_serial(
|
|
238
|
+
utts, os.path.join(self.cfg.preprocess.processed_dir, "tmp"), self.cfg
|
|
239
|
+
)
|
|
240
|
+
|
|
241
|
+
def _build_test_dataset(self):
|
|
242
|
+
return VocoderDataset, VocoderCollator
|
|
243
|
+
|
|
244
|
+
def _build_model(self):
|
|
245
|
+
model = _vocoders[self.cfg.model.generator](self.cfg)
|
|
246
|
+
return model
|
|
247
|
+
|
|
248
|
+
def _build_dataloader(self):
|
|
249
|
+
"""Build dataloader which merges a series of datasets."""
|
|
250
|
+
Dataset, Collator = self._build_test_dataset()
|
|
251
|
+
|
|
252
|
+
datasets_list = []
|
|
253
|
+
for dataset in self.cfg.dataset:
|
|
254
|
+
subdataset = Dataset(self.cfg, dataset, is_valid=True)
|
|
255
|
+
datasets_list.append(subdataset)
|
|
256
|
+
test_dataset = VocoderConcatDataset(datasets_list, full_audio_inference=False)
|
|
257
|
+
test_collate = Collator(self.cfg)
|
|
258
|
+
test_batch_size = min(self.cfg.inference.batch_size, len(test_dataset))
|
|
259
|
+
test_dataloader = DataLoader(
|
|
260
|
+
test_dataset,
|
|
261
|
+
collate_fn=test_collate,
|
|
262
|
+
num_workers=1,
|
|
263
|
+
batch_size=test_batch_size,
|
|
264
|
+
shuffle=False,
|
|
265
|
+
)
|
|
266
|
+
self.test_batch_size = test_batch_size
|
|
267
|
+
self.test_dataset = test_dataset
|
|
268
|
+
return test_dataloader
|
|
269
|
+
|
|
270
|
+
def _load_model(self, checkpoint_dir, from_multi_gpu=False):
|
|
271
|
+
"""Load model from checkpoint. If a folder is given, it will
|
|
272
|
+
load the latest checkpoint in checkpoint_dir. If a path is given
|
|
273
|
+
it will load the checkpoint specified by checkpoint_path.
|
|
274
|
+
**Only use this method after** ``accelerator.prepare()``.
|
|
275
|
+
"""
|
|
276
|
+
if os.path.isdir(checkpoint_dir):
|
|
277
|
+
if "epoch" in checkpoint_dir and "step" in checkpoint_dir:
|
|
278
|
+
checkpoint_path = checkpoint_dir
|
|
279
|
+
else:
|
|
280
|
+
# Load the latest accelerator state dicts
|
|
281
|
+
ls = [
|
|
282
|
+
str(i)
|
|
283
|
+
for i in Path(checkpoint_dir).glob("*")
|
|
284
|
+
if not "audio" in str(i)
|
|
285
|
+
]
|
|
286
|
+
ls.sort(
|
|
287
|
+
key=lambda x: int(x.split("/")[-1].split("_")[0].split("-")[-1]),
|
|
288
|
+
reverse=True,
|
|
289
|
+
)
|
|
290
|
+
checkpoint_path = ls[0]
|
|
291
|
+
accelerate.load_checkpoint_and_dispatch(
|
|
292
|
+
self.accelerator.unwrap_model(self.model),
|
|
293
|
+
os.path.join(checkpoint_path, "pytorch_model.bin"),
|
|
294
|
+
)
|
|
295
|
+
return str(checkpoint_path)
|
|
296
|
+
else:
|
|
297
|
+
# Load old .pt checkpoints
|
|
298
|
+
if self.cfg.model.generator in [
|
|
299
|
+
"bigvgan",
|
|
300
|
+
"hifigan",
|
|
301
|
+
"melgan",
|
|
302
|
+
"nsfhifigan",
|
|
303
|
+
]:
|
|
304
|
+
ckpt = torch.load(
|
|
305
|
+
checkpoint_dir,
|
|
306
|
+
map_location=(
|
|
307
|
+
torch.device("cuda")
|
|
308
|
+
if torch.cuda.is_available()
|
|
309
|
+
else torch.device("cpu")
|
|
310
|
+
),
|
|
311
|
+
)
|
|
312
|
+
if from_multi_gpu:
|
|
313
|
+
pretrained_generator_dict = ckpt["generator_state_dict"]
|
|
314
|
+
generator_dict = self.model.state_dict()
|
|
315
|
+
|
|
316
|
+
new_generator_dict = {
|
|
317
|
+
k.split("module.")[-1]: v
|
|
318
|
+
for k, v in pretrained_generator_dict.items()
|
|
319
|
+
if (
|
|
320
|
+
k.split("module.")[-1] in generator_dict
|
|
321
|
+
and v.shape == generator_dict[k.split("module.")[-1]].shape
|
|
322
|
+
)
|
|
323
|
+
}
|
|
324
|
+
|
|
325
|
+
generator_dict.update(new_generator_dict)
|
|
326
|
+
|
|
327
|
+
self.model.load_state_dict(generator_dict)
|
|
328
|
+
else:
|
|
329
|
+
self.model.load_state_dict(ckpt["generator_state_dict"])
|
|
330
|
+
else:
|
|
331
|
+
self.model.load_state_dict(torch.load(checkpoint_dir)["state_dict"])
|
|
332
|
+
return str(checkpoint_dir)
|
|
333
|
+
|
|
334
|
+
def inference(self):
|
|
335
|
+
"""Inference via batches"""
|
|
336
|
+
for i, batch in tqdm(enumerate(self.test_dataloader)):
|
|
337
|
+
if self.cfg.preprocess.use_frame_pitch:
|
|
338
|
+
audio_pred = _vocoder_forward_funcs[self.cfg.model.generator](
|
|
339
|
+
self.cfg,
|
|
340
|
+
self.model,
|
|
341
|
+
batch["mel"].transpose(-1, -2),
|
|
342
|
+
f0s=batch["frame_pitch"].float(),
|
|
343
|
+
device=next(self.model.parameters()).device,
|
|
344
|
+
)
|
|
345
|
+
else:
|
|
346
|
+
audio_pred = _vocoder_forward_funcs[self.cfg.model.generator](
|
|
347
|
+
self.cfg,
|
|
348
|
+
self.model,
|
|
349
|
+
batch["mel"].transpose(-1, -2),
|
|
350
|
+
device=next(self.model.parameters()).device,
|
|
351
|
+
)
|
|
352
|
+
audio_ls = audio_pred.chunk(self.test_batch_size)
|
|
353
|
+
audio_gt_ls = batch["audio"].cpu().chunk(self.test_batch_size)
|
|
354
|
+
length_ls = batch["target_len"].cpu().chunk(self.test_batch_size)
|
|
355
|
+
j = 0
|
|
356
|
+
for it, it_gt, l in zip(audio_ls, audio_gt_ls, length_ls):
|
|
357
|
+
l = l.item()
|
|
358
|
+
it = it.squeeze(0).squeeze(0)[: l * self.cfg.preprocess.hop_size]
|
|
359
|
+
it_gt = it_gt.squeeze(0)[: l * self.cfg.preprocess.hop_size]
|
|
360
|
+
uid = self.test_dataset.metadata[i * self.test_batch_size + j]["Uid"]
|
|
361
|
+
save_audio(
|
|
362
|
+
os.path.join(self.args.output_dir, "pred", "{}.wav").format(uid),
|
|
363
|
+
it,
|
|
364
|
+
self.cfg.preprocess.sample_rate,
|
|
365
|
+
)
|
|
366
|
+
save_audio(
|
|
367
|
+
os.path.join(self.args.output_dir, "gt", "{}.wav").format(uid),
|
|
368
|
+
it_gt,
|
|
369
|
+
self.cfg.preprocess.sample_rate,
|
|
370
|
+
)
|
|
371
|
+
j += 1
|
|
372
|
+
|
|
373
|
+
if os.path.exists(os.path.join(self.cfg.preprocess.processed_dir, "tmp")):
|
|
374
|
+
shutil.rmtree(os.path.join(self.cfg.preprocess.processed_dir, "tmp"))
|
|
375
|
+
|
|
376
|
+
def _set_random_seed(self, seed):
|
|
377
|
+
"""Set random seed for all possible random modules."""
|
|
378
|
+
random.seed(seed)
|
|
379
|
+
np.random.seed(seed)
|
|
380
|
+
torch.random.manual_seed(seed)
|
|
381
|
+
|
|
382
|
+
def _count_parameters(self, model):
|
|
383
|
+
return sum(p.numel() for p in model.parameters())
|
|
384
|
+
|
|
385
|
+
def _dump_cfg(self, path):
|
|
386
|
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
|
387
|
+
json5.dump(
|
|
388
|
+
self.cfg,
|
|
389
|
+
open(path, "w"),
|
|
390
|
+
indent=4,
|
|
391
|
+
sort_keys=True,
|
|
392
|
+
ensure_ascii=False,
|
|
393
|
+
quote_keys=True,
|
|
394
|
+
)
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
def load_nnvocoder(
|
|
398
|
+
cfg,
|
|
399
|
+
vocoder_name,
|
|
400
|
+
weights_file,
|
|
401
|
+
from_multi_gpu=False,
|
|
402
|
+
):
|
|
403
|
+
"""Load the specified vocoder.
|
|
404
|
+
cfg: the vocoder config filer.
|
|
405
|
+
weights_file: a folder or a .pt path.
|
|
406
|
+
from_multi_gpu: automatically remove the "module" string in state dicts if "True".
|
|
407
|
+
"""
|
|
408
|
+
print("Loading Vocoder from Weights file: {}".format(weights_file))
|
|
409
|
+
|
|
410
|
+
# Build model
|
|
411
|
+
model = _vocoders[vocoder_name](cfg)
|
|
412
|
+
if not os.path.isdir(weights_file):
|
|
413
|
+
# Load from .pt file
|
|
414
|
+
if vocoder_name in ["bigvgan", "hifigan", "melgan", "nsfhifigan"]:
|
|
415
|
+
ckpt = torch.load(
|
|
416
|
+
weights_file,
|
|
417
|
+
map_location=(
|
|
418
|
+
torch.device("cuda")
|
|
419
|
+
if torch.cuda.is_available()
|
|
420
|
+
else torch.device("cpu")
|
|
421
|
+
),
|
|
422
|
+
)
|
|
423
|
+
if from_multi_gpu:
|
|
424
|
+
pretrained_generator_dict = ckpt["generator_state_dict"]
|
|
425
|
+
generator_dict = model.state_dict()
|
|
426
|
+
|
|
427
|
+
new_generator_dict = {
|
|
428
|
+
k.split("module.")[-1]: v
|
|
429
|
+
for k, v in pretrained_generator_dict.items()
|
|
430
|
+
if (
|
|
431
|
+
k.split("module.")[-1] in generator_dict
|
|
432
|
+
and v.shape == generator_dict[k.split("module.")[-1]].shape
|
|
433
|
+
)
|
|
434
|
+
}
|
|
435
|
+
|
|
436
|
+
generator_dict.update(new_generator_dict)
|
|
437
|
+
|
|
438
|
+
model.load_state_dict(generator_dict)
|
|
439
|
+
else:
|
|
440
|
+
model.load_state_dict(ckpt["generator_state_dict"])
|
|
441
|
+
else:
|
|
442
|
+
model.load_state_dict(torch.load(weights_file)["state_dict"])
|
|
443
|
+
else:
|
|
444
|
+
# Load from accelerator state dict
|
|
445
|
+
weights_file = os.path.join(weights_file, "checkpoint")
|
|
446
|
+
ls = [str(i) for i in Path(weights_file).glob("*") if not "audio" in str(i)]
|
|
447
|
+
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
|
|
448
|
+
checkpoint_path = ls[0]
|
|
449
|
+
accelerator = accelerate.Accelerator()
|
|
450
|
+
model = accelerator.prepare(model)
|
|
451
|
+
accelerator.load_state(checkpoint_path)
|
|
452
|
+
|
|
453
|
+
if torch.cuda.is_available():
|
|
454
|
+
model = model.cuda()
|
|
455
|
+
|
|
456
|
+
model = model.eval()
|
|
457
|
+
return model
|
|
458
|
+
|
|
459
|
+
|
|
460
|
+
def tensorize(data, device, n_samples):
|
|
461
|
+
"""
|
|
462
|
+
data: a list of numpy array
|
|
463
|
+
"""
|
|
464
|
+
assert type(data) == list
|
|
465
|
+
if n_samples:
|
|
466
|
+
data = data[:n_samples]
|
|
467
|
+
data = [torch.as_tensor(x, device=device) for x in data]
|
|
468
|
+
return data
|
|
469
|
+
|
|
470
|
+
|
|
471
|
+
def synthesis(
|
|
472
|
+
cfg,
|
|
473
|
+
vocoder_weight_file,
|
|
474
|
+
n_samples,
|
|
475
|
+
pred,
|
|
476
|
+
f0s=None,
|
|
477
|
+
batch_size=64,
|
|
478
|
+
fast_inference=False,
|
|
479
|
+
):
|
|
480
|
+
"""Synthesis audios from a given vocoder and series of given features.
|
|
481
|
+
cfg: vocoder config.
|
|
482
|
+
vocoder_weight_file: a folder of accelerator state dict or a path to the .pt file.
|
|
483
|
+
pred: a list of numpy arrays. [(seq_len1, acoustic_features_dim), (seq_len2, acoustic_features_dim), ...]
|
|
484
|
+
"""
|
|
485
|
+
|
|
486
|
+
vocoder_name = cfg.model.generator
|
|
487
|
+
|
|
488
|
+
print("Synthesis audios using {} vocoder...".format(vocoder_name))
|
|
489
|
+
|
|
490
|
+
###### TODO: World Vocoder Refactor ######
|
|
491
|
+
# if vocoder_name == "world":
|
|
492
|
+
# world_inference.synthesis_audios(
|
|
493
|
+
# cfg, dataset_name, split, n_samples, pred, save_dir, tag
|
|
494
|
+
# )
|
|
495
|
+
# return
|
|
496
|
+
|
|
497
|
+
# ====== Loading neural vocoder model ======
|
|
498
|
+
vocoder = load_nnvocoder(
|
|
499
|
+
cfg, vocoder_name, weights_file=vocoder_weight_file, from_multi_gpu=True
|
|
500
|
+
)
|
|
501
|
+
device = next(vocoder.parameters()).device
|
|
502
|
+
|
|
503
|
+
# ====== Inference for predicted acoustic features ======
|
|
504
|
+
# pred: (frame_len, n_mels) -> (n_mels, frame_len)
|
|
505
|
+
mels_pred = tensorize([p.T for p in pred], device, n_samples)
|
|
506
|
+
print("For predicted mels, #sample = {}...".format(len(mels_pred)))
|
|
507
|
+
audios_pred = _vocoder_infer_funcs[vocoder_name](
|
|
508
|
+
cfg,
|
|
509
|
+
vocoder,
|
|
510
|
+
mels_pred,
|
|
511
|
+
f0s=f0s,
|
|
512
|
+
batch_size=batch_size,
|
|
513
|
+
fast_inference=fast_inference,
|
|
514
|
+
)
|
|
515
|
+
return audios_pred
|
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
# Copyright (c) 2023 Amphion.
|
|
2
|
+
#
|
|
3
|
+
# This source code is licensed under the MIT license found in the
|
|
4
|
+
# LICENSE file in the root directory of this source tree.
|
|
5
|
+
|
|
6
|
+
import math
|
|
7
|
+
import random
|
|
8
|
+
|
|
9
|
+
from torch.utils.data import ConcatDataset, Dataset
|
|
10
|
+
from torch.utils.data.sampler import (
|
|
11
|
+
BatchSampler,
|
|
12
|
+
RandomSampler,
|
|
13
|
+
Sampler,
|
|
14
|
+
SequentialSampler,
|
|
15
|
+
)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class ScheduledSampler(Sampler):
|
|
19
|
+
"""A sampler that samples data from a given concat-dataset.
|
|
20
|
+
|
|
21
|
+
Args:
|
|
22
|
+
concat_dataset (ConcatDataset): a concatenated dataset consisting of all datasets
|
|
23
|
+
batch_size (int): batch size
|
|
24
|
+
holistic_shuffle (bool): whether to shuffle the whole dataset or not
|
|
25
|
+
logger (logging.Logger): logger to print warning message
|
|
26
|
+
|
|
27
|
+
Usage:
|
|
28
|
+
For cfg.train.batch_size = 3, cfg.train.holistic_shuffle = False, cfg.train.drop_last = True:
|
|
29
|
+
>>> list(ScheduledSampler(ConcatDataset([0, 1, 2], [3, 4, 5], [6, 7, 8]])))
|
|
30
|
+
[3, 4, 5, 0, 1, 2, 6, 7, 8]
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
def __init__(
|
|
34
|
+
self, concat_dataset, batch_size, holistic_shuffle, logger=None, type="train"
|
|
35
|
+
):
|
|
36
|
+
if not isinstance(concat_dataset, ConcatDataset):
|
|
37
|
+
raise ValueError(
|
|
38
|
+
"concat_dataset must be an instance of ConcatDataset, but got {}".format(
|
|
39
|
+
type(concat_dataset)
|
|
40
|
+
)
|
|
41
|
+
)
|
|
42
|
+
if not isinstance(batch_size, int):
|
|
43
|
+
raise ValueError(
|
|
44
|
+
"batch_size must be an integer, but got {}".format(type(batch_size))
|
|
45
|
+
)
|
|
46
|
+
if not isinstance(holistic_shuffle, bool):
|
|
47
|
+
raise ValueError(
|
|
48
|
+
"holistic_shuffle must be a boolean, but got {}".format(
|
|
49
|
+
type(holistic_shuffle)
|
|
50
|
+
)
|
|
51
|
+
)
|
|
52
|
+
|
|
53
|
+
self.concat_dataset = concat_dataset
|
|
54
|
+
self.batch_size = batch_size
|
|
55
|
+
self.holistic_shuffle = holistic_shuffle
|
|
56
|
+
|
|
57
|
+
affected_dataset_name = []
|
|
58
|
+
affected_dataset_len = []
|
|
59
|
+
for dataset in concat_dataset.datasets:
|
|
60
|
+
dataset_len = len(dataset)
|
|
61
|
+
dataset_name = dataset.get_dataset_name()
|
|
62
|
+
if dataset_len < batch_size:
|
|
63
|
+
affected_dataset_name.append(dataset_name)
|
|
64
|
+
affected_dataset_len.append(dataset_len)
|
|
65
|
+
|
|
66
|
+
self.type = type
|
|
67
|
+
for dataset_name, dataset_len in zip(
|
|
68
|
+
affected_dataset_name, affected_dataset_len
|
|
69
|
+
):
|
|
70
|
+
if not type == "valid":
|
|
71
|
+
logger.warning(
|
|
72
|
+
"The {} dataset {} has a length of {}, which is smaller than the batch size {}. This may cause unexpected behavior.".format(
|
|
73
|
+
type, dataset_name, dataset_len, batch_size
|
|
74
|
+
)
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
def __len__(self):
|
|
78
|
+
# the number of batches with drop last
|
|
79
|
+
num_of_batches = sum(
|
|
80
|
+
[
|
|
81
|
+
math.floor(len(dataset) / self.batch_size)
|
|
82
|
+
for dataset in self.concat_dataset.datasets
|
|
83
|
+
]
|
|
84
|
+
)
|
|
85
|
+
return num_of_batches * self.batch_size
|
|
86
|
+
|
|
87
|
+
def __iter__(self):
|
|
88
|
+
iters = []
|
|
89
|
+
for dataset in self.concat_dataset.datasets:
|
|
90
|
+
iters.append(
|
|
91
|
+
SequentialSampler(dataset).__iter__()
|
|
92
|
+
if self.holistic_shuffle
|
|
93
|
+
else RandomSampler(dataset).__iter__()
|
|
94
|
+
)
|
|
95
|
+
init_indices = [0] + self.concat_dataset.cumulative_sizes[:-1]
|
|
96
|
+
output_batches = []
|
|
97
|
+
for dataset_idx in range(len(self.concat_dataset.datasets)):
|
|
98
|
+
cur_batch = []
|
|
99
|
+
for idx in iters[dataset_idx]:
|
|
100
|
+
cur_batch.append(idx + init_indices[dataset_idx])
|
|
101
|
+
if len(cur_batch) == self.batch_size:
|
|
102
|
+
output_batches.append(cur_batch)
|
|
103
|
+
cur_batch = []
|
|
104
|
+
if self.type == "valid" and len(cur_batch) > 0:
|
|
105
|
+
output_batches.append(cur_batch)
|
|
106
|
+
cur_batch = []
|
|
107
|
+
# force drop last in training
|
|
108
|
+
random.shuffle(output_batches)
|
|
109
|
+
output_indices = [item for sublist in output_batches for item in sublist]
|
|
110
|
+
return iter(output_indices)
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def build_samplers(concat_dataset: Dataset, cfg, logger, type):
|
|
114
|
+
sampler = ScheduledSampler(
|
|
115
|
+
concat_dataset,
|
|
116
|
+
cfg.train.batch_size,
|
|
117
|
+
cfg.train.sampler.holistic_shuffle,
|
|
118
|
+
logger,
|
|
119
|
+
type,
|
|
120
|
+
)
|
|
121
|
+
batch_sampler = BatchSampler(
|
|
122
|
+
sampler,
|
|
123
|
+
cfg.train.batch_size,
|
|
124
|
+
cfg.train.sampler.drop_last if not type == "valid" else False,
|
|
125
|
+
)
|
|
126
|
+
return sampler, batch_sampler
|