xinference 1.10.0__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +11 -28
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/core/supervisor.py +87 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +38 -1
- xinference/model/image/model_spec.json +69 -0
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/llm_family.json +464 -2
- xinference/model/llm/sglang/core.py +30 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +12 -9
- xinference/model/llm/vllm/core.py +93 -17
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/METADATA +18 -2
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/RECORD +285 -67
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,368 @@
|
|
|
1
|
+
import typing
|
|
2
|
+
from typing import List
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import torch.nn.functional as F
|
|
6
|
+
from audiotools import AudioSignal
|
|
7
|
+
from audiotools import STFTParams
|
|
8
|
+
from torch import nn
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class L1Loss(nn.L1Loss):
|
|
12
|
+
"""L1 Loss between AudioSignals. Defaults
|
|
13
|
+
to comparing ``audio_data``, but any
|
|
14
|
+
attribute of an AudioSignal can be used.
|
|
15
|
+
|
|
16
|
+
Parameters
|
|
17
|
+
----------
|
|
18
|
+
attribute : str, optional
|
|
19
|
+
Attribute of signal to compare, defaults to ``audio_data``.
|
|
20
|
+
weight : float, optional
|
|
21
|
+
Weight of this loss, defaults to 1.0.
|
|
22
|
+
|
|
23
|
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
|
|
27
|
+
self.attribute = attribute
|
|
28
|
+
self.weight = weight
|
|
29
|
+
super().__init__(**kwargs)
|
|
30
|
+
|
|
31
|
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
32
|
+
"""
|
|
33
|
+
Parameters
|
|
34
|
+
----------
|
|
35
|
+
x : AudioSignal
|
|
36
|
+
Estimate AudioSignal
|
|
37
|
+
y : AudioSignal
|
|
38
|
+
Reference AudioSignal
|
|
39
|
+
|
|
40
|
+
Returns
|
|
41
|
+
-------
|
|
42
|
+
torch.Tensor
|
|
43
|
+
L1 loss between AudioSignal attributes.
|
|
44
|
+
"""
|
|
45
|
+
if isinstance(x, AudioSignal):
|
|
46
|
+
x = getattr(x, self.attribute)
|
|
47
|
+
y = getattr(y, self.attribute)
|
|
48
|
+
return super().forward(x, y)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class SISDRLoss(nn.Module):
|
|
52
|
+
"""
|
|
53
|
+
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
|
|
54
|
+
of estimated and reference audio signals or aligned features.
|
|
55
|
+
|
|
56
|
+
Parameters
|
|
57
|
+
----------
|
|
58
|
+
scaling : int, optional
|
|
59
|
+
Whether to use scale-invariant (True) or
|
|
60
|
+
signal-to-noise ratio (False), by default True
|
|
61
|
+
reduction : str, optional
|
|
62
|
+
How to reduce across the batch (either 'mean',
|
|
63
|
+
'sum', or none).], by default ' mean'
|
|
64
|
+
zero_mean : int, optional
|
|
65
|
+
Zero mean the references and estimates before
|
|
66
|
+
computing the loss, by default True
|
|
67
|
+
clip_min : int, optional
|
|
68
|
+
The minimum possible loss value. Helps network
|
|
69
|
+
to not focus on making already good examples better, by default None
|
|
70
|
+
weight : float, optional
|
|
71
|
+
Weight of this loss, defaults to 1.0.
|
|
72
|
+
|
|
73
|
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/distance.py
|
|
74
|
+
"""
|
|
75
|
+
|
|
76
|
+
def __init__(
|
|
77
|
+
self,
|
|
78
|
+
scaling: int = True,
|
|
79
|
+
reduction: str = "mean",
|
|
80
|
+
zero_mean: int = True,
|
|
81
|
+
clip_min: int = None,
|
|
82
|
+
weight: float = 1.0,
|
|
83
|
+
):
|
|
84
|
+
self.scaling = scaling
|
|
85
|
+
self.reduction = reduction
|
|
86
|
+
self.zero_mean = zero_mean
|
|
87
|
+
self.clip_min = clip_min
|
|
88
|
+
self.weight = weight
|
|
89
|
+
super().__init__()
|
|
90
|
+
|
|
91
|
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
92
|
+
eps = 1e-8
|
|
93
|
+
# nb, nc, nt
|
|
94
|
+
if isinstance(x, AudioSignal):
|
|
95
|
+
references = x.audio_data
|
|
96
|
+
estimates = y.audio_data
|
|
97
|
+
else:
|
|
98
|
+
references = x
|
|
99
|
+
estimates = y
|
|
100
|
+
|
|
101
|
+
nb = references.shape[0]
|
|
102
|
+
references = references.reshape(nb, 1, -1).permute(0, 2, 1)
|
|
103
|
+
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
|
|
104
|
+
|
|
105
|
+
# samples now on axis 1
|
|
106
|
+
if self.zero_mean:
|
|
107
|
+
mean_reference = references.mean(dim=1, keepdim=True)
|
|
108
|
+
mean_estimate = estimates.mean(dim=1, keepdim=True)
|
|
109
|
+
else:
|
|
110
|
+
mean_reference = 0
|
|
111
|
+
mean_estimate = 0
|
|
112
|
+
|
|
113
|
+
_references = references - mean_reference
|
|
114
|
+
_estimates = estimates - mean_estimate
|
|
115
|
+
|
|
116
|
+
references_projection = (_references**2).sum(dim=-2) + eps
|
|
117
|
+
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
|
|
118
|
+
|
|
119
|
+
scale = (
|
|
120
|
+
(references_on_estimates / references_projection).unsqueeze(1)
|
|
121
|
+
if self.scaling
|
|
122
|
+
else 1
|
|
123
|
+
)
|
|
124
|
+
|
|
125
|
+
e_true = scale * _references
|
|
126
|
+
e_res = _estimates - e_true
|
|
127
|
+
|
|
128
|
+
signal = (e_true**2).sum(dim=1)
|
|
129
|
+
noise = (e_res**2).sum(dim=1)
|
|
130
|
+
sdr = -10 * torch.log10(signal / noise + eps)
|
|
131
|
+
|
|
132
|
+
if self.clip_min is not None:
|
|
133
|
+
sdr = torch.clamp(sdr, min=self.clip_min)
|
|
134
|
+
|
|
135
|
+
if self.reduction == "mean":
|
|
136
|
+
sdr = sdr.mean()
|
|
137
|
+
elif self.reduction == "sum":
|
|
138
|
+
sdr = sdr.sum()
|
|
139
|
+
return sdr
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
class MultiScaleSTFTLoss(nn.Module):
|
|
143
|
+
"""Computes the multi-scale STFT loss from [1].
|
|
144
|
+
|
|
145
|
+
Parameters
|
|
146
|
+
----------
|
|
147
|
+
window_lengths : List[int], optional
|
|
148
|
+
Length of each window of each STFT, by default [2048, 512]
|
|
149
|
+
loss_fn : typing.Callable, optional
|
|
150
|
+
How to compare each loss, by default nn.L1Loss()
|
|
151
|
+
clamp_eps : float, optional
|
|
152
|
+
Clamp on the log magnitude, below, by default 1e-5
|
|
153
|
+
mag_weight : float, optional
|
|
154
|
+
Weight of raw magnitude portion of loss, by default 1.0
|
|
155
|
+
log_weight : float, optional
|
|
156
|
+
Weight of log magnitude portion of loss, by default 1.0
|
|
157
|
+
pow : float, optional
|
|
158
|
+
Power to raise magnitude to before taking log, by default 2.0
|
|
159
|
+
weight : float, optional
|
|
160
|
+
Weight of this loss, by default 1.0
|
|
161
|
+
match_stride : bool, optional
|
|
162
|
+
Whether to match the stride of convolutional layers, by default False
|
|
163
|
+
|
|
164
|
+
References
|
|
165
|
+
----------
|
|
166
|
+
|
|
167
|
+
1. Engel, Jesse, Chenjie Gu, and Adam Roberts.
|
|
168
|
+
"DDSP: Differentiable Digital Signal Processing."
|
|
169
|
+
International Conference on Learning Representations. 2019.
|
|
170
|
+
|
|
171
|
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
|
172
|
+
"""
|
|
173
|
+
|
|
174
|
+
def __init__(
|
|
175
|
+
self,
|
|
176
|
+
window_lengths: List[int] = [2048, 512],
|
|
177
|
+
loss_fn: typing.Callable = nn.L1Loss(),
|
|
178
|
+
clamp_eps: float = 1e-5,
|
|
179
|
+
mag_weight: float = 1.0,
|
|
180
|
+
log_weight: float = 1.0,
|
|
181
|
+
pow: float = 2.0,
|
|
182
|
+
weight: float = 1.0,
|
|
183
|
+
match_stride: bool = False,
|
|
184
|
+
window_type: str = None,
|
|
185
|
+
):
|
|
186
|
+
super().__init__()
|
|
187
|
+
self.stft_params = [
|
|
188
|
+
STFTParams(
|
|
189
|
+
window_length=w,
|
|
190
|
+
hop_length=w // 4,
|
|
191
|
+
match_stride=match_stride,
|
|
192
|
+
window_type=window_type,
|
|
193
|
+
)
|
|
194
|
+
for w in window_lengths
|
|
195
|
+
]
|
|
196
|
+
self.loss_fn = loss_fn
|
|
197
|
+
self.log_weight = log_weight
|
|
198
|
+
self.mag_weight = mag_weight
|
|
199
|
+
self.clamp_eps = clamp_eps
|
|
200
|
+
self.weight = weight
|
|
201
|
+
self.pow = pow
|
|
202
|
+
|
|
203
|
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
204
|
+
"""Computes multi-scale STFT between an estimate and a reference
|
|
205
|
+
signal.
|
|
206
|
+
|
|
207
|
+
Parameters
|
|
208
|
+
----------
|
|
209
|
+
x : AudioSignal
|
|
210
|
+
Estimate signal
|
|
211
|
+
y : AudioSignal
|
|
212
|
+
Reference signal
|
|
213
|
+
|
|
214
|
+
Returns
|
|
215
|
+
-------
|
|
216
|
+
torch.Tensor
|
|
217
|
+
Multi-scale STFT loss.
|
|
218
|
+
"""
|
|
219
|
+
loss = 0.0
|
|
220
|
+
for s in self.stft_params:
|
|
221
|
+
x.stft(s.window_length, s.hop_length, s.window_type)
|
|
222
|
+
y.stft(s.window_length, s.hop_length, s.window_type)
|
|
223
|
+
loss += self.log_weight * self.loss_fn(
|
|
224
|
+
x.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
225
|
+
y.magnitude.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
226
|
+
)
|
|
227
|
+
loss += self.mag_weight * self.loss_fn(x.magnitude, y.magnitude)
|
|
228
|
+
return loss
|
|
229
|
+
|
|
230
|
+
|
|
231
|
+
class MelSpectrogramLoss(nn.Module):
|
|
232
|
+
"""Compute distance between mel spectrograms. Can be used
|
|
233
|
+
in a multi-scale way.
|
|
234
|
+
|
|
235
|
+
Parameters
|
|
236
|
+
----------
|
|
237
|
+
n_mels : List[int]
|
|
238
|
+
Number of mels per STFT, by default [150, 80],
|
|
239
|
+
window_lengths : List[int], optional
|
|
240
|
+
Length of each window of each STFT, by default [2048, 512]
|
|
241
|
+
loss_fn : typing.Callable, optional
|
|
242
|
+
How to compare each loss, by default nn.L1Loss()
|
|
243
|
+
clamp_eps : float, optional
|
|
244
|
+
Clamp on the log magnitude, below, by default 1e-5
|
|
245
|
+
mag_weight : float, optional
|
|
246
|
+
Weight of raw magnitude portion of loss, by default 1.0
|
|
247
|
+
log_weight : float, optional
|
|
248
|
+
Weight of log magnitude portion of loss, by default 1.0
|
|
249
|
+
pow : float, optional
|
|
250
|
+
Power to raise magnitude to before taking log, by default 2.0
|
|
251
|
+
weight : float, optional
|
|
252
|
+
Weight of this loss, by default 1.0
|
|
253
|
+
match_stride : bool, optional
|
|
254
|
+
Whether to match the stride of convolutional layers, by default False
|
|
255
|
+
|
|
256
|
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
|
257
|
+
"""
|
|
258
|
+
|
|
259
|
+
def __init__(
|
|
260
|
+
self,
|
|
261
|
+
n_mels: List[int] = [150, 80],
|
|
262
|
+
window_lengths: List[int] = [2048, 512],
|
|
263
|
+
loss_fn: typing.Callable = nn.L1Loss(),
|
|
264
|
+
clamp_eps: float = 1e-5,
|
|
265
|
+
mag_weight: float = 1.0,
|
|
266
|
+
log_weight: float = 1.0,
|
|
267
|
+
pow: float = 2.0,
|
|
268
|
+
weight: float = 1.0,
|
|
269
|
+
match_stride: bool = False,
|
|
270
|
+
mel_fmin: List[float] = [0.0, 0.0],
|
|
271
|
+
mel_fmax: List[float] = [None, None],
|
|
272
|
+
window_type: str = None,
|
|
273
|
+
):
|
|
274
|
+
super().__init__()
|
|
275
|
+
self.stft_params = [
|
|
276
|
+
STFTParams(
|
|
277
|
+
window_length=w,
|
|
278
|
+
hop_length=w // 4,
|
|
279
|
+
match_stride=match_stride,
|
|
280
|
+
window_type=window_type,
|
|
281
|
+
)
|
|
282
|
+
for w in window_lengths
|
|
283
|
+
]
|
|
284
|
+
self.n_mels = n_mels
|
|
285
|
+
self.loss_fn = loss_fn
|
|
286
|
+
self.clamp_eps = clamp_eps
|
|
287
|
+
self.log_weight = log_weight
|
|
288
|
+
self.mag_weight = mag_weight
|
|
289
|
+
self.weight = weight
|
|
290
|
+
self.mel_fmin = mel_fmin
|
|
291
|
+
self.mel_fmax = mel_fmax
|
|
292
|
+
self.pow = pow
|
|
293
|
+
|
|
294
|
+
def forward(self, x: AudioSignal, y: AudioSignal):
|
|
295
|
+
"""Computes mel loss between an estimate and a reference
|
|
296
|
+
signal.
|
|
297
|
+
|
|
298
|
+
Parameters
|
|
299
|
+
----------
|
|
300
|
+
x : AudioSignal
|
|
301
|
+
Estimate signal
|
|
302
|
+
y : AudioSignal
|
|
303
|
+
Reference signal
|
|
304
|
+
|
|
305
|
+
Returns
|
|
306
|
+
-------
|
|
307
|
+
torch.Tensor
|
|
308
|
+
Mel loss.
|
|
309
|
+
"""
|
|
310
|
+
loss = 0.0
|
|
311
|
+
for n_mels, fmin, fmax, s in zip(
|
|
312
|
+
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
|
|
313
|
+
):
|
|
314
|
+
kwargs = {
|
|
315
|
+
"window_length": s.window_length,
|
|
316
|
+
"hop_length": s.hop_length,
|
|
317
|
+
"window_type": s.window_type,
|
|
318
|
+
}
|
|
319
|
+
x_mels = x.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
|
320
|
+
y_mels = y.mel_spectrogram(n_mels, mel_fmin=fmin, mel_fmax=fmax, **kwargs)
|
|
321
|
+
|
|
322
|
+
loss += self.log_weight * self.loss_fn(
|
|
323
|
+
x_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
324
|
+
y_mels.clamp(self.clamp_eps).pow(self.pow).log10(),
|
|
325
|
+
)
|
|
326
|
+
loss += self.mag_weight * self.loss_fn(x_mels, y_mels)
|
|
327
|
+
return loss
|
|
328
|
+
|
|
329
|
+
|
|
330
|
+
class GANLoss(nn.Module):
|
|
331
|
+
"""
|
|
332
|
+
Computes a discriminator loss, given a discriminator on
|
|
333
|
+
generated waveforms/spectrograms compared to ground truth
|
|
334
|
+
waveforms/spectrograms. Computes the loss for both the
|
|
335
|
+
discriminator and the generator in separate functions.
|
|
336
|
+
"""
|
|
337
|
+
|
|
338
|
+
def __init__(self, discriminator):
|
|
339
|
+
super().__init__()
|
|
340
|
+
self.discriminator = discriminator
|
|
341
|
+
|
|
342
|
+
def forward(self, fake, real):
|
|
343
|
+
d_fake = self.discriminator(fake.audio_data)
|
|
344
|
+
d_real = self.discriminator(real.audio_data)
|
|
345
|
+
return d_fake, d_real
|
|
346
|
+
|
|
347
|
+
def discriminator_loss(self, fake, real):
|
|
348
|
+
d_fake, d_real = self.forward(fake.clone().detach(), real)
|
|
349
|
+
|
|
350
|
+
loss_d = 0
|
|
351
|
+
for x_fake, x_real in zip(d_fake, d_real):
|
|
352
|
+
loss_d += torch.mean(x_fake[-1] ** 2)
|
|
353
|
+
loss_d += torch.mean((1 - x_real[-1]) ** 2)
|
|
354
|
+
return loss_d
|
|
355
|
+
|
|
356
|
+
def generator_loss(self, fake, real):
|
|
357
|
+
d_fake, d_real = self.forward(fake, real)
|
|
358
|
+
|
|
359
|
+
loss_g = 0
|
|
360
|
+
for x_fake in d_fake:
|
|
361
|
+
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
|
|
362
|
+
|
|
363
|
+
loss_feature = 0
|
|
364
|
+
|
|
365
|
+
for i in range(len(d_fake)):
|
|
366
|
+
for j in range(len(d_fake[i]) - 1):
|
|
367
|
+
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
|
|
368
|
+
return loss_g, loss_feature
|
|
@@ -0,0 +1,339 @@
|
|
|
1
|
+
from typing import Union
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import torch
|
|
5
|
+
import torch.nn as nn
|
|
6
|
+
import torch.nn.functional as F
|
|
7
|
+
from einops import rearrange
|
|
8
|
+
from torch.nn.utils import weight_norm
|
|
9
|
+
|
|
10
|
+
from indextts.s2mel.dac.nn.layers import WNConv1d
|
|
11
|
+
|
|
12
|
+
class VectorQuantizeLegacy(nn.Module):
|
|
13
|
+
"""
|
|
14
|
+
Implementation of VQ similar to Karpathy's repo:
|
|
15
|
+
https://github.com/karpathy/deep-vector-quantization
|
|
16
|
+
removed in-out projection
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
def __init__(self, input_dim: int, codebook_size: int):
|
|
20
|
+
super().__init__()
|
|
21
|
+
self.codebook_size = codebook_size
|
|
22
|
+
self.codebook = nn.Embedding(codebook_size, input_dim)
|
|
23
|
+
|
|
24
|
+
def forward(self, z, z_mask=None):
|
|
25
|
+
"""Quantized the input tensor using a fixed codebook and returns
|
|
26
|
+
the corresponding codebook vectors
|
|
27
|
+
|
|
28
|
+
Parameters
|
|
29
|
+
----------
|
|
30
|
+
z : Tensor[B x D x T]
|
|
31
|
+
|
|
32
|
+
Returns
|
|
33
|
+
-------
|
|
34
|
+
Tensor[B x D x T]
|
|
35
|
+
Quantized continuous representation of input
|
|
36
|
+
Tensor[1]
|
|
37
|
+
Commitment loss to train encoder to predict vectors closer to codebook
|
|
38
|
+
entries
|
|
39
|
+
Tensor[1]
|
|
40
|
+
Codebook loss to update the codebook
|
|
41
|
+
Tensor[B x T]
|
|
42
|
+
Codebook indices (quantized discrete representation of input)
|
|
43
|
+
Tensor[B x D x T]
|
|
44
|
+
Projected latents (continuous representation of input before quantization)
|
|
45
|
+
"""
|
|
46
|
+
|
|
47
|
+
z_e = z
|
|
48
|
+
z_q, indices = self.decode_latents(z)
|
|
49
|
+
|
|
50
|
+
if z_mask is not None:
|
|
51
|
+
commitment_loss = (F.mse_loss(z_e, z_q.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
|
|
52
|
+
codebook_loss = (F.mse_loss(z_q, z_e.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
|
|
53
|
+
else:
|
|
54
|
+
commitment_loss = F.mse_loss(z_e, z_q.detach())
|
|
55
|
+
codebook_loss = F.mse_loss(z_q, z_e.detach())
|
|
56
|
+
z_q = (
|
|
57
|
+
z_e + (z_q - z_e).detach()
|
|
58
|
+
) # noop in forward pass, straight-through gradient estimator in backward pass
|
|
59
|
+
|
|
60
|
+
return z_q, indices, z_e, commitment_loss, codebook_loss
|
|
61
|
+
|
|
62
|
+
def embed_code(self, embed_id):
|
|
63
|
+
return F.embedding(embed_id, self.codebook.weight)
|
|
64
|
+
|
|
65
|
+
def decode_code(self, embed_id):
|
|
66
|
+
return self.embed_code(embed_id).transpose(1, 2)
|
|
67
|
+
|
|
68
|
+
def decode_latents(self, latents):
|
|
69
|
+
encodings = rearrange(latents, "b d t -> (b t) d")
|
|
70
|
+
codebook = self.codebook.weight # codebook: (N x D)
|
|
71
|
+
|
|
72
|
+
# L2 normalize encodings and codebook (ViT-VQGAN)
|
|
73
|
+
encodings = F.normalize(encodings)
|
|
74
|
+
codebook = F.normalize(codebook)
|
|
75
|
+
|
|
76
|
+
# Compute euclidean distance with codebook
|
|
77
|
+
dist = (
|
|
78
|
+
encodings.pow(2).sum(1, keepdim=True)
|
|
79
|
+
- 2 * encodings @ codebook.t()
|
|
80
|
+
+ codebook.pow(2).sum(1, keepdim=True).t()
|
|
81
|
+
)
|
|
82
|
+
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
|
|
83
|
+
z_q = self.decode_code(indices)
|
|
84
|
+
return z_q, indices
|
|
85
|
+
|
|
86
|
+
class VectorQuantize(nn.Module):
|
|
87
|
+
"""
|
|
88
|
+
Implementation of VQ similar to Karpathy's repo:
|
|
89
|
+
https://github.com/karpathy/deep-vector-quantization
|
|
90
|
+
Additionally uses following tricks from Improved VQGAN
|
|
91
|
+
(https://arxiv.org/pdf/2110.04627.pdf):
|
|
92
|
+
1. Factorized codes: Perform nearest neighbor lookup in low-dimensional space
|
|
93
|
+
for improved codebook usage
|
|
94
|
+
2. l2-normalized codes: Converts euclidean distance to cosine similarity which
|
|
95
|
+
improves training stability
|
|
96
|
+
"""
|
|
97
|
+
|
|
98
|
+
def __init__(self, input_dim: int, codebook_size: int, codebook_dim: int):
|
|
99
|
+
super().__init__()
|
|
100
|
+
self.codebook_size = codebook_size
|
|
101
|
+
self.codebook_dim = codebook_dim
|
|
102
|
+
|
|
103
|
+
self.in_proj = WNConv1d(input_dim, codebook_dim, kernel_size=1)
|
|
104
|
+
self.out_proj = WNConv1d(codebook_dim, input_dim, kernel_size=1)
|
|
105
|
+
self.codebook = nn.Embedding(codebook_size, codebook_dim)
|
|
106
|
+
|
|
107
|
+
def forward(self, z, z_mask=None):
|
|
108
|
+
"""Quantized the input tensor using a fixed codebook and returns
|
|
109
|
+
the corresponding codebook vectors
|
|
110
|
+
|
|
111
|
+
Parameters
|
|
112
|
+
----------
|
|
113
|
+
z : Tensor[B x D x T]
|
|
114
|
+
|
|
115
|
+
Returns
|
|
116
|
+
-------
|
|
117
|
+
Tensor[B x D x T]
|
|
118
|
+
Quantized continuous representation of input
|
|
119
|
+
Tensor[1]
|
|
120
|
+
Commitment loss to train encoder to predict vectors closer to codebook
|
|
121
|
+
entries
|
|
122
|
+
Tensor[1]
|
|
123
|
+
Codebook loss to update the codebook
|
|
124
|
+
Tensor[B x T]
|
|
125
|
+
Codebook indices (quantized discrete representation of input)
|
|
126
|
+
Tensor[B x D x T]
|
|
127
|
+
Projected latents (continuous representation of input before quantization)
|
|
128
|
+
"""
|
|
129
|
+
|
|
130
|
+
# Factorized codes (ViT-VQGAN) Project input into low-dimensional space
|
|
131
|
+
z_e = self.in_proj(z) # z_e : (B x D x T)
|
|
132
|
+
z_q, indices = self.decode_latents(z_e)
|
|
133
|
+
|
|
134
|
+
if z_mask is not None:
|
|
135
|
+
commitment_loss = (F.mse_loss(z_e, z_q.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
|
|
136
|
+
codebook_loss = (F.mse_loss(z_q, z_e.detach(), reduction="none").mean(1) * z_mask).sum() / z_mask.sum()
|
|
137
|
+
else:
|
|
138
|
+
commitment_loss = F.mse_loss(z_e, z_q.detach())
|
|
139
|
+
codebook_loss = F.mse_loss(z_q, z_e.detach())
|
|
140
|
+
|
|
141
|
+
z_q = (
|
|
142
|
+
z_e + (z_q - z_e).detach()
|
|
143
|
+
) # noop in forward pass, straight-through gradient estimator in backward pass
|
|
144
|
+
|
|
145
|
+
z_q = self.out_proj(z_q)
|
|
146
|
+
|
|
147
|
+
return z_q, commitment_loss, codebook_loss, indices, z_e
|
|
148
|
+
|
|
149
|
+
def embed_code(self, embed_id):
|
|
150
|
+
return F.embedding(embed_id, self.codebook.weight)
|
|
151
|
+
|
|
152
|
+
def decode_code(self, embed_id):
|
|
153
|
+
return self.embed_code(embed_id).transpose(1, 2)
|
|
154
|
+
|
|
155
|
+
def decode_latents(self, latents):
|
|
156
|
+
encodings = rearrange(latents, "b d t -> (b t) d")
|
|
157
|
+
codebook = self.codebook.weight # codebook: (N x D)
|
|
158
|
+
|
|
159
|
+
# L2 normalize encodings and codebook (ViT-VQGAN)
|
|
160
|
+
encodings = F.normalize(encodings)
|
|
161
|
+
codebook = F.normalize(codebook)
|
|
162
|
+
|
|
163
|
+
# Compute euclidean distance with codebook
|
|
164
|
+
dist = (
|
|
165
|
+
encodings.pow(2).sum(1, keepdim=True)
|
|
166
|
+
- 2 * encodings @ codebook.t()
|
|
167
|
+
+ codebook.pow(2).sum(1, keepdim=True).t()
|
|
168
|
+
)
|
|
169
|
+
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0))
|
|
170
|
+
z_q = self.decode_code(indices)
|
|
171
|
+
return z_q, indices
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
class ResidualVectorQuantize(nn.Module):
|
|
175
|
+
"""
|
|
176
|
+
Introduced in SoundStream: An end2end neural audio codec
|
|
177
|
+
https://arxiv.org/abs/2107.03312
|
|
178
|
+
"""
|
|
179
|
+
|
|
180
|
+
def __init__(
|
|
181
|
+
self,
|
|
182
|
+
input_dim: int = 512,
|
|
183
|
+
n_codebooks: int = 9,
|
|
184
|
+
codebook_size: int = 1024,
|
|
185
|
+
codebook_dim: Union[int, list] = 8,
|
|
186
|
+
quantizer_dropout: float = 0.0,
|
|
187
|
+
):
|
|
188
|
+
super().__init__()
|
|
189
|
+
if isinstance(codebook_dim, int):
|
|
190
|
+
codebook_dim = [codebook_dim for _ in range(n_codebooks)]
|
|
191
|
+
|
|
192
|
+
self.n_codebooks = n_codebooks
|
|
193
|
+
self.codebook_dim = codebook_dim
|
|
194
|
+
self.codebook_size = codebook_size
|
|
195
|
+
|
|
196
|
+
self.quantizers = nn.ModuleList(
|
|
197
|
+
[
|
|
198
|
+
VectorQuantize(input_dim, codebook_size, codebook_dim[i])
|
|
199
|
+
for i in range(n_codebooks)
|
|
200
|
+
]
|
|
201
|
+
)
|
|
202
|
+
self.quantizer_dropout = quantizer_dropout
|
|
203
|
+
|
|
204
|
+
def forward(self, z, n_quantizers: int = None):
|
|
205
|
+
"""Quantized the input tensor using a fixed set of `n` codebooks and returns
|
|
206
|
+
the corresponding codebook vectors
|
|
207
|
+
Parameters
|
|
208
|
+
----------
|
|
209
|
+
z : Tensor[B x D x T]
|
|
210
|
+
n_quantizers : int, optional
|
|
211
|
+
No. of quantizers to use
|
|
212
|
+
(n_quantizers < self.n_codebooks ex: for quantizer dropout)
|
|
213
|
+
Note: if `self.quantizer_dropout` is True, this argument is ignored
|
|
214
|
+
when in training mode, and a random number of quantizers is used.
|
|
215
|
+
Returns
|
|
216
|
+
-------
|
|
217
|
+
dict
|
|
218
|
+
A dictionary with the following keys:
|
|
219
|
+
|
|
220
|
+
"z" : Tensor[B x D x T]
|
|
221
|
+
Quantized continuous representation of input
|
|
222
|
+
"codes" : Tensor[B x N x T]
|
|
223
|
+
Codebook indices for each codebook
|
|
224
|
+
(quantized discrete representation of input)
|
|
225
|
+
"latents" : Tensor[B x N*D x T]
|
|
226
|
+
Projected latents (continuous representation of input before quantization)
|
|
227
|
+
"vq/commitment_loss" : Tensor[1]
|
|
228
|
+
Commitment loss to train encoder to predict vectors closer to codebook
|
|
229
|
+
entries
|
|
230
|
+
"vq/codebook_loss" : Tensor[1]
|
|
231
|
+
Codebook loss to update the codebook
|
|
232
|
+
"""
|
|
233
|
+
z_q = 0
|
|
234
|
+
residual = z
|
|
235
|
+
commitment_loss = 0
|
|
236
|
+
codebook_loss = 0
|
|
237
|
+
|
|
238
|
+
codebook_indices = []
|
|
239
|
+
latents = []
|
|
240
|
+
|
|
241
|
+
if n_quantizers is None:
|
|
242
|
+
n_quantizers = self.n_codebooks
|
|
243
|
+
if self.training:
|
|
244
|
+
n_quantizers = torch.ones((z.shape[0],)) * self.n_codebooks + 1
|
|
245
|
+
dropout = torch.randint(1, self.n_codebooks + 1, (z.shape[0],))
|
|
246
|
+
n_dropout = int(z.shape[0] * self.quantizer_dropout)
|
|
247
|
+
n_quantizers[:n_dropout] = dropout[:n_dropout]
|
|
248
|
+
n_quantizers = n_quantizers.to(z.device)
|
|
249
|
+
|
|
250
|
+
for i, quantizer in enumerate(self.quantizers):
|
|
251
|
+
if self.training is False and i >= n_quantizers:
|
|
252
|
+
break
|
|
253
|
+
|
|
254
|
+
z_q_i, commitment_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer(
|
|
255
|
+
residual
|
|
256
|
+
)
|
|
257
|
+
|
|
258
|
+
# Create mask to apply quantizer dropout
|
|
259
|
+
mask = (
|
|
260
|
+
torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers
|
|
261
|
+
)
|
|
262
|
+
z_q = z_q + z_q_i * mask[:, None, None]
|
|
263
|
+
residual = residual - z_q_i
|
|
264
|
+
|
|
265
|
+
# Sum losses
|
|
266
|
+
commitment_loss += (commitment_loss_i * mask).mean()
|
|
267
|
+
codebook_loss += (codebook_loss_i * mask).mean()
|
|
268
|
+
|
|
269
|
+
codebook_indices.append(indices_i)
|
|
270
|
+
latents.append(z_e_i)
|
|
271
|
+
|
|
272
|
+
codes = torch.stack(codebook_indices, dim=1)
|
|
273
|
+
latents = torch.cat(latents, dim=1)
|
|
274
|
+
|
|
275
|
+
return z_q, codes, latents, commitment_loss, codebook_loss
|
|
276
|
+
|
|
277
|
+
def from_codes(self, codes: torch.Tensor):
|
|
278
|
+
"""Given the quantized codes, reconstruct the continuous representation
|
|
279
|
+
Parameters
|
|
280
|
+
----------
|
|
281
|
+
codes : Tensor[B x N x T]
|
|
282
|
+
Quantized discrete representation of input
|
|
283
|
+
Returns
|
|
284
|
+
-------
|
|
285
|
+
Tensor[B x D x T]
|
|
286
|
+
Quantized continuous representation of input
|
|
287
|
+
"""
|
|
288
|
+
z_q = 0.0
|
|
289
|
+
z_p = []
|
|
290
|
+
n_codebooks = codes.shape[1]
|
|
291
|
+
for i in range(n_codebooks):
|
|
292
|
+
z_p_i = self.quantizers[i].decode_code(codes[:, i, :])
|
|
293
|
+
z_p.append(z_p_i)
|
|
294
|
+
|
|
295
|
+
z_q_i = self.quantizers[i].out_proj(z_p_i)
|
|
296
|
+
z_q = z_q + z_q_i
|
|
297
|
+
return z_q, torch.cat(z_p, dim=1), codes
|
|
298
|
+
|
|
299
|
+
def from_latents(self, latents: torch.Tensor):
|
|
300
|
+
"""Given the unquantized latents, reconstruct the
|
|
301
|
+
continuous representation after quantization.
|
|
302
|
+
|
|
303
|
+
Parameters
|
|
304
|
+
----------
|
|
305
|
+
latents : Tensor[B x N x T]
|
|
306
|
+
Continuous representation of input after projection
|
|
307
|
+
|
|
308
|
+
Returns
|
|
309
|
+
-------
|
|
310
|
+
Tensor[B x D x T]
|
|
311
|
+
Quantized representation of full-projected space
|
|
312
|
+
Tensor[B x D x T]
|
|
313
|
+
Quantized representation of latent space
|
|
314
|
+
"""
|
|
315
|
+
z_q = 0
|
|
316
|
+
z_p = []
|
|
317
|
+
codes = []
|
|
318
|
+
dims = np.cumsum([0] + [q.codebook_dim for q in self.quantizers])
|
|
319
|
+
|
|
320
|
+
n_codebooks = np.where(dims <= latents.shape[1])[0].max(axis=0, keepdims=True)[
|
|
321
|
+
0
|
|
322
|
+
]
|
|
323
|
+
for i in range(n_codebooks):
|
|
324
|
+
j, k = dims[i], dims[i + 1]
|
|
325
|
+
z_p_i, codes_i = self.quantizers[i].decode_latents(latents[:, j:k, :])
|
|
326
|
+
z_p.append(z_p_i)
|
|
327
|
+
codes.append(codes_i)
|
|
328
|
+
|
|
329
|
+
z_q_i = self.quantizers[i].out_proj(z_p_i)
|
|
330
|
+
z_q = z_q + z_q_i
|
|
331
|
+
|
|
332
|
+
return z_q, torch.cat(z_p, dim=1), torch.stack(codes, dim=1)
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
if __name__ == "__main__":
|
|
336
|
+
rvq = ResidualVectorQuantize(quantizer_dropout=True)
|
|
337
|
+
x = torch.randn(16, 512, 80)
|
|
338
|
+
y = rvq(x)
|
|
339
|
+
print(y["latents"].shape)
|