xinference 1.10.0__py3-none-any.whl → 1.10.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +11 -28
- xinference/client/restful/async_restful_client.py +20 -3
- xinference/client/restful/restful_client.py +20 -3
- xinference/core/supervisor.py +87 -53
- xinference/core/worker.py +10 -0
- xinference/deploy/cmdline.py +15 -0
- xinference/model/audio/core.py +21 -6
- xinference/model/audio/indextts2.py +166 -0
- xinference/model/audio/model_spec.json +38 -1
- xinference/model/image/model_spec.json +69 -0
- xinference/model/image/stable_diffusion/core.py +13 -4
- xinference/model/llm/__init__.py +4 -0
- xinference/model/llm/llm_family.json +464 -2
- xinference/model/llm/sglang/core.py +30 -11
- xinference/model/llm/tool_parsers/deepseek_r1_tool_parser.py +94 -32
- xinference/model/llm/transformers/multimodal/qwen2_vl.py +34 -8
- xinference/model/llm/utils.py +12 -9
- xinference/model/llm/vllm/core.py +93 -17
- xinference/thirdparty/audiotools/__init__.py +10 -0
- xinference/thirdparty/audiotools/core/__init__.py +4 -0
- xinference/thirdparty/audiotools/core/audio_signal.py +1682 -0
- xinference/thirdparty/audiotools/core/display.py +194 -0
- xinference/thirdparty/audiotools/core/dsp.py +390 -0
- xinference/thirdparty/audiotools/core/effects.py +647 -0
- xinference/thirdparty/audiotools/core/ffmpeg.py +211 -0
- xinference/thirdparty/audiotools/core/loudness.py +320 -0
- xinference/thirdparty/audiotools/core/playback.py +252 -0
- xinference/thirdparty/audiotools/core/templates/__init__.py +0 -0
- xinference/thirdparty/audiotools/core/templates/headers.html +322 -0
- xinference/thirdparty/audiotools/core/templates/pandoc.css +407 -0
- xinference/thirdparty/audiotools/core/templates/widget.html +52 -0
- xinference/thirdparty/audiotools/core/util.py +671 -0
- xinference/thirdparty/audiotools/core/whisper.py +97 -0
- xinference/thirdparty/audiotools/data/__init__.py +3 -0
- xinference/thirdparty/audiotools/data/datasets.py +517 -0
- xinference/thirdparty/audiotools/data/preprocess.py +81 -0
- xinference/thirdparty/audiotools/data/transforms.py +1592 -0
- xinference/thirdparty/audiotools/metrics/__init__.py +6 -0
- xinference/thirdparty/audiotools/metrics/distance.py +131 -0
- xinference/thirdparty/audiotools/metrics/quality.py +159 -0
- xinference/thirdparty/audiotools/metrics/spectral.py +247 -0
- xinference/thirdparty/audiotools/ml/__init__.py +5 -0
- xinference/thirdparty/audiotools/ml/accelerator.py +184 -0
- xinference/thirdparty/audiotools/ml/decorators.py +440 -0
- xinference/thirdparty/audiotools/ml/experiment.py +90 -0
- xinference/thirdparty/audiotools/ml/layers/__init__.py +2 -0
- xinference/thirdparty/audiotools/ml/layers/base.py +328 -0
- xinference/thirdparty/audiotools/ml/layers/spectral_gate.py +127 -0
- xinference/thirdparty/audiotools/post.py +140 -0
- xinference/thirdparty/audiotools/preference.py +600 -0
- xinference/thirdparty/indextts/BigVGAN/ECAPA_TDNN.py +656 -0
- xinference/thirdparty/indextts/BigVGAN/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/activations.py +122 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/.gitignore +1 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/activation1d.py +76 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +256 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/load.py +121 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/act.py +31 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/filter.py +102 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/__init__.py +6 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/BigVGAN/alias_free_torch/resample.py +49 -0
- xinference/thirdparty/indextts/BigVGAN/bigvgan.py +534 -0
- xinference/thirdparty/indextts/BigVGAN/models.py +451 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/CNN.py +546 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/__init__.py +0 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/linear.py +89 -0
- xinference/thirdparty/indextts/BigVGAN/nnet/normalization.py +670 -0
- xinference/thirdparty/indextts/BigVGAN/utils.py +101 -0
- xinference/thirdparty/indextts/__init__.py +0 -0
- xinference/thirdparty/indextts/cli.py +65 -0
- xinference/thirdparty/indextts/gpt/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/__init__.py +0 -0
- xinference/thirdparty/indextts/gpt/conformer/attention.py +312 -0
- xinference/thirdparty/indextts/gpt/conformer/embedding.py +163 -0
- xinference/thirdparty/indextts/gpt/conformer/subsampling.py +348 -0
- xinference/thirdparty/indextts/gpt/conformer_encoder.py +520 -0
- xinference/thirdparty/indextts/gpt/model.py +713 -0
- xinference/thirdparty/indextts/gpt/model_v2.py +747 -0
- xinference/thirdparty/indextts/gpt/perceiver.py +317 -0
- xinference/thirdparty/indextts/gpt/transformers_beam_search.py +1013 -0
- xinference/thirdparty/indextts/gpt/transformers_generation_utils.py +4747 -0
- xinference/thirdparty/indextts/gpt/transformers_gpt2.py +1878 -0
- xinference/thirdparty/indextts/gpt/transformers_modeling_utils.py +5525 -0
- xinference/thirdparty/indextts/infer.py +690 -0
- xinference/thirdparty/indextts/infer_v2.py +739 -0
- xinference/thirdparty/indextts/s2mel/dac/__init__.py +16 -0
- xinference/thirdparty/indextts/s2mel/dac/__main__.py +36 -0
- xinference/thirdparty/indextts/s2mel/dac/model/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/dac/model/base.py +294 -0
- xinference/thirdparty/indextts/s2mel/dac/model/dac.py +400 -0
- xinference/thirdparty/indextts/s2mel/dac/model/discriminator.py +228 -0
- xinference/thirdparty/indextts/s2mel/dac/model/encodec.py +320 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/__init__.py +3 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/layers.py +33 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/loss.py +368 -0
- xinference/thirdparty/indextts/s2mel/dac/nn/quantize.py +339 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/__init__.py +123 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/decode.py +95 -0
- xinference/thirdparty/indextts/s2mel/dac/utils/encode.py +94 -0
- xinference/thirdparty/indextts/s2mel/hf_utils.py +12 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/s2mel/modules/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/s2mel/modules/audio.py +82 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/activations.py +120 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/activation1d.py +77 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/compat.h +29 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/load.py +86 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/cuda/type_shim.h +92 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/__init__.py +6 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/act.py +30 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/filter.py +101 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/alias_free_activation/torch/resample.py +58 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/bigvgan.py +492 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/config.json +63 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/env.py +18 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/meldataset.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/bigvgan/utils.py +99 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/DTDNN.py +115 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/classifier.py +70 -0
- xinference/thirdparty/indextts/s2mel/modules/campplus/layers.py +253 -0
- xinference/thirdparty/indextts/s2mel/modules/commons.py +632 -0
- xinference/thirdparty/indextts/s2mel/modules/diffusion_transformer.py +257 -0
- xinference/thirdparty/indextts/s2mel/modules/encodec.py +292 -0
- xinference/thirdparty/indextts/s2mel/modules/flow_matching.py +171 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/generate.py +436 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/model.py +360 -0
- xinference/thirdparty/indextts/s2mel/modules/gpt_fast/quantize.py +622 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/f0_predictor.py +55 -0
- xinference/thirdparty/indextts/s2mel/modules/hifigan/generator.py +454 -0
- xinference/thirdparty/indextts/s2mel/modules/layers.py +354 -0
- xinference/thirdparty/indextts/s2mel/modules/length_regulator.py +141 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/__init__.py +0 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/api.py +186 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/attentions.py +465 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/checkpoints_v2/converter/config.json +57 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/commons.py +160 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/mel_processing.py +183 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/models.py +499 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/modules.py +598 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/openvoice_app.py +275 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/se_extractor.py +153 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/transforms.py +209 -0
- xinference/thirdparty/indextts/s2mel/modules/openvoice/utils.py +194 -0
- xinference/thirdparty/indextts/s2mel/modules/quantize.py +229 -0
- xinference/thirdparty/indextts/s2mel/modules/rmvpe.py +631 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/__init__.py +4 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/heads.py +164 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/helpers.py +71 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/loss.py +114 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/models.py +118 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/modules.py +213 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/pretrained.py +51 -0
- xinference/thirdparty/indextts/s2mel/modules/vocos/spectral_ops.py +192 -0
- xinference/thirdparty/indextts/s2mel/modules/wavenet.py +174 -0
- xinference/thirdparty/indextts/s2mel/optimizers.py +96 -0
- xinference/thirdparty/indextts/s2mel/wav2vecbert_extract.py +148 -0
- xinference/thirdparty/indextts/utils/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/arch_util.py +120 -0
- xinference/thirdparty/indextts/utils/checkpoint.py +34 -0
- xinference/thirdparty/indextts/utils/common.py +121 -0
- xinference/thirdparty/indextts/utils/feature_extractors.py +50 -0
- xinference/thirdparty/indextts/utils/front.py +536 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/codec.py +427 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/__init__.py +11 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/factorized_vector_quantize.py +150 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/lookup_free_quantize.py +77 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/residual_vq.py +177 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/quantize/vector_quantize.py +401 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/amphion_codec/vocos.py +881 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_dataset.py +264 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_inference.py +515 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_sampler.py +126 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/codec_trainer.py +166 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/__init__.py +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_dataset.py +98 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_inference.py +137 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/facodec_trainer.py +776 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/__init__.py +1 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/bst.t7 +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/JDC/model.py +219 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/attentions.py +437 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/commons.py +331 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/layers.py +460 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/quantize.py +741 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/style_encoder.py +110 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/modules/wavenet.py +224 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/facodec/optimizer.py +104 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/repcodec_model.py +210 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/kmeans/vocos.py +850 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/melvqgan/melspec.py +108 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/README.md +216 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/__init__.py +6 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/__init__.py +5 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/act.py +29 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/filter.py +96 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/alias_free_torch/resample.py +57 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/facodec.py +1222 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/gradient_reversal.py +35 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/melspec.py +102 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/__init__.py +7 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/fvq.py +116 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/quantize/rvq.py +87 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/ns3_codec/transformer.py +234 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/model.py +184 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/__init__.py +27 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/conv.py +346 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/lstm.py +46 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/norm.py +37 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/__init__.py +14 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/ac.py +317 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/core_vq.py +388 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/distrib.py +135 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/quantization/vq.py +125 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/speechtokenizer/modules/seanet.py +414 -0
- xinference/thirdparty/indextts/utils/maskgct/models/codec/vevo/vevo_repcodec.py +592 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/ckpt/wav2vec2bert_stats.pt +0 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/llama_nar.py +650 -0
- xinference/thirdparty/indextts/utils/maskgct/models/tts/maskgct/maskgct_s2a.py +503 -0
- xinference/thirdparty/indextts/utils/maskgct_utils.py +259 -0
- xinference/thirdparty/indextts/utils/text_utils.py +41 -0
- xinference/thirdparty/indextts/utils/typical_sampling.py +30 -0
- xinference/thirdparty/indextts/utils/utils.py +93 -0
- xinference/thirdparty/indextts/utils/webui_utils.py +42 -0
- xinference/thirdparty/indextts/utils/xtransformers.py +1247 -0
- xinference/thirdparty/indextts/vqvae/__init__.py +0 -0
- xinference/thirdparty/indextts/vqvae/xtts_dvae.py +395 -0
- xinference/ui/gradio/media_interface.py +66 -8
- xinference/ui/web/ui/build/asset-manifest.json +6 -6
- xinference/ui/web/ui/build/index.html +1 -1
- xinference/ui/web/ui/build/static/css/main.5ea97072.css +2 -0
- xinference/ui/web/ui/build/static/css/main.5ea97072.css.map +1 -0
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js +3 -0
- xinference/ui/web/ui/build/static/js/{main.1086c759.js.LICENSE.txt → main.d192c4f3.js.LICENSE.txt} +0 -7
- xinference/ui/web/ui/build/static/js/main.d192c4f3.js.map +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/089c38df5f52348d212ed868dda5c518a42e0c2762caed4175487c0405830c35.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2b6e3a5b6eb2c5c5f2d007e68cd46c372721cd52bf63508adcdb21ecf79241d8.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/2d887825fd07a56f872eda4420da25fba0b5b62a23bdcc6c6da1a5281887f618.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4001f9c3e64e73a4f2158826650c174a59d5e3f89ddecddf17cbb6bb688cc4ca.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4a7018a69e6b7f90fc313248c2aa86f2a8f1eb1db120df586047a8023549b44b.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/64b12aaa1c1d1bf53820ada8a63769067c0ccc5aab46b32348eb1917ae7f2a11.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/7275b67c78ec76ce38a686bb8a576d8c9cecf54e1573614c84859d538efb9be5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a68b6ee3b31eadc051fb95ce8f8ccb9c2e8b52c60f290dbab545a1917e065282.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/ae8771cc37693feb160fa8727231312a0c54ef2d1d1ca893be568cd70016ca7e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bb4e8722d2d41d87f1fce3661bc8937bffe9448e231fc5f0462630849e851592.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/be6aada1ee4adc2bbf65dbe56d17db32bb3b5478be05d6b527805a8ba6cfb2b9.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/de91c352653c233cf0cb6674e6e04049a44fd0e1156560de65d5c4620521391e.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e85f7002fc325c83b9c9cd8a1619e5b3ebc701d30e811afc284b88e6ae710cb5.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/e8b603c78944bf3d213639078bfe155ff5c0dfa4048a93cbb967cad6a4eb4ff3.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f05535160a508b2a312de546a6de234776c613db276479ea4253c0b1bdeeb7d6.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f09ba9e11106bd59a0de10cc85c55084097729dcab575f43dfcf07375961ed87.json +1 -0
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f995a2425dfb0822fd07127f66ffe9b026883bc156b402eb8bd0b83d52460a93.json +1 -0
- xinference/ui/web/ui/node_modules/.package-lock.json +0 -33
- xinference/ui/web/ui/package-lock.json +0 -34
- xinference/ui/web/ui/package.json +0 -1
- xinference/ui/web/ui/src/locales/en.json +9 -3
- xinference/ui/web/ui/src/locales/ja.json +9 -3
- xinference/ui/web/ui/src/locales/ko.json +9 -3
- xinference/ui/web/ui/src/locales/zh.json +9 -3
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/METADATA +18 -2
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/RECORD +285 -67
- xinference/ui/web/ui/build/static/css/main.013f296b.css +0 -2
- xinference/ui/web/ui/build/static/css/main.013f296b.css.map +0 -1
- xinference/ui/web/ui/build/static/js/main.1086c759.js +0 -3
- xinference/ui/web/ui/build/static/js/main.1086c759.js.map +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/0b0f77000cc1b482ca091cfbcae511dfe02f08916971645fad21d0b1234d04a2.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/1c5f8ff423a7c9202bea60b15680f04b1e9964b445b0da3f86c6ff70cf24e797.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/44ce7993e344980e3ed4f13e8f69237d4a5dfc60e37ca6b54f51f8ee1357bd67.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/4aec1cc414ac3ebb3481d3d915e4db597d9127de813291346eacb8554ab170d4.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/644cfec52f3c57a6e222ce60f112237a1efefe9835efd9aad857a685f53d8eed.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/663436f72af53fe0d72394f56d003fa4e0bba489e5bb4e483fd34b00f84637f7.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/69db82ca9bfe27fe417cc6cf2b1716b09be9c6f0cd198530f12bfc60e801bbcf.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/85087e27618d740c236bf159f30e0219db443ab55f0997388eed5fde6f9e90cc.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/88b07838348864aa86c672be3bbca1e9f58f6f3a2881b32070ec27f4e7b449d1.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/8b8cd408ccfbe115acef27ccfa5b233da8597131a2a5712add13e1e4d5d4504b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a23824fe746b9c6ca5eee9159b5764d1ff1653c1d856288c0f75c742bbb0023b.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/a3eb18af328280b139693c9092dff2a0ef8c9a967e6c8956ceee0996611f1984.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/bc1aacc65a102db325ca61bcd2f681e1ae22c36a1f1d98a6ff5e4ad49dc7544f.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/c682fd521747c19dae437d83ce3235a306ce6b68e24a117bc57c27ebb8d1f1ca.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/d5c224be7081f18cba1678b7874a9782eba895df004874ff8f243f94ba79942a.json +0 -1
- xinference/ui/web/ui/node_modules/.cache/babel-loader/f7f18bfb539b036a6a342176dd98a85df5057a884a8da978d679f2a0264883d0.json +0 -1
- xinference/ui/web/ui/node_modules/clipboard/.babelrc.json +0 -11
- xinference/ui/web/ui/node_modules/clipboard/.eslintrc.json +0 -24
- xinference/ui/web/ui/node_modules/clipboard/.prettierrc.json +0 -9
- xinference/ui/web/ui/node_modules/clipboard/bower.json +0 -18
- xinference/ui/web/ui/node_modules/clipboard/composer.json +0 -25
- xinference/ui/web/ui/node_modules/clipboard/package.json +0 -63
- xinference/ui/web/ui/node_modules/delegate/package.json +0 -31
- xinference/ui/web/ui/node_modules/good-listener/bower.json +0 -11
- xinference/ui/web/ui/node_modules/good-listener/package.json +0 -35
- xinference/ui/web/ui/node_modules/select/bower.json +0 -13
- xinference/ui/web/ui/node_modules/select/package.json +0 -29
- xinference/ui/web/ui/node_modules/tiny-emitter/package.json +0 -53
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/WHEEL +0 -0
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/licenses/LICENSE +0 -0
- {xinference-1.10.0.dist-info → xinference-1.10.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,747 @@
|
|
|
1
|
+
import functools
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
import torch.nn as nn
|
|
5
|
+
import torch.nn.functional as F
|
|
6
|
+
|
|
7
|
+
import transformers
|
|
8
|
+
from transformers import GPT2Config, LogitsProcessorList
|
|
9
|
+
from indextts.gpt.transformers_gpt2 import GPT2PreTrainedModel, GPT2Model
|
|
10
|
+
|
|
11
|
+
# from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList
|
|
12
|
+
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
|
13
|
+
from transformers.utils.model_parallel_utils import (assert_device_map,
|
|
14
|
+
get_device_map)
|
|
15
|
+
|
|
16
|
+
from indextts.gpt.conformer_encoder import ConformerEncoder
|
|
17
|
+
from indextts.gpt.perceiver import PerceiverResampler
|
|
18
|
+
from indextts.utils.arch_util import AttentionBlock
|
|
19
|
+
from indextts.utils.typical_sampling import TypicalLogitsWarper
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def null_position_embeddings(range, dim):
|
|
23
|
+
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class ResBlock(nn.Module):
|
|
27
|
+
"""
|
|
28
|
+
Basic residual convolutional block that uses GroupNorm.
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
def __init__(self, chan):
|
|
32
|
+
super().__init__()
|
|
33
|
+
self.net = nn.Sequential(
|
|
34
|
+
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
|
35
|
+
nn.GroupNorm(chan // 8, chan),
|
|
36
|
+
nn.ReLU(),
|
|
37
|
+
nn.Conv1d(chan, chan, kernel_size=3, padding=1),
|
|
38
|
+
nn.GroupNorm(chan // 8, chan)
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
def forward(self, x):
|
|
42
|
+
return F.relu(self.net(x) + x)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class GPT2InferenceModel(GPT2PreTrainedModel):
|
|
46
|
+
def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache=False):
|
|
47
|
+
super().__init__(config)
|
|
48
|
+
# Note: the argument named `text_pos_emb` here actually represents the mel position embedding
|
|
49
|
+
self.transformer = gpt
|
|
50
|
+
self.text_pos_embedding = text_pos_emb
|
|
51
|
+
self.embeddings = embeddings
|
|
52
|
+
self.final_norm = norm
|
|
53
|
+
self.lm_head = nn.Sequential(norm, linear)
|
|
54
|
+
self.kv_cache = kv_cache
|
|
55
|
+
|
|
56
|
+
# Model parallel
|
|
57
|
+
self.model_parallel = False
|
|
58
|
+
self.device_map = None
|
|
59
|
+
self.cached_mel_emb = None
|
|
60
|
+
|
|
61
|
+
def parallelize(self, device_map=None):
|
|
62
|
+
self.device_map = (
|
|
63
|
+
get_device_map(len(self.transformer.h), range(max(1, torch.cuda.device_count())))
|
|
64
|
+
if device_map is None
|
|
65
|
+
else device_map
|
|
66
|
+
)
|
|
67
|
+
assert_device_map(self.device_map, len(self.transformer.h))
|
|
68
|
+
self.transformer.parallelize(self.device_map)
|
|
69
|
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
|
70
|
+
self.model_parallel = True
|
|
71
|
+
|
|
72
|
+
def deparallelize(self):
|
|
73
|
+
self.transformer.deparallelize()
|
|
74
|
+
self.transformer = self.transformer.to("cpu")
|
|
75
|
+
self.lm_head = self.lm_head.to("cpu")
|
|
76
|
+
self.model_parallel = False
|
|
77
|
+
torch.cuda.empty_cache()
|
|
78
|
+
if torch.backends.mps.is_available():
|
|
79
|
+
torch.mps.empty_cache()
|
|
80
|
+
|
|
81
|
+
def get_output_embeddings(self):
|
|
82
|
+
return self.lm_head
|
|
83
|
+
|
|
84
|
+
def set_output_embeddings(self, new_embeddings):
|
|
85
|
+
self.lm_head = new_embeddings
|
|
86
|
+
|
|
87
|
+
def store_mel_emb(self, mel_emb):
|
|
88
|
+
self.cached_mel_emb = mel_emb
|
|
89
|
+
|
|
90
|
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
|
91
|
+
token_type_ids = kwargs.get("token_type_ids", None) # usually None
|
|
92
|
+
if not self.kv_cache:
|
|
93
|
+
past_key_values = None
|
|
94
|
+
# only last token for inputs_ids if past is defined in kwargs
|
|
95
|
+
if past_key_values:
|
|
96
|
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
97
|
+
if token_type_ids is not None:
|
|
98
|
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
|
99
|
+
|
|
100
|
+
attention_mask = kwargs.get("attention_mask", None)
|
|
101
|
+
position_ids = kwargs.get("position_ids", None)
|
|
102
|
+
|
|
103
|
+
if attention_mask is not None and position_ids is None:
|
|
104
|
+
# create position_ids on the fly for batch generation
|
|
105
|
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
106
|
+
position_ids.masked_fill_(attention_mask == 0, 0)
|
|
107
|
+
if past_key_values:
|
|
108
|
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
|
109
|
+
else:
|
|
110
|
+
position_ids = None
|
|
111
|
+
return {
|
|
112
|
+
"input_ids": input_ids,
|
|
113
|
+
"past_key_values": past_key_values,
|
|
114
|
+
"use_cache": kwargs.get("use_cache"),
|
|
115
|
+
"position_ids": position_ids,
|
|
116
|
+
"attention_mask": attention_mask,
|
|
117
|
+
"token_type_ids": token_type_ids,
|
|
118
|
+
}
|
|
119
|
+
|
|
120
|
+
def forward(
|
|
121
|
+
self,
|
|
122
|
+
input_ids=None,
|
|
123
|
+
past_key_values=None,
|
|
124
|
+
attention_mask=None,
|
|
125
|
+
token_type_ids=None,
|
|
126
|
+
position_ids=None,
|
|
127
|
+
head_mask=None,
|
|
128
|
+
inputs_embeds=None,
|
|
129
|
+
encoder_hidden_states=None,
|
|
130
|
+
encoder_attention_mask=None,
|
|
131
|
+
labels=None,
|
|
132
|
+
use_cache=None,
|
|
133
|
+
output_attentions=None,
|
|
134
|
+
output_hidden_states=None,
|
|
135
|
+
return_dict=None,
|
|
136
|
+
):
|
|
137
|
+
assert self.cached_mel_emb is not None
|
|
138
|
+
assert inputs_embeds is None # Not supported by this inference model.
|
|
139
|
+
assert labels is None # Training not supported by this inference model.
|
|
140
|
+
return_dict = (
|
|
141
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
142
|
+
)
|
|
143
|
+
# Create embedding
|
|
144
|
+
mel_len = self.cached_mel_emb.shape[1]
|
|
145
|
+
if input_ids.shape[1] != 1:
|
|
146
|
+
text_inputs = input_ids[:, mel_len:]
|
|
147
|
+
text_emb = self.embeddings(text_inputs)
|
|
148
|
+
text_emb = text_emb + self.text_pos_embedding(text_emb)
|
|
149
|
+
if self.cached_mel_emb.shape[0] != text_emb.shape[0]:
|
|
150
|
+
mel_emb = self.cached_mel_emb.repeat_interleave(
|
|
151
|
+
text_emb.shape[0] // self.cached_mel_emb.shape[0], 0
|
|
152
|
+
)
|
|
153
|
+
else: # this outcome only occurs once per loop in most cases
|
|
154
|
+
mel_emb = self.cached_mel_emb
|
|
155
|
+
emb = torch.cat([mel_emb, text_emb], dim=1)
|
|
156
|
+
else:
|
|
157
|
+
emb = self.embeddings(input_ids)
|
|
158
|
+
emb = emb + self.text_pos_embedding.get_fixed_embedding(
|
|
159
|
+
attention_mask.shape[1] - mel_len, attention_mask.device
|
|
160
|
+
)
|
|
161
|
+
transformer_outputs = self.transformer(
|
|
162
|
+
inputs_embeds=emb,
|
|
163
|
+
past_key_values=past_key_values,
|
|
164
|
+
attention_mask=attention_mask,
|
|
165
|
+
token_type_ids=token_type_ids,
|
|
166
|
+
position_ids=position_ids,
|
|
167
|
+
head_mask=head_mask,
|
|
168
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
169
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
170
|
+
use_cache=use_cache,
|
|
171
|
+
output_attentions=output_attentions,
|
|
172
|
+
output_hidden_states=output_hidden_states,
|
|
173
|
+
return_dict=return_dict,
|
|
174
|
+
)
|
|
175
|
+
hidden_states = transformer_outputs[0]
|
|
176
|
+
|
|
177
|
+
# Set device for model parallelism
|
|
178
|
+
if self.model_parallel:
|
|
179
|
+
if torch.backends.mps.is_available():
|
|
180
|
+
self.to(self.transformer.first_device)
|
|
181
|
+
else:
|
|
182
|
+
torch.cuda.set_device(self.transformer.first_device)
|
|
183
|
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
|
184
|
+
|
|
185
|
+
lm_logits = self.lm_head(hidden_states)
|
|
186
|
+
|
|
187
|
+
if not return_dict:
|
|
188
|
+
return (lm_logits,) + transformer_outputs[1:]
|
|
189
|
+
|
|
190
|
+
return CausalLMOutputWithCrossAttentions(
|
|
191
|
+
loss=None,
|
|
192
|
+
logits=lm_logits,
|
|
193
|
+
past_key_values=transformer_outputs.past_key_values,
|
|
194
|
+
hidden_states=transformer_outputs.hidden_states,
|
|
195
|
+
attentions=transformer_outputs.attentions,
|
|
196
|
+
cross_attentions=transformer_outputs.cross_attentions,
|
|
197
|
+
)
|
|
198
|
+
|
|
199
|
+
@staticmethod
|
|
200
|
+
def _reorder_cache(past, beam_idx):
|
|
201
|
+
"""
|
|
202
|
+
This function is used to re-order the :obj:`past_key_values` cache if
|
|
203
|
+
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
|
204
|
+
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
|
205
|
+
"""
|
|
206
|
+
return tuple(
|
|
207
|
+
tuple(
|
|
208
|
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
|
209
|
+
for past_state in layer_past
|
|
210
|
+
)
|
|
211
|
+
for layer_past in past
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
class ConditioningEncoder(nn.Module):
|
|
216
|
+
def __init__(self,
|
|
217
|
+
spec_dim,
|
|
218
|
+
embedding_dim,
|
|
219
|
+
attn_blocks=6,
|
|
220
|
+
num_attn_heads=4,
|
|
221
|
+
do_checkpointing=False,
|
|
222
|
+
mean=False):
|
|
223
|
+
super().__init__()
|
|
224
|
+
attn = []
|
|
225
|
+
self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1)
|
|
226
|
+
for a in range(attn_blocks):
|
|
227
|
+
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
|
|
228
|
+
self.attn = nn.Sequential(*attn)
|
|
229
|
+
self.dim = embedding_dim
|
|
230
|
+
self.do_checkpointing = do_checkpointing
|
|
231
|
+
self.mean = mean
|
|
232
|
+
|
|
233
|
+
def forward(self, x):
|
|
234
|
+
h = self.init(x)
|
|
235
|
+
h = self.attn(h)
|
|
236
|
+
if self.mean:
|
|
237
|
+
return h.mean(dim=2)
|
|
238
|
+
else:
|
|
239
|
+
return h
|
|
240
|
+
# return h[:, :, 0]
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
class LearnedPositionEmbeddings(nn.Module):
|
|
244
|
+
def __init__(self, seq_len, model_dim, init=.02):
|
|
245
|
+
super().__init__()
|
|
246
|
+
self.emb = nn.Embedding(seq_len, model_dim)
|
|
247
|
+
# Initializing this way is standard for GPT-2
|
|
248
|
+
self.emb.weight.data.normal_(mean=0.0, std=init)
|
|
249
|
+
|
|
250
|
+
def forward(self, x):
|
|
251
|
+
sl = x.shape[1]
|
|
252
|
+
return self.emb(torch.arange(0, sl, device=x.device))
|
|
253
|
+
|
|
254
|
+
def get_fixed_embedding(self, ind, dev):
|
|
255
|
+
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing):
|
|
259
|
+
"""
|
|
260
|
+
GPT-2 implemented by the HuggingFace library.
|
|
261
|
+
"""
|
|
262
|
+
from transformers import GPT2Config, GPT2Model
|
|
263
|
+
gpt_config = GPT2Config(vocab_size=256, # Unused.
|
|
264
|
+
n_positions=max_mel_seq_len + max_text_seq_len,
|
|
265
|
+
n_ctx=max_mel_seq_len + max_text_seq_len,
|
|
266
|
+
n_embd=model_dim,
|
|
267
|
+
n_layer=layers,
|
|
268
|
+
n_head=heads,
|
|
269
|
+
gradient_checkpointing=checkpointing,
|
|
270
|
+
use_cache=not checkpointing)
|
|
271
|
+
gpt = GPT2Model(gpt_config)
|
|
272
|
+
# Override the built in positional embeddings
|
|
273
|
+
del gpt.wpe
|
|
274
|
+
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim)
|
|
275
|
+
# Built-in token embeddings are unused.
|
|
276
|
+
del gpt.wte
|
|
277
|
+
return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim), \
|
|
278
|
+
None, None
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
class MelEncoder(nn.Module):
|
|
282
|
+
def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2):
|
|
283
|
+
super().__init__()
|
|
284
|
+
self.channels = channels
|
|
285
|
+
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels // 4, kernel_size=3, padding=1),
|
|
286
|
+
nn.Sequential(*[ResBlock(channels // 4) for _ in range(resblocks_per_reduction)]),
|
|
287
|
+
nn.Conv1d(channels // 4, channels // 2, kernel_size=3, stride=2, padding=1),
|
|
288
|
+
nn.GroupNorm(channels // 16, channels // 2),
|
|
289
|
+
nn.ReLU(),
|
|
290
|
+
nn.Sequential(*[ResBlock(channels // 2) for _ in range(resblocks_per_reduction)]),
|
|
291
|
+
nn.Conv1d(channels // 2, channels, kernel_size=3, stride=2, padding=1),
|
|
292
|
+
nn.GroupNorm(channels // 8, channels),
|
|
293
|
+
nn.ReLU(),
|
|
294
|
+
nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]),
|
|
295
|
+
)
|
|
296
|
+
self.reduction = 4
|
|
297
|
+
|
|
298
|
+
def forward(self, x):
|
|
299
|
+
for e in self.encoder:
|
|
300
|
+
x = e(x)
|
|
301
|
+
return x.permute(0, 2, 1)
|
|
302
|
+
|
|
303
|
+
|
|
304
|
+
class UnifiedVoice(nn.Module):
|
|
305
|
+
def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1,
|
|
306
|
+
mel_length_compression=1024, number_text_tokens=256,
|
|
307
|
+
start_text_token=0, stop_text_token=1, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193,
|
|
308
|
+
train_solo_embeddings=False, use_mel_codes_as_input=True,
|
|
309
|
+
checkpointing=True, types=1,
|
|
310
|
+
condition_num_latent=32, condition_type="perceiver", condition_module=None, emo_condition_module=None):
|
|
311
|
+
"""
|
|
312
|
+
Args:
|
|
313
|
+
layers: Number of layers in transformer stack.
|
|
314
|
+
model_dim: Operating dimensions of the transformer
|
|
315
|
+
heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64
|
|
316
|
+
max_text_tokens: Maximum number of text tokens that will be encountered by model.
|
|
317
|
+
max_mel_tokens: Maximum number of MEL tokens that will be encountered by model.
|
|
318
|
+
max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s).
|
|
319
|
+
mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length.
|
|
320
|
+
number_text_tokens:
|
|
321
|
+
start_text_token:
|
|
322
|
+
stop_text_token:
|
|
323
|
+
number_mel_codes:
|
|
324
|
+
start_mel_token:
|
|
325
|
+
stop_mel_token:
|
|
326
|
+
train_solo_embeddings:
|
|
327
|
+
use_mel_codes_as_input:
|
|
328
|
+
checkpointing:
|
|
329
|
+
condition_type: perceiver, gst or default encoder
|
|
330
|
+
"""
|
|
331
|
+
super().__init__()
|
|
332
|
+
self.number_text_tokens = number_text_tokens
|
|
333
|
+
self.start_text_token = start_text_token
|
|
334
|
+
self.stop_text_token = stop_text_token
|
|
335
|
+
self.number_mel_codes = number_mel_codes
|
|
336
|
+
self.start_mel_token = start_mel_token
|
|
337
|
+
self.stop_mel_token = stop_mel_token
|
|
338
|
+
self.layers = layers
|
|
339
|
+
self.heads = heads
|
|
340
|
+
self.max_mel_tokens = max_mel_tokens
|
|
341
|
+
self.max_text_tokens = max_text_tokens
|
|
342
|
+
self.model_dim = model_dim
|
|
343
|
+
self.max_conditioning_inputs = max_conditioning_inputs
|
|
344
|
+
self.mel_length_compression = mel_length_compression
|
|
345
|
+
self.condition_type = condition_type
|
|
346
|
+
self.cond_num = condition_num_latent
|
|
347
|
+
self.cond_mask_pad = nn.ConstantPad1d((self.cond_num, 0), True)
|
|
348
|
+
self.emo_cond_mask_pad = nn.ConstantPad1d((1, 0), True)
|
|
349
|
+
if condition_type == "perceiver":
|
|
350
|
+
self.conditioning_encoder = ConditioningEncoder(1024, model_dim, num_attn_heads=heads)
|
|
351
|
+
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=model_dim, num_latents=self.cond_num)
|
|
352
|
+
elif condition_type == "conformer_perceiver" or condition_type == "conformer_encoder":
|
|
353
|
+
self.conditioning_encoder = ConformerEncoder(input_size=1024,
|
|
354
|
+
output_size=condition_module['output_size'],
|
|
355
|
+
linear_units=condition_module['linear_units'],
|
|
356
|
+
attention_heads=condition_module['attention_heads'],
|
|
357
|
+
num_blocks=condition_module['num_blocks'],
|
|
358
|
+
input_layer=condition_module['input_layer'])
|
|
359
|
+
if condition_type == "conformer_perceiver":
|
|
360
|
+
self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=condition_module['output_size'],
|
|
361
|
+
ff_mult=condition_module['perceiver_mult'],
|
|
362
|
+
heads=condition_module['attention_heads'],
|
|
363
|
+
num_latents=self.cond_num)
|
|
364
|
+
else:
|
|
365
|
+
self.conditioning_encoder = ConditioningEncoder(1024, model_dim, num_attn_heads=heads, mean=True)
|
|
366
|
+
|
|
367
|
+
self.emo_conditioning_encoder = ConformerEncoder(input_size=1024,
|
|
368
|
+
output_size=emo_condition_module['output_size'],
|
|
369
|
+
linear_units=emo_condition_module['linear_units'],
|
|
370
|
+
attention_heads=emo_condition_module['attention_heads'],
|
|
371
|
+
num_blocks=emo_condition_module['num_blocks'],
|
|
372
|
+
input_layer=emo_condition_module['input_layer'])
|
|
373
|
+
self.emo_perceiver_encoder = PerceiverResampler(1024, dim_context=emo_condition_module['output_size'],
|
|
374
|
+
ff_mult=emo_condition_module['perceiver_mult'],
|
|
375
|
+
heads=emo_condition_module['attention_heads'],
|
|
376
|
+
num_latents=1)
|
|
377
|
+
|
|
378
|
+
|
|
379
|
+
|
|
380
|
+
self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim)
|
|
381
|
+
self.emo_layer = nn.Linear(model_dim, model_dim)
|
|
382
|
+
self.emovec_layer = nn.Linear(1024, model_dim)
|
|
383
|
+
|
|
384
|
+
if use_mel_codes_as_input:
|
|
385
|
+
self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim)
|
|
386
|
+
else:
|
|
387
|
+
self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1)
|
|
388
|
+
self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \
|
|
389
|
+
build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens + 2 + self.max_conditioning_inputs,
|
|
390
|
+
self.max_text_tokens + 2, checkpointing)
|
|
391
|
+
if train_solo_embeddings:
|
|
392
|
+
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
|
|
393
|
+
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True)
|
|
394
|
+
else:
|
|
395
|
+
self.mel_solo_embedding = 0
|
|
396
|
+
self.text_solo_embedding = 0
|
|
397
|
+
|
|
398
|
+
self.final_norm = nn.LayerNorm(model_dim)
|
|
399
|
+
self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1)
|
|
400
|
+
self.mel_head = nn.Linear(model_dim, self.number_mel_codes)
|
|
401
|
+
|
|
402
|
+
self.speed_emb = nn.Embedding(2, model_dim)
|
|
403
|
+
self.speed_emb.weight.data.normal_(mean=0.0, std=0.0)
|
|
404
|
+
|
|
405
|
+
# Initialize the embeddings per the GPT-2 scheme
|
|
406
|
+
embeddings = [self.text_embedding]
|
|
407
|
+
if use_mel_codes_as_input:
|
|
408
|
+
embeddings.append(self.mel_embedding)
|
|
409
|
+
for module in embeddings:
|
|
410
|
+
module.weight.data.normal_(mean=0.0, std=.02)
|
|
411
|
+
|
|
412
|
+
def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False, half=False):
|
|
413
|
+
seq_length = self.max_mel_tokens + self.max_text_tokens + 2
|
|
414
|
+
gpt_config = GPT2Config(
|
|
415
|
+
vocab_size=self.number_mel_codes,
|
|
416
|
+
n_positions=seq_length,
|
|
417
|
+
n_ctx=seq_length,
|
|
418
|
+
n_embd=self.model_dim,
|
|
419
|
+
n_layer=self.layers,
|
|
420
|
+
n_head=self.heads,
|
|
421
|
+
gradient_checkpointing=False,
|
|
422
|
+
use_cache=True,
|
|
423
|
+
)
|
|
424
|
+
self.inference_model = GPT2InferenceModel(
|
|
425
|
+
gpt_config,
|
|
426
|
+
self.gpt,
|
|
427
|
+
self.mel_pos_embedding,
|
|
428
|
+
self.mel_embedding,
|
|
429
|
+
self.final_norm,
|
|
430
|
+
self.mel_head,
|
|
431
|
+
kv_cache=kv_cache,
|
|
432
|
+
)
|
|
433
|
+
if use_deepspeed and half and torch.cuda.is_available():
|
|
434
|
+
import deepspeed
|
|
435
|
+
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
|
|
436
|
+
mp_size=1,
|
|
437
|
+
replace_with_kernel_inject=True,
|
|
438
|
+
dtype=torch.float16)
|
|
439
|
+
self.inference_model = self.ds_engine.module.eval()
|
|
440
|
+
elif use_deepspeed and torch.cuda.is_available():
|
|
441
|
+
import deepspeed
|
|
442
|
+
self.ds_engine = deepspeed.init_inference(model=self.inference_model,
|
|
443
|
+
mp_size=1,
|
|
444
|
+
replace_with_kernel_inject=True,
|
|
445
|
+
dtype=torch.float32)
|
|
446
|
+
self.inference_model = self.ds_engine.module.eval()
|
|
447
|
+
else:
|
|
448
|
+
self.inference_model = self.inference_model.eval()
|
|
449
|
+
|
|
450
|
+
# self.inference_model = PrunedGPT2InferenceModel(gpt_config, self.gpt, self.mel_pos_embedding, self.mel_embedding, self.final_norm, self.mel_head)
|
|
451
|
+
self.gpt.wte = self.mel_embedding
|
|
452
|
+
|
|
453
|
+
def build_aligned_inputs_and_targets(self, input, start_token, stop_token):
|
|
454
|
+
inp = F.pad(input, (1, 0), value=start_token)
|
|
455
|
+
tar = F.pad(input, (0, 1), value=stop_token)
|
|
456
|
+
return inp, tar
|
|
457
|
+
|
|
458
|
+
def set_mel_padding(self, mel_input_tokens, mel_lengths):
|
|
459
|
+
"""
|
|
460
|
+
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
|
|
461
|
+
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
|
|
462
|
+
preformatting to create a working TTS model.
|
|
463
|
+
"""
|
|
464
|
+
for b in range(len(mel_lengths)):
|
|
465
|
+
# Due to the convolutional nature of how these tokens are generated,
|
|
466
|
+
# it would be best if the model predicts a token past the actual last token.
|
|
467
|
+
actual_end = mel_lengths[b]
|
|
468
|
+
if actual_end < mel_input_tokens.shape[-1]:
|
|
469
|
+
mel_input_tokens[b, actual_end:] = self.stop_mel_token
|
|
470
|
+
return mel_input_tokens
|
|
471
|
+
|
|
472
|
+
def set_text_padding(self, text_input_tokens, text_lengths):
|
|
473
|
+
"""
|
|
474
|
+
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in
|
|
475
|
+
that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required
|
|
476
|
+
preformatting to create a working TTS model.
|
|
477
|
+
"""
|
|
478
|
+
for b in range(len(text_lengths)):
|
|
479
|
+
# Due to the convolutional nature of how these tokens are generated,
|
|
480
|
+
# it would be best if the model predicts a token past the actual last token.
|
|
481
|
+
actual_end = text_lengths[b]
|
|
482
|
+
if actual_end < text_input_tokens.shape[-1]:
|
|
483
|
+
text_input_tokens[b, actual_end:] = self.stop_text_token
|
|
484
|
+
return text_input_tokens
|
|
485
|
+
|
|
486
|
+
def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False):
|
|
487
|
+
if second_inputs is not None:
|
|
488
|
+
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
|
489
|
+
else:
|
|
490
|
+
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)
|
|
491
|
+
|
|
492
|
+
gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns)
|
|
493
|
+
if get_attns:
|
|
494
|
+
return gpt_out.attentions
|
|
495
|
+
|
|
496
|
+
offset = speech_conditioning_inputs.shape[1]
|
|
497
|
+
enc = gpt_out.last_hidden_state[:, offset:]
|
|
498
|
+
enc = self.final_norm(enc)
|
|
499
|
+
|
|
500
|
+
if return_latent:
|
|
501
|
+
return enc[:, :first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:]
|
|
502
|
+
|
|
503
|
+
first_logits = enc[:, :first_inputs.shape[1]]
|
|
504
|
+
first_logits = first_head(first_logits)
|
|
505
|
+
first_logits = first_logits.permute(0, 2, 1)
|
|
506
|
+
if second_inputs is not None:
|
|
507
|
+
second_logits = enc[:, -second_inputs.shape[1]:]
|
|
508
|
+
second_logits = second_head(second_logits)
|
|
509
|
+
second_logits = second_logits.permute(0, 2, 1)
|
|
510
|
+
return first_logits, second_logits
|
|
511
|
+
else:
|
|
512
|
+
return first_logits
|
|
513
|
+
|
|
514
|
+
def get_conditioning(self, speech_conditioning_input, cond_mel_lengths=None):
|
|
515
|
+
if self.condition_type == "perceiver":
|
|
516
|
+
if speech_conditioning_input.ndim == 4:
|
|
517
|
+
speech_conditioning_input = speech_conditioning_input.squeeze(1)
|
|
518
|
+
speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input) # (b, d, s)
|
|
519
|
+
conds = self.perceiver_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 32, d)
|
|
520
|
+
elif self.condition_type == "conformer_perceiver":
|
|
521
|
+
speech_conditioning_input, mask = self.conditioning_encoder(speech_conditioning_input.transpose(1, 2),
|
|
522
|
+
cond_mel_lengths) # (b, s, d), (b, 1, s)
|
|
523
|
+
if self.condition_type == "conformer_perceiver":
|
|
524
|
+
# conds_mask = torch.cat([torch.ones((mask.shape[0], self.cond_num), dtype=torch.bool), mask.squeeze(1)], dim=1)
|
|
525
|
+
conds_mask = self.cond_mask_pad(mask.squeeze(1))
|
|
526
|
+
conds = self.perceiver_encoder(speech_conditioning_input, conds_mask) # (b, 32, d)
|
|
527
|
+
elif self.condition_type == "gst":
|
|
528
|
+
if speech_conditioning_input.ndim == 4:
|
|
529
|
+
speech_conditioning_input = speech_conditioning_input.squeeze(1)
|
|
530
|
+
conds = self.gst_encoder(speech_conditioning_input.transpose(1, 2)) # (b, 1, d)
|
|
531
|
+
else:
|
|
532
|
+
speech_conditioning_input = (
|
|
533
|
+
speech_conditioning_input.unsqueeze(1)
|
|
534
|
+
if len(speech_conditioning_input.shape) == 3
|
|
535
|
+
else speech_conditioning_input
|
|
536
|
+
)
|
|
537
|
+
conds = []
|
|
538
|
+
for j in range(speech_conditioning_input.shape[1]):
|
|
539
|
+
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
|
540
|
+
conds = torch.stack(conds, dim=1)
|
|
541
|
+
conds = conds.mean(dim=1)
|
|
542
|
+
conds = conds.unsqueeze(1)
|
|
543
|
+
return conds
|
|
544
|
+
|
|
545
|
+
|
|
546
|
+
def get_emo_conditioning(self, speech_conditioning_input, cond_mel_lengths=None):
|
|
547
|
+
speech_conditioning_input, mask = self.emo_conditioning_encoder(speech_conditioning_input.transpose(1, 2),
|
|
548
|
+
cond_mel_lengths) # (b, s, d), (b, 1, s)
|
|
549
|
+
conds_mask = self.emo_cond_mask_pad(mask.squeeze(1))
|
|
550
|
+
conds = self.emo_perceiver_encoder(speech_conditioning_input, conds_mask) # (b, 1, d)
|
|
551
|
+
return conds.squeeze(1)
|
|
552
|
+
|
|
553
|
+
|
|
554
|
+
def forward(self, speech_conditioning_latent, text_inputs, text_lengths, mel_codes, mel_codes_lengths, emo_speech_conditioning_latent,
|
|
555
|
+
cond_mel_lengths=None, emo_cond_mel_lengths=None, emo_vec=None, use_speed=None, do_spk_cond=False):
|
|
556
|
+
"""
|
|
557
|
+
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode
|
|
558
|
+
|
|
559
|
+
speech_conditioning_input: MEL float tensor, (b,1024)
|
|
560
|
+
text_inputs: long tensor, (b,t)
|
|
561
|
+
text_lengths: long tensor, (b,)
|
|
562
|
+
mel_inputs: long tensor, (b,m)
|
|
563
|
+
wav_lengths: long tensor, (b,)
|
|
564
|
+
|
|
565
|
+
If return_attentions is specified, only logits are returned.
|
|
566
|
+
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned.
|
|
567
|
+
"""
|
|
568
|
+
|
|
569
|
+
if do_spk_cond:
|
|
570
|
+
speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent.transpose(1,2), cond_mel_lengths)
|
|
571
|
+
else:
|
|
572
|
+
speech_conditioning_latent = speech_conditioning_latent
|
|
573
|
+
|
|
574
|
+
if emo_vec is None:
|
|
575
|
+
emo_vec_syn_ori = self.get_emo_conditioning(emo_speech_conditioning_latent.transpose(1,2), emo_cond_mel_lengths)
|
|
576
|
+
emo_vec_syn = self.emovec_layer(emo_vec_syn_ori)
|
|
577
|
+
emo_vec = self.emo_layer(emo_vec_syn)
|
|
578
|
+
|
|
579
|
+
text_inputs = self.set_text_padding(text_inputs, text_lengths)
|
|
580
|
+
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
|
581
|
+
|
|
582
|
+
mel_codes = self.set_mel_padding(mel_codes, mel_codes_lengths)
|
|
583
|
+
mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token)
|
|
584
|
+
|
|
585
|
+
duration_emb = self.speed_emb(torch.zeros_like(use_speed))
|
|
586
|
+
duration_emb_half = self.speed_emb(torch.ones_like(use_speed))
|
|
587
|
+
conds = torch.cat((speech_conditioning_latent + emo_vec.unsqueeze(1), duration_emb_half.unsqueeze(1), duration_emb.unsqueeze(1)), 1)
|
|
588
|
+
text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
|
589
|
+
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
|
590
|
+
mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token)
|
|
591
|
+
|
|
592
|
+
mel_emb = self.mel_embedding(mel_codes)
|
|
593
|
+
mel_emb = mel_emb + self.mel_pos_embedding(mel_codes)
|
|
594
|
+
|
|
595
|
+
text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=False, return_latent=True)
|
|
596
|
+
return mel_logits[:, :-2] # Despite the name, these are not logits. Strip off the two tokens added by this forward pass.
|
|
597
|
+
|
|
598
|
+
def prepare_gpt_inputs(
|
|
599
|
+
self,
|
|
600
|
+
conditional_latents: torch.Tensor,
|
|
601
|
+
text_inputs: torch.Tensor,
|
|
602
|
+
):
|
|
603
|
+
|
|
604
|
+
"""
|
|
605
|
+
Prepare the inputs for the GPT2InferenceModel to generate.
|
|
606
|
+
Args:
|
|
607
|
+
conds_latent: (b, 32, dim) audio conditioning embedding by `get_conditioning()`
|
|
608
|
+
text_inputs: (b, L)
|
|
609
|
+
Returns:
|
|
610
|
+
input_ids: (b, s+1) the input ids for the GPT2InferenceModel.generate()
|
|
611
|
+
inputs_embeds: (b, s+1, dim) the input embeddings for the GPT2InferenceModel.forward()
|
|
612
|
+
attention_mask: (b, s+1) the attention mask for the GPT2InferenceModel.generate()
|
|
613
|
+
"""
|
|
614
|
+
b, L = text_inputs.shape[:2]
|
|
615
|
+
device = text_inputs.device
|
|
616
|
+
single_cond = conditional_latents.ndim == 3 and conditional_latents.shape[0] == 1
|
|
617
|
+
if not single_cond:
|
|
618
|
+
assert conditional_latents.shape[0] == b, f"batch size mismatch: {conditional_latents.shape[0]} vs {b}"
|
|
619
|
+
batched_mel_emb = []
|
|
620
|
+
attention_masks = []
|
|
621
|
+
target_len = conditional_latents.shape[1] + L + 2
|
|
622
|
+
for i in range(b):
|
|
623
|
+
valid_mask = (text_inputs[i] != self.stop_text_token) & (text_inputs[i] != self.start_text_token)
|
|
624
|
+
text_input = text_inputs[i][valid_mask]
|
|
625
|
+
text_input = F.pad(text_input, (1, 0), value=self.start_text_token)
|
|
626
|
+
text_input = F.pad(text_input, (0, 1), value=self.stop_text_token)
|
|
627
|
+
text_input_pos = torch.arange(0, text_input.size(-1), device=device)
|
|
628
|
+
text_emb = self.text_embedding(text_input) + self.text_pos_embedding.emb(text_input_pos)
|
|
629
|
+
# concatenate [conditional latents][text embeddings]
|
|
630
|
+
conds_text_emb = [
|
|
631
|
+
conditional_latents.squeeze(0) if single_cond else conditional_latents[i],
|
|
632
|
+
text_emb,
|
|
633
|
+
]
|
|
634
|
+
# +1 for the start_mel_token
|
|
635
|
+
attention_mask = torch.ones(target_len+1, dtype=torch.long, device=device)
|
|
636
|
+
# check this text input is padded
|
|
637
|
+
padding: int = L + 2 - text_input.size(-1)
|
|
638
|
+
# pad left of [cond][text] -> [pad][cond][text]
|
|
639
|
+
if padding > 0:
|
|
640
|
+
pad = torch.zeros((padding, conditional_latents.size(-1)), dtype=text_emb.dtype, device=device) # [p, dim]
|
|
641
|
+
conds_text_emb.insert(0, pad)
|
|
642
|
+
attention_mask[:padding] = 0
|
|
643
|
+
mel_emb = torch.cat(conds_text_emb) #[s, dim]
|
|
644
|
+
assert mel_emb.shape[0] == target_len, f"mel_emb.shape: {mel_emb.shape}, target_len: {target_len}"
|
|
645
|
+
batched_mel_emb.append(mel_emb)
|
|
646
|
+
attention_masks.append(attention_mask)
|
|
647
|
+
# [b, s, dim]
|
|
648
|
+
batched_mel_emb = torch.stack(batched_mel_emb, dim=0)
|
|
649
|
+
# [b, s+1]
|
|
650
|
+
attention_mask = torch.stack(attention_masks, dim=0)
|
|
651
|
+
# [b, s+1]
|
|
652
|
+
fake_inputs = torch.ones(
|
|
653
|
+
(
|
|
654
|
+
batched_mel_emb.shape[0],
|
|
655
|
+
batched_mel_emb.shape[1] + 1, # +1 for the start_mel_token
|
|
656
|
+
),
|
|
657
|
+
dtype=torch.long,
|
|
658
|
+
device=device,
|
|
659
|
+
)
|
|
660
|
+
fake_inputs[:, -1] = self.start_mel_token
|
|
661
|
+
return fake_inputs, batched_mel_emb, attention_mask
|
|
662
|
+
|
|
663
|
+
def inference_speech(self, speech_condition, text_inputs, emo_speech_condition=None, cond_lengths=None, emo_cond_lengths=None, emo_vec=None, use_speed=False, input_tokens=None, num_return_sequences=1,
|
|
664
|
+
max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs):
|
|
665
|
+
"""
|
|
666
|
+
Args:
|
|
667
|
+
speech_condition: (b, d, frames) or (d, frames)
|
|
668
|
+
text_inputs: (b, L)
|
|
669
|
+
cond_mel_lengths: lengths of the conditioning mel spectrograms in shape (b,) or (1,)
|
|
670
|
+
input_tokens: additional tokens for generation in shape (b, s) or (s,)
|
|
671
|
+
max_generate_length: limit the number of generated tokens
|
|
672
|
+
hf_generate_kwargs: kwargs for `GPT2InferenceModel.generate(**hf_generate_kwargs)`
|
|
673
|
+
"""
|
|
674
|
+
|
|
675
|
+
if speech_condition.ndim == 2:
|
|
676
|
+
speech_condition = speech_condition.unsqueeze(0)
|
|
677
|
+
if emo_speech_condition is None:
|
|
678
|
+
emo_speech_condition = speech_condition
|
|
679
|
+
if cond_lengths is None:
|
|
680
|
+
cond_lengths = torch.tensor([speech_condition.shape[-1]], device=speech_condition.device)
|
|
681
|
+
if emo_cond_lengths is None:
|
|
682
|
+
emo_cond_lengths = torch.tensor([emo_speech_condition.shape[-1]], device=speech_condition.device)
|
|
683
|
+
|
|
684
|
+
speech_conditioning_latent = self.get_conditioning(speech_condition.transpose(1,2), cond_lengths)
|
|
685
|
+
if emo_vec is None:
|
|
686
|
+
print('compute emo vec')
|
|
687
|
+
emo_vec = self.get_emo_conditioning(emo_speech_condition.transpose(1,2), emo_cond_lengths)
|
|
688
|
+
emo_vec = self.emovec_layer(emo_vec)
|
|
689
|
+
emo_vec = self.emo_layer(emo_vec)
|
|
690
|
+
else:
|
|
691
|
+
print('Use the specified emotion vector')
|
|
692
|
+
|
|
693
|
+
tmp = torch.zeros(text_inputs.size(0)).to(text_inputs.device)
|
|
694
|
+
duration_emb = self.speed_emb(torch.zeros_like(tmp).long())
|
|
695
|
+
duration_emb_half = self.speed_emb(torch.ones_like(tmp).long())
|
|
696
|
+
conds_latent = torch.cat((speech_conditioning_latent + emo_vec.unsqueeze(1), duration_emb_half.unsqueeze(1), duration_emb.unsqueeze(1)), 1)
|
|
697
|
+
input_ids, inputs_embeds, attention_mask = self.prepare_gpt_inputs(conds_latent, text_inputs)
|
|
698
|
+
self.inference_model.store_mel_emb(inputs_embeds)
|
|
699
|
+
if input_tokens is None:
|
|
700
|
+
inputs = input_ids
|
|
701
|
+
else:
|
|
702
|
+
if input_tokens.ndim == 1:
|
|
703
|
+
input_tokens = input_tokens.unsqueeze(0)
|
|
704
|
+
assert num_return_sequences % input_tokens.shape[0] == 0, \
|
|
705
|
+
"The num_return_sequences must be divisible by the batch number of input_tokens"
|
|
706
|
+
assert num_return_sequences % text_inputs.shape[0] == 0, \
|
|
707
|
+
"The num_return_sequences must be divisible by the batch number of text_inputs"
|
|
708
|
+
b = num_return_sequences // input_ids.shape[0]
|
|
709
|
+
if b > 1:
|
|
710
|
+
input_ids = input_ids.repeat(b, 1)
|
|
711
|
+
attention_mask = attention_mask.repeat(b, 1)
|
|
712
|
+
input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1)
|
|
713
|
+
inputs = torch.cat([input_ids, input_tokens], dim=1)
|
|
714
|
+
attention_mask = F.pad(attention_mask, (0, input_tokens.shape[1]), value=1)
|
|
715
|
+
trunc_index = inputs.shape[1]
|
|
716
|
+
logits_processor = LogitsProcessorList()
|
|
717
|
+
if typical_sampling:
|
|
718
|
+
# employ custom typical sampling
|
|
719
|
+
if not (typical_mass > 0.0 and typical_mass < 1.0):
|
|
720
|
+
raise ValueError(f"`typical_mass` has to be a float > 0 and < 1, but is {typical_mass}")
|
|
721
|
+
min_tokens_to_keep = 2 if hf_generate_kwargs.get("num_beams", 1) > 1 else 1
|
|
722
|
+
logits_processor.append(TypicalLogitsWarper(mass=typical_mass, min_tokens_to_keep=min_tokens_to_keep))
|
|
723
|
+
max_length = (trunc_index + self.max_mel_tokens - 1) if max_generate_length is None else trunc_index + max_generate_length
|
|
724
|
+
output = self.inference_model.generate(inputs,
|
|
725
|
+
bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token,
|
|
726
|
+
eos_token_id=self.stop_mel_token, attention_mask=attention_mask,
|
|
727
|
+
max_length=max_length, logits_processor=logits_processor,
|
|
728
|
+
num_return_sequences=num_return_sequences,
|
|
729
|
+
**hf_generate_kwargs)
|
|
730
|
+
if isinstance(output, torch.Tensor):
|
|
731
|
+
return output[:, trunc_index:], speech_conditioning_latent
|
|
732
|
+
# GenerateOutput
|
|
733
|
+
output.sequences = output.sequences[:, trunc_index:]
|
|
734
|
+
return output, speech_conditioning_latent
|
|
735
|
+
|
|
736
|
+
def get_emovec(self, emo_speech_conditioning_latent, emo_cond_lengths):
|
|
737
|
+
emo_vec_syn_ori = self.get_emo_conditioning(emo_speech_conditioning_latent.transpose(1,2), emo_cond_lengths)
|
|
738
|
+
emo_vec_syn = self.emovec_layer(emo_vec_syn_ori)
|
|
739
|
+
emo_vec = self.emo_layer(emo_vec_syn)
|
|
740
|
+
return emo_vec
|
|
741
|
+
|
|
742
|
+
def merge_emovec(self, speech_conditioning_latent, emo_speech_conditioning_latent, cond_lengths, emo_cond_lengths, alpha = 1.0):
|
|
743
|
+
emo_vec = self.get_emovec(emo_speech_conditioning_latent, emo_cond_lengths)
|
|
744
|
+
base_vec = self.get_emovec(speech_conditioning_latent, cond_lengths)
|
|
745
|
+
|
|
746
|
+
out = base_vec + alpha * (emo_vec - base_vec)
|
|
747
|
+
return out
|