warp-lang 0.10.1__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +10 -4
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +5 -3
- warp/build_dll.py +29 -9
- warp/builtins.py +868 -507
- warp/codegen.py +1074 -638
- warp/config.py +3 -3
- warp/constants.py +6 -0
- warp/context.py +715 -222
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +147 -44
- warp/native/builtin.h +122 -149
- warp/native/bvh.cpp +73 -325
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +34 -43
- warp/native/clang/clang.cpp +13 -8
- warp/native/crt.h +2 -0
- warp/native/cuda_crt.h +5 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -952
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +1 -1
- warp/native/marching.cu +157 -161
- warp/native/mat.h +80 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +33 -108
- warp/native/mesh.cu +114 -23
- warp/native/mesh.h +446 -46
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +1 -1
- warp/native/reduce.cu +10 -12
- warp/native/runlength_encode.cu +6 -10
- warp/native/scan.cu +8 -11
- warp/native/sparse.cpp +4 -4
- warp/native/sparse.cu +164 -154
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +14 -30
- warp/native/vec.h +107 -23
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +560 -30
- warp/native/warp.cu +431 -44
- warp/native/warp.h +13 -4
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +335 -119
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +8 -0
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +158 -16
- warp/sim/model.py +795 -291
- warp/sim/render.py +3 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +640 -150
- warp/stubs.py +606 -267
- warp/tape.py +61 -10
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +212 -97
- warp/tests/test_array_reduce.py +57 -23
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +42 -18
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +208 -130
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +75 -75
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -86
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +178 -109
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +32 -31
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +14 -41
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +517 -2898
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +140 -22
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +168 -20
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +261 -63
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +268 -63
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -2050
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +9 -6
- warp/types.py +1089 -366
- warp/utils.py +93 -387
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/tests/test_all.py +0 -219
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.10.1.dist-info/METADATA +0 -21
- warp_lang-0.10.1.dist-info/RECORD +0 -188
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/LICENSE.md +0 -0
- {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,453 @@
|
|
|
1
|
+
#################################################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
4
|
+
# SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
#
|
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
|
7
|
+
# modification, are permitted provided that the following conditions are met:
|
|
8
|
+
#
|
|
9
|
+
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
10
|
+
# list of conditions and the following disclaimer.
|
|
11
|
+
#
|
|
12
|
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
13
|
+
# this list of conditions and the following disclaimer in the documentation
|
|
14
|
+
# and/or other materials provided with the distribution.
|
|
15
|
+
#
|
|
16
|
+
# 3. Neither the name of the copyright holder nor the names of its
|
|
17
|
+
# contributors may be used to endorse or promote products derived from
|
|
18
|
+
# this software without specific prior written permission.
|
|
19
|
+
#
|
|
20
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
21
|
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
22
|
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
23
|
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
24
|
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
25
|
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
26
|
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
27
|
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
28
|
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
29
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
30
|
+
#
|
|
31
|
+
#################################################################################################
|
|
32
|
+
|
|
33
|
+
## Test case generator for SM80
|
|
34
|
+
|
|
35
|
+
import pycutlass
|
|
36
|
+
from pycutlass import *
|
|
37
|
+
from pycutlass.test import *
|
|
38
|
+
from pycutlass.utils.device import device_cc
|
|
39
|
+
import unittest
|
|
40
|
+
|
|
41
|
+
#
|
|
42
|
+
# Create GEMM operation
|
|
43
|
+
#
|
|
44
|
+
|
|
45
|
+
@unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.")
|
|
46
|
+
def TestGemmOperator(gemm_kind, math_inst, layout, alignment, tiling, arch, mixed=False,
|
|
47
|
+
epilogue_functor=None, swizzling_functor=cutlass.IdentitySwizzle1, **kwargs):
|
|
48
|
+
"""
|
|
49
|
+
Test GEMM Operation based on configuration
|
|
50
|
+
"""
|
|
51
|
+
|
|
52
|
+
if "data_type" in kwargs.keys():
|
|
53
|
+
data_type = kwargs["data_type"]
|
|
54
|
+
else:
|
|
55
|
+
if mixed or math_inst.element_a == cutlass.bfloat16:
|
|
56
|
+
data_type = [
|
|
57
|
+
math_inst.element_a,
|
|
58
|
+
math_inst.element_b,
|
|
59
|
+
math_inst.element_accumulator,
|
|
60
|
+
math_inst.element_accumulator
|
|
61
|
+
]
|
|
62
|
+
else:
|
|
63
|
+
data_type = [
|
|
64
|
+
math_inst.element_a,
|
|
65
|
+
math_inst.element_b,
|
|
66
|
+
math_inst.element_a,
|
|
67
|
+
math_inst.element_accumulator
|
|
68
|
+
]
|
|
69
|
+
|
|
70
|
+
tile_description = TileDescription(
|
|
71
|
+
tiling[0], tiling[1], tiling[2],
|
|
72
|
+
math_inst
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
A = TensorDescription(
|
|
76
|
+
data_type[0], layout[0], alignment[0]
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
B = TensorDescription(
|
|
80
|
+
data_type[1], layout[1], alignment[1]
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
C = TensorDescription(
|
|
84
|
+
data_type[2], layout[2], alignment[2]
|
|
85
|
+
)
|
|
86
|
+
|
|
87
|
+
element_epilogue = data_type[3]
|
|
88
|
+
if epilogue_functor is None:
|
|
89
|
+
epilogue_functor = LinearCombination(
|
|
90
|
+
C.element, C.alignment,
|
|
91
|
+
math_inst.element_accumulator, element_epilogue)
|
|
92
|
+
|
|
93
|
+
if gemm_kind == GemmKind.Universal:
|
|
94
|
+
operation = GemmOperationUniversal(
|
|
95
|
+
arch=arch, tile_description=tile_description,
|
|
96
|
+
A=A, B=B, C=C,
|
|
97
|
+
epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor
|
|
98
|
+
)
|
|
99
|
+
if A.layout in [cutlass.ColumnMajorInterleaved32, cutlass.RowMajorInterleaved32]:
|
|
100
|
+
return test_all_gemm(operation, "interleaved")
|
|
101
|
+
else:
|
|
102
|
+
return test_all_gemm(operation, "universal")
|
|
103
|
+
|
|
104
|
+
elif gemm_kind == GemmKind.Grouped:
|
|
105
|
+
operation = GemmOperationGrouped(
|
|
106
|
+
arch, tile_description, A, B, C,
|
|
107
|
+
epilogue_functor, swizzling_functor,
|
|
108
|
+
precompute_mode=kwargs["precompute_mode"]
|
|
109
|
+
)
|
|
110
|
+
testbed = TestbedGrouped(operation=operation)
|
|
111
|
+
return testbed.run(24)
|
|
112
|
+
else:
|
|
113
|
+
raise NotImplementedError("the gemm kind is not implemented")
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
def TestConv2dOperator(math_inst, alignment, tiling, arch,
|
|
117
|
+
stride_supports=[StrideSupport.Strided, StrideSupport.Strided, StrideSupport.Strided],
|
|
118
|
+
epilogue_functor=None,
|
|
119
|
+
swizzling_functor=cutlass.IdentitySwizzle1, interleaved=False, **kwargs):
|
|
120
|
+
"""
|
|
121
|
+
Test Conv2d Operation based on configurations
|
|
122
|
+
"""
|
|
123
|
+
|
|
124
|
+
mixeds = [False, True, False]
|
|
125
|
+
conv_kinds = [cutlass.conv.Operator.fprop, cutlass.conv.Operator.dgrad, cutlass.conv.Operator.wgrad]
|
|
126
|
+
|
|
127
|
+
results = []
|
|
128
|
+
|
|
129
|
+
default_swizzling_functor = swizzling_functor
|
|
130
|
+
|
|
131
|
+
if "layout" in kwargs.keys():
|
|
132
|
+
layout = kwargs["layout"]
|
|
133
|
+
else:
|
|
134
|
+
layout = (cutlass.TensorNHWC, cutlass.TensorNHWC, cutlass.TensorNHWC)
|
|
135
|
+
|
|
136
|
+
for mixed, conv_kind, stride_support in zip(mixeds, conv_kinds, stride_supports):
|
|
137
|
+
|
|
138
|
+
if "data_type" in kwargs.keys():
|
|
139
|
+
data_type = kwargs["data_type"]
|
|
140
|
+
else:
|
|
141
|
+
if mixed or math_inst.element_a == cutlass.bfloat16:
|
|
142
|
+
data_type = [
|
|
143
|
+
math_inst.element_a,
|
|
144
|
+
math_inst.element_b,
|
|
145
|
+
math_inst.element_accumulator,
|
|
146
|
+
math_inst.element_accumulator
|
|
147
|
+
]
|
|
148
|
+
else:
|
|
149
|
+
data_type = [
|
|
150
|
+
math_inst.element_a,
|
|
151
|
+
math_inst.element_b,
|
|
152
|
+
math_inst.element_a,
|
|
153
|
+
math_inst.element_accumulator
|
|
154
|
+
]
|
|
155
|
+
# skip Int8 Conv Backward
|
|
156
|
+
if data_type[0] == cutlass.int8 and conv_kind in [cutlass.conv.Operator.dgrad, cutlass.conv.Operator.wgrad]:
|
|
157
|
+
continue
|
|
158
|
+
|
|
159
|
+
A = TensorDescription(
|
|
160
|
+
element=data_type[0],
|
|
161
|
+
layout=layout[0],
|
|
162
|
+
alignment=alignment[0])
|
|
163
|
+
B = TensorDescription(
|
|
164
|
+
element=data_type[1],
|
|
165
|
+
layout=layout[1],
|
|
166
|
+
alignment=alignment[1])
|
|
167
|
+
C = TensorDescription(
|
|
168
|
+
element=data_type[2],
|
|
169
|
+
layout=layout[2],
|
|
170
|
+
alignment=alignment[2])
|
|
171
|
+
|
|
172
|
+
tile_description = TileDescription(
|
|
173
|
+
threadblock_shape=tiling[0], stages=tiling[1],
|
|
174
|
+
warp_count=tiling[2],
|
|
175
|
+
math_instruction=math_inst
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
if conv_kind == cutlass.conv.Operator.dgrad and stride_support == StrideSupport.Strided:
|
|
179
|
+
swizzling_functor = cutlass.StridedDgradIdentitySwizzle1
|
|
180
|
+
else:
|
|
181
|
+
swizzling_functor = default_swizzling_functor
|
|
182
|
+
|
|
183
|
+
if epilogue_functor is None:
|
|
184
|
+
epilogue_functor_ = LinearCombination(
|
|
185
|
+
C.element, C.alignment,
|
|
186
|
+
math_inst.element_accumulator, data_type[3])
|
|
187
|
+
|
|
188
|
+
operation = Conv2dOperation(
|
|
189
|
+
conv_kind=conv_kind, iterator_algorithm=cutlass.conv.IteratorAlgorithm.optimized,
|
|
190
|
+
arch=arch, tile_description=tile_description, A=A, B=B, C=C,
|
|
191
|
+
stride_support=stride_support,
|
|
192
|
+
epilogue_functor=epilogue_functor_,
|
|
193
|
+
swizzling_functor=swizzling_functor
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
results.append(test_all_conv2d(operation, interleaved=interleaved))
|
|
197
|
+
|
|
198
|
+
return results
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
class Test_SM80(unittest.TestCase):
|
|
203
|
+
def test_SM80_TensorOp_16816(self):
|
|
204
|
+
math_instructions = [
|
|
205
|
+
MathInstruction(
|
|
206
|
+
[16, 8, 16], cutlass.float16, cutlass.float16, cutlass.float32,
|
|
207
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add
|
|
208
|
+
),
|
|
209
|
+
MathInstruction(
|
|
210
|
+
[16, 8, 16], cutlass.float16, cutlass.float16, cutlass.float16,
|
|
211
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add
|
|
212
|
+
),
|
|
213
|
+
MathInstruction(
|
|
214
|
+
[16, 8, 16], cutlass.bfloat16, cutlass.bfloat16, cutlass.float32,
|
|
215
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add
|
|
216
|
+
)
|
|
217
|
+
]
|
|
218
|
+
|
|
219
|
+
layouts = [
|
|
220
|
+
(cutlass.RowMajor, cutlass.RowMajor, cutlass.RowMajor),
|
|
221
|
+
(cutlass.ColumnMajor, cutlass.RowMajor, cutlass.RowMajor),
|
|
222
|
+
(cutlass.RowMajor, cutlass.ColumnMajor, cutlass.RowMajor)
|
|
223
|
+
]
|
|
224
|
+
|
|
225
|
+
alignments = [
|
|
226
|
+
(8, 8, 8), (4, 8, 8), (8, 4, 8)
|
|
227
|
+
]
|
|
228
|
+
|
|
229
|
+
tilings = [
|
|
230
|
+
([256, 128, 32], 3, [4, 2, 1]),
|
|
231
|
+
([64, 256, 32], 4, [1, 4, 1]),
|
|
232
|
+
([128, 64, 64], 3, [2, 2, 1])
|
|
233
|
+
]
|
|
234
|
+
|
|
235
|
+
for math_inst, layout, alignment, tiling in zip(math_instructions, layouts, alignments, tilings):
|
|
236
|
+
self.assertTrue(TestGemmOperator(GemmKind.Universal, math_inst, layout, alignment, tiling, 80, False))
|
|
237
|
+
self.assertTrue(TestGemmOperator(GemmKind.Grouped, math_inst, layout, alignment, tiling, 80, True, precompute_mode=SchedulerMode.Host))
|
|
238
|
+
stride_supports = [StrideSupport.Strided, StrideSupport.Strided, StrideSupport.Strided]
|
|
239
|
+
results = TestConv2dOperator(math_inst, alignment, tiling, 80, stride_supports=stride_supports)
|
|
240
|
+
for res in results:
|
|
241
|
+
self.assertTrue(res)
|
|
242
|
+
|
|
243
|
+
def test_SM80_TensorOp_1688(self):
|
|
244
|
+
# tf32 is not supported by most of python environment. Skip the test
|
|
245
|
+
self.assertTrue(True)
|
|
246
|
+
|
|
247
|
+
def test_SM80_TensorOp_1688_fast_math(self):
|
|
248
|
+
math_instructions = [
|
|
249
|
+
MathInstruction(
|
|
250
|
+
[16, 8, 8], cutlass.tfloat32, cutlass.tfloat32, cutlass.float32,
|
|
251
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add
|
|
252
|
+
),
|
|
253
|
+
MathInstruction(
|
|
254
|
+
[16, 8, 8], cutlass.float16, cutlass.float16, cutlass.float32,
|
|
255
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add_fast_f16
|
|
256
|
+
),
|
|
257
|
+
MathInstruction(
|
|
258
|
+
[16, 8, 8], cutlass.bfloat16, cutlass.bfloat16, cutlass.float32,
|
|
259
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add_fast_bf16
|
|
260
|
+
),
|
|
261
|
+
MathInstruction(
|
|
262
|
+
[16, 8, 8], cutlass.float32, cutlass.float32, cutlass.float32,
|
|
263
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add_fast_f32
|
|
264
|
+
)
|
|
265
|
+
]
|
|
266
|
+
|
|
267
|
+
layouts = [
|
|
268
|
+
(cutlass.RowMajor, cutlass.RowMajor, cutlass.ColumnMajor),
|
|
269
|
+
(cutlass.RowMajor, cutlass.ColumnMajor, cutlass.ColumnMajor),
|
|
270
|
+
(cutlass.ColumnMajor, cutlass.RowMajor, cutlass.ColumnMajor),
|
|
271
|
+
(cutlass.ColumnMajor, cutlass.ColumnMajor, cutlass.RowMajor)
|
|
272
|
+
]
|
|
273
|
+
alignments = [
|
|
274
|
+
(4, 4, 4), (4, 2, 4), (2, 4, 4), (2, 2, 4)
|
|
275
|
+
]
|
|
276
|
+
tilings = [
|
|
277
|
+
([128, 256, 16], 3, [4, 2, 1]),
|
|
278
|
+
([64, 256, 16], 4, [1, 4, 1]),
|
|
279
|
+
([128, 64, 32], 3, [2, 2, 1]),
|
|
280
|
+
([256, 64, 32], 3, [4, 2, 1])
|
|
281
|
+
]
|
|
282
|
+
data_type = [
|
|
283
|
+
cutlass.float32, cutlass.float32, cutlass.float32, cutlass.float32
|
|
284
|
+
]
|
|
285
|
+
for math_inst, layout, alignment, tiling in zip(math_instructions, layouts, alignments, tilings):
|
|
286
|
+
self.assertTrue(
|
|
287
|
+
TestGemmOperator(
|
|
288
|
+
GemmKind.Universal, math_inst, layout,
|
|
289
|
+
alignment, tiling, 80, False, data_type=data_type))
|
|
290
|
+
self.assertTrue(
|
|
291
|
+
TestGemmOperator(
|
|
292
|
+
GemmKind.Grouped, math_inst, layout, alignment, tiling, 80,
|
|
293
|
+
True, precompute_mode=SchedulerMode.Device, data_type=data_type))
|
|
294
|
+
stride_supports = [StrideSupport.Unity, StrideSupport.Strided, StrideSupport.Unity]
|
|
295
|
+
results = TestConv2dOperator(math_inst, alignment, tiling, 80, stride_supports=stride_supports, data_type=data_type)
|
|
296
|
+
for res in results:
|
|
297
|
+
self.assertTrue(res)
|
|
298
|
+
|
|
299
|
+
def test_SM80_TensorOp_884(self):
|
|
300
|
+
math_inst = MathInstruction(
|
|
301
|
+
[8, 8, 4], cutlass.float64, cutlass.float64, cutlass.float64,
|
|
302
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add
|
|
303
|
+
)
|
|
304
|
+
layout = (cutlass.ColumnMajor, cutlass.ColumnMajor, cutlass.ColumnMajor)
|
|
305
|
+
alignment = (1, 1, 1)
|
|
306
|
+
|
|
307
|
+
tiling = ([64, 256, 16], 3, [2, 4, 1])
|
|
308
|
+
data_type = [cutlass.float64, cutlass.float64, cutlass.float64, cutlass.float64]
|
|
309
|
+
self.assertTrue(TestGemmOperator(GemmKind.Universal, math_inst, layout, alignment, tiling, 80, False, data_type=data_type))
|
|
310
|
+
self.assertTrue(TestGemmOperator(GemmKind.Grouped, math_inst, layout, alignment, tiling, 80, True, precompute_mode=SchedulerMode.Device, data_type=data_type))
|
|
311
|
+
stride_supports = [StrideSupport.Unity, StrideSupport.Strided, StrideSupport.Unity]
|
|
312
|
+
results = TestConv2dOperator(math_inst, alignment, tiling, 80, stride_supports=stride_supports, data_type=data_type)
|
|
313
|
+
for res in results:
|
|
314
|
+
self.assertTrue(res)
|
|
315
|
+
|
|
316
|
+
def test_SM80_TensorOp_16832_TN(self):
|
|
317
|
+
math_inst = MathInstruction(
|
|
318
|
+
[16, 8, 32], cutlass.int8, cutlass.int8, cutlass.int32,
|
|
319
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add_saturate
|
|
320
|
+
)
|
|
321
|
+
layout = (cutlass.RowMajor, cutlass.ColumnMajor, cutlass.ColumnMajor)
|
|
322
|
+
alignment = (16, 16, 4)
|
|
323
|
+
alignment_mixed = (16, 16, 16)
|
|
324
|
+
tiling = ([128, 256, 64], 3, [2, 4, 1])
|
|
325
|
+
|
|
326
|
+
data_type = [cutlass.int8, cutlass.int8, cutlass.int32, cutlass.int32]
|
|
327
|
+
data_type_mixed = [cutlass.int8, cutlass.int8, cutlass.int8, cutlass.float32]
|
|
328
|
+
|
|
329
|
+
self.assertTrue(TestGemmOperator(GemmKind.Universal, math_inst, layout, alignment, tiling, 80, False, data_type=data_type))
|
|
330
|
+
self.assertTrue(TestGemmOperator(GemmKind.Grouped, math_inst, layout, alignment_mixed, tiling, 80, True, precompute_mode=SchedulerMode.Device, data_type=data_type_mixed))
|
|
331
|
+
stride_supports = [StrideSupport.Strided, StrideSupport.Strided, StrideSupport.Strided]
|
|
332
|
+
results = TestConv2dOperator(math_inst, alignment, tiling, 80, stride_supports=stride_supports, data_type=data_type)
|
|
333
|
+
for res in results:
|
|
334
|
+
self.assertTrue(res)
|
|
335
|
+
|
|
336
|
+
def test_SM80_Simt_f32(self):
|
|
337
|
+
math_inst = MathInstruction(
|
|
338
|
+
[1, 1, 1], cutlass.float32, cutlass.float32, cutlass.float32,
|
|
339
|
+
cutlass.OpClass.Simt, MathOperation.multiply_add
|
|
340
|
+
)
|
|
341
|
+
layout = (cutlass.RowMajor, cutlass.RowMajor, cutlass.RowMajor)
|
|
342
|
+
alignment = (1, 1, 1)
|
|
343
|
+
|
|
344
|
+
tiling = ([128, 256, 8], 4, [2, 4, 1])
|
|
345
|
+
data_type = [cutlass.float32, cutlass.float32, cutlass.float32, cutlass.float32]
|
|
346
|
+
self.assertTrue(TestGemmOperator(GemmKind.Universal, math_inst, layout, alignment, tiling, 80, False, data_type=data_type))
|
|
347
|
+
self.assertTrue(TestGemmOperator(GemmKind.Grouped, math_inst, layout, alignment, tiling, 80, True, precompute_mode=SchedulerMode.Host, data_type=data_type))
|
|
348
|
+
stride_supports = [StrideSupport.Strided, StrideSupport.Strided, StrideSupport.Strided]
|
|
349
|
+
results = TestConv2dOperator(math_inst, alignment, tiling, 80, stride_supports=stride_supports, data_type=data_type)
|
|
350
|
+
for res in results:
|
|
351
|
+
self.assertTrue(res)
|
|
352
|
+
|
|
353
|
+
def test_SM80_Simt_f64(self):
|
|
354
|
+
math_inst = MathInstruction(
|
|
355
|
+
[1, 1, 1], cutlass.float64, cutlass.float64, cutlass.float64,
|
|
356
|
+
cutlass.OpClass.Simt, MathOperation.multiply_add
|
|
357
|
+
)
|
|
358
|
+
layout = (cutlass.RowMajor, cutlass.RowMajor, cutlass.ColumnMajor)
|
|
359
|
+
alignment = (1, 1, 1)
|
|
360
|
+
|
|
361
|
+
tiling = ([64, 128, 8], 5, [2, 2, 1])
|
|
362
|
+
data_type = [cutlass.float64, cutlass.float64, cutlass.float64, cutlass.float64]
|
|
363
|
+
self.assertTrue(TestGemmOperator(GemmKind.Universal, math_inst, layout, alignment, tiling, 80, False, data_type=data_type))
|
|
364
|
+
self.assertTrue(TestGemmOperator(GemmKind.Grouped, math_inst, layout, alignment, tiling, 80, True, precompute_mode=SchedulerMode.Device, data_type=data_type))
|
|
365
|
+
stride_supports = [StrideSupport.Strided, StrideSupport.Strided, StrideSupport.Strided]
|
|
366
|
+
results = TestConv2dOperator(math_inst, alignment, tiling, 80, stride_supports=stride_supports, data_type=data_type)
|
|
367
|
+
for res in results:
|
|
368
|
+
self.assertTrue(res)
|
|
369
|
+
|
|
370
|
+
def test_SM80_TensorOp_16832_Interleaved(self):
|
|
371
|
+
math_inst = MathInstruction(
|
|
372
|
+
[16, 8, 32], cutlass.int8, cutlass.int8, cutlass.int32,
|
|
373
|
+
cutlass.OpClass.TensorOp, MathOperation.multiply_add_saturate
|
|
374
|
+
)
|
|
375
|
+
|
|
376
|
+
layout = (cutlass.ColumnMajorInterleaved32, cutlass.RowMajorInterleaved32, cutlass.ColumnMajorInterleaved32)
|
|
377
|
+
alignment_mixed = (16, 16, 8)
|
|
378
|
+
tiling = ([256, 64, 64], 4, [4, 1, 1])
|
|
379
|
+
data_type_mixed = [cutlass.int8, cutlass.int8, cutlass.int8, cutlass.float32]
|
|
380
|
+
|
|
381
|
+
epilogue_functor = FastLinearCombinationClamp(
|
|
382
|
+
data_type_mixed[2], alignment_mixed[2]
|
|
383
|
+
)
|
|
384
|
+
|
|
385
|
+
self.assertTrue(TestGemmOperator(GemmKind.Universal, math_inst, layout, alignment_mixed, tiling, 80, False, data_type=data_type_mixed, epilogue_functor=epilogue_functor))
|
|
386
|
+
stride_supports = [StrideSupport.Strided, StrideSupport.Strided, StrideSupport.Strided]
|
|
387
|
+
layout = [cutlass.TensorNC32HW32, cutlass.TensorC32RSK32, cutlass.TensorNC32HW32]
|
|
388
|
+
results = TestConv2dOperator(math_inst, alignment_mixed, tiling, 80, stride_supports=stride_supports, data_type=data_type_mixed, layout=layout, interleaved=True)
|
|
389
|
+
for res in results:
|
|
390
|
+
self.assertTrue(res)
|
|
391
|
+
|
|
392
|
+
def SM80_SparseTensorOp_16832(self):
|
|
393
|
+
pass
|
|
394
|
+
def SM80_PlanarComplexTensorOp_16816(self):
|
|
395
|
+
pass
|
|
396
|
+
def SM80_SparseTensorOp_16816_fast_math(self):
|
|
397
|
+
pass
|
|
398
|
+
def SM80_TensorOp_1688_complex(self):
|
|
399
|
+
pass
|
|
400
|
+
def SM80_TensorOp_1688_fast_fp32_math_complex(self):
|
|
401
|
+
pass
|
|
402
|
+
def SM80_TensorOp_1688_rank_k(self):
|
|
403
|
+
pass
|
|
404
|
+
def SM80_TensorOp_1688_rank_k_complex(self):
|
|
405
|
+
pass
|
|
406
|
+
def SM80_TensorOp_1688_trmm(self):
|
|
407
|
+
pass
|
|
408
|
+
def SM80_TensorOp_1688_trmm_complex(self):
|
|
409
|
+
pass
|
|
410
|
+
def SM80_TensorOp_1688_symm(self):
|
|
411
|
+
pass
|
|
412
|
+
def SM80_TensorOp_1688_symm_complex(self):
|
|
413
|
+
pass
|
|
414
|
+
def SM80_TensorOp_884_complex(self):
|
|
415
|
+
pass
|
|
416
|
+
def SM80_TensorOp_884_complex_gaussian(self):
|
|
417
|
+
pass
|
|
418
|
+
def SM80_TensorOp_884_rank_k(self):
|
|
419
|
+
pass
|
|
420
|
+
def SM80_TensorOp_884_rank_k_complex(self):
|
|
421
|
+
pass
|
|
422
|
+
def SM80_TensorOp_884_rank_k_complex_gaussian(self):
|
|
423
|
+
pass
|
|
424
|
+
def SM80_TensorOp_884_trmm(self):
|
|
425
|
+
pass
|
|
426
|
+
def SM80_TensorOp_884_trmm_complex(self):
|
|
427
|
+
pass
|
|
428
|
+
def SM80_TensorOp_884_trmm_complex_gaussian(self):
|
|
429
|
+
pass
|
|
430
|
+
def SM80_TensorOp_884_symm(self):
|
|
431
|
+
pass
|
|
432
|
+
def SM80_TensorOp_884_symm_complex(self):
|
|
433
|
+
pass
|
|
434
|
+
def SM80_TensorOp_884_symm_complex_gaussian(self):
|
|
435
|
+
pass
|
|
436
|
+
def SM80_SparseTensorOp_16864_TN(self):
|
|
437
|
+
pass
|
|
438
|
+
def SM80_TensorOp_16864_TN(self):
|
|
439
|
+
pass
|
|
440
|
+
def SM80_SparseTensorOp_168128_TN(self):
|
|
441
|
+
pass
|
|
442
|
+
def SM80_TensorOp_16864_Interleaved(self):
|
|
443
|
+
pass
|
|
444
|
+
def SM80_TensorOp_168256(self):
|
|
445
|
+
pass
|
|
446
|
+
def SM80_Simt_complex(self):
|
|
447
|
+
pass
|
|
448
|
+
|
|
449
|
+
|
|
450
|
+
if __name__ == '__main__':
|
|
451
|
+
pycutlass.get_memory_pool(2**20, 2**34)
|
|
452
|
+
pycutlass.compiler.nvcc()
|
|
453
|
+
unittest.main()
|