warp-lang 0.10.1__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +10 -4
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +5 -3
- warp/build_dll.py +29 -9
- warp/builtins.py +868 -507
- warp/codegen.py +1074 -638
- warp/config.py +3 -3
- warp/constants.py +6 -0
- warp/context.py +715 -222
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +147 -44
- warp/native/builtin.h +122 -149
- warp/native/bvh.cpp +73 -325
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +34 -43
- warp/native/clang/clang.cpp +13 -8
- warp/native/crt.h +2 -0
- warp/native/cuda_crt.h +5 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -952
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +1 -1
- warp/native/marching.cu +157 -161
- warp/native/mat.h +80 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +33 -108
- warp/native/mesh.cu +114 -23
- warp/native/mesh.h +446 -46
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +1 -1
- warp/native/reduce.cu +10 -12
- warp/native/runlength_encode.cu +6 -10
- warp/native/scan.cu +8 -11
- warp/native/sparse.cpp +4 -4
- warp/native/sparse.cu +164 -154
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +14 -30
- warp/native/vec.h +107 -23
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +560 -30
- warp/native/warp.cu +431 -44
- warp/native/warp.h +13 -4
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +335 -119
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +8 -0
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +158 -16
- warp/sim/model.py +795 -291
- warp/sim/render.py +3 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +640 -150
- warp/stubs.py +606 -267
- warp/tape.py +61 -10
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +212 -97
- warp/tests/test_array_reduce.py +57 -23
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +42 -18
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +208 -130
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +75 -75
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -86
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +178 -109
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +32 -31
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +14 -41
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +517 -2898
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +140 -22
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +168 -20
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +261 -63
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +268 -63
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -2050
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +9 -6
- warp/types.py +1089 -366
- warp/utils.py +93 -387
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/tests/test_all.py +0 -219
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.10.1.dist-info/METADATA +0 -21
- warp_lang-0.10.1.dist-info/RECORD +0 -188
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/LICENSE.md +0 -0
- {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
warp/tests/test_mat.py
CHANGED
|
@@ -5,9 +5,12 @@
|
|
|
5
5
|
# distribution of this software and related documentation without an express
|
|
6
6
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
7
|
|
|
8
|
+
import unittest
|
|
9
|
+
|
|
8
10
|
import numpy as np
|
|
11
|
+
|
|
9
12
|
import warp as wp
|
|
10
|
-
from warp.tests.
|
|
13
|
+
from warp.tests.unittest_utils import *
|
|
11
14
|
|
|
12
15
|
wp.init()
|
|
13
16
|
|
|
@@ -19,37 +22,24 @@ np_signed_int_types = [
|
|
|
19
22
|
np.byte,
|
|
20
23
|
]
|
|
21
24
|
|
|
22
|
-
np_unsigned_int_types = [
|
|
23
|
-
np.uint8,
|
|
24
|
-
np.uint16,
|
|
25
|
-
np.uint32,
|
|
26
|
-
np.uint64,
|
|
27
|
-
np.ubyte,
|
|
28
|
-
]
|
|
29
|
-
|
|
30
|
-
np_int_types = np_signed_int_types + np_unsigned_int_types
|
|
31
|
-
|
|
32
25
|
np_float_types = [np.float16, np.float32, np.float64]
|
|
33
26
|
|
|
34
|
-
np_scalar_types = np_int_types + np_float_types
|
|
35
|
-
|
|
36
27
|
|
|
37
|
-
def randvals(shape, dtype):
|
|
28
|
+
def randvals(rng, shape, dtype):
|
|
38
29
|
if dtype in np_float_types:
|
|
39
|
-
return
|
|
30
|
+
return rng.standard_normal(size=shape).astype(dtype)
|
|
40
31
|
elif dtype in [np.int8, np.uint8, np.byte, np.ubyte]:
|
|
41
|
-
return
|
|
42
|
-
return
|
|
32
|
+
return rng.integers(1, high=3, size=shape, dtype=dtype)
|
|
33
|
+
return rng.integers(1, high=5, size=shape, dtype=dtype)
|
|
43
34
|
|
|
44
35
|
|
|
45
36
|
kernel_cache = dict()
|
|
46
37
|
|
|
47
38
|
|
|
48
39
|
def getkernel(func, suffix=""):
|
|
49
|
-
module = wp.get_module(func.__module__)
|
|
50
40
|
key = func.__name__ + "_" + suffix
|
|
51
41
|
if key not in kernel_cache:
|
|
52
|
-
kernel_cache[key] = wp.Kernel(func=func, key=key
|
|
42
|
+
kernel_cache[key] = wp.Kernel(func=func, key=key)
|
|
53
43
|
return kernel_cache[key]
|
|
54
44
|
|
|
55
45
|
|
|
@@ -63,376 +53,224 @@ def get_select_kernel(dtype):
|
|
|
63
53
|
|
|
64
54
|
return getkernel(output_select_kernel_fn, suffix=dtype.__name__)
|
|
65
55
|
|
|
56
|
+
wp.launch(kernel, dim=1, inputs=[])
|
|
66
57
|
|
|
67
|
-
def test_arrays(test, device, dtype):
|
|
68
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
69
|
-
|
|
70
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
71
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
72
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
73
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
74
|
-
mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype)
|
|
75
|
-
|
|
76
|
-
np.random.seed(123)
|
|
77
58
|
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
v32_np = randvals([10, 3, 2], dtype)
|
|
59
|
+
def test_anon_constructor_error_shape_keyword_missing(test, device):
|
|
60
|
+
@wp.kernel
|
|
61
|
+
def kernel():
|
|
62
|
+
wp.matrix(1.0, 2.0, 3.0)
|
|
83
63
|
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
64
|
+
with test.assertRaisesRegex(
|
|
65
|
+
RuntimeError,
|
|
66
|
+
r"shape keyword must be specified when calling matrix\(\) function$",
|
|
67
|
+
):
|
|
68
|
+
wp.launch(
|
|
69
|
+
kernel,
|
|
70
|
+
dim=1,
|
|
71
|
+
inputs=[],
|
|
72
|
+
device=device,
|
|
73
|
+
)
|
|
89
74
|
|
|
90
|
-
assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6)
|
|
91
|
-
assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6)
|
|
92
|
-
assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6)
|
|
93
|
-
assert_np_equal(v5.numpy(), v5_np, tol=1.0e-6)
|
|
94
|
-
assert_np_equal(v32.numpy(), v32_np, tol=1.0e-6)
|
|
95
75
|
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
76
|
+
def test_anon_constructor_error_dtype_keyword_missing(test, device):
|
|
77
|
+
@wp.kernel
|
|
78
|
+
def kernel():
|
|
79
|
+
wp.matrix(shape=(3, 3))
|
|
99
80
|
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
81
|
+
with test.assertRaisesRegex(
|
|
82
|
+
RuntimeError,
|
|
83
|
+
r"matrix\(\) must have dtype as a keyword argument if it has no " r"positional arguments$",
|
|
84
|
+
):
|
|
85
|
+
wp.launch(
|
|
86
|
+
kernel,
|
|
87
|
+
dim=1,
|
|
88
|
+
inputs=[],
|
|
89
|
+
device=device,
|
|
90
|
+
)
|
|
103
91
|
|
|
104
|
-
assert_np_equal(v2.numpy(), v2_np, tol=1.0e-6)
|
|
105
|
-
assert_np_equal(v3.numpy(), v3_np, tol=1.0e-6)
|
|
106
|
-
assert_np_equal(v4.numpy(), v4_np, tol=1.0e-6)
|
|
107
92
|
|
|
93
|
+
def test_anon_constructor_error_shape_mismatch(test, device):
|
|
94
|
+
@wp.kernel
|
|
95
|
+
def kernel():
|
|
96
|
+
wp.matrix(
|
|
97
|
+
wp.matrix(shape=(1, 2), dtype=float),
|
|
98
|
+
shape=(3, 4),
|
|
99
|
+
dtype=float,
|
|
100
|
+
)
|
|
108
101
|
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
102
|
+
with test.assertRaisesRegex(
|
|
103
|
+
RuntimeError,
|
|
104
|
+
r"Incompatible matrix sizes for casting copy constructor, " r"\(3, 4\) vs \(1, 2\)$",
|
|
105
|
+
):
|
|
106
|
+
wp.launch(
|
|
107
|
+
kernel,
|
|
108
|
+
dim=1,
|
|
109
|
+
inputs=[],
|
|
110
|
+
device=device,
|
|
111
|
+
)
|
|
112
112
|
|
|
113
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
114
|
-
mat23 = wp.types.matrix(shape=(2, 3), dtype=wptype)
|
|
115
|
-
|
|
116
|
-
m = mat23(1, 2, 3, 4, 5, 6)
|
|
117
|
-
|
|
118
|
-
# test __getitem__ for row vectors
|
|
119
|
-
r0 = m[0]
|
|
120
|
-
r1 = m[1]
|
|
121
|
-
test.assertEqual(r0[0], 1)
|
|
122
|
-
test.assertEqual(r0[1], 2)
|
|
123
|
-
test.assertEqual(r0[2], 3)
|
|
124
|
-
test.assertEqual(r1[0], 4)
|
|
125
|
-
test.assertEqual(r1[1], 5)
|
|
126
|
-
test.assertEqual(r1[2], 6)
|
|
127
|
-
|
|
128
|
-
# test __getitem__ for individual components
|
|
129
|
-
test.assertEqual(m[0, 0], 1)
|
|
130
|
-
test.assertEqual(m[0, 1], 2)
|
|
131
|
-
test.assertEqual(m[0, 2], 3)
|
|
132
|
-
test.assertEqual(m[1, 0], 4)
|
|
133
|
-
test.assertEqual(m[1, 1], 5)
|
|
134
|
-
test.assertEqual(m[1, 2], 6)
|
|
135
|
-
|
|
136
|
-
# test __setitem__ for row vectors
|
|
137
|
-
m[0] = [7, 8, 9]
|
|
138
|
-
m[1] = [10, 11, 12]
|
|
139
|
-
test.assertEqual(m[0, 0], 7)
|
|
140
|
-
test.assertEqual(m[0, 1], 8)
|
|
141
|
-
test.assertEqual(m[0, 2], 9)
|
|
142
|
-
test.assertEqual(m[1, 0], 10)
|
|
143
|
-
test.assertEqual(m[1, 1], 11)
|
|
144
|
-
test.assertEqual(m[1, 2], 12)
|
|
145
|
-
|
|
146
|
-
# test __setitem__ for individual components
|
|
147
|
-
m[0, 0] = 13
|
|
148
|
-
m[0, 1] = 14
|
|
149
|
-
m[0, 2] = 15
|
|
150
|
-
m[1, 0] = 16
|
|
151
|
-
m[1, 1] = 17
|
|
152
|
-
m[1, 2] = 18
|
|
153
|
-
test.assertEqual(m[0, 0], 13)
|
|
154
|
-
test.assertEqual(m[0, 1], 14)
|
|
155
|
-
test.assertEqual(m[0, 2], 15)
|
|
156
|
-
test.assertEqual(m[1, 0], 16)
|
|
157
|
-
test.assertEqual(m[1, 1], 17)
|
|
158
|
-
test.assertEqual(m[1, 2], 18)
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
def test_constants(test, device, dtype, register_kernels=False):
|
|
162
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
163
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
164
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
165
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
166
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
167
|
-
mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype)
|
|
168
113
|
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
cm32 = wp.constant(mat32(32))
|
|
114
|
+
def test_anon_constructor_error_invalid_arg_count(test, device):
|
|
115
|
+
@wp.kernel
|
|
116
|
+
def kernel():
|
|
117
|
+
wp.matrix(1.0, 2.0, 3.0, shape=(2, 2), dtype=float)
|
|
174
118
|
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
wp.
|
|
119
|
+
with test.assertRaisesRegex(
|
|
120
|
+
RuntimeError,
|
|
121
|
+
r"Wrong number of arguments for matrix\(\) function, must initialize "
|
|
122
|
+
r"with either a scalar value, or m\*n values$",
|
|
123
|
+
):
|
|
124
|
+
wp.launch(
|
|
125
|
+
kernel,
|
|
126
|
+
dim=1,
|
|
127
|
+
inputs=[],
|
|
128
|
+
device=device,
|
|
129
|
+
)
|
|
181
130
|
|
|
182
|
-
kernel = getkernel(check_matrix_constants, suffix=dtype.__name__)
|
|
183
131
|
|
|
184
|
-
|
|
185
|
-
|
|
132
|
+
def test_tpl_constructor_error_incompatible_sizes(test, device):
|
|
133
|
+
@wp.kernel
|
|
134
|
+
def kernel():
|
|
135
|
+
wp.mat33(wp.mat22(1.0, 2.0, 3.0, 4.0))
|
|
186
136
|
|
|
187
|
-
|
|
137
|
+
with test.assertRaisesRegex(
|
|
138
|
+
RuntimeError,
|
|
139
|
+
r"Incompatible matrix sizes for casting copy constructor, " r"\(3, 3\) vs \(2, 2\)$",
|
|
140
|
+
):
|
|
141
|
+
wp.launch(
|
|
142
|
+
kernel,
|
|
143
|
+
dim=1,
|
|
144
|
+
inputs=[],
|
|
145
|
+
device=device,
|
|
146
|
+
)
|
|
188
147
|
|
|
189
148
|
|
|
190
|
-
def
|
|
191
|
-
|
|
149
|
+
def test_tpl_constructor_error_invalid_scalar_type(test, device):
|
|
150
|
+
@wp.kernel
|
|
151
|
+
def kernel():
|
|
152
|
+
wp.mat22(1, 2, 3, 4)
|
|
192
153
|
|
|
193
|
-
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
154
|
+
with test.assertRaisesRegex(
|
|
155
|
+
RuntimeError,
|
|
156
|
+
r"Wrong scalar type for mat 2,2,<class 'warp.types.float32'> constructor$",
|
|
157
|
+
):
|
|
158
|
+
wp.launch(
|
|
159
|
+
kernel,
|
|
160
|
+
dim=1,
|
|
161
|
+
inputs=[],
|
|
162
|
+
device=device,
|
|
163
|
+
)
|
|
198
164
|
|
|
199
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
200
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
201
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
202
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
203
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
204
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
205
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
206
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
207
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
208
165
|
|
|
209
|
-
|
|
166
|
+
def test_tpl_constructor_error_invalid_vector_count(test, device):
|
|
167
|
+
@wp.kernel
|
|
168
|
+
def kernel():
|
|
169
|
+
wp.mat22(wp.vec3(1.0, 2.0, 3.0))
|
|
210
170
|
|
|
211
|
-
|
|
212
|
-
|
|
213
|
-
|
|
171
|
+
with test.assertRaisesRegex(
|
|
172
|
+
RuntimeError,
|
|
173
|
+
r"Wrong number of vectors when attempting to construct a matrix " r"with column vectors$",
|
|
214
174
|
):
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
220
|
-
|
|
221
|
-
idx = 0
|
|
222
|
-
for i in range(2):
|
|
223
|
-
for j in range(2):
|
|
224
|
-
outcomponents[idx] = m2result[i, j]
|
|
225
|
-
idx = idx + 1
|
|
226
|
-
|
|
227
|
-
for i in range(3):
|
|
228
|
-
for j in range(3):
|
|
229
|
-
outcomponents[idx] = m3result[i, j]
|
|
230
|
-
idx = idx + 1
|
|
175
|
+
wp.launch(
|
|
176
|
+
kernel,
|
|
177
|
+
dim=1,
|
|
178
|
+
inputs=[],
|
|
179
|
+
device=device,
|
|
180
|
+
)
|
|
231
181
|
|
|
232
|
-
for i in range(4):
|
|
233
|
-
for j in range(4):
|
|
234
|
-
outcomponents[idx] = m4result[i, j]
|
|
235
|
-
idx = idx + 1
|
|
236
182
|
|
|
237
|
-
|
|
238
|
-
|
|
239
|
-
|
|
240
|
-
|
|
183
|
+
def test_tpl_constructor_error_invalid_vector_shape(test, device):
|
|
184
|
+
@wp.kernel
|
|
185
|
+
def kernel():
|
|
186
|
+
wp.mat22(wp.vec3(1.0, 2.0, 3.0), wp.vec3(4.0, 5.0, 6.0))
|
|
241
187
|
|
|
242
|
-
|
|
243
|
-
|
|
244
|
-
|
|
188
|
+
with test.assertRaisesRegex(
|
|
189
|
+
RuntimeError,
|
|
190
|
+
r"Wrong vector row count when attempting to construct a matrix " r"with column vectors$",
|
|
245
191
|
):
|
|
246
|
-
|
|
247
|
-
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
|
|
251
|
-
input[6],
|
|
252
|
-
input[7],
|
|
253
|
-
input[8],
|
|
254
|
-
input[9],
|
|
255
|
-
input[10],
|
|
256
|
-
input[11],
|
|
257
|
-
input[12],
|
|
258
|
-
)
|
|
259
|
-
m4result = wptype(2) * mat44(
|
|
260
|
-
input[13],
|
|
261
|
-
input[14],
|
|
262
|
-
input[15],
|
|
263
|
-
input[16],
|
|
264
|
-
input[17],
|
|
265
|
-
input[18],
|
|
266
|
-
input[19],
|
|
267
|
-
input[20],
|
|
268
|
-
input[21],
|
|
269
|
-
input[22],
|
|
270
|
-
input[23],
|
|
271
|
-
input[24],
|
|
272
|
-
input[25],
|
|
273
|
-
input[26],
|
|
274
|
-
input[27],
|
|
275
|
-
input[28],
|
|
276
|
-
)
|
|
277
|
-
m5result = wptype(2) * mat55(
|
|
278
|
-
input[29],
|
|
279
|
-
input[30],
|
|
280
|
-
input[31],
|
|
281
|
-
input[32],
|
|
282
|
-
input[33],
|
|
283
|
-
input[34],
|
|
284
|
-
input[35],
|
|
285
|
-
input[36],
|
|
286
|
-
input[37],
|
|
287
|
-
input[38],
|
|
288
|
-
input[39],
|
|
289
|
-
input[40],
|
|
290
|
-
input[41],
|
|
291
|
-
input[42],
|
|
292
|
-
input[43],
|
|
293
|
-
input[44],
|
|
294
|
-
input[45],
|
|
295
|
-
input[46],
|
|
296
|
-
input[47],
|
|
297
|
-
input[48],
|
|
298
|
-
input[49],
|
|
299
|
-
input[50],
|
|
300
|
-
input[51],
|
|
301
|
-
input[52],
|
|
302
|
-
input[53],
|
|
192
|
+
wp.launch(
|
|
193
|
+
kernel,
|
|
194
|
+
dim=1,
|
|
195
|
+
inputs=[],
|
|
196
|
+
device=device,
|
|
303
197
|
)
|
|
304
198
|
|
|
305
|
-
idx = 0
|
|
306
|
-
for i in range(2):
|
|
307
|
-
for j in range(2):
|
|
308
|
-
outcomponents[idx] = m2result[i, j]
|
|
309
|
-
idx = idx + 1
|
|
310
|
-
|
|
311
|
-
for i in range(3):
|
|
312
|
-
for j in range(3):
|
|
313
|
-
outcomponents[idx] = m3result[i, j]
|
|
314
|
-
idx = idx + 1
|
|
315
|
-
|
|
316
|
-
for i in range(4):
|
|
317
|
-
for j in range(4):
|
|
318
|
-
outcomponents[idx] = m4result[i, j]
|
|
319
|
-
idx = idx + 1
|
|
320
199
|
|
|
321
|
-
|
|
322
|
-
|
|
323
|
-
|
|
324
|
-
|
|
200
|
+
def test_tpl_constructor_error_invalid_arg_count(test, device):
|
|
201
|
+
@wp.kernel
|
|
202
|
+
def kernel():
|
|
203
|
+
wp.mat22(1.0, 2.0, 3.0)
|
|
325
204
|
|
|
326
|
-
|
|
327
|
-
|
|
328
|
-
|
|
205
|
+
with test.assertRaisesRegex(
|
|
206
|
+
RuntimeError,
|
|
207
|
+
r"Wrong number of scalars when attempting to construct a matrix " r"from a list of components$",
|
|
329
208
|
):
|
|
330
|
-
|
|
331
|
-
|
|
332
|
-
|
|
333
|
-
|
|
334
|
-
|
|
335
|
-
vec3(input[6], input[9], input[12]),
|
|
336
|
-
)
|
|
337
|
-
m4result = wptype(2) * mat44(
|
|
338
|
-
vec4(input[13], input[17], input[21], input[25]),
|
|
339
|
-
vec4(input[14], input[18], input[22], input[26]),
|
|
340
|
-
vec4(input[15], input[19], input[23], input[27]),
|
|
341
|
-
vec4(input[16], input[20], input[24], input[28]),
|
|
342
|
-
)
|
|
343
|
-
m5result = wptype(2) * mat55(
|
|
344
|
-
vec5(input[29], input[34], input[39], input[44], input[49]),
|
|
345
|
-
vec5(input[30], input[35], input[40], input[45], input[50]),
|
|
346
|
-
vec5(input[31], input[36], input[41], input[46], input[51]),
|
|
347
|
-
vec5(input[32], input[37], input[42], input[47], input[52]),
|
|
348
|
-
vec5(input[33], input[38], input[43], input[48], input[53]),
|
|
209
|
+
wp.launch(
|
|
210
|
+
kernel,
|
|
211
|
+
dim=1,
|
|
212
|
+
inputs=[],
|
|
213
|
+
device=device,
|
|
349
214
|
)
|
|
350
215
|
|
|
351
|
-
idx = 0
|
|
352
|
-
for i in range(2):
|
|
353
|
-
for j in range(2):
|
|
354
|
-
outcomponents[idx] = m2result[i, j]
|
|
355
|
-
idx = idx + 1
|
|
356
|
-
|
|
357
|
-
for i in range(3):
|
|
358
|
-
for j in range(3):
|
|
359
|
-
outcomponents[idx] = m3result[i, j]
|
|
360
|
-
idx = idx + 1
|
|
361
|
-
|
|
362
|
-
for i in range(4):
|
|
363
|
-
for j in range(4):
|
|
364
|
-
outcomponents[idx] = m4result[i, j]
|
|
365
|
-
idx = idx + 1
|
|
366
216
|
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
outcomponents[idx] = m5result[i, j]
|
|
370
|
-
idx = idx + 1
|
|
217
|
+
def test_tpl_ops_with_anon(test, device):
|
|
218
|
+
mat22f = wp.mat((2, 2), dtype=float)
|
|
371
219
|
|
|
372
|
-
|
|
373
|
-
|
|
374
|
-
|
|
220
|
+
m = wp.mat22f(1.0, 2.0, 3.0, 4.0)
|
|
221
|
+
m += mat22f(2.0, 3.0, 4.0, 5.0)
|
|
222
|
+
m -= mat22f(3.0, 4.0, 5.0, 6.0)
|
|
223
|
+
test.assertSequenceEqual(m, ((0.0, 1.0), (2.0, 3.0)))
|
|
375
224
|
|
|
376
|
-
|
|
377
|
-
|
|
225
|
+
m = mat22f(1.0, 2.0, 3.0, 4.0)
|
|
226
|
+
m += wp.mat22f(2.0, 3.0, 4.0, 5.0)
|
|
227
|
+
m -= wp.mat22f(3.0, 4.0, 5.0, 6.0)
|
|
228
|
+
test.assertSequenceEqual(m, ((0.0, 1.0), (2.0, 3.0)))
|
|
378
229
|
|
|
379
|
-
input = wp.array(randvals([1], dtype), requires_grad=True, device=device)
|
|
380
|
-
val = input.numpy()[0]
|
|
381
|
-
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
382
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
383
230
|
|
|
384
|
-
|
|
231
|
+
def test_py_arithmetic_ops(test, device, dtype):
|
|
232
|
+
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
385
233
|
|
|
386
|
-
|
|
387
|
-
|
|
388
|
-
|
|
389
|
-
|
|
234
|
+
def make_mat(*args):
|
|
235
|
+
if wptype in wp.types.int_types:
|
|
236
|
+
# Cast to the correct integer type to simulate wrapping.
|
|
237
|
+
return tuple(tuple(wptype._type_(x).value for x in row) for row in args)
|
|
390
238
|
|
|
391
|
-
|
|
392
|
-
for idx in range(len(outcomponents)):
|
|
393
|
-
tape = wp.Tape()
|
|
394
|
-
with tape:
|
|
395
|
-
wp.launch(kernel, dim=1, inputs=[input], outputs=[outcomponents], device=device)
|
|
396
|
-
wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device)
|
|
397
|
-
tape.backward(loss=out)
|
|
398
|
-
test.assertEqual(tape.gradients[input].numpy()[0], 2)
|
|
399
|
-
tape.zero()
|
|
239
|
+
return args
|
|
400
240
|
|
|
401
|
-
|
|
241
|
+
def make_vec(*args):
|
|
242
|
+
if wptype in wp.types.int_types:
|
|
243
|
+
# Cast to the correct integer type to simulate wrapping.
|
|
244
|
+
return tuple(wptype._type_(x).value for x in args)
|
|
402
245
|
|
|
403
|
-
|
|
404
|
-
assert_np_equal(2 * input.numpy(), outcomponents.numpy(), tol=10 * tol)
|
|
246
|
+
return args
|
|
405
247
|
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
tape = wp.Tape()
|
|
409
|
-
with tape:
|
|
410
|
-
wp.launch(compkernel, dim=1, inputs=[input], outputs=[outcomponents], device=device)
|
|
411
|
-
wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device)
|
|
412
|
-
tape.backward(loss=out)
|
|
413
|
-
expectedgrads = np.zeros(len(input))
|
|
414
|
-
expectedgrads[idx] = 2
|
|
415
|
-
assert_np_equal(tape.gradients[input].numpy(), expectedgrads)
|
|
416
|
-
tape.zero()
|
|
248
|
+
mat_cls = wp.mat((3, 3), wptype)
|
|
249
|
+
vec_cls = wp.vec(3, wptype)
|
|
417
250
|
|
|
418
|
-
|
|
419
|
-
|
|
251
|
+
m = mat_cls(((-1, 2, 3), (4, -5, 6), (7, 8, -9)))
|
|
252
|
+
test.assertSequenceEqual(+m, make_mat((-1, 2, 3), (4, -5, 6), (7, 8, -9)))
|
|
253
|
+
test.assertSequenceEqual(-m, make_mat((1, -2, -3), (-4, 5, -6), (-7, -8, 9)))
|
|
254
|
+
test.assertSequenceEqual(m + mat_cls((5, 5, 5) * 3), make_mat((4, 7, 8), (9, 0, 11), (12, 13, -4)))
|
|
255
|
+
test.assertSequenceEqual(m - mat_cls((5, 5, 5) * 3), make_mat((-6, -3, -2), (-1, -10, 1), (2, 3, -14)))
|
|
256
|
+
test.assertSequenceEqual(m * vec_cls(5, 5, 5), make_vec(20, 25, 30))
|
|
257
|
+
test.assertSequenceEqual(m @ vec_cls(5, 5, 5), make_vec(20, 25, 30))
|
|
258
|
+
test.assertSequenceEqual(vec_cls(5, 5, 5) * m, make_vec(50, 25, 0))
|
|
259
|
+
test.assertSequenceEqual(vec_cls(5, 5, 5) @ m, make_vec(50, 25, 0))
|
|
420
260
|
|
|
421
|
-
|
|
422
|
-
|
|
423
|
-
|
|
424
|
-
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
assert_np_equal(tape.gradients[input].numpy(), expectedgrads)
|
|
431
|
-
tape.zero()
|
|
261
|
+
m = mat_cls(((2, 4, 6), (8, 10, 12), (14, 16, 18)))
|
|
262
|
+
test.assertSequenceEqual(m * wptype(2), make_mat((4, 8, 12), (16, 20, 24), (28, 32, 36)))
|
|
263
|
+
test.assertSequenceEqual(wptype(2) * m, make_mat((4, 8, 12), (16, 20, 24), (28, 32, 36)))
|
|
264
|
+
test.assertSequenceEqual(m / wptype(2), make_mat((1, 2, 3), (4, 5, 6), (7, 8, 9)))
|
|
265
|
+
test.assertSequenceEqual(wptype(5040) / m, make_mat((2520, 1260, 840), (630, 504, 420), (360, 315, 280)))
|
|
266
|
+
test.assertSequenceEqual(m * vec_cls(5, 5, 5), make_vec(60, 150, 240))
|
|
267
|
+
test.assertSequenceEqual(m @ vec_cls(5, 5, 5), make_vec(60, 150, 240))
|
|
268
|
+
test.assertSequenceEqual(vec_cls(5, 5, 5) * m, make_vec(120, 150, 180))
|
|
269
|
+
test.assertSequenceEqual(vec_cls(5, 5, 5) @ m, make_vec(120, 150, 180))
|
|
432
270
|
|
|
433
271
|
|
|
434
272
|
def test_quat_constructor(test, device, dtype, register_kernels=False):
|
|
435
|
-
np.random.
|
|
273
|
+
rng = np.random.default_rng(123)
|
|
436
274
|
|
|
437
275
|
tol = {
|
|
438
276
|
np.float16: 1.0e-3,
|
|
@@ -481,15 +319,15 @@ def test_quat_constructor(test, device, dtype, register_kernels=False):
|
|
|
481
319
|
return
|
|
482
320
|
|
|
483
321
|
# translation:
|
|
484
|
-
p = wp.array(
|
|
322
|
+
p = wp.array(rng.standard_normal(size=(1, 3)).astype(dtype), dtype=vec3, requires_grad=True, device=device)
|
|
485
323
|
|
|
486
324
|
# generate a normalized quaternion for the rotation:
|
|
487
|
-
r =
|
|
325
|
+
r = rng.standard_normal(size=(1, 4))
|
|
488
326
|
r /= np.linalg.norm(r)
|
|
489
327
|
r = wp.array(r.astype(dtype), dtype=quat, requires_grad=True, device=device)
|
|
490
328
|
|
|
491
329
|
# scale:
|
|
492
|
-
s = wp.array(
|
|
330
|
+
s = wp.array(rng.standard_normal(size=(1, 3)).astype(dtype), dtype=vec3, requires_grad=True, device=device)
|
|
493
331
|
|
|
494
332
|
# just going to generate the matrix using the constructor, then
|
|
495
333
|
# more manually, and make sure the values/gradients are the same:
|
|
@@ -530,11 +368,11 @@ def test_quat_constructor(test, device, dtype, register_kernels=False):
|
|
|
530
368
|
idx = idx + 1
|
|
531
369
|
|
|
532
370
|
|
|
533
|
-
def
|
|
534
|
-
np.random.
|
|
371
|
+
def test_negation(test, device, dtype, register_kernels=False):
|
|
372
|
+
rng = np.random.default_rng(123)
|
|
535
373
|
|
|
536
374
|
tol = {
|
|
537
|
-
np.float16: 1.0e-
|
|
375
|
+
np.float16: 1.0e-2,
|
|
538
376
|
np.float32: 1.0e-6,
|
|
539
377
|
np.float64: 1.0e-8,
|
|
540
378
|
}.get(dtype, 0)
|
|
@@ -547,52 +385,57 @@ def test_indexing(test, device, dtype, register_kernels=False):
|
|
|
547
385
|
|
|
548
386
|
output_select_kernel = get_select_kernel(wptype)
|
|
549
387
|
|
|
550
|
-
def
|
|
388
|
+
def check_mat_negation(
|
|
551
389
|
m2: wp.array(dtype=mat22),
|
|
552
390
|
m3: wp.array(dtype=mat33),
|
|
553
391
|
m4: wp.array(dtype=mat44),
|
|
554
392
|
m5: wp.array(dtype=mat55),
|
|
555
393
|
outcomponents: wp.array(dtype=wptype),
|
|
556
394
|
):
|
|
395
|
+
mat2 = -m2[0]
|
|
396
|
+
mat3 = -m3[0]
|
|
397
|
+
mat4 = -m4[0]
|
|
398
|
+
mat5 = -m5[0]
|
|
399
|
+
|
|
557
400
|
# multiply outputs by 2 so we've got something to backpropagate:
|
|
558
401
|
idx = 0
|
|
559
402
|
for i in range(2):
|
|
560
403
|
for j in range(2):
|
|
561
|
-
outcomponents[idx] = wptype(2) *
|
|
404
|
+
outcomponents[idx] = wptype(2) * mat2[i, j]
|
|
562
405
|
idx = idx + 1
|
|
563
406
|
|
|
564
407
|
for i in range(3):
|
|
565
408
|
for j in range(3):
|
|
566
|
-
outcomponents[idx] = wptype(2) *
|
|
409
|
+
outcomponents[idx] = wptype(2) * mat3[i, j]
|
|
567
410
|
idx = idx + 1
|
|
568
411
|
|
|
569
412
|
for i in range(4):
|
|
570
413
|
for j in range(4):
|
|
571
|
-
outcomponents[idx] = wptype(2) *
|
|
414
|
+
outcomponents[idx] = wptype(2) * mat4[i, j]
|
|
572
415
|
idx = idx + 1
|
|
573
416
|
|
|
574
417
|
for i in range(5):
|
|
575
418
|
for j in range(5):
|
|
576
|
-
outcomponents[idx] = wptype(2) *
|
|
419
|
+
outcomponents[idx] = wptype(2) * mat5[i, j]
|
|
577
420
|
idx = idx + 1
|
|
578
421
|
|
|
579
|
-
kernel = getkernel(
|
|
422
|
+
kernel = getkernel(check_mat_negation, suffix=dtype.__name__)
|
|
580
423
|
|
|
581
424
|
if register_kernels:
|
|
582
425
|
return
|
|
583
426
|
|
|
584
|
-
m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
585
|
-
m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
586
|
-
m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
587
|
-
m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
427
|
+
m2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
428
|
+
m3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
429
|
+
m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
430
|
+
m5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
588
431
|
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
589
432
|
|
|
590
433
|
wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], outputs=[outcomponents], device=device)
|
|
591
434
|
|
|
592
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * m2.numpy().reshape(-1), tol=tol)
|
|
593
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * m3.numpy().reshape(-1), tol=tol)
|
|
594
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * m4.numpy().reshape(-1), tol=tol)
|
|
595
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * m5.numpy().reshape(-1), tol=tol)
|
|
435
|
+
assert_np_equal(outcomponents.numpy()[:4], -2 * m2.numpy().reshape(-1), tol=tol)
|
|
436
|
+
assert_np_equal(outcomponents.numpy()[4:13], -2 * m3.numpy().reshape(-1), tol=tol)
|
|
437
|
+
assert_np_equal(outcomponents.numpy()[13:29], -2 * m4.numpy().reshape(-1), tol=tol)
|
|
438
|
+
assert_np_equal(outcomponents.numpy()[29:54], -2 * m5.numpy().reshape(-1), tol=tol)
|
|
596
439
|
|
|
597
440
|
if dtype in np_float_types:
|
|
598
441
|
idx = 0
|
|
@@ -608,291 +451,17 @@ def test_indexing(test, device, dtype, register_kernels=False):
|
|
|
608
451
|
)
|
|
609
452
|
tape.backward(loss=out)
|
|
610
453
|
expectedresult = np.zeros((dim, dim), dtype=dtype)
|
|
611
|
-
expectedresult[i, j] = 2
|
|
454
|
+
expectedresult[i, j] = -2
|
|
612
455
|
assert_np_equal(tape.gradients[input].numpy()[0], expectedresult)
|
|
613
456
|
tape.zero()
|
|
614
457
|
idx = idx + 1
|
|
615
458
|
|
|
616
459
|
|
|
617
|
-
def
|
|
618
|
-
np.random.
|
|
619
|
-
|
|
620
|
-
tol = {
|
|
621
|
-
np.float16: 1.0e-3,
|
|
622
|
-
np.float32: 1.0e-6,
|
|
623
|
-
np.float64: 1.0e-8,
|
|
624
|
-
}.get(dtype, 0)
|
|
625
|
-
|
|
626
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
627
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
628
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
629
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
630
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
631
|
-
|
|
632
|
-
def check_mat_equality():
|
|
633
|
-
wp.expect_eq(
|
|
634
|
-
mat22(wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0)),
|
|
635
|
-
mat22(wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0)),
|
|
636
|
-
)
|
|
637
|
-
wp.expect_neq(
|
|
638
|
-
mat22(wptype(1.0), wptype(2.0), wptype(3.0), -wptype(4.0)),
|
|
639
|
-
mat22(wptype(1.0), wptype(2.0), wptype(3.0), wptype(4.0)),
|
|
640
|
-
)
|
|
641
|
-
|
|
642
|
-
wp.expect_eq(
|
|
643
|
-
mat33(
|
|
644
|
-
wptype(1.0),
|
|
645
|
-
wptype(2.0),
|
|
646
|
-
wptype(3.0),
|
|
647
|
-
wptype(4.0),
|
|
648
|
-
wptype(5.0),
|
|
649
|
-
wptype(6.0),
|
|
650
|
-
wptype(7.0),
|
|
651
|
-
wptype(8.0),
|
|
652
|
-
wptype(9.0),
|
|
653
|
-
),
|
|
654
|
-
mat33(
|
|
655
|
-
wptype(1.0),
|
|
656
|
-
wptype(2.0),
|
|
657
|
-
wptype(3.0),
|
|
658
|
-
wptype(4.0),
|
|
659
|
-
wptype(5.0),
|
|
660
|
-
wptype(6.0),
|
|
661
|
-
wptype(7.0),
|
|
662
|
-
wptype(8.0),
|
|
663
|
-
wptype(9.0),
|
|
664
|
-
),
|
|
665
|
-
)
|
|
666
|
-
wp.expect_neq(
|
|
667
|
-
mat33(
|
|
668
|
-
wptype(1.0),
|
|
669
|
-
wptype(2.0),
|
|
670
|
-
wptype(3.0),
|
|
671
|
-
wptype(4.0),
|
|
672
|
-
wptype(5.0),
|
|
673
|
-
wptype(6.0),
|
|
674
|
-
wptype(7.0),
|
|
675
|
-
wptype(8.0),
|
|
676
|
-
wptype(9.0),
|
|
677
|
-
),
|
|
678
|
-
mat33(
|
|
679
|
-
wptype(1.0),
|
|
680
|
-
wptype(2.0),
|
|
681
|
-
wptype(3.0),
|
|
682
|
-
-wptype(4.0),
|
|
683
|
-
wptype(5.0),
|
|
684
|
-
wptype(6.0),
|
|
685
|
-
wptype(7.0),
|
|
686
|
-
wptype(8.0),
|
|
687
|
-
wptype(9.0),
|
|
688
|
-
),
|
|
689
|
-
)
|
|
690
|
-
|
|
691
|
-
wp.expect_eq(
|
|
692
|
-
mat44(
|
|
693
|
-
wptype(1.0),
|
|
694
|
-
wptype(2.0),
|
|
695
|
-
wptype(3.0),
|
|
696
|
-
wptype(4.0),
|
|
697
|
-
wptype(5.0),
|
|
698
|
-
wptype(6.0),
|
|
699
|
-
wptype(7.0),
|
|
700
|
-
wptype(8.0),
|
|
701
|
-
wptype(9.0),
|
|
702
|
-
wptype(10.0),
|
|
703
|
-
wptype(11.0),
|
|
704
|
-
wptype(12.0),
|
|
705
|
-
wptype(13.0),
|
|
706
|
-
wptype(14.0),
|
|
707
|
-
wptype(15.0),
|
|
708
|
-
wptype(16.0),
|
|
709
|
-
),
|
|
710
|
-
mat44(
|
|
711
|
-
wptype(1.0),
|
|
712
|
-
wptype(2.0),
|
|
713
|
-
wptype(3.0),
|
|
714
|
-
wptype(4.0),
|
|
715
|
-
wptype(5.0),
|
|
716
|
-
wptype(6.0),
|
|
717
|
-
wptype(7.0),
|
|
718
|
-
wptype(8.0),
|
|
719
|
-
wptype(9.0),
|
|
720
|
-
wptype(10.0),
|
|
721
|
-
wptype(11.0),
|
|
722
|
-
wptype(12.0),
|
|
723
|
-
wptype(13.0),
|
|
724
|
-
wptype(14.0),
|
|
725
|
-
wptype(15.0),
|
|
726
|
-
wptype(16.0),
|
|
727
|
-
),
|
|
728
|
-
)
|
|
729
|
-
|
|
730
|
-
wp.expect_neq(
|
|
731
|
-
mat44(
|
|
732
|
-
wptype(1.0),
|
|
733
|
-
wptype(2.0),
|
|
734
|
-
wptype(3.0),
|
|
735
|
-
wptype(4.0),
|
|
736
|
-
wptype(5.0),
|
|
737
|
-
wptype(6.0),
|
|
738
|
-
wptype(7.0),
|
|
739
|
-
wptype(8.0),
|
|
740
|
-
wptype(9.0),
|
|
741
|
-
wptype(10.0),
|
|
742
|
-
wptype(11.0),
|
|
743
|
-
wptype(12.0),
|
|
744
|
-
wptype(13.0),
|
|
745
|
-
wptype(14.0),
|
|
746
|
-
wptype(15.0),
|
|
747
|
-
wptype(16.0),
|
|
748
|
-
),
|
|
749
|
-
mat44(
|
|
750
|
-
-wptype(1.0),
|
|
751
|
-
wptype(2.0),
|
|
752
|
-
wptype(3.0),
|
|
753
|
-
wptype(4.0),
|
|
754
|
-
wptype(5.0),
|
|
755
|
-
wptype(6.0),
|
|
756
|
-
wptype(7.0),
|
|
757
|
-
wptype(8.0),
|
|
758
|
-
wptype(9.0),
|
|
759
|
-
wptype(10.0),
|
|
760
|
-
wptype(11.0),
|
|
761
|
-
wptype(12.0),
|
|
762
|
-
wptype(13.0),
|
|
763
|
-
wptype(14.0),
|
|
764
|
-
wptype(15.0),
|
|
765
|
-
wptype(16.0),
|
|
766
|
-
),
|
|
767
|
-
)
|
|
768
|
-
|
|
769
|
-
wp.expect_eq(
|
|
770
|
-
mat55(
|
|
771
|
-
wptype(1.0),
|
|
772
|
-
wptype(2.0),
|
|
773
|
-
wptype(3.0),
|
|
774
|
-
wptype(4.0),
|
|
775
|
-
wptype(5.0),
|
|
776
|
-
wptype(6.0),
|
|
777
|
-
wptype(7.0),
|
|
778
|
-
wptype(8.0),
|
|
779
|
-
wptype(9.0),
|
|
780
|
-
wptype(10.0),
|
|
781
|
-
wptype(11.0),
|
|
782
|
-
wptype(12.0),
|
|
783
|
-
wptype(13.0),
|
|
784
|
-
wptype(14.0),
|
|
785
|
-
wptype(15.0),
|
|
786
|
-
wptype(16.0),
|
|
787
|
-
wptype(17.0),
|
|
788
|
-
wptype(18.0),
|
|
789
|
-
wptype(19.0),
|
|
790
|
-
wptype(20.0),
|
|
791
|
-
wptype(21.0),
|
|
792
|
-
wptype(22.0),
|
|
793
|
-
wptype(23.0),
|
|
794
|
-
wptype(24.0),
|
|
795
|
-
wptype(25.0),
|
|
796
|
-
),
|
|
797
|
-
mat55(
|
|
798
|
-
wptype(1.0),
|
|
799
|
-
wptype(2.0),
|
|
800
|
-
wptype(3.0),
|
|
801
|
-
wptype(4.0),
|
|
802
|
-
wptype(5.0),
|
|
803
|
-
wptype(6.0),
|
|
804
|
-
wptype(7.0),
|
|
805
|
-
wptype(8.0),
|
|
806
|
-
wptype(9.0),
|
|
807
|
-
wptype(10.0),
|
|
808
|
-
wptype(11.0),
|
|
809
|
-
wptype(12.0),
|
|
810
|
-
wptype(13.0),
|
|
811
|
-
wptype(14.0),
|
|
812
|
-
wptype(15.0),
|
|
813
|
-
wptype(16.0),
|
|
814
|
-
wptype(17.0),
|
|
815
|
-
wptype(18.0),
|
|
816
|
-
wptype(19.0),
|
|
817
|
-
wptype(20.0),
|
|
818
|
-
wptype(21.0),
|
|
819
|
-
wptype(22.0),
|
|
820
|
-
wptype(23.0),
|
|
821
|
-
wptype(24.0),
|
|
822
|
-
wptype(25.0),
|
|
823
|
-
),
|
|
824
|
-
)
|
|
825
|
-
|
|
826
|
-
wp.expect_neq(
|
|
827
|
-
mat55(
|
|
828
|
-
wptype(1.0),
|
|
829
|
-
wptype(2.0),
|
|
830
|
-
wptype(3.0),
|
|
831
|
-
wptype(4.0),
|
|
832
|
-
wptype(5.0),
|
|
833
|
-
wptype(6.0),
|
|
834
|
-
wptype(7.0),
|
|
835
|
-
wptype(8.0),
|
|
836
|
-
wptype(9.0),
|
|
837
|
-
wptype(10.0),
|
|
838
|
-
wptype(11.0),
|
|
839
|
-
wptype(12.0),
|
|
840
|
-
wptype(13.0),
|
|
841
|
-
wptype(14.0),
|
|
842
|
-
wptype(15.0),
|
|
843
|
-
wptype(16.0),
|
|
844
|
-
wptype(17.0),
|
|
845
|
-
wptype(18.0),
|
|
846
|
-
wptype(19.0),
|
|
847
|
-
wptype(20.0),
|
|
848
|
-
wptype(21.0),
|
|
849
|
-
wptype(22.0),
|
|
850
|
-
wptype(23.0),
|
|
851
|
-
wptype(24.0),
|
|
852
|
-
wptype(25.0),
|
|
853
|
-
),
|
|
854
|
-
mat55(
|
|
855
|
-
wptype(1.0),
|
|
856
|
-
wptype(2.0),
|
|
857
|
-
wptype(3.0),
|
|
858
|
-
wptype(4.0),
|
|
859
|
-
wptype(5.0),
|
|
860
|
-
wptype(6.0),
|
|
861
|
-
wptype(7.0),
|
|
862
|
-
wptype(8.0),
|
|
863
|
-
wptype(9.0),
|
|
864
|
-
wptype(10.0),
|
|
865
|
-
wptype(11.0),
|
|
866
|
-
wptype(12.0),
|
|
867
|
-
wptype(13.0),
|
|
868
|
-
wptype(14.0),
|
|
869
|
-
wptype(15.0),
|
|
870
|
-
wptype(16.0),
|
|
871
|
-
-wptype(17.0),
|
|
872
|
-
wptype(18.0),
|
|
873
|
-
wptype(19.0),
|
|
874
|
-
wptype(20.0),
|
|
875
|
-
wptype(21.0),
|
|
876
|
-
wptype(22.0),
|
|
877
|
-
wptype(23.0),
|
|
878
|
-
wptype(24.0),
|
|
879
|
-
wptype(25.0),
|
|
880
|
-
),
|
|
881
|
-
)
|
|
882
|
-
|
|
883
|
-
kernel = getkernel(check_mat_equality, suffix=dtype.__name__)
|
|
884
|
-
|
|
885
|
-
if register_kernels:
|
|
886
|
-
return
|
|
887
|
-
|
|
888
|
-
wp.launch(kernel, dim=1, inputs=[], outputs=[], device=device)
|
|
889
|
-
|
|
890
|
-
|
|
891
|
-
def test_negation(test, device, dtype, register_kernels=False):
|
|
892
|
-
np.random.seed(123)
|
|
460
|
+
def test_subtraction(test, device, dtype, register_kernels=False):
|
|
461
|
+
rng = np.random.default_rng(123)
|
|
893
462
|
|
|
894
463
|
tol = {
|
|
895
|
-
np.float16:
|
|
464
|
+
np.float16: 5.0e-3,
|
|
896
465
|
np.float32: 1.0e-6,
|
|
897
466
|
np.float64: 1.0e-8,
|
|
898
467
|
}.get(dtype, 0)
|
|
@@ -905,1401 +474,57 @@ def test_negation(test, device, dtype, register_kernels=False):
|
|
|
905
474
|
|
|
906
475
|
output_select_kernel = get_select_kernel(wptype)
|
|
907
476
|
|
|
908
|
-
def
|
|
909
|
-
|
|
910
|
-
|
|
911
|
-
|
|
912
|
-
|
|
477
|
+
def check_mat_sub(
|
|
478
|
+
s2: wp.array(dtype=mat22),
|
|
479
|
+
s3: wp.array(dtype=mat33),
|
|
480
|
+
s4: wp.array(dtype=mat44),
|
|
481
|
+
s5: wp.array(dtype=mat55),
|
|
482
|
+
v2: wp.array(dtype=mat22),
|
|
483
|
+
v3: wp.array(dtype=mat33),
|
|
484
|
+
v4: wp.array(dtype=mat44),
|
|
485
|
+
v5: wp.array(dtype=mat55),
|
|
913
486
|
outcomponents: wp.array(dtype=wptype),
|
|
914
487
|
):
|
|
915
|
-
|
|
916
|
-
|
|
917
|
-
|
|
918
|
-
|
|
488
|
+
v2result = v2[0] - s2[0]
|
|
489
|
+
v3result = v3[0] - s3[0]
|
|
490
|
+
v4result = v4[0] - s4[0]
|
|
491
|
+
v5result = v5[0] - s5[0]
|
|
919
492
|
|
|
920
493
|
# multiply outputs by 2 so we've got something to backpropagate:
|
|
921
494
|
idx = 0
|
|
922
495
|
for i in range(2):
|
|
923
496
|
for j in range(2):
|
|
924
|
-
outcomponents[idx] = wptype(2) *
|
|
497
|
+
outcomponents[idx] = wptype(2) * v2result[i, j]
|
|
925
498
|
idx = idx + 1
|
|
926
499
|
|
|
927
500
|
for i in range(3):
|
|
928
501
|
for j in range(3):
|
|
929
|
-
outcomponents[idx] = wptype(2) *
|
|
502
|
+
outcomponents[idx] = wptype(2) * v3result[i, j]
|
|
930
503
|
idx = idx + 1
|
|
931
504
|
|
|
932
505
|
for i in range(4):
|
|
933
506
|
for j in range(4):
|
|
934
|
-
outcomponents[idx] = wptype(2) *
|
|
507
|
+
outcomponents[idx] = wptype(2) * v4result[i, j]
|
|
935
508
|
idx = idx + 1
|
|
936
509
|
|
|
937
510
|
for i in range(5):
|
|
938
511
|
for j in range(5):
|
|
939
|
-
outcomponents[idx] = wptype(2) *
|
|
512
|
+
outcomponents[idx] = wptype(2) * v5result[i, j]
|
|
940
513
|
idx = idx + 1
|
|
941
514
|
|
|
942
|
-
kernel = getkernel(
|
|
515
|
+
kernel = getkernel(check_mat_sub, suffix=dtype.__name__)
|
|
943
516
|
|
|
944
517
|
if register_kernels:
|
|
945
518
|
return
|
|
946
519
|
|
|
947
|
-
|
|
948
|
-
|
|
949
|
-
|
|
950
|
-
|
|
951
|
-
|
|
952
|
-
|
|
953
|
-
wp.
|
|
954
|
-
|
|
955
|
-
assert_np_equal(outcomponents.numpy()[:4], -2 * m2.numpy().reshape(-1), tol=tol)
|
|
956
|
-
assert_np_equal(outcomponents.numpy()[4:13], -2 * m3.numpy().reshape(-1), tol=tol)
|
|
957
|
-
assert_np_equal(outcomponents.numpy()[13:29], -2 * m4.numpy().reshape(-1), tol=tol)
|
|
958
|
-
assert_np_equal(outcomponents.numpy()[29:54], -2 * m5.numpy().reshape(-1), tol=tol)
|
|
959
|
-
|
|
960
|
-
if dtype in np_float_types:
|
|
961
|
-
idx = 0
|
|
962
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
963
|
-
for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]:
|
|
964
|
-
for i in range(dim):
|
|
965
|
-
for j in range(dim):
|
|
966
|
-
tape = wp.Tape()
|
|
967
|
-
with tape:
|
|
968
|
-
wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], outputs=[outcomponents], device=device)
|
|
969
|
-
wp.launch(
|
|
970
|
-
output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device
|
|
971
|
-
)
|
|
972
|
-
tape.backward(loss=out)
|
|
973
|
-
expectedresult = np.zeros((dim, dim), dtype=dtype)
|
|
974
|
-
expectedresult[i, j] = -2
|
|
975
|
-
assert_np_equal(tape.gradients[input].numpy()[0], expectedresult)
|
|
976
|
-
tape.zero()
|
|
977
|
-
idx = idx + 1
|
|
978
|
-
|
|
979
|
-
|
|
980
|
-
def test_transpose(test, device, dtype, register_kernels=False):
|
|
981
|
-
np.random.seed(123)
|
|
982
|
-
|
|
983
|
-
tol = {
|
|
984
|
-
np.float16: 1.0e-2,
|
|
985
|
-
np.float32: 1.0e-6,
|
|
986
|
-
np.float64: 1.0e-8,
|
|
987
|
-
}.get(dtype, 0)
|
|
988
|
-
|
|
989
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
990
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
991
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
992
|
-
mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype)
|
|
993
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
994
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
995
|
-
|
|
996
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
997
|
-
|
|
998
|
-
def check_mat_transpose(
|
|
999
|
-
m2: wp.array(dtype=mat22),
|
|
1000
|
-
m3: wp.array(dtype=mat33),
|
|
1001
|
-
m4: wp.array(dtype=mat44),
|
|
1002
|
-
m5: wp.array(dtype=mat55),
|
|
1003
|
-
m32: wp.array(dtype=mat32),
|
|
1004
|
-
outcomponents: wp.array(dtype=wptype),
|
|
1005
|
-
):
|
|
1006
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
1007
|
-
mat2 = wptype(2) * wp.transpose(m2[0])
|
|
1008
|
-
mat3 = wptype(2) * wp.transpose(m3[0])
|
|
1009
|
-
mat4 = wptype(2) * wp.transpose(m4[0])
|
|
1010
|
-
mat5 = wptype(2) * wp.transpose(m5[0])
|
|
1011
|
-
mat32 = wptype(2) * wp.transpose(m32[0])
|
|
1012
|
-
|
|
1013
|
-
idx = 0
|
|
1014
|
-
for i in range(2):
|
|
1015
|
-
for j in range(2):
|
|
1016
|
-
outcomponents[idx] = mat2[i, j]
|
|
1017
|
-
idx = idx + 1
|
|
1018
|
-
|
|
1019
|
-
for i in range(3):
|
|
1020
|
-
for j in range(3):
|
|
1021
|
-
outcomponents[idx] = mat3[i, j]
|
|
1022
|
-
idx = idx + 1
|
|
1023
|
-
|
|
1024
|
-
for i in range(4):
|
|
1025
|
-
for j in range(4):
|
|
1026
|
-
outcomponents[idx] = mat4[i, j]
|
|
1027
|
-
idx = idx + 1
|
|
1028
|
-
|
|
1029
|
-
for i in range(5):
|
|
1030
|
-
for j in range(5):
|
|
1031
|
-
outcomponents[idx] = mat5[i, j]
|
|
1032
|
-
idx = idx + 1
|
|
1033
|
-
|
|
1034
|
-
for i in range(2):
|
|
1035
|
-
for j in range(3):
|
|
1036
|
-
outcomponents[idx] = mat32[i, j]
|
|
1037
|
-
idx = idx + 1
|
|
1038
|
-
|
|
1039
|
-
kernel = getkernel(check_mat_transpose, suffix=dtype.__name__)
|
|
1040
|
-
|
|
1041
|
-
if register_kernels:
|
|
1042
|
-
return
|
|
1043
|
-
|
|
1044
|
-
m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
1045
|
-
m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
1046
|
-
m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1047
|
-
m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
1048
|
-
m32 = wp.array(randvals([1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device)
|
|
1049
|
-
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 2 * 3, dtype=wptype, requires_grad=True, device=device)
|
|
1050
|
-
|
|
1051
|
-
wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5, m32], outputs=[outcomponents], device=device)
|
|
1052
|
-
|
|
1053
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * m2.numpy()[0].T.reshape(-1), tol=tol)
|
|
1054
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * m3.numpy()[0].T.reshape(-1), tol=tol)
|
|
1055
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * m4.numpy()[0].T.reshape(-1), tol=tol)
|
|
1056
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * m5.numpy()[0].T.reshape(-1), tol=tol)
|
|
1057
|
-
assert_np_equal(outcomponents.numpy()[54:], 2 * m32.numpy()[0].T.reshape(-1), tol=tol)
|
|
1058
|
-
|
|
1059
|
-
if dtype in np_float_types:
|
|
1060
|
-
idx = 0
|
|
1061
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1062
|
-
for input in [m2, m3, m4, m5]:
|
|
1063
|
-
for i in range(input.dtype._shape_[0]):
|
|
1064
|
-
for j in range(input.dtype._shape_[1]):
|
|
1065
|
-
tape = wp.Tape()
|
|
1066
|
-
with tape:
|
|
1067
|
-
wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5, m32], outputs=[outcomponents], device=device)
|
|
1068
|
-
wp.launch(
|
|
1069
|
-
output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device
|
|
1070
|
-
)
|
|
1071
|
-
tape.backward(loss=out)
|
|
1072
|
-
expectedresult = np.zeros((input.dtype._shape_[1], input.dtype._shape_[0]), dtype=dtype)
|
|
1073
|
-
expectedresult[j, i] = 2
|
|
1074
|
-
assert_np_equal(tape.gradients[input].numpy()[0], expectedresult)
|
|
1075
|
-
tape.zero()
|
|
1076
|
-
idx = idx + 1
|
|
1077
|
-
|
|
1078
|
-
|
|
1079
|
-
def test_scalar_multiplication(test, device, dtype, register_kernels=False):
|
|
1080
|
-
np.random.seed(123)
|
|
1081
|
-
|
|
1082
|
-
tol = {
|
|
1083
|
-
np.float16: 1.0e-2,
|
|
1084
|
-
np.float32: 1.0e-6,
|
|
1085
|
-
np.float64: 1.0e-8,
|
|
1086
|
-
}.get(dtype, 0)
|
|
1087
|
-
|
|
1088
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1089
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
1090
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
1091
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
1092
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
1093
|
-
|
|
1094
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
1095
|
-
|
|
1096
|
-
def check_mat_scalar_mul(
|
|
1097
|
-
s: wp.array(dtype=wptype),
|
|
1098
|
-
m2: wp.array(dtype=mat22),
|
|
1099
|
-
m3: wp.array(dtype=mat33),
|
|
1100
|
-
m4: wp.array(dtype=mat44),
|
|
1101
|
-
m5: wp.array(dtype=mat55),
|
|
1102
|
-
outcomponents: wp.array(dtype=wptype),
|
|
1103
|
-
outcomponents_rightmul: wp.array(dtype=wptype),
|
|
1104
|
-
):
|
|
1105
|
-
m2result = s[0] * m2[0]
|
|
1106
|
-
m3result = s[0] * m3[0]
|
|
1107
|
-
m4result = s[0] * m4[0]
|
|
1108
|
-
m5result = s[0] * m5[0]
|
|
1109
|
-
|
|
1110
|
-
m2resultright = m2[0] * s[0]
|
|
1111
|
-
m3resultright = m3[0] * s[0]
|
|
1112
|
-
m4resultright = m4[0] * s[0]
|
|
1113
|
-
m5resultright = m5[0] * s[0]
|
|
1114
|
-
|
|
1115
|
-
m2result_2 = s[0] * m2[0]
|
|
1116
|
-
m3result_2 = s[0] * m3[0]
|
|
1117
|
-
m4result_2 = s[0] * m4[0]
|
|
1118
|
-
m5result_2 = s[0] * m5[0]
|
|
1119
|
-
|
|
1120
|
-
m2resultright_2 = m2[0] * s[0]
|
|
1121
|
-
m3resultright_2 = m3[0] * s[0]
|
|
1122
|
-
m4resultright_2 = m4[0] * s[0]
|
|
1123
|
-
m5resultright_2 = m5[0] * s[0]
|
|
1124
|
-
|
|
1125
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
1126
|
-
idx = 0
|
|
1127
|
-
for i in range(2):
|
|
1128
|
-
for j in range(2):
|
|
1129
|
-
outcomponents[idx] = wptype(2) * m2result[i, j]
|
|
1130
|
-
outcomponents_rightmul[idx] = wptype(2) * m2resultright[i, j]
|
|
1131
|
-
idx = idx + 1
|
|
1132
|
-
|
|
1133
|
-
for i in range(3):
|
|
1134
|
-
for j in range(3):
|
|
1135
|
-
outcomponents[idx] = wptype(2) * m3result[i, j]
|
|
1136
|
-
outcomponents_rightmul[idx] = wptype(2) * m3resultright[i, j]
|
|
1137
|
-
idx = idx + 1
|
|
1138
|
-
|
|
1139
|
-
for i in range(4):
|
|
1140
|
-
for j in range(4):
|
|
1141
|
-
outcomponents[idx] = wptype(2) * m4result[i, j]
|
|
1142
|
-
outcomponents_rightmul[idx] = wptype(2) * m4resultright[i, j]
|
|
1143
|
-
idx = idx + 1
|
|
1144
|
-
|
|
1145
|
-
for i in range(5):
|
|
1146
|
-
for j in range(5):
|
|
1147
|
-
outcomponents[idx] = wptype(2) * m5result[i, j]
|
|
1148
|
-
outcomponents_rightmul[idx] = wptype(2) * m5resultright[i, j]
|
|
1149
|
-
idx = idx + 1
|
|
1150
|
-
|
|
1151
|
-
for i in range(2):
|
|
1152
|
-
for j in range(2):
|
|
1153
|
-
outcomponents[idx] = wptype(2) * m2result_2[i, j]
|
|
1154
|
-
outcomponents_rightmul[idx] = wptype(2) * m2resultright_2[i, j]
|
|
1155
|
-
idx = idx + 1
|
|
1156
|
-
|
|
1157
|
-
for i in range(3):
|
|
1158
|
-
for j in range(3):
|
|
1159
|
-
outcomponents[idx] = wptype(2) * m3result_2[i, j]
|
|
1160
|
-
outcomponents_rightmul[idx] = wptype(2) * m3resultright_2[i, j]
|
|
1161
|
-
idx = idx + 1
|
|
1162
|
-
|
|
1163
|
-
for i in range(4):
|
|
1164
|
-
for j in range(4):
|
|
1165
|
-
outcomponents[idx] = wptype(2) * m4result_2[i, j]
|
|
1166
|
-
outcomponents_rightmul[idx] = wptype(2) * m4resultright_2[i, j]
|
|
1167
|
-
idx = idx + 1
|
|
1168
|
-
|
|
1169
|
-
for i in range(5):
|
|
1170
|
-
for j in range(5):
|
|
1171
|
-
outcomponents[idx] = wptype(2) * m5result_2[i, j]
|
|
1172
|
-
outcomponents_rightmul[idx] = wptype(2) * m5resultright_2[i, j]
|
|
1173
|
-
idx = idx + 1
|
|
1174
|
-
|
|
1175
|
-
kernel = getkernel(check_mat_scalar_mul, suffix=dtype.__name__)
|
|
1176
|
-
|
|
1177
|
-
if register_kernels:
|
|
1178
|
-
return
|
|
1179
|
-
|
|
1180
|
-
s = wp.array(randvals([1], dtype), requires_grad=True, device=device)
|
|
1181
|
-
m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
1182
|
-
m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
1183
|
-
m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1184
|
-
m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
1185
|
-
outcomponents = wp.zeros(2 * (2 * 2 + 3 * 3 + 4 * 4 + 5 * 5), dtype=wptype, requires_grad=True, device=device)
|
|
1186
|
-
outcomponents_rightmul = wp.zeros(
|
|
1187
|
-
2 * (2 * 2 + 3 * 3 + 4 * 4 + 5 * 5), dtype=wptype, requires_grad=True, device=device
|
|
1188
|
-
)
|
|
1189
|
-
|
|
1190
|
-
wp.launch(kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents, outcomponents_rightmul], device=device)
|
|
1191
|
-
|
|
1192
|
-
sval = s.numpy()[0]
|
|
1193
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * sval * m2.numpy().reshape(-1), tol=tol)
|
|
1194
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol)
|
|
1195
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol)
|
|
1196
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol)
|
|
1197
|
-
|
|
1198
|
-
assert_np_equal(outcomponents_rightmul.numpy()[:4], 2 * sval * m2.numpy().reshape(-1), tol=tol)
|
|
1199
|
-
assert_np_equal(outcomponents_rightmul.numpy()[4:13], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol)
|
|
1200
|
-
assert_np_equal(outcomponents_rightmul.numpy()[13:29], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol)
|
|
1201
|
-
assert_np_equal(outcomponents_rightmul.numpy()[29:54], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol)
|
|
1202
|
-
|
|
1203
|
-
assert_np_equal(outcomponents.numpy()[54:58], 2 * sval * m2.numpy().reshape(-1), tol=tol)
|
|
1204
|
-
assert_np_equal(outcomponents.numpy()[58:67], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol)
|
|
1205
|
-
assert_np_equal(outcomponents.numpy()[67:83], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol)
|
|
1206
|
-
assert_np_equal(outcomponents.numpy()[83:108], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol)
|
|
1207
|
-
|
|
1208
|
-
assert_np_equal(outcomponents_rightmul.numpy()[54:58], 2 * sval * m2.numpy().reshape(-1), tol=tol)
|
|
1209
|
-
assert_np_equal(outcomponents_rightmul.numpy()[58:67], 2 * sval * m3.numpy().reshape(-1), tol=10 * tol)
|
|
1210
|
-
assert_np_equal(outcomponents_rightmul.numpy()[67:83], 2 * sval * m4.numpy().reshape(-1), tol=10 * tol)
|
|
1211
|
-
assert_np_equal(outcomponents_rightmul.numpy()[83:108], 2 * sval * m5.numpy().reshape(-1), tol=10 * tol)
|
|
1212
|
-
|
|
1213
|
-
if dtype in np_float_types:
|
|
1214
|
-
idx = 0
|
|
1215
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1216
|
-
for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]:
|
|
1217
|
-
for i in range(dim):
|
|
1218
|
-
for j in range(dim):
|
|
1219
|
-
# test left mul gradient:
|
|
1220
|
-
tape = wp.Tape()
|
|
1221
|
-
with tape:
|
|
1222
|
-
wp.launch(
|
|
1223
|
-
kernel,
|
|
1224
|
-
dim=1,
|
|
1225
|
-
inputs=[s, m2, m3, m4, m5],
|
|
1226
|
-
outputs=[outcomponents, outcomponents_rightmul],
|
|
1227
|
-
device=device,
|
|
1228
|
-
)
|
|
1229
|
-
wp.launch(
|
|
1230
|
-
output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device
|
|
1231
|
-
)
|
|
1232
|
-
tape.backward(loss=out)
|
|
1233
|
-
expectedresult = np.zeros((dim, dim), dtype=dtype)
|
|
1234
|
-
expectedresult[i, j] = 2 * sval
|
|
1235
|
-
assert_np_equal(tape.gradients[input].numpy()[0], expectedresult, tol=10 * tol)
|
|
1236
|
-
assert_np_equal(tape.gradients[s].numpy()[0], 2 * input.numpy()[0, i, j], tol=10 * tol)
|
|
1237
|
-
tape.zero()
|
|
1238
|
-
|
|
1239
|
-
# test right mul gradient:
|
|
1240
|
-
tape = wp.Tape()
|
|
1241
|
-
with tape:
|
|
1242
|
-
wp.launch(
|
|
1243
|
-
kernel,
|
|
1244
|
-
dim=1,
|
|
1245
|
-
inputs=[s, m2, m3, m4, m5],
|
|
1246
|
-
outputs=[outcomponents, outcomponents_rightmul],
|
|
1247
|
-
device=device,
|
|
1248
|
-
)
|
|
1249
|
-
wp.launch(
|
|
1250
|
-
output_select_kernel,
|
|
1251
|
-
dim=1,
|
|
1252
|
-
inputs=[outcomponents_rightmul, idx],
|
|
1253
|
-
outputs=[out],
|
|
1254
|
-
device=device,
|
|
1255
|
-
)
|
|
1256
|
-
tape.backward(loss=out)
|
|
1257
|
-
expectedresult = np.zeros((dim, dim), dtype=dtype)
|
|
1258
|
-
expectedresult[i, j] = 2 * sval
|
|
1259
|
-
assert_np_equal(tape.gradients[input].numpy()[0], expectedresult, tol=10 * tol)
|
|
1260
|
-
assert_np_equal(tape.gradients[s].numpy()[0], 2 * input.numpy()[0, i, j], tol=10 * tol)
|
|
1261
|
-
tape.zero()
|
|
1262
|
-
|
|
1263
|
-
idx = idx + 1
|
|
1264
|
-
|
|
1265
|
-
|
|
1266
|
-
def test_matvec_multiplication(test, device, dtype, register_kernels=False):
|
|
1267
|
-
np.random.seed(123)
|
|
1268
|
-
|
|
1269
|
-
tol = {
|
|
1270
|
-
np.float16: 2.0e-2,
|
|
1271
|
-
np.float32: 5.0e-6,
|
|
1272
|
-
np.float64: 1.0e-8,
|
|
1273
|
-
}.get(dtype, 0)
|
|
1274
|
-
|
|
1275
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1276
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
1277
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
1278
|
-
mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype)
|
|
1279
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
1280
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
1281
|
-
|
|
1282
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
1283
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
1284
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
1285
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
1286
|
-
|
|
1287
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
1288
|
-
|
|
1289
|
-
def check_mat_vec_mul(
|
|
1290
|
-
v2: wp.array(dtype=vec2),
|
|
1291
|
-
v3: wp.array(dtype=vec3),
|
|
1292
|
-
v4: wp.array(dtype=vec4),
|
|
1293
|
-
v5: wp.array(dtype=vec5),
|
|
1294
|
-
v32: wp.array(dtype=vec2),
|
|
1295
|
-
m2: wp.array(dtype=mat22),
|
|
1296
|
-
m3: wp.array(dtype=mat33),
|
|
1297
|
-
m4: wp.array(dtype=mat44),
|
|
1298
|
-
m5: wp.array(dtype=mat55),
|
|
1299
|
-
m32: wp.array(dtype=mat32),
|
|
1300
|
-
outcomponents: wp.array(dtype=wptype),
|
|
1301
|
-
):
|
|
1302
|
-
v2result = m2[0] * v2[0]
|
|
1303
|
-
v3result = m3[0] * v3[0]
|
|
1304
|
-
v4result = m4[0] * v4[0]
|
|
1305
|
-
v5result = m5[0] * v5[0]
|
|
1306
|
-
v32result = m32[0] * v32[0]
|
|
1307
|
-
v2result_2 = m2[0] @ v2[0]
|
|
1308
|
-
v3result_2 = m3[0] @ v3[0]
|
|
1309
|
-
v4result_2 = m4[0] @ v4[0]
|
|
1310
|
-
v5result_2 = m5[0] @ v5[0]
|
|
1311
|
-
v32result_2 = m32[0] @ v32[0]
|
|
1312
|
-
|
|
1313
|
-
idx = 0
|
|
1314
|
-
|
|
1315
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
1316
|
-
for i in range(2):
|
|
1317
|
-
outcomponents[idx] = wptype(2) * v2result[i]
|
|
1318
|
-
idx = idx + 1
|
|
1319
|
-
|
|
1320
|
-
for i in range(3):
|
|
1321
|
-
outcomponents[idx] = wptype(2) * v3result[i]
|
|
1322
|
-
idx = idx + 1
|
|
1323
|
-
|
|
1324
|
-
for i in range(4):
|
|
1325
|
-
outcomponents[idx] = wptype(2) * v4result[i]
|
|
1326
|
-
idx = idx + 1
|
|
1327
|
-
|
|
1328
|
-
for i in range(5):
|
|
1329
|
-
outcomponents[idx] = wptype(2) * v5result[i]
|
|
1330
|
-
idx = idx + 1
|
|
1331
|
-
|
|
1332
|
-
for i in range(3):
|
|
1333
|
-
outcomponents[idx] = wptype(2) * v32result[i]
|
|
1334
|
-
idx = idx + 1
|
|
1335
|
-
|
|
1336
|
-
for i in range(2):
|
|
1337
|
-
outcomponents[idx] = wptype(2) * v2result_2[i]
|
|
1338
|
-
idx = idx + 1
|
|
1339
|
-
|
|
1340
|
-
for i in range(3):
|
|
1341
|
-
outcomponents[idx] = wptype(2) * v3result_2[i]
|
|
1342
|
-
idx = idx + 1
|
|
1343
|
-
|
|
1344
|
-
for i in range(4):
|
|
1345
|
-
outcomponents[idx] = wptype(2) * v4result_2[i]
|
|
1346
|
-
idx = idx + 1
|
|
1347
|
-
|
|
1348
|
-
for i in range(5):
|
|
1349
|
-
outcomponents[idx] = wptype(2) * v5result_2[i]
|
|
1350
|
-
idx = idx + 1
|
|
1351
|
-
|
|
1352
|
-
for i in range(3):
|
|
1353
|
-
outcomponents[idx] = wptype(2) * v32result_2[i]
|
|
1354
|
-
idx = idx + 1
|
|
1355
|
-
|
|
1356
|
-
kernel = getkernel(check_mat_vec_mul, suffix=dtype.__name__)
|
|
1357
|
-
|
|
1358
|
-
if register_kernels:
|
|
1359
|
-
return
|
|
1360
|
-
|
|
1361
|
-
v2 = wp.array(randvals([1, 2], dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1362
|
-
v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1363
|
-
v4 = wp.array(randvals([1, 4], dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1364
|
-
v5 = wp.array(randvals([1, 5], dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1365
|
-
v32 = wp.array(randvals([1, 2], dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1366
|
-
m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
1367
|
-
m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
1368
|
-
m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1369
|
-
m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
1370
|
-
m32 = wp.array(randvals([1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device)
|
|
1371
|
-
outcomponents = wp.zeros(2 * (2 + 3 + 4 + 5 + 3), dtype=wptype, requires_grad=True, device=device)
|
|
1372
|
-
|
|
1373
|
-
wp.launch(kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device)
|
|
1374
|
-
|
|
1375
|
-
assert_np_equal(outcomponents.numpy()[:2], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol)
|
|
1376
|
-
assert_np_equal(outcomponents.numpy()[2:5], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol)
|
|
1377
|
-
assert_np_equal(outcomponents.numpy()[5:9], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=5 * tol)
|
|
1378
|
-
assert_np_equal(outcomponents.numpy()[9:14], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=5 * tol)
|
|
1379
|
-
assert_np_equal(outcomponents.numpy()[14:17], 2 * np.matmul(m32.numpy()[0], v32.numpy()[0]), tol=5 * tol)
|
|
1380
|
-
assert_np_equal(outcomponents.numpy()[17:19], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol)
|
|
1381
|
-
assert_np_equal(outcomponents.numpy()[19:22], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol)
|
|
1382
|
-
assert_np_equal(outcomponents.numpy()[22:26], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=5 * tol)
|
|
1383
|
-
assert_np_equal(outcomponents.numpy()[26:31], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=5 * tol)
|
|
1384
|
-
assert_np_equal(outcomponents.numpy()[31:34], 2 * np.matmul(m32.numpy()[0], v32.numpy()[0]), tol=5 * tol)
|
|
1385
|
-
|
|
1386
|
-
if dtype in np_float_types:
|
|
1387
|
-
idx = 0
|
|
1388
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1389
|
-
for dim, invec, inmat in [(2, v2, m2), (3, v3, m3), (4, v4, m4), (5, v5, m5), (3, v32, m32)]:
|
|
1390
|
-
for i in range(dim):
|
|
1391
|
-
tape = wp.Tape()
|
|
1392
|
-
with tape:
|
|
1393
|
-
wp.launch(
|
|
1394
|
-
kernel,
|
|
1395
|
-
dim=1,
|
|
1396
|
-
inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32],
|
|
1397
|
-
outputs=[outcomponents],
|
|
1398
|
-
device=device,
|
|
1399
|
-
)
|
|
1400
|
-
wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device)
|
|
1401
|
-
tape.backward(loss=out)
|
|
1402
|
-
|
|
1403
|
-
assert_np_equal(tape.gradients[invec].numpy()[0], 2 * inmat.numpy()[0, i, :], tol=2 * tol)
|
|
1404
|
-
expectedresult = np.zeros(inmat.dtype._shape_, dtype=dtype)
|
|
1405
|
-
expectedresult[i, :] = 2 * invec.numpy()[0]
|
|
1406
|
-
assert_np_equal(tape.gradients[inmat].numpy()[0], expectedresult, tol=2 * tol)
|
|
1407
|
-
|
|
1408
|
-
tape.zero()
|
|
1409
|
-
|
|
1410
|
-
idx = idx + 1
|
|
1411
|
-
|
|
1412
|
-
|
|
1413
|
-
def test_matmat_multiplication(test, device, dtype, register_kernels=False):
|
|
1414
|
-
np.random.seed(123)
|
|
1415
|
-
|
|
1416
|
-
tol = {
|
|
1417
|
-
np.float16: 2.0e-2,
|
|
1418
|
-
np.float32: 5.0e-6,
|
|
1419
|
-
np.float64: 1.0e-8,
|
|
1420
|
-
}.get(dtype, 0)
|
|
1421
|
-
|
|
1422
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1423
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
1424
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
1425
|
-
mat32 = wp.types.matrix(shape=(3, 2), dtype=wptype)
|
|
1426
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
1427
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
1428
|
-
|
|
1429
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
1430
|
-
|
|
1431
|
-
def check_mat_mat_mul(
|
|
1432
|
-
a2: wp.array(dtype=mat22),
|
|
1433
|
-
a3: wp.array(dtype=mat33),
|
|
1434
|
-
a4: wp.array(dtype=mat44),
|
|
1435
|
-
a5: wp.array(dtype=mat55),
|
|
1436
|
-
a32: wp.array(dtype=mat32),
|
|
1437
|
-
b2: wp.array(dtype=mat22),
|
|
1438
|
-
b3: wp.array(dtype=mat33),
|
|
1439
|
-
b4: wp.array(dtype=mat44),
|
|
1440
|
-
b5: wp.array(dtype=mat55),
|
|
1441
|
-
b32: wp.array(dtype=mat32),
|
|
1442
|
-
outcomponents: wp.array(dtype=wptype),
|
|
1443
|
-
):
|
|
1444
|
-
c2result = b2[0] * a2[0]
|
|
1445
|
-
c3result = b3[0] * a3[0]
|
|
1446
|
-
c4result = b4[0] * a4[0]
|
|
1447
|
-
c5result = b5[0] * a5[0]
|
|
1448
|
-
c32result = b32[0] * a2[0]
|
|
1449
|
-
c32result2 = b3[0] * a32[0]
|
|
1450
|
-
c2result_2 = b2[0] @ a2[0]
|
|
1451
|
-
c3result_2 = b3[0] @ a3[0]
|
|
1452
|
-
c4result_2 = b4[0] @ a4[0]
|
|
1453
|
-
c5result_2 = b5[0] @ a5[0]
|
|
1454
|
-
c32result_2 = b32[0] @ a2[0]
|
|
1455
|
-
c32result2_2 = b3[0] @ a32[0]
|
|
1456
|
-
|
|
1457
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
1458
|
-
idx = 0
|
|
1459
|
-
for i in range(2):
|
|
1460
|
-
for j in range(2):
|
|
1461
|
-
outcomponents[idx] = wptype(2) * c2result[i, j]
|
|
1462
|
-
idx = idx + 1
|
|
1463
|
-
|
|
1464
|
-
for i in range(3):
|
|
1465
|
-
for j in range(3):
|
|
1466
|
-
outcomponents[idx] = wptype(2) * c3result[i, j]
|
|
1467
|
-
idx = idx + 1
|
|
1468
|
-
|
|
1469
|
-
for i in range(4):
|
|
1470
|
-
for j in range(4):
|
|
1471
|
-
outcomponents[idx] = wptype(2) * c4result[i, j]
|
|
1472
|
-
idx = idx + 1
|
|
1473
|
-
|
|
1474
|
-
for i in range(5):
|
|
1475
|
-
for j in range(5):
|
|
1476
|
-
outcomponents[idx] = wptype(2) * c5result[i, j]
|
|
1477
|
-
idx = idx + 1
|
|
1478
|
-
|
|
1479
|
-
for i in range(3):
|
|
1480
|
-
for j in range(2):
|
|
1481
|
-
outcomponents[idx] = wptype(2) * c32result[i, j]
|
|
1482
|
-
idx = idx + 1
|
|
1483
|
-
|
|
1484
|
-
for i in range(3):
|
|
1485
|
-
for j in range(2):
|
|
1486
|
-
outcomponents[idx] = wptype(2) * c32result2[i, j]
|
|
1487
|
-
idx = idx + 1
|
|
1488
|
-
|
|
1489
|
-
for i in range(2):
|
|
1490
|
-
for j in range(2):
|
|
1491
|
-
outcomponents[idx] = wptype(2) * c2result_2[i, j]
|
|
1492
|
-
idx = idx + 1
|
|
1493
|
-
|
|
1494
|
-
for i in range(3):
|
|
1495
|
-
for j in range(3):
|
|
1496
|
-
outcomponents[idx] = wptype(2) * c3result_2[i, j]
|
|
1497
|
-
idx = idx + 1
|
|
1498
|
-
|
|
1499
|
-
for i in range(4):
|
|
1500
|
-
for j in range(4):
|
|
1501
|
-
outcomponents[idx] = wptype(2) * c4result_2[i, j]
|
|
1502
|
-
idx = idx + 1
|
|
1503
|
-
|
|
1504
|
-
for i in range(5):
|
|
1505
|
-
for j in range(5):
|
|
1506
|
-
outcomponents[idx] = wptype(2) * c5result_2[i, j]
|
|
1507
|
-
idx = idx + 1
|
|
1508
|
-
|
|
1509
|
-
for i in range(3):
|
|
1510
|
-
for j in range(2):
|
|
1511
|
-
outcomponents[idx] = wptype(2) * c32result_2[i, j]
|
|
1512
|
-
idx = idx + 1
|
|
1513
|
-
|
|
1514
|
-
for i in range(3):
|
|
1515
|
-
for j in range(2):
|
|
1516
|
-
outcomponents[idx] = wptype(2) * c32result2_2[i, j]
|
|
1517
|
-
idx = idx + 1
|
|
1518
|
-
|
|
1519
|
-
kernel = getkernel(check_mat_mat_mul, suffix=dtype.__name__)
|
|
1520
|
-
|
|
1521
|
-
if register_kernels:
|
|
1522
|
-
return
|
|
1523
|
-
|
|
1524
|
-
v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
1525
|
-
v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
1526
|
-
v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1527
|
-
v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
1528
|
-
v32 = wp.array(randvals([1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device)
|
|
1529
|
-
m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
1530
|
-
m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
1531
|
-
m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1532
|
-
m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
1533
|
-
m32 = wp.array(randvals([1, 3, 2], dtype), dtype=mat32, requires_grad=True, device=device)
|
|
1534
|
-
outcomponents = wp.zeros(
|
|
1535
|
-
2 * (2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2 + 3 * 2), dtype=wptype, requires_grad=True, device=device
|
|
1536
|
-
)
|
|
1537
|
-
|
|
1538
|
-
wp.launch(kernel, dim=1, inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32], outputs=[outcomponents], device=device)
|
|
1539
|
-
|
|
1540
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol)
|
|
1541
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol)
|
|
1542
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=2 * tol)
|
|
1543
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=10 * tol)
|
|
1544
|
-
assert_np_equal(outcomponents.numpy()[54:60], 2 * np.matmul(m32.numpy()[0], v2.numpy()[0]), tol=5 * tol)
|
|
1545
|
-
assert_np_equal(outcomponents.numpy()[60:66], 2 * np.matmul(m3.numpy()[0], v32.numpy()[0]), tol=5 * tol)
|
|
1546
|
-
assert_np_equal(outcomponents.numpy()[66:70], 2 * np.matmul(m2.numpy()[0], v2.numpy()[0]), tol=tol)
|
|
1547
|
-
assert_np_equal(outcomponents.numpy()[70:79], 2 * np.matmul(m3.numpy()[0], v3.numpy()[0]), tol=tol)
|
|
1548
|
-
assert_np_equal(outcomponents.numpy()[79:95], 2 * np.matmul(m4.numpy()[0], v4.numpy()[0]), tol=2 * tol)
|
|
1549
|
-
assert_np_equal(outcomponents.numpy()[95:120], 2 * np.matmul(m5.numpy()[0], v5.numpy()[0]), tol=10 * tol)
|
|
1550
|
-
assert_np_equal(outcomponents.numpy()[120:126], 2 * np.matmul(m32.numpy()[0], v2.numpy()[0]), tol=5 * tol)
|
|
1551
|
-
assert_np_equal(outcomponents.numpy()[126:132], 2 * np.matmul(m3.numpy()[0], v32.numpy()[0]), tol=5 * tol)
|
|
1552
|
-
|
|
1553
|
-
if dtype in np_float_types:
|
|
1554
|
-
idx = 0
|
|
1555
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1556
|
-
for v, m in [(v2, m2), (v3, m3), (v4, m4), (v5, m5), (v2, m32), (v32, m3)]:
|
|
1557
|
-
rows, cols = m.dtype._shape_[0], v.dtype._shape_[1]
|
|
1558
|
-
for i in range(rows):
|
|
1559
|
-
for j in range(cols):
|
|
1560
|
-
tape = wp.Tape()
|
|
1561
|
-
with tape:
|
|
1562
|
-
wp.launch(
|
|
1563
|
-
kernel,
|
|
1564
|
-
dim=1,
|
|
1565
|
-
inputs=[v2, v3, v4, v5, v32, m2, m3, m4, m5, m32],
|
|
1566
|
-
outputs=[outcomponents],
|
|
1567
|
-
device=device,
|
|
1568
|
-
)
|
|
1569
|
-
wp.launch(
|
|
1570
|
-
output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device
|
|
1571
|
-
)
|
|
1572
|
-
tape.backward(loss=out)
|
|
1573
|
-
|
|
1574
|
-
expected = np.zeros(v.dtype._shape_, dtype=dtype)
|
|
1575
|
-
expected[:, j] = 2 * m.numpy()[0, i, :]
|
|
1576
|
-
assert_np_equal(tape.gradients[v].numpy()[0], expected, tol=10 * tol)
|
|
1577
|
-
|
|
1578
|
-
expected = np.zeros(m.dtype._shape_, dtype=dtype)
|
|
1579
|
-
expected[i, :] = 2 * v.numpy()[0, :, j]
|
|
1580
|
-
assert_np_equal(tape.gradients[m].numpy()[0], expected, tol=10 * tol)
|
|
1581
|
-
|
|
1582
|
-
tape.zero()
|
|
1583
|
-
idx = idx + 1
|
|
1584
|
-
|
|
1585
|
-
|
|
1586
|
-
def test_cw_multiplication(test, device, dtype, register_kernels=False):
|
|
1587
|
-
np.random.seed(123)
|
|
1588
|
-
|
|
1589
|
-
tol = {
|
|
1590
|
-
np.float16: 5.0e-2,
|
|
1591
|
-
np.float32: 1.0e-6,
|
|
1592
|
-
np.float64: 1.0e-8,
|
|
1593
|
-
}.get(dtype, 0)
|
|
1594
|
-
|
|
1595
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1596
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
1597
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
1598
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
1599
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
1600
|
-
|
|
1601
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
1602
|
-
|
|
1603
|
-
def check_mat_cw_mul(
|
|
1604
|
-
s2: wp.array(dtype=mat22),
|
|
1605
|
-
s3: wp.array(dtype=mat33),
|
|
1606
|
-
s4: wp.array(dtype=mat44),
|
|
1607
|
-
s5: wp.array(dtype=mat55),
|
|
1608
|
-
v2: wp.array(dtype=mat22),
|
|
1609
|
-
v3: wp.array(dtype=mat33),
|
|
1610
|
-
v4: wp.array(dtype=mat44),
|
|
1611
|
-
v5: wp.array(dtype=mat55),
|
|
1612
|
-
outcomponents: wp.array(dtype=wptype),
|
|
1613
|
-
):
|
|
1614
|
-
v2result = wptype(2) * wp.cw_mul(v2[0], s2[0])
|
|
1615
|
-
v3result = wptype(2) * wp.cw_mul(v3[0], s3[0])
|
|
1616
|
-
v4result = wptype(2) * wp.cw_mul(v4[0], s4[0])
|
|
1617
|
-
v5result = wptype(2) * wp.cw_mul(v5[0], s5[0])
|
|
1618
|
-
|
|
1619
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
1620
|
-
idx = 0
|
|
1621
|
-
for i in range(2):
|
|
1622
|
-
for j in range(2):
|
|
1623
|
-
outcomponents[idx] = v2result[i, j]
|
|
1624
|
-
idx = idx + 1
|
|
1625
|
-
|
|
1626
|
-
for i in range(3):
|
|
1627
|
-
for j in range(3):
|
|
1628
|
-
outcomponents[idx] = v3result[i, j]
|
|
1629
|
-
idx = idx + 1
|
|
1630
|
-
|
|
1631
|
-
for i in range(4):
|
|
1632
|
-
for j in range(4):
|
|
1633
|
-
outcomponents[idx] = v4result[i, j]
|
|
1634
|
-
idx = idx + 1
|
|
1635
|
-
|
|
1636
|
-
for i in range(5):
|
|
1637
|
-
for j in range(5):
|
|
1638
|
-
outcomponents[idx] = v5result[i, j]
|
|
1639
|
-
idx = idx + 1
|
|
1640
|
-
|
|
1641
|
-
kernel = getkernel(check_mat_cw_mul, suffix=dtype.__name__)
|
|
1642
|
-
|
|
1643
|
-
if register_kernels:
|
|
1644
|
-
return
|
|
1645
|
-
|
|
1646
|
-
s2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
1647
|
-
s3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
1648
|
-
s4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1649
|
-
s5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
1650
|
-
v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
1651
|
-
v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
1652
|
-
v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1653
|
-
v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
1654
|
-
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
1655
|
-
|
|
1656
|
-
wp.launch(
|
|
1657
|
-
kernel,
|
|
1658
|
-
dim=1,
|
|
1659
|
-
inputs=[
|
|
1660
|
-
s2,
|
|
1661
|
-
s3,
|
|
1662
|
-
s4,
|
|
1663
|
-
s5,
|
|
1664
|
-
v2,
|
|
1665
|
-
v3,
|
|
1666
|
-
v4,
|
|
1667
|
-
v5,
|
|
1668
|
-
],
|
|
1669
|
-
outputs=[outcomponents],
|
|
1670
|
-
device=device,
|
|
1671
|
-
)
|
|
1672
|
-
|
|
1673
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() * s2.numpy()).reshape(-1), tol=50 * tol)
|
|
1674
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() * s3.numpy()).reshape(-1), tol=50 * tol)
|
|
1675
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() * s4.numpy()).reshape(-1), tol=50 * tol)
|
|
1676
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() * s5.numpy()).reshape(-1), tol=50 * tol)
|
|
1677
|
-
|
|
1678
|
-
if dtype in np_float_types:
|
|
1679
|
-
idx = 0
|
|
1680
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1681
|
-
for dim, in1, in2 in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]:
|
|
1682
|
-
for i in range(dim):
|
|
1683
|
-
for j in range(dim):
|
|
1684
|
-
tape = wp.Tape()
|
|
1685
|
-
with tape:
|
|
1686
|
-
wp.launch(
|
|
1687
|
-
kernel,
|
|
1688
|
-
dim=1,
|
|
1689
|
-
inputs=[
|
|
1690
|
-
s2,
|
|
1691
|
-
s3,
|
|
1692
|
-
s4,
|
|
1693
|
-
s5,
|
|
1694
|
-
v2,
|
|
1695
|
-
v3,
|
|
1696
|
-
v4,
|
|
1697
|
-
v5,
|
|
1698
|
-
],
|
|
1699
|
-
outputs=[outcomponents],
|
|
1700
|
-
device=device,
|
|
1701
|
-
)
|
|
1702
|
-
wp.launch(
|
|
1703
|
-
output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device
|
|
1704
|
-
)
|
|
1705
|
-
tape.backward(loss=out)
|
|
1706
|
-
expectedresult = np.zeros((dim, dim), dtype=dtype)
|
|
1707
|
-
expectedresult[i, j] = 2 * in1.numpy()[0][i, j]
|
|
1708
|
-
assert_np_equal(tape.gradients[in2].numpy()[0], expectedresult, tol=5 * tol)
|
|
1709
|
-
expectedresult[i, j] = 2 * in2.numpy()[0][i, j]
|
|
1710
|
-
assert_np_equal(tape.gradients[in1].numpy()[0], expectedresult, tol=5 * tol)
|
|
1711
|
-
tape.zero()
|
|
1712
|
-
|
|
1713
|
-
idx = idx + 1
|
|
1714
|
-
|
|
1715
|
-
|
|
1716
|
-
def test_cw_division(test, device, dtype, register_kernels=False):
|
|
1717
|
-
np.random.seed(123)
|
|
1718
|
-
|
|
1719
|
-
tol = {
|
|
1720
|
-
np.float16: 1.0e-2,
|
|
1721
|
-
np.float32: 1.0e-6,
|
|
1722
|
-
np.float64: 1.0e-8,
|
|
1723
|
-
}.get(dtype, 0)
|
|
1724
|
-
|
|
1725
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1726
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
1727
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
1728
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
1729
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
1730
|
-
|
|
1731
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
1732
|
-
|
|
1733
|
-
def check_mat_cw_div(
|
|
1734
|
-
s2: wp.array(dtype=mat22),
|
|
1735
|
-
s3: wp.array(dtype=mat33),
|
|
1736
|
-
s4: wp.array(dtype=mat44),
|
|
1737
|
-
s5: wp.array(dtype=mat55),
|
|
1738
|
-
v2: wp.array(dtype=mat22),
|
|
1739
|
-
v3: wp.array(dtype=mat33),
|
|
1740
|
-
v4: wp.array(dtype=mat44),
|
|
1741
|
-
v5: wp.array(dtype=mat55),
|
|
1742
|
-
outcomponents: wp.array(dtype=wptype),
|
|
1743
|
-
):
|
|
1744
|
-
v2result = wptype(2) * wp.cw_div(v2[0], s2[0])
|
|
1745
|
-
v3result = wptype(2) * wp.cw_div(v3[0], s3[0])
|
|
1746
|
-
v4result = wptype(2) * wp.cw_div(v4[0], s4[0])
|
|
1747
|
-
v5result = wptype(2) * wp.cw_div(v5[0], s5[0])
|
|
1748
|
-
|
|
1749
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
1750
|
-
idx = 0
|
|
1751
|
-
for i in range(2):
|
|
1752
|
-
for j in range(2):
|
|
1753
|
-
outcomponents[idx] = v2result[i, j]
|
|
1754
|
-
idx = idx + 1
|
|
1755
|
-
|
|
1756
|
-
for i in range(3):
|
|
1757
|
-
for j in range(3):
|
|
1758
|
-
outcomponents[idx] = v3result[i, j]
|
|
1759
|
-
idx = idx + 1
|
|
1760
|
-
|
|
1761
|
-
for i in range(4):
|
|
1762
|
-
for j in range(4):
|
|
1763
|
-
outcomponents[idx] = v4result[i, j]
|
|
1764
|
-
idx = idx + 1
|
|
1765
|
-
|
|
1766
|
-
for i in range(5):
|
|
1767
|
-
for j in range(5):
|
|
1768
|
-
outcomponents[idx] = v5result[i, j]
|
|
1769
|
-
idx = idx + 1
|
|
1770
|
-
|
|
1771
|
-
kernel = getkernel(check_mat_cw_div, suffix=dtype.__name__)
|
|
1772
|
-
|
|
1773
|
-
if register_kernels:
|
|
1774
|
-
return
|
|
1775
|
-
|
|
1776
|
-
s2 = randvals([1, 2, 2], dtype)
|
|
1777
|
-
s3 = randvals([1, 3, 3], dtype)
|
|
1778
|
-
s4 = randvals([1, 4, 4], dtype)
|
|
1779
|
-
s5 = randvals([1, 5, 5], dtype)
|
|
1780
|
-
|
|
1781
|
-
# set denominators to 1 if their magnitudes are small
|
|
1782
|
-
# to prevent divide by zero, or overflows if we're testing
|
|
1783
|
-
# float16:
|
|
1784
|
-
s2[np.abs(s2) < 1.0e-2] = 1
|
|
1785
|
-
s3[np.abs(s3) < 1.0e-2] = 1
|
|
1786
|
-
s4[np.abs(s4) < 1.0e-2] = 1
|
|
1787
|
-
s5[np.abs(s5) < 1.0e-2] = 1
|
|
1788
|
-
|
|
1789
|
-
s2 = wp.array(s2, dtype=mat22, requires_grad=True, device=device)
|
|
1790
|
-
s3 = wp.array(s3, dtype=mat33, requires_grad=True, device=device)
|
|
1791
|
-
s4 = wp.array(s4, dtype=mat44, requires_grad=True, device=device)
|
|
1792
|
-
s5 = wp.array(s5, dtype=mat55, requires_grad=True, device=device)
|
|
1793
|
-
|
|
1794
|
-
v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
1795
|
-
v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
1796
|
-
v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1797
|
-
v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
1798
|
-
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
1799
|
-
|
|
1800
|
-
wp.launch(
|
|
1801
|
-
kernel,
|
|
1802
|
-
dim=1,
|
|
1803
|
-
inputs=[
|
|
1804
|
-
s2,
|
|
1805
|
-
s3,
|
|
1806
|
-
s4,
|
|
1807
|
-
s5,
|
|
1808
|
-
v2,
|
|
1809
|
-
v3,
|
|
1810
|
-
v4,
|
|
1811
|
-
v5,
|
|
1812
|
-
],
|
|
1813
|
-
outputs=[outcomponents],
|
|
1814
|
-
device=device,
|
|
1815
|
-
)
|
|
1816
|
-
|
|
1817
|
-
if dtype in np_float_types:
|
|
1818
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() / s2.numpy()).reshape(-1), tol=50 * tol)
|
|
1819
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() / s3.numpy()).reshape(-1), tol=50 * tol)
|
|
1820
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() / s4.numpy()).reshape(-1), tol=50 * tol)
|
|
1821
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() / s5.numpy()).reshape(-1), tol=50 * tol)
|
|
1822
|
-
else:
|
|
1823
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() // s2.numpy()).reshape(-1), tol=50 * tol)
|
|
1824
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() // s3.numpy()).reshape(-1), tol=50 * tol)
|
|
1825
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() // s4.numpy()).reshape(-1), tol=50 * tol)
|
|
1826
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() // s5.numpy()).reshape(-1), tol=50 * tol)
|
|
1827
|
-
|
|
1828
|
-
if dtype in np_float_types:
|
|
1829
|
-
idx = 0
|
|
1830
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1831
|
-
for dim, s, v in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]:
|
|
1832
|
-
for i in range(dim):
|
|
1833
|
-
for j in range(dim):
|
|
1834
|
-
tape = wp.Tape()
|
|
1835
|
-
with tape:
|
|
1836
|
-
wp.launch(
|
|
1837
|
-
kernel,
|
|
1838
|
-
dim=1,
|
|
1839
|
-
inputs=[
|
|
1840
|
-
s2,
|
|
1841
|
-
s3,
|
|
1842
|
-
s4,
|
|
1843
|
-
s5,
|
|
1844
|
-
v2,
|
|
1845
|
-
v3,
|
|
1846
|
-
v4,
|
|
1847
|
-
v5,
|
|
1848
|
-
],
|
|
1849
|
-
outputs=[outcomponents],
|
|
1850
|
-
device=device,
|
|
1851
|
-
)
|
|
1852
|
-
wp.launch(
|
|
1853
|
-
output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device
|
|
1854
|
-
)
|
|
1855
|
-
tape.backward(loss=out)
|
|
1856
|
-
|
|
1857
|
-
# y = v/s
|
|
1858
|
-
# dy/dv = 1.0/s
|
|
1859
|
-
# dy/ds = -v/s^2
|
|
1860
|
-
|
|
1861
|
-
expectedresult = np.zeros((dim, dim), dtype=dtype)
|
|
1862
|
-
expectedresult[i, j] = 2.0 / (s.numpy()[0, i, j])
|
|
1863
|
-
assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=50 * tol)
|
|
1864
|
-
expectedresult[i, j] = -2.0 * v.numpy()[0, i, j] / (s.numpy()[0, i, j] ** 2)
|
|
1865
|
-
assert_np_equal(
|
|
1866
|
-
tape.gradients[s].numpy()[0], expectedresult, tol=abs(outcomponents.numpy()[idx]) * 50 * tol
|
|
1867
|
-
)
|
|
1868
|
-
tape.zero()
|
|
1869
|
-
|
|
1870
|
-
idx = idx + 1
|
|
1871
|
-
|
|
1872
|
-
|
|
1873
|
-
def test_outer_product(test, device, dtype, register_kernels=False):
|
|
1874
|
-
np.random.seed(123)
|
|
1875
|
-
|
|
1876
|
-
tol = {
|
|
1877
|
-
np.float16: 5.0e-3,
|
|
1878
|
-
np.float32: 1.0e-6,
|
|
1879
|
-
np.float64: 1.0e-8,
|
|
1880
|
-
}.get(dtype, 0)
|
|
1881
|
-
|
|
1882
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
1883
|
-
vec2 = wp.types.vector(length=2, dtype=wptype)
|
|
1884
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
1885
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
1886
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
1887
|
-
|
|
1888
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
1889
|
-
|
|
1890
|
-
def check_mat_outer_product(
|
|
1891
|
-
s2: wp.array(dtype=vec2),
|
|
1892
|
-
s3: wp.array(dtype=vec3),
|
|
1893
|
-
s4: wp.array(dtype=vec4),
|
|
1894
|
-
s5: wp.array(dtype=vec5),
|
|
1895
|
-
v2: wp.array(dtype=vec2),
|
|
1896
|
-
v3: wp.array(dtype=vec3),
|
|
1897
|
-
v4: wp.array(dtype=vec4),
|
|
1898
|
-
v5: wp.array(dtype=vec5),
|
|
1899
|
-
outcomponents: wp.array(dtype=wptype),
|
|
1900
|
-
):
|
|
1901
|
-
m22result = wptype(2) * wp.outer(s2[0], v2[0])
|
|
1902
|
-
m33result = wptype(2) * wp.outer(s3[0], v3[0])
|
|
1903
|
-
m44result = wptype(2) * wp.outer(s4[0], v4[0])
|
|
1904
|
-
m55result = wptype(2) * wp.outer(s5[0], v5[0])
|
|
1905
|
-
m25result = wptype(2) * wp.outer(s2[0], v5[0])
|
|
1906
|
-
|
|
1907
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
1908
|
-
idx = 0
|
|
1909
|
-
for i in range(2):
|
|
1910
|
-
for j in range(2):
|
|
1911
|
-
outcomponents[idx] = m22result[i, j]
|
|
1912
|
-
idx = idx + 1
|
|
1913
|
-
|
|
1914
|
-
for i in range(3):
|
|
1915
|
-
for j in range(3):
|
|
1916
|
-
outcomponents[idx] = m33result[i, j]
|
|
1917
|
-
idx = idx + 1
|
|
1918
|
-
|
|
1919
|
-
for i in range(4):
|
|
1920
|
-
for j in range(4):
|
|
1921
|
-
outcomponents[idx] = m44result[i, j]
|
|
1922
|
-
idx = idx + 1
|
|
1923
|
-
|
|
1924
|
-
for i in range(5):
|
|
1925
|
-
for j in range(5):
|
|
1926
|
-
outcomponents[idx] = m55result[i, j]
|
|
1927
|
-
idx = idx + 1
|
|
1928
|
-
|
|
1929
|
-
for i in range(2):
|
|
1930
|
-
for j in range(5):
|
|
1931
|
-
outcomponents[idx] = m25result[i, j]
|
|
1932
|
-
idx = idx + 1
|
|
1933
|
-
|
|
1934
|
-
kernel = getkernel(check_mat_outer_product, suffix=dtype.__name__)
|
|
1935
|
-
|
|
1936
|
-
if register_kernels:
|
|
1937
|
-
return
|
|
1938
|
-
|
|
1939
|
-
s2 = wp.array(randvals([1, 2], dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1940
|
-
s3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1941
|
-
s4 = wp.array(randvals([1, 4], dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1942
|
-
s5 = wp.array(randvals([1, 5], dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1943
|
-
v2 = wp.array(randvals([1, 2], dtype), dtype=vec2, requires_grad=True, device=device)
|
|
1944
|
-
v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1945
|
-
v4 = wp.array(randvals([1, 4], dtype), dtype=vec4, requires_grad=True, device=device)
|
|
1946
|
-
v5 = wp.array(randvals([1, 5], dtype), dtype=vec5, requires_grad=True, device=device)
|
|
1947
|
-
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 2 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
1948
|
-
|
|
1949
|
-
wp.launch(kernel, dim=1, inputs=[s2, s3, s4, s5, v2, v3, v4, v5], outputs=[outcomponents], device=device)
|
|
1950
|
-
|
|
1951
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * s2.numpy()[0, :, None] * v2.numpy()[0, None, :], tol=tol)
|
|
1952
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * s3.numpy()[0, :, None] * v3.numpy()[0, None, :], tol=10 * tol)
|
|
1953
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * s4.numpy()[0, :, None] * v4.numpy()[0, None, :], tol=10 * tol)
|
|
1954
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * s5.numpy()[0, :, None] * v5.numpy()[0, None, :], tol=10 * tol)
|
|
1955
|
-
assert_np_equal(outcomponents.numpy()[54:], 2 * s2.numpy()[0, :, None] * v5.numpy()[0, None, :], tol=10 * tol)
|
|
1956
|
-
|
|
1957
|
-
if dtype in np_float_types:
|
|
1958
|
-
idx = 0
|
|
1959
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
1960
|
-
for s, v in [(s2, v2), (s3, v3), (s4, v4), (s5, v5), (s2, v5)]:
|
|
1961
|
-
rows = s.dtype._length_
|
|
1962
|
-
cols = v.dtype._length_
|
|
1963
|
-
for i in range(rows):
|
|
1964
|
-
for j in range(cols):
|
|
1965
|
-
tape = wp.Tape()
|
|
1966
|
-
with tape:
|
|
1967
|
-
wp.launch(
|
|
1968
|
-
kernel,
|
|
1969
|
-
dim=1,
|
|
1970
|
-
inputs=[
|
|
1971
|
-
s2,
|
|
1972
|
-
s3,
|
|
1973
|
-
s4,
|
|
1974
|
-
s5,
|
|
1975
|
-
v2,
|
|
1976
|
-
v3,
|
|
1977
|
-
v4,
|
|
1978
|
-
v5,
|
|
1979
|
-
],
|
|
1980
|
-
outputs=[outcomponents],
|
|
1981
|
-
device=device,
|
|
1982
|
-
)
|
|
1983
|
-
wp.launch(
|
|
1984
|
-
output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device
|
|
1985
|
-
)
|
|
1986
|
-
tape.backward(loss=out)
|
|
1987
|
-
|
|
1988
|
-
# this component's gonna be s_i * v_j, so its s gradient is gonna be nozero
|
|
1989
|
-
# at the ith component and its v gradient will be nonzero at the jth component:
|
|
1990
|
-
|
|
1991
|
-
expectedresult = np.zeros((rows), dtype=dtype)
|
|
1992
|
-
expectedresult[i] = 2 * v.numpy()[0, j]
|
|
1993
|
-
assert_np_equal(tape.gradients[s].numpy()[0], expectedresult, tol=10 * tol)
|
|
1994
|
-
|
|
1995
|
-
expectedresult = np.zeros((cols), dtype=dtype)
|
|
1996
|
-
expectedresult[j] = 2 * s.numpy()[0, i]
|
|
1997
|
-
assert_np_equal(tape.gradients[v].numpy()[0], expectedresult, tol=10 * tol)
|
|
1998
|
-
tape.zero()
|
|
1999
|
-
|
|
2000
|
-
idx = idx + 1
|
|
2001
|
-
|
|
2002
|
-
|
|
2003
|
-
def test_scalar_division(test, device, dtype, register_kernels=False):
|
|
2004
|
-
np.random.seed(123)
|
|
2005
|
-
|
|
2006
|
-
tol = {
|
|
2007
|
-
np.float16: 1.0e-2,
|
|
2008
|
-
np.float32: 1.0e-6,
|
|
2009
|
-
np.float64: 1.0e-8,
|
|
2010
|
-
}.get(dtype, 0)
|
|
2011
|
-
|
|
2012
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
2013
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
2014
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
2015
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
2016
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
2017
|
-
|
|
2018
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
2019
|
-
|
|
2020
|
-
def check_mat_scalar_div(
|
|
2021
|
-
s: wp.array(dtype=wptype),
|
|
2022
|
-
m2: wp.array(dtype=mat22),
|
|
2023
|
-
m3: wp.array(dtype=mat33),
|
|
2024
|
-
m4: wp.array(dtype=mat44),
|
|
2025
|
-
m5: wp.array(dtype=mat55),
|
|
2026
|
-
outcomponents: wp.array(dtype=wptype),
|
|
2027
|
-
):
|
|
2028
|
-
m2result = m2[0] / s[0]
|
|
2029
|
-
m3result = m3[0] / s[0]
|
|
2030
|
-
m4result = m4[0] / s[0]
|
|
2031
|
-
m5result = m5[0] / s[0]
|
|
2032
|
-
|
|
2033
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
2034
|
-
idx = 0
|
|
2035
|
-
for i in range(2):
|
|
2036
|
-
for j in range(2):
|
|
2037
|
-
outcomponents[idx] = wptype(2) * m2result[i, j]
|
|
2038
|
-
idx = idx + 1
|
|
2039
|
-
|
|
2040
|
-
for i in range(3):
|
|
2041
|
-
for j in range(3):
|
|
2042
|
-
outcomponents[idx] = wptype(2) * m3result[i, j]
|
|
2043
|
-
idx = idx + 1
|
|
2044
|
-
|
|
2045
|
-
for i in range(4):
|
|
2046
|
-
for j in range(4):
|
|
2047
|
-
outcomponents[idx] = wptype(2) * m4result[i, j]
|
|
2048
|
-
idx = idx + 1
|
|
2049
|
-
|
|
2050
|
-
for i in range(5):
|
|
2051
|
-
for j in range(5):
|
|
2052
|
-
outcomponents[idx] = wptype(2) * m5result[i, j]
|
|
2053
|
-
idx = idx + 1
|
|
2054
|
-
|
|
2055
|
-
kernel = getkernel(check_mat_scalar_div, suffix=dtype.__name__)
|
|
2056
|
-
|
|
2057
|
-
if register_kernels:
|
|
2058
|
-
return
|
|
2059
|
-
|
|
2060
|
-
s = wp.array(randvals([1], dtype), requires_grad=True, device=device)
|
|
2061
|
-
m2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
2062
|
-
m3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
2063
|
-
m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
2064
|
-
m5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
2065
|
-
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
2066
|
-
|
|
2067
|
-
wp.launch(kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents], device=device)
|
|
2068
|
-
|
|
2069
|
-
sval = s.numpy()[0]
|
|
2070
|
-
if dtype in np_float_types:
|
|
2071
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * m2.numpy().reshape(-1) / sval, tol=tol)
|
|
2072
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * m3.numpy().reshape(-1) / sval, tol=10 * tol)
|
|
2073
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * m4.numpy().reshape(-1) / sval, tol=10 * tol)
|
|
2074
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * m5.numpy().reshape(-1) / sval, tol=10 * tol)
|
|
2075
|
-
else:
|
|
2076
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * (m2.numpy().reshape(-1) // sval), tol=tol)
|
|
2077
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * (m3.numpy().reshape(-1) // sval), tol=10 * tol)
|
|
2078
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * (m4.numpy().reshape(-1) // sval), tol=10 * tol)
|
|
2079
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * (m5.numpy().reshape(-1) // sval), tol=10 * tol)
|
|
2080
|
-
|
|
2081
|
-
if dtype in np_float_types:
|
|
2082
|
-
idx = 0
|
|
2083
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2084
|
-
for dim, input in [(2, m2), (3, m3), (4, m4), (5, m5)]:
|
|
2085
|
-
for i in range(dim):
|
|
2086
|
-
for j in range(dim):
|
|
2087
|
-
tape = wp.Tape()
|
|
2088
|
-
with tape:
|
|
2089
|
-
wp.launch(kernel, dim=1, inputs=[s, m2, m3, m4, m5], outputs=[outcomponents], device=device)
|
|
2090
|
-
wp.launch(
|
|
2091
|
-
output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device
|
|
2092
|
-
)
|
|
2093
|
-
tape.backward(loss=out)
|
|
2094
|
-
expectedresult = np.zeros((dim, dim), dtype=dtype)
|
|
2095
|
-
expectedresult[i, j] = 2.0 / sval
|
|
2096
|
-
assert_np_equal(tape.gradients[input].numpy()[0], expectedresult, tol=10 * tol)
|
|
2097
|
-
assert_np_equal(
|
|
2098
|
-
tape.gradients[s].numpy()[0], -2 * input.numpy()[0, i, j] / (sval * sval), tol=10 * tol
|
|
2099
|
-
)
|
|
2100
|
-
tape.zero()
|
|
2101
|
-
|
|
2102
|
-
idx = idx + 1
|
|
2103
|
-
|
|
2104
|
-
|
|
2105
|
-
def test_addition(test, device, dtype, register_kernels=False):
|
|
2106
|
-
np.random.seed(123)
|
|
2107
|
-
|
|
2108
|
-
tol = {
|
|
2109
|
-
np.float16: 2.0e-2,
|
|
2110
|
-
np.float32: 5.0e-6,
|
|
2111
|
-
np.float64: 1.0e-8,
|
|
2112
|
-
}.get(dtype, 0)
|
|
2113
|
-
|
|
2114
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
2115
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
2116
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
2117
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
2118
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
2119
|
-
|
|
2120
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
2121
|
-
|
|
2122
|
-
def check_mat_add(
|
|
2123
|
-
s2: wp.array(dtype=mat22),
|
|
2124
|
-
s3: wp.array(dtype=mat33),
|
|
2125
|
-
s4: wp.array(dtype=mat44),
|
|
2126
|
-
s5: wp.array(dtype=mat55),
|
|
2127
|
-
v2: wp.array(dtype=mat22),
|
|
2128
|
-
v3: wp.array(dtype=mat33),
|
|
2129
|
-
v4: wp.array(dtype=mat44),
|
|
2130
|
-
v5: wp.array(dtype=mat55),
|
|
2131
|
-
outcomponents: wp.array(dtype=wptype),
|
|
2132
|
-
):
|
|
2133
|
-
v2result = v2[0] + s2[0]
|
|
2134
|
-
v3result = v3[0] + s3[0]
|
|
2135
|
-
v4result = v4[0] + s4[0]
|
|
2136
|
-
v5result = v5[0] + s5[0]
|
|
2137
|
-
|
|
2138
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
2139
|
-
idx = 0
|
|
2140
|
-
for i in range(2):
|
|
2141
|
-
for j in range(2):
|
|
2142
|
-
outcomponents[idx] = wptype(2) * v2result[i, j]
|
|
2143
|
-
idx = idx + 1
|
|
2144
|
-
|
|
2145
|
-
for i in range(3):
|
|
2146
|
-
for j in range(3):
|
|
2147
|
-
outcomponents[idx] = wptype(2) * v3result[i, j]
|
|
2148
|
-
idx = idx + 1
|
|
2149
|
-
|
|
2150
|
-
for i in range(4):
|
|
2151
|
-
for j in range(4):
|
|
2152
|
-
outcomponents[idx] = wptype(2) * v4result[i, j]
|
|
2153
|
-
idx = idx + 1
|
|
2154
|
-
|
|
2155
|
-
for i in range(5):
|
|
2156
|
-
for j in range(5):
|
|
2157
|
-
outcomponents[idx] = wptype(2) * v5result[i, j]
|
|
2158
|
-
idx = idx + 1
|
|
2159
|
-
|
|
2160
|
-
kernel = getkernel(check_mat_add, suffix=dtype.__name__)
|
|
2161
|
-
|
|
2162
|
-
if register_kernels:
|
|
2163
|
-
return
|
|
2164
|
-
|
|
2165
|
-
s2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
2166
|
-
s3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
2167
|
-
s4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
2168
|
-
s5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
2169
|
-
v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
2170
|
-
v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
2171
|
-
v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
2172
|
-
v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
2173
|
-
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
2174
|
-
|
|
2175
|
-
wp.launch(
|
|
2176
|
-
kernel,
|
|
2177
|
-
dim=1,
|
|
2178
|
-
inputs=[
|
|
2179
|
-
s2,
|
|
2180
|
-
s3,
|
|
2181
|
-
s4,
|
|
2182
|
-
s5,
|
|
2183
|
-
v2,
|
|
2184
|
-
v3,
|
|
2185
|
-
v4,
|
|
2186
|
-
v5,
|
|
2187
|
-
],
|
|
2188
|
-
outputs=[outcomponents],
|
|
2189
|
-
device=device,
|
|
2190
|
-
)
|
|
2191
|
-
|
|
2192
|
-
assert_np_equal(outcomponents.numpy()[:4], 2 * (v2.numpy() + s2.numpy()).reshape(-1), tol=tol)
|
|
2193
|
-
assert_np_equal(outcomponents.numpy()[4:13], 2 * (v3.numpy() + s3.numpy()).reshape(-1), tol=tol)
|
|
2194
|
-
assert_np_equal(outcomponents.numpy()[13:29], 2 * (v4.numpy() + s4.numpy()).reshape(-1), tol=tol)
|
|
2195
|
-
assert_np_equal(outcomponents.numpy()[29:54], 2 * (v5.numpy() + s5.numpy()).reshape(-1), tol=tol)
|
|
2196
|
-
|
|
2197
|
-
if dtype in np_float_types:
|
|
2198
|
-
idx = 0
|
|
2199
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2200
|
-
for dim, in1, in2 in [(2, s2, v2), (3, s3, v3), (4, s4, v4), (5, s5, v5)]:
|
|
2201
|
-
for i in range(dim):
|
|
2202
|
-
for j in range(dim):
|
|
2203
|
-
tape = wp.Tape()
|
|
2204
|
-
with tape:
|
|
2205
|
-
wp.launch(
|
|
2206
|
-
kernel,
|
|
2207
|
-
dim=1,
|
|
2208
|
-
inputs=[
|
|
2209
|
-
s2,
|
|
2210
|
-
s3,
|
|
2211
|
-
s4,
|
|
2212
|
-
s5,
|
|
2213
|
-
v2,
|
|
2214
|
-
v3,
|
|
2215
|
-
v4,
|
|
2216
|
-
v5,
|
|
2217
|
-
],
|
|
2218
|
-
outputs=[outcomponents],
|
|
2219
|
-
device=device,
|
|
2220
|
-
)
|
|
2221
|
-
wp.launch(
|
|
2222
|
-
output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device
|
|
2223
|
-
)
|
|
2224
|
-
tape.backward(loss=out)
|
|
2225
|
-
expectedresult = np.zeros((dim, dim), dtype=dtype)
|
|
2226
|
-
expectedresult[i, j] = 2
|
|
2227
|
-
assert_np_equal(tape.gradients[in2].numpy()[0], expectedresult, tol=10 * tol)
|
|
2228
|
-
expectedresult[i, j] = 2
|
|
2229
|
-
assert_np_equal(tape.gradients[in1].numpy()[0], expectedresult, tol=10 * tol)
|
|
2230
|
-
tape.zero()
|
|
2231
|
-
|
|
2232
|
-
idx = idx + 1
|
|
2233
|
-
|
|
2234
|
-
|
|
2235
|
-
def test_subtraction(test, device, dtype, register_kernels=False):
|
|
2236
|
-
np.random.seed(123)
|
|
2237
|
-
|
|
2238
|
-
tol = {
|
|
2239
|
-
np.float16: 5.0e-3,
|
|
2240
|
-
np.float32: 1.0e-6,
|
|
2241
|
-
np.float64: 1.0e-8,
|
|
2242
|
-
}.get(dtype, 0)
|
|
2243
|
-
|
|
2244
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
2245
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
2246
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
2247
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
2248
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
2249
|
-
|
|
2250
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
2251
|
-
|
|
2252
|
-
def check_mat_sub(
|
|
2253
|
-
s2: wp.array(dtype=mat22),
|
|
2254
|
-
s3: wp.array(dtype=mat33),
|
|
2255
|
-
s4: wp.array(dtype=mat44),
|
|
2256
|
-
s5: wp.array(dtype=mat55),
|
|
2257
|
-
v2: wp.array(dtype=mat22),
|
|
2258
|
-
v3: wp.array(dtype=mat33),
|
|
2259
|
-
v4: wp.array(dtype=mat44),
|
|
2260
|
-
v5: wp.array(dtype=mat55),
|
|
2261
|
-
outcomponents: wp.array(dtype=wptype),
|
|
2262
|
-
):
|
|
2263
|
-
v2result = v2[0] - s2[0]
|
|
2264
|
-
v3result = v3[0] - s3[0]
|
|
2265
|
-
v4result = v4[0] - s4[0]
|
|
2266
|
-
v5result = v5[0] - s5[0]
|
|
2267
|
-
|
|
2268
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
2269
|
-
idx = 0
|
|
2270
|
-
for i in range(2):
|
|
2271
|
-
for j in range(2):
|
|
2272
|
-
outcomponents[idx] = wptype(2) * v2result[i, j]
|
|
2273
|
-
idx = idx + 1
|
|
2274
|
-
|
|
2275
|
-
for i in range(3):
|
|
2276
|
-
for j in range(3):
|
|
2277
|
-
outcomponents[idx] = wptype(2) * v3result[i, j]
|
|
2278
|
-
idx = idx + 1
|
|
2279
|
-
|
|
2280
|
-
for i in range(4):
|
|
2281
|
-
for j in range(4):
|
|
2282
|
-
outcomponents[idx] = wptype(2) * v4result[i, j]
|
|
2283
|
-
idx = idx + 1
|
|
2284
|
-
|
|
2285
|
-
for i in range(5):
|
|
2286
|
-
for j in range(5):
|
|
2287
|
-
outcomponents[idx] = wptype(2) * v5result[i, j]
|
|
2288
|
-
idx = idx + 1
|
|
2289
|
-
|
|
2290
|
-
kernel = getkernel(check_mat_sub, suffix=dtype.__name__)
|
|
2291
|
-
|
|
2292
|
-
if register_kernels:
|
|
2293
|
-
return
|
|
2294
|
-
|
|
2295
|
-
s2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
2296
|
-
s3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
2297
|
-
s4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
2298
|
-
s5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
2299
|
-
v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
2300
|
-
v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
2301
|
-
v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
2302
|
-
v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
520
|
+
s2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
521
|
+
s3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
522
|
+
s4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
523
|
+
s5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
524
|
+
v2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
525
|
+
v3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
526
|
+
v4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
527
|
+
v5 = wp.array(randvals(rng, [1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
2303
528
|
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
2304
529
|
|
|
2305
530
|
wp.launch(
|
|
@@ -2362,131 +587,8 @@ def test_subtraction(test, device, dtype, register_kernels=False):
|
|
|
2362
587
|
idx = idx + 1
|
|
2363
588
|
|
|
2364
589
|
|
|
2365
|
-
def test_ddot(test, device, dtype, register_kernels=False):
|
|
2366
|
-
np.random.seed(123)
|
|
2367
|
-
|
|
2368
|
-
tol = {
|
|
2369
|
-
np.float16: 5.0e-3,
|
|
2370
|
-
np.float32: 1.0e-6,
|
|
2371
|
-
np.float64: 1.0e-8,
|
|
2372
|
-
}.get(dtype, 0)
|
|
2373
|
-
|
|
2374
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
2375
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
2376
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
2377
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
2378
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
2379
|
-
|
|
2380
|
-
def check_mat_dot(
|
|
2381
|
-
s2: wp.array(dtype=mat22),
|
|
2382
|
-
s3: wp.array(dtype=mat33),
|
|
2383
|
-
s4: wp.array(dtype=mat44),
|
|
2384
|
-
s5: wp.array(dtype=mat55),
|
|
2385
|
-
v2: wp.array(dtype=mat22),
|
|
2386
|
-
v3: wp.array(dtype=mat33),
|
|
2387
|
-
v4: wp.array(dtype=mat44),
|
|
2388
|
-
v5: wp.array(dtype=mat55),
|
|
2389
|
-
dot2: wp.array(dtype=wptype),
|
|
2390
|
-
dot3: wp.array(dtype=wptype),
|
|
2391
|
-
dot4: wp.array(dtype=wptype),
|
|
2392
|
-
dot5: wp.array(dtype=wptype),
|
|
2393
|
-
):
|
|
2394
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
2395
|
-
dot2[0] = wptype(2) * wp.ddot(v2[0], s2[0])
|
|
2396
|
-
dot3[0] = wptype(2) * wp.ddot(v3[0], s3[0])
|
|
2397
|
-
dot4[0] = wptype(2) * wp.ddot(v4[0], s4[0])
|
|
2398
|
-
dot5[0] = wptype(2) * wp.ddot(v5[0], s5[0])
|
|
2399
|
-
|
|
2400
|
-
kernel = getkernel(check_mat_dot, suffix=dtype.__name__)
|
|
2401
|
-
|
|
2402
|
-
if register_kernels:
|
|
2403
|
-
return
|
|
2404
|
-
|
|
2405
|
-
s2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
2406
|
-
s3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
2407
|
-
s4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
2408
|
-
s5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
2409
|
-
v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
2410
|
-
v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
2411
|
-
v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
2412
|
-
v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
2413
|
-
dot2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2414
|
-
dot3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2415
|
-
dot4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2416
|
-
dot5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2417
|
-
|
|
2418
|
-
tape = wp.Tape()
|
|
2419
|
-
with tape:
|
|
2420
|
-
wp.launch(
|
|
2421
|
-
kernel,
|
|
2422
|
-
dim=1,
|
|
2423
|
-
inputs=[
|
|
2424
|
-
s2,
|
|
2425
|
-
s3,
|
|
2426
|
-
s4,
|
|
2427
|
-
s5,
|
|
2428
|
-
v2,
|
|
2429
|
-
v3,
|
|
2430
|
-
v4,
|
|
2431
|
-
v5,
|
|
2432
|
-
],
|
|
2433
|
-
outputs=[dot2, dot3, dot4, dot5],
|
|
2434
|
-
device=device,
|
|
2435
|
-
)
|
|
2436
|
-
|
|
2437
|
-
assert_np_equal(dot2.numpy()[0], 2 * (v2.numpy() * s2.numpy()).sum(), tol=10 * tol)
|
|
2438
|
-
assert_np_equal(dot3.numpy()[0], 2 * (v3.numpy() * s3.numpy()).sum(), tol=10 * tol)
|
|
2439
|
-
assert_np_equal(dot4.numpy()[0], 2 * (v4.numpy() * s4.numpy()).sum(), tol=50 * tol)
|
|
2440
|
-
assert_np_equal(dot5.numpy()[0], 2 * (v5.numpy() * s5.numpy()).sum(), tol=200 * tol)
|
|
2441
|
-
|
|
2442
|
-
if dtype in np_float_types:
|
|
2443
|
-
tape.backward(loss=dot2)
|
|
2444
|
-
sgrads = tape.gradients[s2].numpy()[0]
|
|
2445
|
-
expected_grads = 2.0 * v2.numpy()[0]
|
|
2446
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
2447
|
-
|
|
2448
|
-
vgrads = tape.gradients[v2].numpy()[0]
|
|
2449
|
-
expected_grads = 2.0 * s2.numpy()[0]
|
|
2450
|
-
assert_np_equal(vgrads, expected_grads, tol=10 * tol)
|
|
2451
|
-
|
|
2452
|
-
tape.zero()
|
|
2453
|
-
|
|
2454
|
-
tape.backward(loss=dot3)
|
|
2455
|
-
sgrads = tape.gradients[s3].numpy()[0]
|
|
2456
|
-
expected_grads = 2.0 * v3.numpy()[0]
|
|
2457
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
2458
|
-
|
|
2459
|
-
vgrads = tape.gradients[v3].numpy()[0]
|
|
2460
|
-
expected_grads = 2.0 * s3.numpy()[0]
|
|
2461
|
-
assert_np_equal(vgrads, expected_grads, tol=10 * tol)
|
|
2462
|
-
|
|
2463
|
-
tape.zero()
|
|
2464
|
-
|
|
2465
|
-
tape.backward(loss=dot4)
|
|
2466
|
-
sgrads = tape.gradients[s4].numpy()[0]
|
|
2467
|
-
expected_grads = 2.0 * v4.numpy()[0]
|
|
2468
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
2469
|
-
|
|
2470
|
-
vgrads = tape.gradients[v4].numpy()[0]
|
|
2471
|
-
expected_grads = 2.0 * s4.numpy()[0]
|
|
2472
|
-
assert_np_equal(vgrads, expected_grads, tol=10 * tol)
|
|
2473
|
-
|
|
2474
|
-
tape.zero()
|
|
2475
|
-
|
|
2476
|
-
tape.backward(loss=dot5)
|
|
2477
|
-
sgrads = tape.gradients[s5].numpy()[0]
|
|
2478
|
-
expected_grads = 2.0 * v5.numpy()[0]
|
|
2479
|
-
assert_np_equal(sgrads, expected_grads, tol=10 * tol)
|
|
2480
|
-
|
|
2481
|
-
vgrads = tape.gradients[v5].numpy()[0]
|
|
2482
|
-
expected_grads = 2.0 * s5.numpy()[0]
|
|
2483
|
-
assert_np_equal(vgrads, expected_grads, tol=10 * tol)
|
|
2484
|
-
|
|
2485
|
-
tape.zero()
|
|
2486
|
-
|
|
2487
|
-
|
|
2488
590
|
def test_determinant(test, device, dtype, register_kernels=False):
|
|
2489
|
-
np.random.
|
|
591
|
+
rng = np.random.default_rng(123)
|
|
2490
592
|
|
|
2491
593
|
tol = {
|
|
2492
594
|
np.float16: 5.0e-3,
|
|
@@ -2516,9 +618,9 @@ def test_determinant(test, device, dtype, register_kernels=False):
|
|
|
2516
618
|
if register_kernels:
|
|
2517
619
|
return
|
|
2518
620
|
|
|
2519
|
-
v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
2520
|
-
v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
2521
|
-
v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
621
|
+
v2 = wp.array(randvals(rng, [1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
622
|
+
v3 = wp.array(randvals(rng, [1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
623
|
+
v4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
2522
624
|
det2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2523
625
|
det3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2524
626
|
det4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -2637,266 +739,115 @@ def test_determinant(test, device, dtype, register_kernels=False):
|
|
|
2637
739
|
v4,
|
|
2638
740
|
],
|
|
2639
741
|
outputs=[
|
|
2640
|
-
det2,
|
|
2641
|
-
det3,
|
|
2642
|
-
det4,
|
|
2643
|
-
],
|
|
2644
|
-
device=device,
|
|
2645
|
-
)
|
|
2646
|
-
dminus = det3.numpy()[0]
|
|
2647
|
-
assert_np_equal((dplus - dminus) / (2.0 * dx * dplus), v3grads[i, j] / dplus, tol=fdtol)
|
|
2648
|
-
|
|
2649
|
-
for i in range(4):
|
|
2650
|
-
for j in range(4):
|
|
2651
|
-
v4test = v4.numpy()
|
|
2652
|
-
v4test[0, i, j] += dx
|
|
2653
|
-
wp.launch(
|
|
2654
|
-
kernel,
|
|
2655
|
-
dim=1,
|
|
2656
|
-
inputs=[
|
|
2657
|
-
v2,
|
|
2658
|
-
v3,
|
|
2659
|
-
wp.array(v4test, dtype=v4.dtype, requires_grad=True, device=device),
|
|
2660
|
-
],
|
|
2661
|
-
outputs=[
|
|
2662
|
-
det2,
|
|
2663
|
-
det3,
|
|
2664
|
-
det4,
|
|
2665
|
-
],
|
|
2666
|
-
device=device,
|
|
2667
|
-
)
|
|
2668
|
-
dplus = det4.numpy()[0]
|
|
2669
|
-
v4test[0, i, j] -= 2.0 * dx
|
|
2670
|
-
wp.launch(
|
|
2671
|
-
kernel,
|
|
2672
|
-
dim=1,
|
|
2673
|
-
inputs=[
|
|
2674
|
-
v2,
|
|
2675
|
-
v3,
|
|
2676
|
-
wp.array(v4test, dtype=v4.dtype, requires_grad=True, device=device),
|
|
2677
|
-
],
|
|
2678
|
-
outputs=[
|
|
2679
|
-
det2,
|
|
2680
|
-
det3,
|
|
2681
|
-
det4,
|
|
2682
|
-
],
|
|
2683
|
-
device=device,
|
|
2684
|
-
)
|
|
2685
|
-
dminus = det4.numpy()[0]
|
|
2686
|
-
assert_np_equal((dplus - dminus) / (2.0 * dx * dplus), v4grads[i, j] / dplus, tol=fdtol)
|
|
2687
|
-
|
|
2688
|
-
|
|
2689
|
-
def test_trace(test, device, dtype, register_kernels=False):
|
|
2690
|
-
np.random.seed(123)
|
|
2691
|
-
|
|
2692
|
-
tol = {
|
|
2693
|
-
np.float16: 1.0e-3,
|
|
2694
|
-
np.float32: 1.0e-6,
|
|
2695
|
-
np.float64: 1.0e-8,
|
|
2696
|
-
}.get(dtype, 0)
|
|
2697
|
-
|
|
2698
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
2699
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
2700
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
2701
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
2702
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
2703
|
-
|
|
2704
|
-
def check_mat_trace(
|
|
2705
|
-
v2: wp.array(dtype=mat22),
|
|
2706
|
-
v3: wp.array(dtype=mat33),
|
|
2707
|
-
v4: wp.array(dtype=mat44),
|
|
2708
|
-
v5: wp.array(dtype=mat55),
|
|
2709
|
-
tr2: wp.array(dtype=wptype),
|
|
2710
|
-
tr3: wp.array(dtype=wptype),
|
|
2711
|
-
tr4: wp.array(dtype=wptype),
|
|
2712
|
-
tr5: wp.array(dtype=wptype),
|
|
2713
|
-
):
|
|
2714
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
2715
|
-
tr2[0] = wptype(2) * wp.trace(v2[0])
|
|
2716
|
-
tr3[0] = wptype(2) * wp.trace(v3[0])
|
|
2717
|
-
tr4[0] = wptype(2) * wp.trace(v4[0])
|
|
2718
|
-
tr5[0] = wptype(2) * wp.trace(v5[0])
|
|
2719
|
-
|
|
2720
|
-
kernel = getkernel(check_mat_trace, suffix=dtype.__name__)
|
|
2721
|
-
|
|
2722
|
-
if register_kernels:
|
|
2723
|
-
return
|
|
2724
|
-
|
|
2725
|
-
v2 = wp.array(randvals([1, 2, 2], dtype), dtype=mat22, requires_grad=True, device=device)
|
|
2726
|
-
v3 = wp.array(randvals([1, 3, 3], dtype), dtype=mat33, requires_grad=True, device=device)
|
|
2727
|
-
v4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
2728
|
-
v5 = wp.array(randvals([1, 5, 5], dtype), dtype=mat55, requires_grad=True, device=device)
|
|
2729
|
-
tr2 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2730
|
-
tr3 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2731
|
-
tr4 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2732
|
-
tr5 = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2733
|
-
|
|
2734
|
-
tape = wp.Tape()
|
|
2735
|
-
with tape:
|
|
2736
|
-
wp.launch(
|
|
2737
|
-
kernel,
|
|
2738
|
-
dim=1,
|
|
2739
|
-
inputs=[
|
|
2740
|
-
v2,
|
|
2741
|
-
v3,
|
|
2742
|
-
v4,
|
|
2743
|
-
v5,
|
|
2744
|
-
],
|
|
2745
|
-
outputs=[
|
|
2746
|
-
tr2,
|
|
2747
|
-
tr3,
|
|
2748
|
-
tr4,
|
|
2749
|
-
tr5,
|
|
2750
|
-
],
|
|
2751
|
-
device=device,
|
|
2752
|
-
)
|
|
2753
|
-
|
|
2754
|
-
assert_np_equal(tr2.numpy()[0], 2 * np.trace(v2.numpy()[0]), tol=10 * tol)
|
|
2755
|
-
assert_np_equal(tr3.numpy()[0], 2 * np.trace(v3.numpy()[0]), tol=10 * tol)
|
|
2756
|
-
assert_np_equal(tr4.numpy()[0], 2 * np.trace(v4.numpy()[0]), tol=200 * tol)
|
|
2757
|
-
assert_np_equal(tr4.numpy()[0], 2 * np.trace(v4.numpy()[0]), tol=200 * tol)
|
|
2758
|
-
|
|
2759
|
-
if dtype in np_float_types:
|
|
2760
|
-
tape.backward(loss=tr2)
|
|
2761
|
-
vgrads = tape.gradients[v2].numpy()[0]
|
|
2762
|
-
assert_np_equal(vgrads, 2.0 * np.eye(2), tol=10 * tol)
|
|
2763
|
-
tape.zero()
|
|
2764
|
-
|
|
2765
|
-
tape.backward(loss=tr3)
|
|
2766
|
-
vgrads = tape.gradients[v3].numpy()[0]
|
|
2767
|
-
assert_np_equal(vgrads, 2.0 * np.eye(3), tol=10 * tol)
|
|
2768
|
-
tape.zero()
|
|
2769
|
-
|
|
2770
|
-
tape.backward(loss=tr4)
|
|
2771
|
-
vgrads = tape.gradients[v4].numpy()[0]
|
|
2772
|
-
assert_np_equal(vgrads, 2.0 * np.eye(4), tol=10 * tol)
|
|
2773
|
-
tape.zero()
|
|
2774
|
-
|
|
2775
|
-
tape.backward(loss=tr5)
|
|
2776
|
-
vgrads = tape.gradients[v5].numpy()[0]
|
|
2777
|
-
assert_np_equal(vgrads, 2.0 * np.eye(5), tol=10 * tol)
|
|
2778
|
-
tape.zero()
|
|
2779
|
-
|
|
2780
|
-
|
|
2781
|
-
def test_diag(test, device, dtype, register_kernels=False):
|
|
2782
|
-
np.random.seed(123)
|
|
2783
|
-
|
|
2784
|
-
tol = {
|
|
2785
|
-
np.float16: 1.0e-3,
|
|
2786
|
-
np.float32: 1.0e-6,
|
|
2787
|
-
np.float64: 1.0e-8,
|
|
2788
|
-
}.get(dtype, 0)
|
|
2789
|
-
|
|
2790
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
2791
|
-
vec5 = wp.types.vector(length=5, dtype=wptype)
|
|
2792
|
-
|
|
2793
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
2794
|
-
|
|
2795
|
-
def check_mat_diag(
|
|
2796
|
-
s5: wp.array(dtype=vec5),
|
|
2797
|
-
outcomponents: wp.array(dtype=wptype),
|
|
2798
|
-
):
|
|
2799
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
2800
|
-
m55result = wptype(2) * wp.diag(s5[0])
|
|
2801
|
-
|
|
2802
|
-
idx = 0
|
|
2803
|
-
for i in range(5):
|
|
2804
|
-
for j in range(5):
|
|
2805
|
-
outcomponents[idx] = m55result[i, j]
|
|
2806
|
-
idx = idx + 1
|
|
2807
|
-
|
|
2808
|
-
kernel = getkernel(check_mat_diag, suffix=dtype.__name__)
|
|
2809
|
-
|
|
2810
|
-
if register_kernels:
|
|
2811
|
-
return
|
|
2812
|
-
|
|
2813
|
-
s5 = wp.array(randvals([1, 5], dtype), dtype=vec5, requires_grad=True, device=device)
|
|
2814
|
-
outcomponents = wp.zeros(5 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
2815
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2816
|
-
|
|
2817
|
-
wp.launch(kernel, dim=1, inputs=[s5], outputs=[outcomponents], device=device)
|
|
2818
|
-
|
|
2819
|
-
assert_np_equal(outcomponents.numpy(), 2 * np.diag(s5.numpy()[0]), tol=tol)
|
|
2820
|
-
|
|
2821
|
-
if dtype in np_float_types:
|
|
2822
|
-
idx = 0
|
|
2823
|
-
for i in range(5):
|
|
2824
|
-
for j in range(5):
|
|
2825
|
-
tape = wp.Tape()
|
|
2826
|
-
with tape:
|
|
2827
|
-
wp.launch(kernel, dim=1, inputs=[s5], outputs=[outcomponents], device=device)
|
|
2828
|
-
wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device)
|
|
2829
|
-
tape.backward(loss=out)
|
|
2830
|
-
expectedresult = np.zeros(5, dtype=dtype)
|
|
2831
|
-
if i == j:
|
|
2832
|
-
expectedresult[i] = 2
|
|
2833
|
-
assert_np_equal(tape.gradients[s5].numpy()[0], expectedresult, tol=10 * tol)
|
|
2834
|
-
tape.zero()
|
|
2835
|
-
|
|
2836
|
-
idx = idx + 1
|
|
2837
|
-
|
|
2838
|
-
|
|
2839
|
-
def test_get_diag(test, device, dtype, register_kernels=False):
|
|
2840
|
-
np.random.seed(123)
|
|
2841
|
-
|
|
2842
|
-
tol = {
|
|
2843
|
-
np.float16: 1.0e-3,
|
|
2844
|
-
np.float32: 1.0e-6,
|
|
2845
|
-
np.float64: 1.0e-8,
|
|
2846
|
-
}.get(dtype, 0)
|
|
2847
|
-
|
|
2848
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
2849
|
-
mat55 = wp.types.vector(shape=(5, 5), dtype=wptype)
|
|
2850
|
-
|
|
2851
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
2852
|
-
|
|
2853
|
-
def check_mat_diag(
|
|
2854
|
-
m55: wp.array(dtype=mat55),
|
|
2855
|
-
outcomponents: wp.array(dtype=wptype),
|
|
2856
|
-
):
|
|
2857
|
-
# multiply outputs by 2 so we've got something to backpropagate:
|
|
2858
|
-
vec5result = wptype(2) * wp.get_diag(m55[0])
|
|
2859
|
-
|
|
2860
|
-
idx = 0
|
|
2861
|
-
for i in range(5):
|
|
2862
|
-
outcomponents[idx] = vec5result[i]
|
|
2863
|
-
idx = idx + 1
|
|
2864
|
-
|
|
2865
|
-
kernel = getkernel(check_mat_diag, suffix=dtype.__name__)
|
|
2866
|
-
|
|
2867
|
-
if register_kernels:
|
|
2868
|
-
return
|
|
2869
|
-
|
|
2870
|
-
m55 = wp.array(randvals((1, 5, 5), dtype), dtype=mat55, requires_grad=True, device=device)
|
|
2871
|
-
outcomponents = wp.zeros(5, dtype=wptype, requires_grad=True, device=device)
|
|
2872
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
2873
|
-
|
|
2874
|
-
wp.launch(kernel, dim=1, inputs=[m55], outputs=[outcomponents], device=device)
|
|
742
|
+
det2,
|
|
743
|
+
det3,
|
|
744
|
+
det4,
|
|
745
|
+
],
|
|
746
|
+
device=device,
|
|
747
|
+
)
|
|
748
|
+
dminus = det3.numpy()[0]
|
|
749
|
+
assert_np_equal((dplus - dminus) / (2.0 * dx * dplus), v3grads[i, j] / dplus, tol=fdtol)
|
|
2875
750
|
|
|
2876
|
-
|
|
751
|
+
for i in range(4):
|
|
752
|
+
for j in range(4):
|
|
753
|
+
v4test = v4.numpy()
|
|
754
|
+
v4test[0, i, j] += dx
|
|
755
|
+
wp.launch(
|
|
756
|
+
kernel,
|
|
757
|
+
dim=1,
|
|
758
|
+
inputs=[
|
|
759
|
+
v2,
|
|
760
|
+
v3,
|
|
761
|
+
wp.array(v4test, dtype=v4.dtype, requires_grad=True, device=device),
|
|
762
|
+
],
|
|
763
|
+
outputs=[
|
|
764
|
+
det2,
|
|
765
|
+
det3,
|
|
766
|
+
det4,
|
|
767
|
+
],
|
|
768
|
+
device=device,
|
|
769
|
+
)
|
|
770
|
+
dplus = det4.numpy()[0]
|
|
771
|
+
v4test[0, i, j] -= 2.0 * dx
|
|
772
|
+
wp.launch(
|
|
773
|
+
kernel,
|
|
774
|
+
dim=1,
|
|
775
|
+
inputs=[
|
|
776
|
+
v2,
|
|
777
|
+
v3,
|
|
778
|
+
wp.array(v4test, dtype=v4.dtype, requires_grad=True, device=device),
|
|
779
|
+
],
|
|
780
|
+
outputs=[
|
|
781
|
+
det2,
|
|
782
|
+
det3,
|
|
783
|
+
det4,
|
|
784
|
+
],
|
|
785
|
+
device=device,
|
|
786
|
+
)
|
|
787
|
+
dminus = det4.numpy()[0]
|
|
788
|
+
assert_np_equal((dplus - dminus) / (2.0 * dx * dplus), v4grads[i, j] / dplus, tol=fdtol)
|
|
2877
789
|
|
|
2878
|
-
if dtype in np_float_types:
|
|
2879
|
-
idx = 0
|
|
2880
|
-
for i in range(5):
|
|
2881
|
-
tape = wp.Tape()
|
|
2882
|
-
with tape:
|
|
2883
|
-
wp.launch(kernel, dim=1, inputs=[m55], outputs=[outcomponents], device=device)
|
|
2884
|
-
wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device)
|
|
2885
|
-
tape.backward(loss=out)
|
|
2886
|
-
expectedresult = np.zeros((5, 5), dtype=dtype)
|
|
2887
|
-
expectedresult[i, i] = 2
|
|
2888
|
-
assert_np_equal(tape.gradients[m55].numpy()[0], expectedresult, tol=10 * tol)
|
|
2889
|
-
tape.zero()
|
|
2890
790
|
|
|
2891
|
-
|
|
791
|
+
# Unused. Why?
|
|
792
|
+
# def test_get_diag(test, device, dtype, register_kernels=False):
|
|
793
|
+
# tol = {
|
|
794
|
+
# np.float16: 1.0e-3,
|
|
795
|
+
# np.float32: 1.0e-6,
|
|
796
|
+
# np.float64: 1.0e-8,
|
|
797
|
+
# }.get(dtype, 0)
|
|
798
|
+
#
|
|
799
|
+
# wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
800
|
+
# mat55 = wp.types.vector(shape=(5, 5), dtype=wptype)
|
|
801
|
+
#
|
|
802
|
+
# output_select_kernel = get_select_kernel(wptype)
|
|
803
|
+
#
|
|
804
|
+
# def check_mat_diag(
|
|
805
|
+
# m55: wp.array(dtype=mat55),
|
|
806
|
+
# outcomponents: wp.array(dtype=wptype),
|
|
807
|
+
# ):
|
|
808
|
+
# # multiply outputs by 2 so we've got something to backpropagate:
|
|
809
|
+
# vec5result = wptype(2) * wp.get_diag(m55[0])
|
|
810
|
+
#
|
|
811
|
+
# idx = 0
|
|
812
|
+
# for i in range(5):
|
|
813
|
+
# outcomponents[idx] = vec5result[i]
|
|
814
|
+
# idx = idx + 1
|
|
815
|
+
#
|
|
816
|
+
# kernel = getkernel(check_mat_diag, suffix=dtype.__name__)
|
|
817
|
+
#
|
|
818
|
+
# if register_kernels:
|
|
819
|
+
# return
|
|
820
|
+
#
|
|
821
|
+
# m55 = wp.array(randvals((1, 5, 5), dtype), dtype=mat55, requires_grad=True, device=device)
|
|
822
|
+
# outcomponents = wp.zeros(5, dtype=wptype, requires_grad=True, device=device)
|
|
823
|
+
# out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
824
|
+
#
|
|
825
|
+
# wp.launch(kernel, dim=1, inputs=[m55], outputs=[outcomponents], device=device)
|
|
826
|
+
#
|
|
827
|
+
# assert_np_equal(outcomponents.numpy(), 2 * np.diag(m55.numpy()[0]), tol=tol)
|
|
828
|
+
#
|
|
829
|
+
# if dtype in np_float_types:
|
|
830
|
+
# idx = 0
|
|
831
|
+
# for i in range(5):
|
|
832
|
+
# tape = wp.Tape()
|
|
833
|
+
# with tape:
|
|
834
|
+
# wp.launch(kernel, dim=1, inputs=[m55], outputs=[outcomponents], device=device)
|
|
835
|
+
# wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device)
|
|
836
|
+
# tape.backward(loss=out)
|
|
837
|
+
# expectedresult = np.zeros((5, 5), dtype=dtype)
|
|
838
|
+
# expectedresult[i, i] = 2
|
|
839
|
+
# assert_np_equal(tape.gradients[m55].numpy()[0], expectedresult, tol=10 * tol)
|
|
840
|
+
# tape.zero()
|
|
841
|
+
#
|
|
842
|
+
# idx = idx + 1
|
|
2892
843
|
|
|
2893
844
|
|
|
2894
845
|
def test_inverse(test, device, dtype, register_kernels=False):
|
|
2895
|
-
np.random.
|
|
846
|
+
rng = np.random.default_rng(123)
|
|
2896
847
|
|
|
2897
848
|
tol = {
|
|
2898
|
-
np.float16:
|
|
2899
|
-
np.float32: 1.0e-
|
|
849
|
+
np.float16: 5.0e-2,
|
|
850
|
+
np.float32: 1.0e-5,
|
|
2900
851
|
np.float64: 1.0e-8,
|
|
2901
852
|
}.get(dtype, 0)
|
|
2902
853
|
|
|
@@ -2939,9 +890,15 @@ def test_inverse(test, device, dtype, register_kernels=False):
|
|
|
2939
890
|
if register_kernels:
|
|
2940
891
|
return
|
|
2941
892
|
|
|
2942
|
-
m2 = wp.array(
|
|
2943
|
-
|
|
2944
|
-
|
|
893
|
+
m2 = wp.array(
|
|
894
|
+
2 * (randvals(rng, [1, 2, 2], dtype) + 0.2 * np.eye(2)), dtype=mat22, requires_grad=True, device=device
|
|
895
|
+
)
|
|
896
|
+
m3 = wp.array(
|
|
897
|
+
2 * (randvals(rng, [1, 3, 3], dtype) + 0.2 * np.eye(3)), dtype=mat33, requires_grad=True, device=device
|
|
898
|
+
)
|
|
899
|
+
m4 = wp.array(
|
|
900
|
+
2 * (randvals(rng, [1, 4, 4], dtype) + 0.2 * np.eye(4)), dtype=mat44, requires_grad=True, device=device
|
|
901
|
+
)
|
|
2945
902
|
|
|
2946
903
|
outcomponents = wp.zeros(2 * 2 + 3 * 3 + 4 * 4, dtype=wptype, requires_grad=True, device=device)
|
|
2947
904
|
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -3056,7 +1013,7 @@ def test_inverse(test, device, dtype, register_kernels=False):
|
|
|
3056
1013
|
|
|
3057
1014
|
|
|
3058
1015
|
def test_svd(test, device, dtype, register_kernels=False):
|
|
3059
|
-
np.random.
|
|
1016
|
+
rng = np.random.default_rng(123)
|
|
3060
1017
|
|
|
3061
1018
|
tol = {
|
|
3062
1019
|
np.float16: 1.0e-3,
|
|
@@ -3108,7 +1065,7 @@ def test_svd(test, device, dtype, register_kernels=False):
|
|
|
3108
1065
|
if register_kernels:
|
|
3109
1066
|
return
|
|
3110
1067
|
|
|
3111
|
-
m3 = wp.array(randvals([1, 3, 3], dtype) + np.eye(3), dtype=mat33, requires_grad=True, device=device)
|
|
1068
|
+
m3 = wp.array(randvals(rng, [1, 3, 3], dtype) + np.eye(3), dtype=mat33, requires_grad=True, device=device)
|
|
3112
1069
|
|
|
3113
1070
|
outcomponents = wp.zeros(2 * 3 * 3 + 3, dtype=wptype, requires_grad=True, device=device)
|
|
3114
1071
|
Uout = wp.zeros(1, dtype=mat33, requires_grad=True, device=device)
|
|
@@ -3175,7 +1132,7 @@ def test_svd(test, device, dtype, register_kernels=False):
|
|
|
3175
1132
|
|
|
3176
1133
|
|
|
3177
1134
|
def test_qr(test, device, dtype, register_kernels=False):
|
|
3178
|
-
np.random.
|
|
1135
|
+
rng = np.random.default_rng(123)
|
|
3179
1136
|
|
|
3180
1137
|
tol = {
|
|
3181
1138
|
np.float16: 2.0e-3,
|
|
@@ -3218,7 +1175,7 @@ def test_qr(test, device, dtype, register_kernels=False):
|
|
|
3218
1175
|
if register_kernels:
|
|
3219
1176
|
return
|
|
3220
1177
|
|
|
3221
|
-
m3 = wp.array(0.5 * (randvals([1, 3, 3], dtype) + np.eye(3)), dtype=mat33, requires_grad=True, device=device)
|
|
1178
|
+
m3 = wp.array(0.5 * (randvals(rng, [1, 3, 3], dtype) + np.eye(3)), dtype=mat33, requires_grad=True, device=device)
|
|
3222
1179
|
|
|
3223
1180
|
outcomponents = wp.zeros(2 * 3 * 3, dtype=wptype, requires_grad=True, device=device)
|
|
3224
1181
|
Qout = wp.zeros(1, dtype=mat33, requires_grad=True, device=device)
|
|
@@ -3287,7 +1244,7 @@ def test_qr(test, device, dtype, register_kernels=False):
|
|
|
3287
1244
|
|
|
3288
1245
|
|
|
3289
1246
|
def test_eig(test, device, dtype, register_kernels=False):
|
|
3290
|
-
np.random.
|
|
1247
|
+
rng = np.random.default_rng(123)
|
|
3291
1248
|
|
|
3292
1249
|
tol = {
|
|
3293
1250
|
np.float16: 4.0e-2,
|
|
@@ -3330,7 +1287,7 @@ def test_eig(test, device, dtype, register_kernels=False):
|
|
|
3330
1287
|
if register_kernels:
|
|
3331
1288
|
return
|
|
3332
1289
|
|
|
3333
|
-
m3_np = randvals([1, 3, 3], dtype) + np.eye(3, dtype=dtype)
|
|
1290
|
+
m3_np = randvals(rng, [1, 3, 3], dtype) + np.eye(3, dtype=dtype)
|
|
3334
1291
|
m3 = wp.array(m3_np, dtype=mat33, requires_grad=True, device=device)
|
|
3335
1292
|
|
|
3336
1293
|
outcomponents = wp.zeros(3 * 3 + 3, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -3399,7 +1356,7 @@ def test_eig(test, device, dtype, register_kernels=False):
|
|
|
3399
1356
|
|
|
3400
1357
|
|
|
3401
1358
|
def test_skew(test, device, dtype, register_kernels=False):
|
|
3402
|
-
np.random.
|
|
1359
|
+
rng = np.random.default_rng(123)
|
|
3403
1360
|
|
|
3404
1361
|
tol = {
|
|
3405
1362
|
np.float16: 1.0e-3,
|
|
@@ -3430,7 +1387,7 @@ def test_skew(test, device, dtype, register_kernels=False):
|
|
|
3430
1387
|
if register_kernels:
|
|
3431
1388
|
return
|
|
3432
1389
|
|
|
3433
|
-
v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1390
|
+
v3 = wp.array(randvals(rng, [1, 3], dtype), dtype=vec3, requires_grad=True, device=device)
|
|
3434
1391
|
|
|
3435
1392
|
outcomponents = wp.zeros(3 * 3, dtype=wptype, requires_grad=True, device=device)
|
|
3436
1393
|
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -3501,7 +1458,7 @@ def test_skew(test, device, dtype, register_kernels=False):
|
|
|
3501
1458
|
|
|
3502
1459
|
|
|
3503
1460
|
def test_transform_point(test, device, dtype, register_kernels=False):
|
|
3504
|
-
np.random.
|
|
1461
|
+
rng = np.random.default_rng(123)
|
|
3505
1462
|
|
|
3506
1463
|
tol = {
|
|
3507
1464
|
np.float16: 5.0e-3,
|
|
@@ -3532,8 +1489,8 @@ def test_transform_point(test, device, dtype, register_kernels=False):
|
|
|
3532
1489
|
if register_kernels:
|
|
3533
1490
|
return
|
|
3534
1491
|
|
|
3535
|
-
v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device)
|
|
3536
|
-
m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1492
|
+
v3 = wp.array(randvals(rng, [1, 3], dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1493
|
+
m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
3537
1494
|
|
|
3538
1495
|
outcomponents = wp.zeros(3, dtype=wptype, requires_grad=True, device=device)
|
|
3539
1496
|
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -3562,7 +1519,7 @@ def test_transform_point(test, device, dtype, register_kernels=False):
|
|
|
3562
1519
|
|
|
3563
1520
|
|
|
3564
1521
|
def test_transform_vector(test, device, dtype, register_kernels=False):
|
|
3565
|
-
np.random.
|
|
1522
|
+
rng = np.random.default_rng(123)
|
|
3566
1523
|
|
|
3567
1524
|
tol = {
|
|
3568
1525
|
np.float16: 5.0e-3,
|
|
@@ -3593,8 +1550,8 @@ def test_transform_vector(test, device, dtype, register_kernels=False):
|
|
|
3593
1550
|
if register_kernels:
|
|
3594
1551
|
return
|
|
3595
1552
|
|
|
3596
|
-
v3 = wp.array(randvals([1, 3], dtype), dtype=vec3, requires_grad=True, device=device)
|
|
3597
|
-
m4 = wp.array(randvals([1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
1553
|
+
v3 = wp.array(randvals(rng, [1, 3], dtype), dtype=vec3, requires_grad=True, device=device)
|
|
1554
|
+
m4 = wp.array(randvals(rng, [1, 4, 4], dtype), dtype=mat44, requires_grad=True, device=device)
|
|
3598
1555
|
|
|
3599
1556
|
outcomponents = wp.zeros(3, dtype=wptype, requires_grad=True, device=device)
|
|
3600
1557
|
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
@@ -3621,338 +1578,6 @@ def test_transform_vector(test, device, dtype, register_kernels=False):
|
|
|
3621
1578
|
tape.zero()
|
|
3622
1579
|
|
|
3623
1580
|
|
|
3624
|
-
def test_anon_type_instance(test, device, dtype, register_kernels=False):
|
|
3625
|
-
np.random.seed(123)
|
|
3626
|
-
|
|
3627
|
-
tol = {
|
|
3628
|
-
np.float16: 5.0e-3,
|
|
3629
|
-
np.float32: 1.0e-6,
|
|
3630
|
-
np.float64: 1.0e-8,
|
|
3631
|
-
}.get(dtype, 0)
|
|
3632
|
-
|
|
3633
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
3634
|
-
|
|
3635
|
-
def check_scalar_init(
|
|
3636
|
-
input: wp.array(dtype=wptype),
|
|
3637
|
-
output: wp.array(dtype=wptype),
|
|
3638
|
-
):
|
|
3639
|
-
m2result = wp.matrix(input[0], shape=(2, 2))
|
|
3640
|
-
m3result = wp.matrix(input[1], shape=(3, 3))
|
|
3641
|
-
m4result = wp.matrix(input[2], shape=(4, 4))
|
|
3642
|
-
m5result = wp.matrix(input[3], shape=(5, 5))
|
|
3643
|
-
m32result = wp.matrix(input[4], shape=(3, 2))
|
|
3644
|
-
|
|
3645
|
-
idx = 0
|
|
3646
|
-
for i in range(2):
|
|
3647
|
-
for j in range(2):
|
|
3648
|
-
output[idx] = wptype(2) * m2result[i, j]
|
|
3649
|
-
idx = idx + 1
|
|
3650
|
-
for i in range(3):
|
|
3651
|
-
for j in range(3):
|
|
3652
|
-
output[idx] = wptype(2) * m3result[i, j]
|
|
3653
|
-
idx = idx + 1
|
|
3654
|
-
for i in range(4):
|
|
3655
|
-
for j in range(4):
|
|
3656
|
-
output[idx] = wptype(2) * m4result[i, j]
|
|
3657
|
-
idx = idx + 1
|
|
3658
|
-
for i in range(5):
|
|
3659
|
-
for j in range(5):
|
|
3660
|
-
output[idx] = wptype(2) * m5result[i, j]
|
|
3661
|
-
idx = idx + 1
|
|
3662
|
-
for i in range(3):
|
|
3663
|
-
for j in range(2):
|
|
3664
|
-
output[idx] = wptype(2) * m32result[i, j]
|
|
3665
|
-
idx = idx + 1
|
|
3666
|
-
|
|
3667
|
-
def check_component_init(
|
|
3668
|
-
input: wp.array(dtype=wptype),
|
|
3669
|
-
output: wp.array(dtype=wptype),
|
|
3670
|
-
):
|
|
3671
|
-
m2result = wp.matrix(input[0], input[1], input[2], input[3], shape=(2, 2))
|
|
3672
|
-
m3result = wp.matrix(
|
|
3673
|
-
input[4], input[5], input[6], input[7], input[8], input[9], input[10], input[11], input[12], shape=(3, 3)
|
|
3674
|
-
)
|
|
3675
|
-
m4result = wp.matrix(
|
|
3676
|
-
input[13],
|
|
3677
|
-
input[14],
|
|
3678
|
-
input[15],
|
|
3679
|
-
input[16],
|
|
3680
|
-
input[17],
|
|
3681
|
-
input[18],
|
|
3682
|
-
input[19],
|
|
3683
|
-
input[20],
|
|
3684
|
-
input[21],
|
|
3685
|
-
input[22],
|
|
3686
|
-
input[23],
|
|
3687
|
-
input[24],
|
|
3688
|
-
input[25],
|
|
3689
|
-
input[26],
|
|
3690
|
-
input[27],
|
|
3691
|
-
input[28],
|
|
3692
|
-
shape=(4, 4),
|
|
3693
|
-
)
|
|
3694
|
-
m5result = wp.matrix(
|
|
3695
|
-
input[29],
|
|
3696
|
-
input[30],
|
|
3697
|
-
input[31],
|
|
3698
|
-
input[32],
|
|
3699
|
-
input[33],
|
|
3700
|
-
input[34],
|
|
3701
|
-
input[35],
|
|
3702
|
-
input[36],
|
|
3703
|
-
input[37],
|
|
3704
|
-
input[38],
|
|
3705
|
-
input[39],
|
|
3706
|
-
input[40],
|
|
3707
|
-
input[41],
|
|
3708
|
-
input[42],
|
|
3709
|
-
input[43],
|
|
3710
|
-
input[44],
|
|
3711
|
-
input[45],
|
|
3712
|
-
input[46],
|
|
3713
|
-
input[47],
|
|
3714
|
-
input[48],
|
|
3715
|
-
input[49],
|
|
3716
|
-
input[50],
|
|
3717
|
-
input[51],
|
|
3718
|
-
input[52],
|
|
3719
|
-
input[53],
|
|
3720
|
-
shape=(5, 5),
|
|
3721
|
-
)
|
|
3722
|
-
m32result = wp.matrix(input[54], input[55], input[56], input[57], input[58], input[59], shape=(3, 2))
|
|
3723
|
-
|
|
3724
|
-
idx = 0
|
|
3725
|
-
for i in range(2):
|
|
3726
|
-
for j in range(2):
|
|
3727
|
-
output[idx] = wptype(2) * m2result[i, j]
|
|
3728
|
-
idx = idx + 1
|
|
3729
|
-
for i in range(3):
|
|
3730
|
-
for j in range(3):
|
|
3731
|
-
output[idx] = wptype(2) * m3result[i, j]
|
|
3732
|
-
idx = idx + 1
|
|
3733
|
-
for i in range(4):
|
|
3734
|
-
for j in range(4):
|
|
3735
|
-
output[idx] = wptype(2) * m4result[i, j]
|
|
3736
|
-
idx = idx + 1
|
|
3737
|
-
for i in range(5):
|
|
3738
|
-
for j in range(5):
|
|
3739
|
-
output[idx] = wptype(2) * m5result[i, j]
|
|
3740
|
-
idx = idx + 1
|
|
3741
|
-
for i in range(3):
|
|
3742
|
-
for j in range(2):
|
|
3743
|
-
output[idx] = wptype(2) * m32result[i, j]
|
|
3744
|
-
idx = idx + 1
|
|
3745
|
-
|
|
3746
|
-
scalar_kernel = getkernel(check_scalar_init, suffix=dtype.__name__)
|
|
3747
|
-
component_kernel = getkernel(check_component_init, suffix=dtype.__name__)
|
|
3748
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
3749
|
-
|
|
3750
|
-
if register_kernels:
|
|
3751
|
-
return
|
|
3752
|
-
|
|
3753
|
-
input = wp.array(randvals([5], dtype), requires_grad=True, device=device)
|
|
3754
|
-
output = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2, dtype=wptype, requires_grad=True, device=device)
|
|
3755
|
-
|
|
3756
|
-
wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device)
|
|
3757
|
-
|
|
3758
|
-
assert_np_equal(output.numpy()[:4], 2 * np.array([input.numpy()[0]] * 2 * 2), tol=1.0e-6)
|
|
3759
|
-
assert_np_equal(output.numpy()[4:13], 2 * np.array([input.numpy()[1]] * 3 * 3), tol=1.0e-6)
|
|
3760
|
-
assert_np_equal(output.numpy()[13:29], 2 * np.array([input.numpy()[2]] * 4 * 4), tol=1.0e-6)
|
|
3761
|
-
assert_np_equal(output.numpy()[29:54], 2 * np.array([input.numpy()[3]] * 5 * 5), tol=1.0e-6)
|
|
3762
|
-
assert_np_equal(output.numpy()[54:], 2 * np.array([input.numpy()[4]] * 3 * 2), tol=1.0e-6)
|
|
3763
|
-
|
|
3764
|
-
if dtype in np_float_types:
|
|
3765
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
3766
|
-
for i in range(len(output)):
|
|
3767
|
-
tape = wp.Tape()
|
|
3768
|
-
with tape:
|
|
3769
|
-
wp.launch(scalar_kernel, dim=1, inputs=[input], outputs=[output], device=device)
|
|
3770
|
-
wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device)
|
|
3771
|
-
|
|
3772
|
-
tape.backward(loss=out)
|
|
3773
|
-
expected = np.zeros_like(input.numpy())
|
|
3774
|
-
if i < 4:
|
|
3775
|
-
expected[0] = 2
|
|
3776
|
-
elif i < 13:
|
|
3777
|
-
expected[1] = 2
|
|
3778
|
-
elif i < 29:
|
|
3779
|
-
expected[2] = 2
|
|
3780
|
-
elif i < 54:
|
|
3781
|
-
expected[3] = 2
|
|
3782
|
-
else:
|
|
3783
|
-
expected[4] = 2
|
|
3784
|
-
|
|
3785
|
-
assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol)
|
|
3786
|
-
|
|
3787
|
-
tape.reset()
|
|
3788
|
-
tape.zero()
|
|
3789
|
-
|
|
3790
|
-
input = wp.array(randvals([2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2], dtype), requires_grad=True, device=device)
|
|
3791
|
-
output = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5 + 3 * 2, dtype=wptype, requires_grad=True, device=device)
|
|
3792
|
-
|
|
3793
|
-
wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device)
|
|
3794
|
-
|
|
3795
|
-
assert_np_equal(output.numpy(), 2 * input.numpy(), tol=1.0e-6)
|
|
3796
|
-
|
|
3797
|
-
if dtype in np_float_types:
|
|
3798
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
3799
|
-
for i in range(len(output)):
|
|
3800
|
-
tape = wp.Tape()
|
|
3801
|
-
with tape:
|
|
3802
|
-
wp.launch(component_kernel, dim=1, inputs=[input], outputs=[output], device=device)
|
|
3803
|
-
wp.launch(output_select_kernel, dim=1, inputs=[output, i], outputs=[out], device=device)
|
|
3804
|
-
|
|
3805
|
-
tape.backward(loss=out)
|
|
3806
|
-
expected = np.zeros_like(input.numpy())
|
|
3807
|
-
expected[i] = 2
|
|
3808
|
-
|
|
3809
|
-
assert_np_equal(tape.gradients[input].numpy(), expected, tol=tol)
|
|
3810
|
-
|
|
3811
|
-
tape.reset()
|
|
3812
|
-
tape.zero()
|
|
3813
|
-
|
|
3814
|
-
|
|
3815
|
-
def test_identity(test, device, dtype, register_kernels=False):
|
|
3816
|
-
np.random.seed(123)
|
|
3817
|
-
|
|
3818
|
-
tol = {
|
|
3819
|
-
np.float16: 5.0e-3,
|
|
3820
|
-
np.float32: 1.0e-6,
|
|
3821
|
-
np.float64: 1.0e-8,
|
|
3822
|
-
}.get(dtype, 0)
|
|
3823
|
-
|
|
3824
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
3825
|
-
|
|
3826
|
-
def check_identity_mat(
|
|
3827
|
-
output: wp.array(dtype=wptype),
|
|
3828
|
-
):
|
|
3829
|
-
m2result = wp.identity(dtype=wptype, n=2)
|
|
3830
|
-
m3result = wp.identity(dtype=wptype, n=3)
|
|
3831
|
-
m4result = wp.identity(dtype=wptype, n=4)
|
|
3832
|
-
m5result = wp.identity(dtype=wptype, n=5)
|
|
3833
|
-
|
|
3834
|
-
idx = 0
|
|
3835
|
-
for i in range(2):
|
|
3836
|
-
for j in range(2):
|
|
3837
|
-
output[idx] = wptype(2) * m2result[i, j]
|
|
3838
|
-
idx = idx + 1
|
|
3839
|
-
for i in range(3):
|
|
3840
|
-
for j in range(3):
|
|
3841
|
-
output[idx] = wptype(2) * m3result[i, j]
|
|
3842
|
-
idx = idx + 1
|
|
3843
|
-
for i in range(4):
|
|
3844
|
-
for j in range(4):
|
|
3845
|
-
output[idx] = wptype(2) * m4result[i, j]
|
|
3846
|
-
idx = idx + 1
|
|
3847
|
-
for i in range(5):
|
|
3848
|
-
for j in range(5):
|
|
3849
|
-
output[idx] = wptype(2) * m5result[i, j]
|
|
3850
|
-
idx = idx + 1
|
|
3851
|
-
|
|
3852
|
-
id_kernel = getkernel(check_identity_mat, suffix=dtype.__name__)
|
|
3853
|
-
|
|
3854
|
-
if register_kernels:
|
|
3855
|
-
return
|
|
3856
|
-
|
|
3857
|
-
output = wp.zeros(2 * 2 + 3 * 3 + 4 * 4 + 5 * 5, dtype=wptype, requires_grad=True, device=device)
|
|
3858
|
-
wp.launch(id_kernel, dim=1, inputs=[], outputs=[output], device=device)
|
|
3859
|
-
assert_np_equal(output.numpy()[:4], 2 * np.eye(2), tol=1.0e-6)
|
|
3860
|
-
assert_np_equal(output.numpy()[4:13], 2 * np.eye(3), tol=1.0e-6)
|
|
3861
|
-
assert_np_equal(output.numpy()[13:29], 2 * np.eye(4), tol=1.0e-6)
|
|
3862
|
-
assert_np_equal(output.numpy()[29:], 2 * np.eye(5), tol=1.0e-6)
|
|
3863
|
-
|
|
3864
|
-
|
|
3865
|
-
def test_equivalent_types(test, device, dtype, register_kernels=False):
|
|
3866
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
3867
|
-
|
|
3868
|
-
# matrix types
|
|
3869
|
-
mat22 = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
3870
|
-
mat33 = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
3871
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
3872
|
-
mat55 = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
3873
|
-
|
|
3874
|
-
# matrix types equivalent to the above
|
|
3875
|
-
mat22_equiv = wp.types.matrix(shape=(2, 2), dtype=wptype)
|
|
3876
|
-
mat33_equiv = wp.types.matrix(shape=(3, 3), dtype=wptype)
|
|
3877
|
-
mat44_equiv = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
3878
|
-
mat55_equiv = wp.types.matrix(shape=(5, 5), dtype=wptype)
|
|
3879
|
-
|
|
3880
|
-
# declare kernel with original types
|
|
3881
|
-
def check_equivalence(
|
|
3882
|
-
m2: mat22,
|
|
3883
|
-
m3: mat33,
|
|
3884
|
-
m4: mat44,
|
|
3885
|
-
m5: mat55,
|
|
3886
|
-
):
|
|
3887
|
-
wp.expect_eq(m2, mat22(wptype(42)))
|
|
3888
|
-
wp.expect_eq(m3, mat33(wptype(43)))
|
|
3889
|
-
wp.expect_eq(m4, mat44(wptype(44)))
|
|
3890
|
-
wp.expect_eq(m5, mat55(wptype(45)))
|
|
3891
|
-
|
|
3892
|
-
wp.expect_eq(m2, mat22_equiv(wptype(42)))
|
|
3893
|
-
wp.expect_eq(m3, mat33_equiv(wptype(43)))
|
|
3894
|
-
wp.expect_eq(m4, mat44_equiv(wptype(44)))
|
|
3895
|
-
wp.expect_eq(m5, mat55_equiv(wptype(45)))
|
|
3896
|
-
|
|
3897
|
-
kernel = getkernel(check_equivalence, suffix=dtype.__name__)
|
|
3898
|
-
|
|
3899
|
-
if register_kernels:
|
|
3900
|
-
return
|
|
3901
|
-
|
|
3902
|
-
# call kernel with equivalent types
|
|
3903
|
-
m2 = mat22_equiv(42)
|
|
3904
|
-
m3 = mat33_equiv(43)
|
|
3905
|
-
m4 = mat44_equiv(44)
|
|
3906
|
-
m5 = mat55_equiv(45)
|
|
3907
|
-
|
|
3908
|
-
wp.launch(kernel, dim=1, inputs=[m2, m3, m4, m5], device=device)
|
|
3909
|
-
|
|
3910
|
-
|
|
3911
|
-
def test_conversions(test, device, dtype, register_kernels=False):
|
|
3912
|
-
def check_matrices_equal(
|
|
3913
|
-
m0: wp.mat22,
|
|
3914
|
-
m1: wp.mat22,
|
|
3915
|
-
m2: wp.mat22,
|
|
3916
|
-
m3: wp.mat22,
|
|
3917
|
-
m4: wp.mat22,
|
|
3918
|
-
m5: wp.mat22,
|
|
3919
|
-
m6: wp.mat22,
|
|
3920
|
-
):
|
|
3921
|
-
wp.expect_eq(m1, m0)
|
|
3922
|
-
wp.expect_eq(m2, m0)
|
|
3923
|
-
wp.expect_eq(m3, m0)
|
|
3924
|
-
wp.expect_eq(m4, m0)
|
|
3925
|
-
wp.expect_eq(m5, m0)
|
|
3926
|
-
wp.expect_eq(m6, m0)
|
|
3927
|
-
|
|
3928
|
-
kernel = getkernel(check_matrices_equal, suffix=dtype.__name__)
|
|
3929
|
-
|
|
3930
|
-
if register_kernels:
|
|
3931
|
-
return
|
|
3932
|
-
|
|
3933
|
-
m0 = wp.mat22(1, 2, 3, 4)
|
|
3934
|
-
|
|
3935
|
-
# test explicit conversions - constructing matrices from different containers
|
|
3936
|
-
m1 = wp.mat22(((1, 2), (3, 4))) # nested tuples
|
|
3937
|
-
m2 = wp.mat22([[1, 2], [3, 4]]) # nested lists
|
|
3938
|
-
m3 = wp.mat22(np.array([[1, 2], [3, 4]], dtype=dtype)) # 2d array
|
|
3939
|
-
m4 = wp.mat22((1, 2, 3, 4)) # flat tuple
|
|
3940
|
-
m5 = wp.mat22([1, 2, 3, 4]) # flat list
|
|
3941
|
-
m6 = wp.mat22(np.array([1, 2, 3, 4], dtype=dtype)) # 1d array
|
|
3942
|
-
|
|
3943
|
-
wp.launch(kernel, dim=1, inputs=[m0, m1, m2, m3, m4, m5, m6], device=device)
|
|
3944
|
-
|
|
3945
|
-
# test implicit conversions - passing different containers as matrices to wp.launch()
|
|
3946
|
-
m1 = ((1, 2), (3, 4)) # nested tuples
|
|
3947
|
-
m2 = [[1, 2], [3, 4]] # nested lists
|
|
3948
|
-
m3 = np.array([[1, 2], [3, 4]], dtype=dtype) # 2d array
|
|
3949
|
-
m4 = (1, 2, 3, 4) # flat tuple
|
|
3950
|
-
m5 = [1, 2, 3, 4] # flat list
|
|
3951
|
-
m6 = np.array([1, 2, 3, 4], dtype=dtype) # 1d array
|
|
3952
|
-
|
|
3953
|
-
wp.launch(kernel, dim=1, inputs=[m0, m1, m2, m3, m4, m5, m6], device=device)
|
|
3954
|
-
|
|
3955
|
-
|
|
3956
1581
|
# Test matrix constructors using explicit type (float16)
|
|
3957
1582
|
# note that these tests are specifically not using generics / closure
|
|
3958
1583
|
# args to create kernels dynamically (like the rest of this file)
|
|
@@ -3976,6 +1601,22 @@ def test_constructors_explicit_precision():
|
|
|
3976
1601
|
wp.expect_eq(custom[i, j], wp.float16(i) * wp.float16(2.0) + wp.float16(j))
|
|
3977
1602
|
|
|
3978
1603
|
|
|
1604
|
+
mat32d = wp.mat(shape=(3, 2), dtype=wp.float64)
|
|
1605
|
+
|
|
1606
|
+
|
|
1607
|
+
@wp.kernel
|
|
1608
|
+
def test_matrix_constructor_value_func():
|
|
1609
|
+
a = wp.mat22()
|
|
1610
|
+
b = wp.matrix(a, shape=(2, 2))
|
|
1611
|
+
c = mat32d()
|
|
1612
|
+
d = mat32d(c, shape=(3, 2))
|
|
1613
|
+
e = mat32d(wp.float64(1.0), wp.float64(2.0), wp.float64(1.0), wp.float64(2.0), wp.float64(1.0), wp.float64(2.0))
|
|
1614
|
+
f = mat32d(
|
|
1615
|
+
wp.vec3d(wp.float64(1.0), wp.float64(2.0), wp.float64(3.0)),
|
|
1616
|
+
wp.vec3d(wp.float64(1.0), wp.float64(2.0), wp.float64(3.0)),
|
|
1617
|
+
)
|
|
1618
|
+
|
|
1619
|
+
|
|
3979
1620
|
# Same as above but with a default (float/int) type
|
|
3980
1621
|
# which tests some different code paths that
|
|
3981
1622
|
# need to ensure types are correctly canonicalized
|
|
@@ -4038,171 +1679,149 @@ def test_constructors_constant_shape():
|
|
|
4038
1679
|
m[i, j] = float(i * j)
|
|
4039
1680
|
|
|
4040
1681
|
|
|
4041
|
-
|
|
4042
|
-
|
|
4043
|
-
|
|
4044
|
-
|
|
4045
|
-
|
|
4046
|
-
|
|
4047
|
-
|
|
4048
|
-
|
|
4049
|
-
|
|
4050
|
-
|
|
4051
|
-
|
|
4052
|
-
|
|
4053
|
-
|
|
4054
|
-
|
|
4055
|
-
|
|
4056
|
-
|
|
4057
|
-
|
|
4058
|
-
|
|
4059
|
-
|
|
4060
|
-
|
|
4061
|
-
|
|
4062
|
-
|
|
4063
|
-
|
|
4064
|
-
|
|
4065
|
-
|
|
4066
|
-
|
|
4067
|
-
|
|
4068
|
-
|
|
4069
|
-
|
|
4070
|
-
|
|
4071
|
-
|
|
4072
|
-
|
|
4073
|
-
|
|
4074
|
-
|
|
4075
|
-
|
|
4076
|
-
|
|
4077
|
-
|
|
4078
|
-
|
|
4079
|
-
|
|
4080
|
-
|
|
4081
|
-
|
|
4082
|
-
|
|
4083
|
-
|
|
4084
|
-
|
|
4085
|
-
|
|
4086
|
-
|
|
4087
|
-
|
|
4088
|
-
|
|
4089
|
-
|
|
4090
|
-
devices=devices,
|
|
4091
|
-
)
|
|
4092
|
-
|
|
4093
|
-
for dtype in np_signed_int_types + np_float_types:
|
|
4094
|
-
add_function_test_register_kernel(
|
|
4095
|
-
TestMat, f"test_negation_{dtype.__name__}", test_negation, devices=devices, dtype=dtype
|
|
4096
|
-
)
|
|
4097
|
-
add_function_test_register_kernel(
|
|
4098
|
-
TestMat, f"test_subtraction_{dtype.__name__}", test_subtraction, devices=devices, dtype=dtype
|
|
4099
|
-
)
|
|
4100
|
-
|
|
4101
|
-
for dtype in np_scalar_types:
|
|
4102
|
-
add_function_test(TestMat, f"test_arrays_{dtype.__name__}", test_arrays, devices=devices, dtype=dtype)
|
|
4103
|
-
add_function_test(TestMat, f"test_components_{dtype.__name__}", test_components, devices=None, dtype=dtype)
|
|
4104
|
-
add_function_test_register_kernel(
|
|
4105
|
-
TestMat, f"test_constructors_{dtype.__name__}", test_constructors, devices=devices, dtype=dtype
|
|
4106
|
-
)
|
|
4107
|
-
add_function_test_register_kernel(
|
|
4108
|
-
TestMat, f"test_anon_type_instance_{dtype.__name__}", test_anon_type_instance, devices=devices, dtype=dtype
|
|
4109
|
-
)
|
|
4110
|
-
add_function_test_register_kernel(
|
|
4111
|
-
TestMat, f"test_identity_{dtype.__name__}", test_identity, devices=devices, dtype=dtype
|
|
4112
|
-
)
|
|
4113
|
-
add_function_test_register_kernel(
|
|
4114
|
-
TestMat, f"test_indexing_{dtype.__name__}", test_indexing, devices=devices, dtype=dtype
|
|
4115
|
-
)
|
|
4116
|
-
add_function_test_register_kernel(
|
|
4117
|
-
TestMat, f"test_equality_{dtype.__name__}", test_equality, devices=devices, dtype=dtype
|
|
4118
|
-
)
|
|
4119
|
-
add_function_test_register_kernel(
|
|
4120
|
-
TestMat,
|
|
4121
|
-
f"test_scalar_multiplication_{dtype.__name__}",
|
|
4122
|
-
test_scalar_multiplication,
|
|
4123
|
-
devices=devices,
|
|
4124
|
-
dtype=dtype,
|
|
4125
|
-
)
|
|
4126
|
-
add_function_test_register_kernel(
|
|
4127
|
-
TestMat,
|
|
4128
|
-
f"test_matvec_multiplication_{dtype.__name__}",
|
|
4129
|
-
test_matvec_multiplication,
|
|
4130
|
-
devices=devices,
|
|
4131
|
-
dtype=dtype,
|
|
4132
|
-
)
|
|
4133
|
-
add_function_test_register_kernel(
|
|
4134
|
-
TestMat,
|
|
4135
|
-
f"test_matmat_multiplication_{dtype.__name__}",
|
|
4136
|
-
test_matmat_multiplication,
|
|
4137
|
-
devices=devices,
|
|
4138
|
-
dtype=dtype,
|
|
4139
|
-
)
|
|
4140
|
-
add_function_test_register_kernel(
|
|
4141
|
-
TestMat, f"test_cw_multiplication_{dtype.__name__}", test_cw_multiplication, devices=devices, dtype=dtype
|
|
4142
|
-
)
|
|
4143
|
-
add_function_test_register_kernel(
|
|
4144
|
-
TestMat, f"test_cw_division_{dtype.__name__}", test_cw_division, devices=devices, dtype=dtype
|
|
4145
|
-
)
|
|
4146
|
-
add_function_test_register_kernel(
|
|
4147
|
-
TestMat, f"test_outer_product_{dtype.__name__}", test_outer_product, devices=devices, dtype=dtype
|
|
4148
|
-
)
|
|
4149
|
-
add_function_test_register_kernel(
|
|
4150
|
-
TestMat, f"test_transpose_{dtype.__name__}", test_transpose, devices=devices, dtype=dtype
|
|
4151
|
-
)
|
|
4152
|
-
add_function_test_register_kernel(
|
|
4153
|
-
TestMat, f"test_scalar_division_{dtype.__name__}", test_scalar_division, devices=devices, dtype=dtype
|
|
4154
|
-
)
|
|
4155
|
-
add_function_test_register_kernel(
|
|
4156
|
-
TestMat, f"test_addition_{dtype.__name__}", test_addition, devices=devices, dtype=dtype
|
|
4157
|
-
)
|
|
4158
|
-
add_function_test_register_kernel(
|
|
4159
|
-
TestMat, f"test_ddot_{dtype.__name__}", test_ddot, devices=devices, dtype=dtype
|
|
4160
|
-
)
|
|
4161
|
-
add_function_test_register_kernel(
|
|
4162
|
-
TestMat, f"test_trace_{dtype.__name__}", test_trace, devices=devices, dtype=dtype
|
|
4163
|
-
)
|
|
4164
|
-
add_function_test_register_kernel(
|
|
4165
|
-
TestMat, f"test_diag_{dtype.__name__}", test_diag, devices=devices, dtype=dtype
|
|
4166
|
-
)
|
|
4167
|
-
add_function_test_register_kernel(
|
|
4168
|
-
TestMat, f"test_get_diag_{dtype.__name__}", test_diag, devices=devices, dtype=dtype
|
|
4169
|
-
)
|
|
4170
|
-
add_function_test_register_kernel(
|
|
4171
|
-
TestMat, f"test_equivalent_types_{dtype.__name__}", test_equivalent_types, devices=devices, dtype=dtype
|
|
4172
|
-
)
|
|
4173
|
-
add_function_test_register_kernel(
|
|
4174
|
-
TestMat, f"test_conversions_{dtype.__name__}", test_conversions, devices=devices, dtype=dtype
|
|
4175
|
-
)
|
|
4176
|
-
add_function_test_register_kernel(
|
|
4177
|
-
TestMat, f"test_constants_{dtype.__name__}", test_constants, devices=devices, dtype=dtype
|
|
1682
|
+
devices = get_test_devices()
|
|
1683
|
+
|
|
1684
|
+
|
|
1685
|
+
class TestMat(unittest.TestCase):
|
|
1686
|
+
pass
|
|
1687
|
+
|
|
1688
|
+
|
|
1689
|
+
add_kernel_test(TestMat, test_constructors_explicit_precision, dim=1, devices=devices)
|
|
1690
|
+
add_kernel_test(TestMat, test_constructors_default_precision, dim=1, devices=devices)
|
|
1691
|
+
add_kernel_test(TestMat, test_constructors_constant_shape, dim=1, devices=devices)
|
|
1692
|
+
add_kernel_test(TestMat, test_matrix_constructor_value_func, dim=1, devices=devices)
|
|
1693
|
+
|
|
1694
|
+
mat103 = wp.types.matrix(shape=(10, 3), dtype=float)
|
|
1695
|
+
add_kernel_test(
|
|
1696
|
+
TestMat,
|
|
1697
|
+
test_matrix_mutation,
|
|
1698
|
+
dim=1,
|
|
1699
|
+
inputs=[
|
|
1700
|
+
mat103(
|
|
1701
|
+
1.0,
|
|
1702
|
+
2.0,
|
|
1703
|
+
3.0,
|
|
1704
|
+
2.0,
|
|
1705
|
+
4.0,
|
|
1706
|
+
6.0,
|
|
1707
|
+
3.0,
|
|
1708
|
+
6.0,
|
|
1709
|
+
9.0,
|
|
1710
|
+
4.0,
|
|
1711
|
+
8.0,
|
|
1712
|
+
12.0,
|
|
1713
|
+
5.0,
|
|
1714
|
+
10.0,
|
|
1715
|
+
15.0,
|
|
1716
|
+
6.0,
|
|
1717
|
+
12.0,
|
|
1718
|
+
18.0,
|
|
1719
|
+
7.0,
|
|
1720
|
+
14.0,
|
|
1721
|
+
21.0,
|
|
1722
|
+
8.0,
|
|
1723
|
+
16.0,
|
|
1724
|
+
24.0,
|
|
1725
|
+
9.0,
|
|
1726
|
+
18.0,
|
|
1727
|
+
27.0,
|
|
1728
|
+
10.0,
|
|
1729
|
+
20.0,
|
|
1730
|
+
30.0,
|
|
4178
1731
|
)
|
|
1732
|
+
],
|
|
1733
|
+
devices=devices,
|
|
1734
|
+
)
|
|
4179
1735
|
|
|
4180
|
-
|
|
4181
|
-
|
|
4182
|
-
|
|
4183
|
-
|
|
4184
|
-
|
|
4185
|
-
|
|
4186
|
-
|
|
4187
|
-
add_function_test_register_kernel(TestMat, f"test_svd_{dtype.__name__}", test_svd, devices=devices, dtype=dtype)
|
|
4188
|
-
add_function_test_register_kernel(TestMat, f"test_qr_{dtype.__name__}", test_qr, devices=devices, dtype=dtype)
|
|
4189
|
-
add_function_test_register_kernel(TestMat, f"test_eig_{dtype.__name__}", test_eig, devices=devices, dtype=dtype)
|
|
4190
|
-
add_function_test_register_kernel(
|
|
4191
|
-
TestMat, f"test_transform_point_{dtype.__name__}", test_transform_point, devices=devices, dtype=dtype
|
|
4192
|
-
)
|
|
4193
|
-
add_function_test_register_kernel(
|
|
4194
|
-
TestMat, f"test_transform_vector_{dtype.__name__}", test_transform_vector, devices=devices, dtype=dtype
|
|
4195
|
-
)
|
|
4196
|
-
add_function_test_register_kernel(
|
|
4197
|
-
TestMat, f"test_determinant_{dtype.__name__}", test_determinant, devices=devices, dtype=dtype
|
|
4198
|
-
)
|
|
4199
|
-
add_function_test_register_kernel(
|
|
4200
|
-
TestMat, f"test_skew_{dtype.__name__}", test_skew, devices=devices, dtype=dtype
|
|
4201
|
-
)
|
|
1736
|
+
for dtype in np_signed_int_types + np_float_types:
|
|
1737
|
+
add_function_test_register_kernel(
|
|
1738
|
+
TestMat, f"test_negation_{dtype.__name__}", test_negation, devices=devices, dtype=dtype
|
|
1739
|
+
)
|
|
1740
|
+
add_function_test_register_kernel(
|
|
1741
|
+
TestMat, f"test_subtraction_{dtype.__name__}", test_subtraction, devices=devices, dtype=dtype
|
|
1742
|
+
)
|
|
4202
1743
|
|
|
4203
|
-
|
|
1744
|
+
add_function_test(
|
|
1745
|
+
TestMat,
|
|
1746
|
+
"test_anon_constructor_error_shape_keyword_missing",
|
|
1747
|
+
test_anon_constructor_error_shape_keyword_missing,
|
|
1748
|
+
devices=devices,
|
|
1749
|
+
)
|
|
1750
|
+
add_function_test(
|
|
1751
|
+
TestMat,
|
|
1752
|
+
"test_anon_constructor_error_dtype_keyword_missing",
|
|
1753
|
+
test_anon_constructor_error_dtype_keyword_missing,
|
|
1754
|
+
devices=devices,
|
|
1755
|
+
)
|
|
1756
|
+
add_function_test(
|
|
1757
|
+
TestMat,
|
|
1758
|
+
"test_anon_constructor_error_shape_mismatch",
|
|
1759
|
+
test_anon_constructor_error_shape_mismatch,
|
|
1760
|
+
devices=devices,
|
|
1761
|
+
)
|
|
1762
|
+
add_function_test(
|
|
1763
|
+
TestMat,
|
|
1764
|
+
"test_anon_constructor_error_invalid_arg_count",
|
|
1765
|
+
test_anon_constructor_error_invalid_arg_count,
|
|
1766
|
+
devices=devices,
|
|
1767
|
+
)
|
|
1768
|
+
add_function_test(
|
|
1769
|
+
TestMat,
|
|
1770
|
+
"test_tpl_constructor_error_incompatible_sizes",
|
|
1771
|
+
test_tpl_constructor_error_incompatible_sizes,
|
|
1772
|
+
devices=devices,
|
|
1773
|
+
)
|
|
1774
|
+
add_function_test(
|
|
1775
|
+
TestMat,
|
|
1776
|
+
"test_tpl_constructor_error_invalid_scalar_type",
|
|
1777
|
+
test_tpl_constructor_error_invalid_scalar_type,
|
|
1778
|
+
devices=devices,
|
|
1779
|
+
)
|
|
1780
|
+
add_function_test(
|
|
1781
|
+
TestMat,
|
|
1782
|
+
"test_tpl_constructor_error_invalid_vector_count",
|
|
1783
|
+
test_tpl_constructor_error_invalid_vector_count,
|
|
1784
|
+
devices=devices,
|
|
1785
|
+
)
|
|
1786
|
+
add_function_test(
|
|
1787
|
+
TestMat,
|
|
1788
|
+
"test_tpl_constructor_error_invalid_vector_shape",
|
|
1789
|
+
test_tpl_constructor_error_invalid_vector_shape,
|
|
1790
|
+
devices=devices,
|
|
1791
|
+
)
|
|
1792
|
+
add_function_test(
|
|
1793
|
+
TestMat,
|
|
1794
|
+
"test_tpl_constructor_error_invalid_arg_count",
|
|
1795
|
+
test_tpl_constructor_error_invalid_arg_count,
|
|
1796
|
+
devices=devices,
|
|
1797
|
+
)
|
|
1798
|
+
add_function_test(TestMat, "test_tpl_ops_with_anon", test_tpl_ops_with_anon)
|
|
1799
|
+
|
|
1800
|
+
for dtype in np_float_types:
|
|
1801
|
+
add_function_test(
|
|
1802
|
+
TestMat, f"test_py_arithmetic_ops_{dtype.__name__}", test_py_arithmetic_ops, devices=None, dtype=dtype
|
|
1803
|
+
)
|
|
1804
|
+
add_function_test_register_kernel(
|
|
1805
|
+
TestMat, f"test_quat_constructor_{dtype.__name__}", test_quat_constructor, devices=devices, dtype=dtype
|
|
1806
|
+
)
|
|
1807
|
+
add_function_test_register_kernel(
|
|
1808
|
+
TestMat, f"test_inverse_{dtype.__name__}", test_inverse, devices=devices, dtype=dtype
|
|
1809
|
+
)
|
|
1810
|
+
add_function_test_register_kernel(TestMat, f"test_svd_{dtype.__name__}", test_svd, devices=devices, dtype=dtype)
|
|
1811
|
+
add_function_test_register_kernel(TestMat, f"test_qr_{dtype.__name__}", test_qr, devices=devices, dtype=dtype)
|
|
1812
|
+
add_function_test_register_kernel(TestMat, f"test_eig_{dtype.__name__}", test_eig, devices=devices, dtype=dtype)
|
|
1813
|
+
add_function_test_register_kernel(
|
|
1814
|
+
TestMat, f"test_transform_point_{dtype.__name__}", test_transform_point, devices=devices, dtype=dtype
|
|
1815
|
+
)
|
|
1816
|
+
add_function_test_register_kernel(
|
|
1817
|
+
TestMat, f"test_transform_vector_{dtype.__name__}", test_transform_vector, devices=devices, dtype=dtype
|
|
1818
|
+
)
|
|
1819
|
+
add_function_test_register_kernel(
|
|
1820
|
+
TestMat, f"test_determinant_{dtype.__name__}", test_determinant, devices=devices, dtype=dtype
|
|
1821
|
+
)
|
|
1822
|
+
add_function_test_register_kernel(TestMat, f"test_skew_{dtype.__name__}", test_skew, devices=devices, dtype=dtype)
|
|
4204
1823
|
|
|
4205
1824
|
|
|
4206
1825
|
if __name__ == "__main__":
|
|
4207
|
-
|
|
1826
|
+
wp.build.clear_kernel_cache()
|
|
4208
1827
|
unittest.main(verbosity=2, failfast=True)
|