warp-lang 0.10.1__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +10 -4
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +5 -3
- warp/build_dll.py +29 -9
- warp/builtins.py +868 -507
- warp/codegen.py +1074 -638
- warp/config.py +3 -3
- warp/constants.py +6 -0
- warp/context.py +715 -222
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +147 -44
- warp/native/builtin.h +122 -149
- warp/native/bvh.cpp +73 -325
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +34 -43
- warp/native/clang/clang.cpp +13 -8
- warp/native/crt.h +2 -0
- warp/native/cuda_crt.h +5 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -952
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +1 -1
- warp/native/marching.cu +157 -161
- warp/native/mat.h +80 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +33 -108
- warp/native/mesh.cu +114 -23
- warp/native/mesh.h +446 -46
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +1 -1
- warp/native/reduce.cu +10 -12
- warp/native/runlength_encode.cu +6 -10
- warp/native/scan.cu +8 -11
- warp/native/sparse.cpp +4 -4
- warp/native/sparse.cu +164 -154
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +14 -30
- warp/native/vec.h +107 -23
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +560 -30
- warp/native/warp.cu +431 -44
- warp/native/warp.h +13 -4
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +335 -119
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +8 -0
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +158 -16
- warp/sim/model.py +795 -291
- warp/sim/render.py +3 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +640 -150
- warp/stubs.py +606 -267
- warp/tape.py +61 -10
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +212 -97
- warp/tests/test_array_reduce.py +57 -23
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +42 -18
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +208 -130
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +75 -75
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -86
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +178 -109
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +32 -31
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +14 -41
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +517 -2898
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +140 -22
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +168 -20
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +261 -63
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +268 -63
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -2050
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +9 -6
- warp/types.py +1089 -366
- warp/utils.py +93 -387
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/tests/test_all.py +0 -219
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.10.1.dist-info/METADATA +0 -21
- warp_lang-0.10.1.dist-info/RECORD +0 -188
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/LICENSE.md +0 -0
- {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,398 @@
|
|
|
1
|
+
################################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
4
|
+
# SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
#
|
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
|
7
|
+
# modification, are permitted provided that the following conditions are met:
|
|
8
|
+
#
|
|
9
|
+
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
10
|
+
# list of conditions and the following disclaimer.
|
|
11
|
+
#
|
|
12
|
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
13
|
+
# this list of conditions and the following disclaimer in the documentation
|
|
14
|
+
# and/or other materials provided with the distribution.
|
|
15
|
+
#
|
|
16
|
+
# 3. Neither the name of the copyright holder nor the names of its
|
|
17
|
+
# contributors may be used to endorse or promote products derived from
|
|
18
|
+
# this software without specific prior written permission.
|
|
19
|
+
#
|
|
20
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
21
|
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
22
|
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
23
|
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
24
|
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
25
|
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
26
|
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
27
|
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
28
|
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
29
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
30
|
+
#
|
|
31
|
+
################################################################################
|
|
32
|
+
from pycutlass import *
|
|
33
|
+
from pycutlass.c_types import get_reduction_params
|
|
34
|
+
import cutlass
|
|
35
|
+
from cuda import cuda
|
|
36
|
+
try:
|
|
37
|
+
import torch
|
|
38
|
+
torch_available = True
|
|
39
|
+
except ImportError:
|
|
40
|
+
torch_available = False
|
|
41
|
+
import numpy as np
|
|
42
|
+
from typing import Union
|
|
43
|
+
from cuda import cudart
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class ReductionOperation:
|
|
47
|
+
pass
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
class ReductionArguments:
|
|
51
|
+
"""
|
|
52
|
+
Arguments of reduction
|
|
53
|
+
"""
|
|
54
|
+
|
|
55
|
+
def __init__(self, operation: ReductionOperation,
|
|
56
|
+
problem_size: 'list[int]', partitions: int,
|
|
57
|
+
workspace: cuda.CUdeviceptr,
|
|
58
|
+
destination: 'Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]',
|
|
59
|
+
source: 'Union[cuda.CUdeviceptr, np.ndarray, torch.Tensor]', **kwargs) -> None:
|
|
60
|
+
|
|
61
|
+
# tensor_C can be interpreted as the bias with bias=True in keyword args
|
|
62
|
+
if "bias" in kwargs.keys():
|
|
63
|
+
self.bias = kwargs["bias"]
|
|
64
|
+
else:
|
|
65
|
+
# by default, tensor_C is not bias
|
|
66
|
+
self.bias = False
|
|
67
|
+
|
|
68
|
+
self.operation = operation
|
|
69
|
+
#: pointer to the workspace
|
|
70
|
+
self.ptr_workspace = workspace
|
|
71
|
+
|
|
72
|
+
#: number of split-k partitions
|
|
73
|
+
self.partitions = partitions
|
|
74
|
+
|
|
75
|
+
if isinstance(destination, np.ndarray):
|
|
76
|
+
self.host_D = destination
|
|
77
|
+
self.destination_buffer = NumpyFrontend.argument(destination, True)
|
|
78
|
+
self.source_buffer = NumpyFrontend.argument(source, False)
|
|
79
|
+
self.ptr_destination = cuda.CUdeviceptr(
|
|
80
|
+
self.destination_buffer.ptr)
|
|
81
|
+
self.ptr_source = cuda.CUdeviceptr(self.source_buffer.ptr)
|
|
82
|
+
elif torch_available and isinstance(destination, torch.Tensor):
|
|
83
|
+
self.ptr_destination = TorchFrontend.argument(destination)
|
|
84
|
+
self.ptr_source = TorchFrontend.argument(source)
|
|
85
|
+
elif isinstance(destination, cuda.CUdeviceptr):
|
|
86
|
+
self.ptr_destination = destination
|
|
87
|
+
self.ptr_source = source
|
|
88
|
+
else:
|
|
89
|
+
raise TypeError("unknown Type")
|
|
90
|
+
|
|
91
|
+
self.problem_size = MatrixCoord_(
|
|
92
|
+
problem_size[0], problem_size[1]
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
self.partition_stride = problem_size[0] * \
|
|
96
|
+
problem_size[1] * DataTypeSize[operation.C.element] // 8
|
|
97
|
+
|
|
98
|
+
if "output_op" in kwargs.keys():
|
|
99
|
+
self.output_op = kwargs['output_op']
|
|
100
|
+
else:
|
|
101
|
+
self.output_op = self.operation.epilogue_type(1.0, 0.0)
|
|
102
|
+
|
|
103
|
+
# get arguments
|
|
104
|
+
self.get_arguments()
|
|
105
|
+
|
|
106
|
+
@staticmethod
|
|
107
|
+
def get_tensor_ref(extent: 'tuple[int]', device_ptr: cuda.CUdeviceptr, layout: cutlass.layout):
|
|
108
|
+
if layout == cutlass.RowMajor:
|
|
109
|
+
return TensorRef2D_(int(device_ptr), extent[1])
|
|
110
|
+
else:
|
|
111
|
+
raise ValueError("unknonwn layout type")
|
|
112
|
+
|
|
113
|
+
def get_arguments(self):
|
|
114
|
+
ref_workspace = ReductionArguments.get_tensor_ref(
|
|
115
|
+
extent=[self.problem_size.row, self.problem_size.column],
|
|
116
|
+
device_ptr=self.ptr_workspace, layout=cutlass.RowMajor)
|
|
117
|
+
if self.bias:
|
|
118
|
+
ref_source = ReductionArguments.get_tensor_ref(
|
|
119
|
+
extent=[0, 0],
|
|
120
|
+
device_ptr=self.ptr_source, layout=cutlass.RowMajor)
|
|
121
|
+
else:
|
|
122
|
+
ref_source = ReductionArguments.get_tensor_ref(
|
|
123
|
+
extent=[self.problem_size.row, self.problem_size.column],
|
|
124
|
+
device_ptr=self.ptr_source, layout=cutlass.RowMajor)
|
|
125
|
+
|
|
126
|
+
ref_destination = ReductionArguments.get_tensor_ref(
|
|
127
|
+
extent=[self.problem_size.row, self.problem_size.column],
|
|
128
|
+
device_ptr=self.ptr_destination, layout=cutlass.RowMajor)
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
self.c_arguments = self.operation.argument_type(
|
|
132
|
+
self.problem_size, self.partitions,
|
|
133
|
+
self.partition_stride, ref_workspace,
|
|
134
|
+
ref_destination, ref_source,
|
|
135
|
+
self.output_op
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
params_ = self.operation.rt_module.get_args(
|
|
139
|
+
ctypes.byref(self.c_arguments))
|
|
140
|
+
self.host_workspace = bytearray(params_.contents)
|
|
141
|
+
|
|
142
|
+
def sync(self):
|
|
143
|
+
err, = cudart.cudaDeviceSynchronize()
|
|
144
|
+
if err != cuda.CUresult.CUDA_SUCCESS:
|
|
145
|
+
raise RuntimeError("CUDA Error %s" % str(err))
|
|
146
|
+
|
|
147
|
+
if hasattr(self, "host_D"):
|
|
148
|
+
err, = cuda.cuMemcpyDtoH(
|
|
149
|
+
self.host_D, self.ptr_destination, self.host_D.size * self.host_D.itemsize)
|
|
150
|
+
if err != cuda.CUresult.CUDA_SUCCESS:
|
|
151
|
+
raise RuntimeError("CUDA Error %s" % str(err))
|
|
152
|
+
|
|
153
|
+
def free(self):
|
|
154
|
+
if hasattr(self, "destination_buffer"):
|
|
155
|
+
del self.destination_buffer
|
|
156
|
+
if hasattr(self, "source_buffer"):
|
|
157
|
+
del self.source_buffer
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
class ReductionRT(ExecutableOperation):
|
|
161
|
+
"""
|
|
162
|
+
ReductionRT manages the CUTLASS runtime components for reduction
|
|
163
|
+
"""
|
|
164
|
+
KernelTemplate = r'''
|
|
165
|
+
extern "C"
|
|
166
|
+
__global__ void
|
|
167
|
+
${operation_name}(${operation_name}${operation_suffix}::Params params) {
|
|
168
|
+
|
|
169
|
+
// Dynamic shared memory base pointer
|
|
170
|
+
extern __shared__ int SharedStorageBase[];
|
|
171
|
+
|
|
172
|
+
// Declare pointer to dynamic shared memory.
|
|
173
|
+
${operation_name}${operation_suffix}::SharedStorage *shared_storage =
|
|
174
|
+
reinterpret_cast<${operation_name}${operation_suffix}::SharedStorage *>(SharedStorageBase);
|
|
175
|
+
|
|
176
|
+
${operation_name}${operation_suffix} op;
|
|
177
|
+
|
|
178
|
+
op(params, *shared_storage);
|
|
179
|
+
}
|
|
180
|
+
'''
|
|
181
|
+
HostTemplate = r'''
|
|
182
|
+
extern "C" {
|
|
183
|
+
// Get the size of params in bytes
|
|
184
|
+
int ${operation_name}_get_param_size(){
|
|
185
|
+
return sizeof(${operation_name}${operation_suffix}::Params);
|
|
186
|
+
}
|
|
187
|
+
|
|
188
|
+
// Get the size of dynamic shared memory in bytes
|
|
189
|
+
int ${operation_name}_shared_memory_size() {
|
|
190
|
+
return int(sizeof(${operation_name}${operation_suffix}::SharedStorage));
|
|
191
|
+
}
|
|
192
|
+
|
|
193
|
+
// Get the params as byte array
|
|
194
|
+
char* ${operation_name}_get_params(${operation_name}${operation_suffix}::Params* params){
|
|
195
|
+
char *bytes = ((char*)(params));
|
|
196
|
+
char *output = new char[sizeof(${operation_name}${operation_suffix}::Params)];
|
|
197
|
+
for (unsigned int i = 0; i < sizeof(${operation_name}${operation_suffix}::Params); i ++)
|
|
198
|
+
output[i] = bytes[i];
|
|
199
|
+
|
|
200
|
+
return output;
|
|
201
|
+
}
|
|
202
|
+
}
|
|
203
|
+
'''
|
|
204
|
+
|
|
205
|
+
def __init__(self, operation: ReductionOperation):
|
|
206
|
+
super().__init__(operation)
|
|
207
|
+
|
|
208
|
+
self.operation: ReductionOperation = operation
|
|
209
|
+
self.emitter = EmitReductionInstance('_type')
|
|
210
|
+
|
|
211
|
+
self.elements_per_access = self.operation.count
|
|
212
|
+
self.argument_type, self.epilogue_type = get_reduction_params(operation.epilogue_functor)
|
|
213
|
+
self.argtype = [ctypes.POINTER(self.argument_type)]
|
|
214
|
+
|
|
215
|
+
def emit(self):
|
|
216
|
+
return self.emitter.emit(self.operation)
|
|
217
|
+
|
|
218
|
+
def plan(self, arguments: ReductionArguments):
|
|
219
|
+
block_shape = [self.operation.shape.column(
|
|
220
|
+
) // self.elements_per_access, self.operation.shape.row(), 1]
|
|
221
|
+
grid_shape = [
|
|
222
|
+
(arguments.problem_size.row + self.operation.shape.row() -
|
|
223
|
+
1) // self.operation.shape.row(),
|
|
224
|
+
(arguments.problem_size.column + self.operation.shape.column() -
|
|
225
|
+
1) // self.operation.shape.column(),
|
|
226
|
+
1
|
|
227
|
+
]
|
|
228
|
+
return LaunchConfiguration(grid_shape, block_shape, self.shared_memory_capacity)
|
|
229
|
+
|
|
230
|
+
def initialize(self):
|
|
231
|
+
err, = cuda.cuFuncSetAttribute(
|
|
232
|
+
self.kernel,
|
|
233
|
+
attrib=cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES,
|
|
234
|
+
value=self.shared_memory_capacity)
|
|
235
|
+
if err != cuda.CUresult.CUDA_SUCCESS:
|
|
236
|
+
raise RuntimeError('Cuda Error: {}'.format(err))
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
class ReductionOperation:
|
|
240
|
+
"""
|
|
241
|
+
CUTLASS Reduction Operation
|
|
242
|
+
shape: shape of CTA
|
|
243
|
+
outputop: output operator
|
|
244
|
+
r
|
|
245
|
+
"""
|
|
246
|
+
|
|
247
|
+
def __init__(self, shape: cutlass.MatrixCoord, C: TensorDescription,
|
|
248
|
+
element_accumulator, element_workspace=None,
|
|
249
|
+
element_compute=None, epilogue_functor=None,
|
|
250
|
+
count: int = 1, partitions_per_stage: int = 4) -> None:
|
|
251
|
+
""" Constructor
|
|
252
|
+
"""
|
|
253
|
+
|
|
254
|
+
self.shape = shape
|
|
255
|
+
#: epilogue functor (default: LinearCombination)
|
|
256
|
+
self.epilogue_functor = epilogue_functor
|
|
257
|
+
#: datatype of accumulator
|
|
258
|
+
self.element_accumulator = element_accumulator
|
|
259
|
+
|
|
260
|
+
if element_workspace is None:
|
|
261
|
+
#: datatype of workspace
|
|
262
|
+
self.element_workspace = element_accumulator
|
|
263
|
+
else:
|
|
264
|
+
#: datatype of workspace
|
|
265
|
+
self.element_workspace = element_workspace
|
|
266
|
+
|
|
267
|
+
if element_compute is None:
|
|
268
|
+
#: datatype of workspace
|
|
269
|
+
self.element_compute = element_accumulator
|
|
270
|
+
else:
|
|
271
|
+
#: datatype of workspace
|
|
272
|
+
self.element_compute = element_compute
|
|
273
|
+
|
|
274
|
+
#: datatype of output
|
|
275
|
+
self.element_output = C.element
|
|
276
|
+
|
|
277
|
+
#: operand C
|
|
278
|
+
self.C: TensorDescription = C
|
|
279
|
+
|
|
280
|
+
#: reduce op processing size
|
|
281
|
+
self.count: int = count
|
|
282
|
+
|
|
283
|
+
#: number of partitions to reduce per stage
|
|
284
|
+
self.partitions_per_stage: int = partitions_per_stage
|
|
285
|
+
|
|
286
|
+
self.rt_module: ReductionRT = ReductionRT(self)
|
|
287
|
+
self.argument_type = self.rt_module.argument_type
|
|
288
|
+
self.epilogue_type = self.rt_module.epilogue_type
|
|
289
|
+
|
|
290
|
+
#
|
|
291
|
+
def extended_name(self):
|
|
292
|
+
extend_name = "${element_workspace}_${element_accumulator}_${element_compute}_${element_output}"
|
|
293
|
+
|
|
294
|
+
return SubstituteTemplate(extend_name,
|
|
295
|
+
{
|
|
296
|
+
'element_workspace': DataTypeNames[self.element_workspace],
|
|
297
|
+
'element_accumulator': DataTypeNames[self.element_accumulator],
|
|
298
|
+
'element_compute': DataTypeNames[self.element_compute],
|
|
299
|
+
'element_output': DataTypeNames[self.element_output]
|
|
300
|
+
})
|
|
301
|
+
|
|
302
|
+
#
|
|
303
|
+
def configuration_name(self):
|
|
304
|
+
''' The full procedural name indicates architecture, extended name, tile size'''
|
|
305
|
+
|
|
306
|
+
configuration_name = "cutlass_reduce_split_k_${extended_name}_${threadblock}"
|
|
307
|
+
|
|
308
|
+
threadblock = "%dx%d" % (
|
|
309
|
+
self.shape.row(),
|
|
310
|
+
self.shape.column()
|
|
311
|
+
)
|
|
312
|
+
|
|
313
|
+
return SubstituteTemplate(
|
|
314
|
+
configuration_name,
|
|
315
|
+
{
|
|
316
|
+
'extended_name': self.extended_name(),
|
|
317
|
+
'threadblock': threadblock
|
|
318
|
+
}
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
#
|
|
322
|
+
def procedural_name(self):
|
|
323
|
+
''' The full procedural name indicates architeture, extended name, tile size'''
|
|
324
|
+
return self.configuration_name()
|
|
325
|
+
|
|
326
|
+
def run(self, arguments: ReductionArguments) -> cuda.CUresult:
|
|
327
|
+
"""
|
|
328
|
+
Configure and launch the cuda kernel with input arguments
|
|
329
|
+
"""
|
|
330
|
+
# get launch configuration
|
|
331
|
+
launch_config = self.rt_module.plan(arguments)
|
|
332
|
+
|
|
333
|
+
# get the host and device workspace
|
|
334
|
+
host_workspace = arguments.host_workspace
|
|
335
|
+
device_workspace = None
|
|
336
|
+
|
|
337
|
+
# launch the kernel
|
|
338
|
+
err = self.rt_module.run(
|
|
339
|
+
host_workspace, device_workspace, launch_config)
|
|
340
|
+
|
|
341
|
+
if err != cuda.CUresult.CUDA_SUCCESS:
|
|
342
|
+
raise RuntimeError('CUDA Error %s' % str(err))
|
|
343
|
+
|
|
344
|
+
return err
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+
class EmitReductionInstance:
|
|
348
|
+
def __init__(self, operation_suffix='') -> None:
|
|
349
|
+
self.operation_suffix = operation_suffix
|
|
350
|
+
self.includes = [
|
|
351
|
+
"cutlass/cutlass.h",
|
|
352
|
+
"cutlass/numeric_types.h",
|
|
353
|
+
"cutlass/arch/arch.h",
|
|
354
|
+
"cutlass/arch/mma.h",
|
|
355
|
+
"cutlass/layout/matrix.h",
|
|
356
|
+
"cutlass/gemm/device/gemm.h",
|
|
357
|
+
"cutlass/gemm/device/gemm_universal_adapter.h",
|
|
358
|
+
"cutlass/gemm/kernel/default_gemm_universal.h",
|
|
359
|
+
"cutlass/reduction/kernel/reduce_split_k.h",
|
|
360
|
+
"cutlass/reduction/thread/reduction_operators.h"
|
|
361
|
+
]
|
|
362
|
+
self.template = """
|
|
363
|
+
// Reduction kernel instance
|
|
364
|
+
using ${operation_name}_base =
|
|
365
|
+
typename cutlass::reduction::kernel::ReduceSplitK<
|
|
366
|
+
cutlass::MatrixShape<${shape_row}, ${shape_column}>,
|
|
367
|
+
${epilogue_functor},
|
|
368
|
+
cutlass::reduction::thread::ReduceAdd<
|
|
369
|
+
${element_accumulator},
|
|
370
|
+
${element_output},
|
|
371
|
+
${count}>,
|
|
372
|
+
${partition_per_stage}>;
|
|
373
|
+
|
|
374
|
+
struct ${operation_name}${operation_suffix}:
|
|
375
|
+
public ${operation_name}_base { };
|
|
376
|
+
"""
|
|
377
|
+
|
|
378
|
+
def emit(self, operation: ReductionOperation):
|
|
379
|
+
|
|
380
|
+
epilogue_vector_length = int(min(
|
|
381
|
+
operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element])
|
|
382
|
+
|
|
383
|
+
values = {
|
|
384
|
+
'operation_name': operation.configuration_name(),
|
|
385
|
+
'operation_suffix': self.operation_suffix,
|
|
386
|
+
'shape_row': str(operation.shape.row()),
|
|
387
|
+
'shape_column': str(operation.shape.column()),
|
|
388
|
+
'epilogue_functor': operation.epilogue_functor.emit(),
|
|
389
|
+
'element_output': DataTypeTag[operation.element_output],
|
|
390
|
+
'epilogue_vector_length': str(epilogue_vector_length),
|
|
391
|
+
'element_accumulator': DataTypeTag[operation.element_accumulator],
|
|
392
|
+
'element_compute': DataTypeTag[operation.element_compute],
|
|
393
|
+
'element_workspace': DataTypeTag[operation.element_workspace],
|
|
394
|
+
'count': str(operation.count),
|
|
395
|
+
'partition_per_stage': str(operation.partitions_per_stage)
|
|
396
|
+
}
|
|
397
|
+
|
|
398
|
+
return SubstituteTemplate(self.template, values)
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
################################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
4
|
+
# SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
#
|
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
|
7
|
+
# modification, are permitted provided that the following conditions are met:
|
|
8
|
+
#
|
|
9
|
+
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
10
|
+
# list of conditions and the following disclaimer.
|
|
11
|
+
#
|
|
12
|
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
13
|
+
# this list of conditions and the following disclaimer in the documentation
|
|
14
|
+
# and/or other materials provided with the distribution.
|
|
15
|
+
#
|
|
16
|
+
# 3. Neither the name of the copyright holder nor the names of its
|
|
17
|
+
# contributors may be used to endorse or promote products derived from
|
|
18
|
+
# this software without specific prior written permission.
|
|
19
|
+
#
|
|
20
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
21
|
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
22
|
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
23
|
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
24
|
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
25
|
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
26
|
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
27
|
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
28
|
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
29
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
30
|
+
#
|
|
31
|
+
################################################################################
|
|
32
|
+
|
|
33
|
+
from typeguard import typechecked
|
|
34
|
+
import numpy as np
|
|
35
|
+
try:
|
|
36
|
+
import torch
|
|
37
|
+
torch_available = True
|
|
38
|
+
except ImportError:
|
|
39
|
+
torch_available = False
|
|
40
|
+
from cuda import cuda
|
|
41
|
+
try:
|
|
42
|
+
import cupy as cp
|
|
43
|
+
cupy_available = True
|
|
44
|
+
except ImportError:
|
|
45
|
+
cupy_available = False
|
|
46
|
+
import cutlass
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
# @typechecked
|
|
50
|
+
class TensorRef:
|
|
51
|
+
"""
|
|
52
|
+
Python Wrapper for cutlass.TensorRef
|
|
53
|
+
"""
|
|
54
|
+
def __init__(self, tensor, dtype, layout) -> None:
|
|
55
|
+
if isinstance(tensor, np.ndarray):
|
|
56
|
+
ptr = cuda.CUdeviceptr(tensor.__array_interface__['data'][0])
|
|
57
|
+
elif torch_available and isinstance(tensor, torch.Tensor):
|
|
58
|
+
ptr = cuda.CUdeviceptr(tensor.data_ptr())
|
|
59
|
+
elif cupy_available and isinstance(tensor, cp.ndarray):
|
|
60
|
+
ptr = cuda.CUdeviceptr(int(tensor.data.ptr))
|
|
61
|
+
elif isinstance(tensor, cuda.CUdeviceptr):
|
|
62
|
+
ptr = tensor
|
|
63
|
+
elif isinstance(tensor, int):
|
|
64
|
+
ptr = cuda.CUdeviceptr(tensor)
|
|
65
|
+
else:
|
|
66
|
+
raise NotImplementedError(tensor)
|
|
67
|
+
|
|
68
|
+
# the dtype(0) is used to overload between different data types
|
|
69
|
+
# with the same layout
|
|
70
|
+
self.tensor_ref = cutlass.get_tensor_ref(int(ptr), dtype(0), layout)
|