warp-lang 0.10.1__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (300) hide show
  1. warp/__init__.py +10 -4
  2. warp/__init__.pyi +1 -0
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +5 -3
  6. warp/build_dll.py +29 -9
  7. warp/builtins.py +868 -507
  8. warp/codegen.py +1074 -638
  9. warp/config.py +3 -3
  10. warp/constants.py +6 -0
  11. warp/context.py +715 -222
  12. warp/fabric.py +326 -0
  13. warp/fem/__init__.py +27 -0
  14. warp/fem/cache.py +389 -0
  15. warp/fem/dirichlet.py +181 -0
  16. warp/fem/domain.py +263 -0
  17. warp/fem/field/__init__.py +101 -0
  18. warp/fem/field/field.py +149 -0
  19. warp/fem/field/nodal_field.py +299 -0
  20. warp/fem/field/restriction.py +21 -0
  21. warp/fem/field/test.py +181 -0
  22. warp/fem/field/trial.py +183 -0
  23. warp/fem/geometry/__init__.py +19 -0
  24. warp/fem/geometry/closest_point.py +70 -0
  25. warp/fem/geometry/deformed_geometry.py +271 -0
  26. warp/fem/geometry/element.py +744 -0
  27. warp/fem/geometry/geometry.py +186 -0
  28. warp/fem/geometry/grid_2d.py +373 -0
  29. warp/fem/geometry/grid_3d.py +435 -0
  30. warp/fem/geometry/hexmesh.py +953 -0
  31. warp/fem/geometry/partition.py +376 -0
  32. warp/fem/geometry/quadmesh_2d.py +532 -0
  33. warp/fem/geometry/tetmesh.py +840 -0
  34. warp/fem/geometry/trimesh_2d.py +577 -0
  35. warp/fem/integrate.py +1616 -0
  36. warp/fem/operator.py +191 -0
  37. warp/fem/polynomial.py +213 -0
  38. warp/fem/quadrature/__init__.py +2 -0
  39. warp/fem/quadrature/pic_quadrature.py +245 -0
  40. warp/fem/quadrature/quadrature.py +294 -0
  41. warp/fem/space/__init__.py +292 -0
  42. warp/fem/space/basis_space.py +489 -0
  43. warp/fem/space/collocated_function_space.py +105 -0
  44. warp/fem/space/dof_mapper.py +236 -0
  45. warp/fem/space/function_space.py +145 -0
  46. warp/fem/space/grid_2d_function_space.py +267 -0
  47. warp/fem/space/grid_3d_function_space.py +306 -0
  48. warp/fem/space/hexmesh_function_space.py +352 -0
  49. warp/fem/space/partition.py +350 -0
  50. warp/fem/space/quadmesh_2d_function_space.py +369 -0
  51. warp/fem/space/restriction.py +160 -0
  52. warp/fem/space/shape/__init__.py +15 -0
  53. warp/fem/space/shape/cube_shape_function.py +738 -0
  54. warp/fem/space/shape/shape_function.py +103 -0
  55. warp/fem/space/shape/square_shape_function.py +611 -0
  56. warp/fem/space/shape/tet_shape_function.py +567 -0
  57. warp/fem/space/shape/triangle_shape_function.py +429 -0
  58. warp/fem/space/tetmesh_function_space.py +292 -0
  59. warp/fem/space/topology.py +295 -0
  60. warp/fem/space/trimesh_2d_function_space.py +221 -0
  61. warp/fem/types.py +77 -0
  62. warp/fem/utils.py +495 -0
  63. warp/native/array.h +147 -44
  64. warp/native/builtin.h +122 -149
  65. warp/native/bvh.cpp +73 -325
  66. warp/native/bvh.cu +406 -23
  67. warp/native/bvh.h +34 -43
  68. warp/native/clang/clang.cpp +13 -8
  69. warp/native/crt.h +2 -0
  70. warp/native/cuda_crt.h +5 -0
  71. warp/native/cuda_util.cpp +15 -3
  72. warp/native/cuda_util.h +3 -1
  73. warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
  74. warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
  75. warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
  76. warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
  77. warp/native/cutlass/tools/library/scripts/library.py +799 -0
  78. warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
  79. warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
  80. warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
  81. warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
  82. warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
  83. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
  84. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
  85. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
  86. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
  87. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
  88. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
  89. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
  90. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
  91. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
  92. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
  93. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
  94. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
  95. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
  96. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
  97. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
  98. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
  99. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
  100. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
  101. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
  102. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
  103. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
  104. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
  105. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
  106. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
  107. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
  108. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
  109. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
  110. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
  111. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
  112. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
  113. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
  114. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
  115. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
  116. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
  117. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
  118. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
  119. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
  120. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
  121. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
  122. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
  123. warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
  124. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
  125. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
  126. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
  127. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
  128. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
  129. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
  130. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
  131. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
  132. warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
  133. warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
  134. warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
  135. warp/native/cutlass/tools/library/scripts/rt.py +796 -0
  136. warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
  137. warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
  138. warp/native/cutlass_gemm.cu +5 -3
  139. warp/native/exports.h +1240 -952
  140. warp/native/fabric.h +228 -0
  141. warp/native/hashgrid.cpp +4 -4
  142. warp/native/hashgrid.h +22 -2
  143. warp/native/intersect.h +22 -7
  144. warp/native/intersect_adj.h +8 -8
  145. warp/native/intersect_tri.h +1 -1
  146. warp/native/marching.cu +157 -161
  147. warp/native/mat.h +80 -19
  148. warp/native/matnn.h +2 -2
  149. warp/native/mesh.cpp +33 -108
  150. warp/native/mesh.cu +114 -23
  151. warp/native/mesh.h +446 -46
  152. warp/native/noise.h +272 -329
  153. warp/native/quat.h +51 -8
  154. warp/native/rand.h +45 -35
  155. warp/native/range.h +6 -2
  156. warp/native/reduce.cpp +1 -1
  157. warp/native/reduce.cu +10 -12
  158. warp/native/runlength_encode.cu +6 -10
  159. warp/native/scan.cu +8 -11
  160. warp/native/sparse.cpp +4 -4
  161. warp/native/sparse.cu +164 -154
  162. warp/native/spatial.h +2 -2
  163. warp/native/temp_buffer.h +14 -30
  164. warp/native/vec.h +107 -23
  165. warp/native/volume.h +120 -0
  166. warp/native/warp.cpp +560 -30
  167. warp/native/warp.cu +431 -44
  168. warp/native/warp.h +13 -4
  169. warp/optim/__init__.py +1 -0
  170. warp/optim/linear.py +922 -0
  171. warp/optim/sgd.py +92 -0
  172. warp/render/render_opengl.py +335 -119
  173. warp/render/render_usd.py +11 -11
  174. warp/sim/__init__.py +2 -2
  175. warp/sim/articulation.py +385 -185
  176. warp/sim/collide.py +8 -0
  177. warp/sim/import_mjcf.py +297 -106
  178. warp/sim/import_urdf.py +389 -210
  179. warp/sim/import_usd.py +198 -97
  180. warp/sim/inertia.py +17 -18
  181. warp/sim/integrator_euler.py +14 -8
  182. warp/sim/integrator_xpbd.py +158 -16
  183. warp/sim/model.py +795 -291
  184. warp/sim/render.py +3 -3
  185. warp/sim/utils.py +3 -0
  186. warp/sparse.py +640 -150
  187. warp/stubs.py +606 -267
  188. warp/tape.py +61 -10
  189. warp/tests/__main__.py +3 -6
  190. warp/tests/assets/curlnoise_golden.npy +0 -0
  191. warp/tests/assets/pnoise_golden.npy +0 -0
  192. warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
  193. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
  194. warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
  195. warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
  196. warp/tests/aux_test_unresolved_func.py +14 -0
  197. warp/tests/aux_test_unresolved_symbol.py +14 -0
  198. warp/tests/disabled_kinematics.py +239 -0
  199. warp/tests/run_coverage_serial.py +31 -0
  200. warp/tests/test_adam.py +103 -106
  201. warp/tests/test_arithmetic.py +128 -74
  202. warp/tests/test_array.py +212 -97
  203. warp/tests/test_array_reduce.py +57 -23
  204. warp/tests/test_atomic.py +64 -28
  205. warp/tests/test_bool.py +99 -0
  206. warp/tests/test_builtins_resolution.py +1292 -0
  207. warp/tests/test_bvh.py +42 -18
  208. warp/tests/test_closest_point_edge_edge.py +54 -57
  209. warp/tests/test_codegen.py +208 -130
  210. warp/tests/test_compile_consts.py +28 -20
  211. warp/tests/test_conditional.py +108 -24
  212. warp/tests/test_copy.py +10 -12
  213. warp/tests/test_ctypes.py +112 -88
  214. warp/tests/test_dense.py +21 -14
  215. warp/tests/test_devices.py +98 -0
  216. warp/tests/test_dlpack.py +75 -75
  217. warp/tests/test_examples.py +277 -0
  218. warp/tests/test_fabricarray.py +955 -0
  219. warp/tests/test_fast_math.py +15 -11
  220. warp/tests/test_fem.py +1271 -0
  221. warp/tests/test_fp16.py +53 -19
  222. warp/tests/test_func.py +187 -86
  223. warp/tests/test_generics.py +194 -49
  224. warp/tests/test_grad.py +178 -109
  225. warp/tests/test_grad_customs.py +176 -0
  226. warp/tests/test_hash_grid.py +52 -37
  227. warp/tests/test_import.py +10 -23
  228. warp/tests/test_indexedarray.py +32 -31
  229. warp/tests/test_intersect.py +18 -9
  230. warp/tests/test_large.py +141 -0
  231. warp/tests/test_launch.py +14 -41
  232. warp/tests/test_lerp.py +64 -65
  233. warp/tests/test_linear_solvers.py +154 -0
  234. warp/tests/test_lvalue.py +493 -0
  235. warp/tests/test_marching_cubes.py +12 -13
  236. warp/tests/test_mat.py +517 -2898
  237. warp/tests/test_mat_lite.py +115 -0
  238. warp/tests/test_mat_scalar_ops.py +2889 -0
  239. warp/tests/test_math.py +103 -9
  240. warp/tests/test_matmul.py +305 -69
  241. warp/tests/test_matmul_lite.py +410 -0
  242. warp/tests/test_mesh.py +71 -14
  243. warp/tests/test_mesh_query_aabb.py +41 -25
  244. warp/tests/test_mesh_query_point.py +140 -22
  245. warp/tests/test_mesh_query_ray.py +39 -22
  246. warp/tests/test_mlp.py +30 -22
  247. warp/tests/test_model.py +92 -89
  248. warp/tests/test_modules_lite.py +39 -0
  249. warp/tests/test_multigpu.py +88 -114
  250. warp/tests/test_noise.py +12 -11
  251. warp/tests/test_operators.py +16 -20
  252. warp/tests/test_options.py +11 -11
  253. warp/tests/test_pinned.py +17 -18
  254. warp/tests/test_print.py +32 -11
  255. warp/tests/test_quat.py +275 -129
  256. warp/tests/test_rand.py +18 -16
  257. warp/tests/test_reload.py +38 -34
  258. warp/tests/test_rounding.py +50 -43
  259. warp/tests/test_runlength_encode.py +168 -20
  260. warp/tests/test_smoothstep.py +9 -11
  261. warp/tests/test_snippet.py +143 -0
  262. warp/tests/test_sparse.py +261 -63
  263. warp/tests/test_spatial.py +276 -243
  264. warp/tests/test_streams.py +110 -85
  265. warp/tests/test_struct.py +268 -63
  266. warp/tests/test_tape.py +39 -21
  267. warp/tests/test_torch.py +118 -89
  268. warp/tests/test_transient_module.py +12 -13
  269. warp/tests/test_types.py +614 -0
  270. warp/tests/test_utils.py +494 -0
  271. warp/tests/test_vec.py +354 -2050
  272. warp/tests/test_vec_lite.py +73 -0
  273. warp/tests/test_vec_scalar_ops.py +2099 -0
  274. warp/tests/test_volume.py +457 -293
  275. warp/tests/test_volume_write.py +124 -134
  276. warp/tests/unittest_serial.py +35 -0
  277. warp/tests/unittest_suites.py +341 -0
  278. warp/tests/unittest_utils.py +568 -0
  279. warp/tests/unused_test_misc.py +71 -0
  280. warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
  281. warp/thirdparty/appdirs.py +36 -45
  282. warp/thirdparty/unittest_parallel.py +549 -0
  283. warp/torch.py +9 -6
  284. warp/types.py +1089 -366
  285. warp/utils.py +93 -387
  286. warp_lang-0.11.0.dist-info/METADATA +238 -0
  287. warp_lang-0.11.0.dist-info/RECORD +332 -0
  288. {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
  289. warp/tests/test_all.py +0 -219
  290. warp/tests/test_array_scan.py +0 -60
  291. warp/tests/test_base.py +0 -208
  292. warp/tests/test_unresolved_func.py +0 -7
  293. warp/tests/test_unresolved_symbol.py +0 -7
  294. warp_lang-0.10.1.dist-info/METADATA +0 -21
  295. warp_lang-0.10.1.dist-info/RECORD +0 -188
  296. /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
  297. /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
  298. /warp/tests/{test_square.py → aux_test_square.py} +0 -0
  299. {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/LICENSE.md +0 -0
  300. {warp_lang-0.10.1.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,76 @@
1
+ #################################################################################################
2
+ #
3
+ # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
4
+ # SPDX-License-Identifier: BSD-3-Clause
5
+ #
6
+ # Redistribution and use in source and binary forms, with or without
7
+ # modification, are permitted provided that the following conditions are met:
8
+ #
9
+ # 1. Redistributions of source code must retain the above copyright notice, this
10
+ # list of conditions and the following disclaimer.
11
+ #
12
+ # 2. Redistributions in binary form must reproduce the above copyright notice,
13
+ # this list of conditions and the following disclaimer in the documentation
14
+ # and/or other materials provided with the distribution.
15
+ #
16
+ # 3. Neither the name of the copyright holder nor the names of its
17
+ # contributors may be used to endorse or promote products derived from
18
+ # this software without specific prior written permission.
19
+ #
20
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
+ #
31
+ #################################################################################################
32
+
33
+ """
34
+ Utility functions for interacting with the device
35
+ """
36
+
37
+ from cuda import cudart
38
+
39
+
40
+ def check_cuda_errors(result: list):
41
+ """
42
+ Checks whether `result` contains a CUDA error raises the error as an exception, if so. Otherwise,
43
+ returns the result contained in the remaining fields of `result`.
44
+
45
+ :param result: the results of the `cudart` method, consisting of an error code and any method results
46
+ :type result: list
47
+
48
+ :return: non-error-code results from the `results` parameter
49
+ """
50
+ # `result` is of the format : (cudaError_t, result...)
51
+ err = result[0]
52
+ if err.value:
53
+ raise RuntimeError("CUDA error: {}".format(cudart.cudaGetErrorName(err)))
54
+
55
+ if len(result) == 1:
56
+ return None
57
+ elif len(result) == 2:
58
+ return result[1]
59
+ else:
60
+ return result[1:]
61
+
62
+
63
+ def device_cc(device: int = 0) -> int:
64
+ """
65
+ Returns the compute capability of the device with ID `device`.
66
+
67
+ :param device: ID of the device to query
68
+ :type device: int
69
+
70
+ :return: compute capability of the queried device (e.g., 80 for SM80)
71
+ :rtype: int
72
+ """
73
+ deviceProp = check_cuda_errors(cudart.cudaGetDeviceProperties(device))
74
+ major = str(deviceProp.major)
75
+ minor = str(deviceProp.minor)
76
+ return int(major + minor)
@@ -0,0 +1,255 @@
1
+ #################################################################################################
2
+ #
3
+ # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
4
+ # SPDX-License-Identifier: BSD-3-Clause
5
+ #
6
+ # Redistribution and use in source and binary forms, with or without
7
+ # modification, are permitted provided that the following conditions are met:
8
+ #
9
+ # 1. Redistributions of source code must retain the above copyright notice, this
10
+ # list of conditions and the following disclaimer.
11
+ #
12
+ # 2. Redistributions in binary form must reproduce the above copyright notice,
13
+ # this list of conditions and the following disclaimer in the documentation
14
+ # and/or other materials provided with the distribution.
15
+ #
16
+ # 3. Neither the name of the copyright holder nor the names of its
17
+ # contributors may be used to endorse or promote products derived from
18
+ # this software without specific prior written permission.
19
+ #
20
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
+ #
31
+ #################################################################################################
32
+
33
+ import numpy as np
34
+ import cutlass
35
+ from pycutlass.library import TensorDescription
36
+ from typing import Union
37
+ from bfloat16 import bfloat16
38
+ try:
39
+ import torch
40
+ torch_available = True
41
+ except ImportError:
42
+ torch_available = False
43
+
44
+ class ReferenceModule:
45
+ def __init__(self, A: TensorDescription, B: TensorDescription, C: TensorDescription) -> None:
46
+ self.layout_A = A.layout
47
+ self.layout_B = B.layout
48
+ self.layout_C = C.layout
49
+
50
+ def run(self, A: np.ndarray, B: np.ndarray, C: np.ndarray, problem_size: cutlass.gemm.GemmCoord, alpha: float=1.0, beta: float=0.0, bias=False, batch=1):
51
+ """
52
+ Compute the reference result on CPU
53
+ Args:
54
+ A: dense operator with shape (M, K) in row-major and (K, M) in column-major
55
+ B: dense operator with shape (K, N) in row-major and (N, K) in column-major
56
+ C: dense operator with shape (M, N) in row-major and (N, M) in column-major
57
+ """
58
+ M, N, K = problem_size.m(), problem_size.n(), problem_size.k()
59
+ if isinstance(A, np.ndarray):
60
+ if self.layout_A == cutlass.RowMajor:
61
+ A_row = np.reshape(A, newshape=(batch, M, K))
62
+ else:
63
+ A_col = np.reshape(A, newshape=(batch, K, M))
64
+ A_row = np.transpose(A_col, axes=(0, 2, 1))
65
+
66
+ if self.layout_B == cutlass.RowMajor:
67
+ B_row = np.reshape(B, newshape=(batch, K, N))
68
+ else:
69
+ B_col = np.reshape(B, newshape=(batch, N, K))
70
+ B_row = np.transpose(B_col, axes=(0, 2, 1))
71
+
72
+ if self.layout_C == cutlass.RowMajor:
73
+ if bias:
74
+ C_row = np.reshape(C, newshape=(batch, 1, N))
75
+ else:
76
+ C_row = np.reshape(C, newshape=(batch, M, N))
77
+ else:
78
+ if bias:
79
+ C_row = np.reshape(C, newshape=(batch, M, 1))
80
+ else:
81
+ C_col = np.reshape(C, newshape=(batch, N, M))
82
+ C_row = np.transpose(C_col, axes=(0, 2, 1))
83
+
84
+ if A_row.dtype == bfloat16:
85
+ # numpy's einsum doesn't support bfloat16
86
+ out_row = np.einsum("bik,bkj->bij", A_row.astype(np.float32), B_row.astype(np.float32)) * alpha + C_row * beta
87
+ out_row = out_row.astype(C_row.dtype)
88
+ else:
89
+ out_row = np.einsum("bik,bkj->bij", A_row, B_row) * alpha + C_row * beta
90
+
91
+ if self.layout_C == cutlass.ColumnMajor:
92
+ out = np.transpose(out_row, axes=(0, 2, 1))
93
+ else:
94
+ out = out_row
95
+
96
+ return out.ravel()
97
+
98
+ elif isinstance(A, torch.Tensor):
99
+ if self.layout_A == cutlass.RowMajor:
100
+ A_row = A.view((M, K))
101
+ else:
102
+ A_col = A.view((K, M))
103
+ A_row = torch.permute(A_col, (1, 0))
104
+
105
+ if self.layout_B == cutlass.RowMajor:
106
+ B_row = B.view((K, N))
107
+ else:
108
+ B_col = B.view((N, K))
109
+ B_row = torch.permute(B_col, (1, 0))
110
+
111
+ if self.layout_C == cutlass.RowMajor:
112
+ C_row = C.view((M, N))
113
+ else:
114
+ C_col = C.view((N, M))
115
+ C_row = torch.permute(C_col, (1, 0))
116
+
117
+ out_row = torch.matmul(A_row, B_row) * alpha + C_row * beta
118
+
119
+ if self.layout_C == cutlass.ColumnMajor:
120
+ out = torch.permute(out_row, (1, 0))
121
+ else:
122
+ out = out_row
123
+
124
+ return torch.flatten(out)
125
+
126
+
127
+
128
+ #####################################################################################################
129
+ # Conv2d
130
+ #####################################################################################################
131
+
132
+ if torch_available:
133
+ class Conv2dReferenceModule:
134
+ def __init__(self, A: TensorDescription, B: TensorDescription, C: TensorDescription, kind: cutlass.conv.Operator.fprop) -> None:
135
+ self.layout_A = A.layout
136
+ self.layout_B = B.layout
137
+ self.layout_C = C.layout
138
+ self.kind = kind
139
+
140
+ def run(self,
141
+ A: Union[np.ndarray, torch.Tensor],
142
+ B: Union[np.ndarray, torch.Tensor],
143
+ C: Union[np.ndarray, torch.Tensor], problem_size, alpha=1.0, beta=0.0, bias=False) -> np.ndarray:
144
+ """
145
+ Compute the reference result on CPU
146
+ """
147
+ n = problem_size.N
148
+ h = problem_size.H
149
+ w = problem_size.W
150
+ c = problem_size.C
151
+
152
+ k = problem_size.K
153
+ r = problem_size.R
154
+ s = problem_size.S
155
+
156
+ p = problem_size.P
157
+ q = problem_size.Q
158
+
159
+ stride_h = problem_size.stride_h
160
+ stride_w = problem_size.stride_w
161
+
162
+ pad_h = problem_size.pad_h
163
+ pad_w = problem_size.pad_w
164
+
165
+ dilation_h = problem_size.dilation_h
166
+ dilation_w = problem_size.dilation_w
167
+
168
+ groups = problem_size.groups
169
+
170
+ if isinstance(A, np.ndarray):
171
+ # the pytorch activation layout is NCHW
172
+ # weight layout is Cout Cin Kh Kw (also NCHW)
173
+ if self.layout_A == cutlass.TensorNHWC:
174
+ A_nhwc = np.reshape(A, newshape=(n, h, w, c))
175
+ A_torch_nhwc = torch.from_numpy(A_nhwc).to("cuda")
176
+ A_torch_nchw = torch.permute(A_torch_nhwc, (0, 3, 1, 2))
177
+
178
+ if self.layout_B == cutlass.TensorNHWC:
179
+ B_nhwc = np.reshape(B, newshape=(k, r, s, c))
180
+ B_torch_nhwc = torch.from_numpy(B_nhwc).to("cuda")
181
+ B_torch_nchw = torch.permute(B_torch_nhwc, (0, 3, 1, 2))
182
+
183
+ if self.layout_C == cutlass.TensorNHWC:
184
+ C_nhwc = np.reshape(C, newshape=(n, p, q, k))
185
+ C_torch_nhwc = torch.from_numpy(C_nhwc).to("cuda")
186
+ C_torch_nchw = torch.permute(C_torch_nhwc, (0, 3, 1, 2))
187
+
188
+ elif isinstance(A, torch.Tensor):
189
+ if self.kind == cutlass.conv.Operator.wgrad:
190
+ if self.layout_A == cutlass.TensorNHWC:
191
+ A_nhwc = A.view((n, p, q, k))
192
+ A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2))
193
+
194
+ if self.layout_B == cutlass.TensorNHWC:
195
+ B_nhwc = B.view((n, h, w, c))
196
+ B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2))
197
+
198
+ if self.layout_C == cutlass.TensorNHWC:
199
+ if bias:
200
+ C_nhwc = C.view((1, 1, 1, c))
201
+ else:
202
+ C_nhwc = C.view((k, r, s, c))
203
+ C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2))
204
+ elif self.kind == cutlass.conv.Operator.dgrad:
205
+ if self.layout_A == cutlass.TensorNHWC:
206
+ A_nhwc = A.view((n, p, q, k))
207
+ A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2))
208
+
209
+ if self.layout_B == cutlass.TensorNHWC:
210
+ B_nhwc = B.view((k, r, s, c))
211
+ B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2))
212
+
213
+ if self.layout_C == cutlass.TensorNHWC:
214
+ if bias:
215
+ C_nhwc = C.view((1, 1, 1, c))
216
+ else:
217
+ C_nhwc = C.view((n, h, w, c))
218
+ C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2))
219
+ else:
220
+ if self.layout_A == cutlass.TensorNHWC:
221
+ A_nhwc = A.view((n, h, w, c))
222
+ A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2))
223
+
224
+ if self.layout_B == cutlass.TensorNHWC:
225
+ B_nhwc = B.view((k, r, s, c))
226
+ B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2))
227
+
228
+ if self.layout_C == cutlass.TensorNHWC:
229
+ if bias:
230
+ C_nhwc = C.view((1, 1, 1, k))
231
+ else:
232
+ C_nhwc = C.view((n, p, q, k))
233
+ C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2))
234
+
235
+ if self.kind == cutlass.conv.Operator.fprop:
236
+ D_torch_nchw = alpha * torch.nn.functional.conv2d(
237
+ A_torch_nchw, B_torch_nchw, stride=(stride_h, stride_w),
238
+ padding=(pad_h, pad_w), dilation=(dilation_h, dilation_w), groups=groups) + beta * C_torch_nchw
239
+ elif self.kind == cutlass.conv.Operator.dgrad:
240
+ D_torch_nchw = alpha * torch.nn.grad.conv2d_input(
241
+ (n, c, h, w), B_torch_nchw, A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w)
242
+ ).to(torch.float32) + beta * C_torch_nchw
243
+ elif self.kind == cutlass.conv.Operator.wgrad:
244
+ D_torch_nchw = alpha * torch.nn.grad.conv2d_weight(
245
+ B_torch_nchw, (k, c, r, s), A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w)
246
+ ).to(torch.float32) + beta * C_torch_nchw
247
+
248
+
249
+ if self.layout_C == cutlass.TensorNHWC:
250
+ if isinstance(A, np.ndarray):
251
+ D_torch_out = torch.permute(D_torch_nchw, (0, 2, 3, 1)).detach().cpu().numpy()
252
+ elif isinstance(A, torch.Tensor):
253
+ D_torch_out = torch.permute(D_torch_nchw, (0, 2, 3, 1))
254
+
255
+ return D_torch_out.flatten()
@@ -0,0 +1,201 @@
1
+ # test/unit/conv/device/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu
2
+ from pycutlass.conv2d_operation import *
3
+ from pycutlass import *
4
+ from pycutlass.test import *
5
+ from pycutlass.utils.device import device_cc
6
+ import unittest
7
+
8
+
9
+ @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.")
10
+ class Conv2dDgradImplicitGemmF16nhwcF16nhwcF16nhwcTensorOpF16SM80(unittest.TestCase):
11
+ def test_SM80_Device_Conv2d_Dgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self):
12
+ math_inst = MathInstruction(
13
+ instruction_shape=[16, 8, 16],
14
+ element_a=cutlass.float16, element_b=cutlass.float16,
15
+ element_accumulator=cutlass.float16, opcode_class=cutlass.OpClass.TensorOp,
16
+ math_operation=MathOperation.multiply_add
17
+ )
18
+
19
+ A = TensorDescription(
20
+ element=math_inst.element_a,
21
+ layout=cutlass.TensorNHWC,
22
+ alignment=8)
23
+ B = TensorDescription(
24
+ element=math_inst.element_b,
25
+ layout=cutlass.TensorNHWC,
26
+ alignment=8)
27
+ C = TensorDescription(
28
+ element=cutlass.float16,
29
+ layout=cutlass.TensorNHWC,
30
+ alignment=8)
31
+
32
+ tile_description = TileDescription(
33
+ threadblock_shape=[128, 128, 64], stages=3,
34
+ warp_count=[2, 2, 1],
35
+ math_instruction=math_inst
36
+ )
37
+
38
+ epilogue_functor = LinearCombination(
39
+ C.element, C.alignment,
40
+ math_inst.element_accumulator, cutlass.float16)
41
+
42
+ operation = Conv2dOperation(
43
+ conv_kind=cutlass.conv.Operator.dgrad, iterator_algorithm=cutlass.conv.IteratorAlgorithm.analytic,
44
+ arch=80, tile_description=tile_description, A=A, B=B, C=C,
45
+ stride_support=StrideSupport.Unity,
46
+ epilogue_functor=epilogue_functor,
47
+ swizzling_functor=cutlass.IdentitySwizzle1
48
+ )
49
+
50
+ self.assertTrue(test_all_conv2d(operation))
51
+
52
+ def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self):
53
+ math_inst = MathInstruction(
54
+ instruction_shape=[16, 8, 16],
55
+ element_a=cutlass.float16, element_b=cutlass.float16,
56
+ element_accumulator=cutlass.float16, opcode_class=cutlass.OpClass.TensorOp,
57
+ math_operation=MathOperation.multiply_add
58
+ )
59
+
60
+ A = TensorDescription(
61
+ element=math_inst.element_a,
62
+ layout=cutlass.TensorNHWC,
63
+ alignment=8)
64
+ B = TensorDescription(
65
+ element=math_inst.element_b,
66
+ layout=cutlass.TensorNHWC,
67
+ alignment=8)
68
+ C = TensorDescription(
69
+ element=cutlass.float16,
70
+ layout=cutlass.TensorNHWC,
71
+ alignment=8)
72
+
73
+ tile_description = TileDescription(
74
+ threadblock_shape=[128, 128, 64], stages=3,
75
+ warp_count=[2, 2, 1],
76
+ math_instruction=math_inst
77
+ )
78
+
79
+ epilogue_functor = LinearCombination(
80
+ C.element, C.alignment,
81
+ math_inst.element_accumulator, cutlass.float16)
82
+
83
+ operation = Conv2dOperation(
84
+ conv_kind=cutlass.conv.Operator.dgrad, iterator_algorithm=cutlass.conv.IteratorAlgorithm.optimized,
85
+ arch=80, tile_description=tile_description, A=A, B=B, C=C,
86
+ stride_support=StrideSupport.Unity,
87
+ epilogue_functor=epilogue_functor,
88
+ swizzling_functor=cutlass.IdentitySwizzle1
89
+ )
90
+
91
+ self.assertTrue(test_all_conv2d(operation))
92
+
93
+ def test_SM80_Device_Conv2d_Dgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_align4(self):
94
+ math_inst = MathInstruction(
95
+ instruction_shape=[16, 8, 16],
96
+ element_a=cutlass.float16, element_b=cutlass.float16,
97
+ element_accumulator=cutlass.float16, opcode_class=cutlass.OpClass.TensorOp,
98
+ math_operation=MathOperation.multiply_add
99
+ )
100
+
101
+ A = TensorDescription(
102
+ element=math_inst.element_a,
103
+ layout=cutlass.TensorNHWC,
104
+ alignment=4)
105
+ B = TensorDescription(
106
+ element=math_inst.element_b,
107
+ layout=cutlass.TensorNHWC,
108
+ alignment=4)
109
+ C = TensorDescription(
110
+ element=cutlass.float16,
111
+ layout=cutlass.TensorNHWC,
112
+ alignment=4)
113
+
114
+ tile_description = TileDescription(
115
+ threadblock_shape=[128, 128, 64], stages=3,
116
+ warp_count=[2, 2, 1],
117
+ math_instruction=math_inst
118
+ )
119
+
120
+ epilogue_functor = LinearCombination(
121
+ C.element, C.alignment,
122
+ math_inst.element_accumulator, cutlass.float16)
123
+
124
+ operation = Conv2dOperation(
125
+ conv_kind=cutlass.conv.Operator.dgrad, iterator_algorithm=cutlass.conv.IteratorAlgorithm.analytic,
126
+ arch=80, tile_description=tile_description, A=A, B=B, C=C,
127
+ stride_support=StrideSupport.Unity,
128
+ epilogue_functor=epilogue_functor,
129
+ swizzling_functor=cutlass.IdentitySwizzle1
130
+ )
131
+
132
+ problem_sizes = [
133
+ cutlass.conv.Conv2dProblemSize(
134
+ cutlass.Tensor4DCoord(1, 4, 4, 12),
135
+ cutlass.Tensor4DCoord(8, 3, 3, 12),
136
+ cutlass.Tensor4DCoord(0, 0, 0, 0),
137
+ cutlass.MatrixCoord(3, 3),
138
+ cutlass.MatrixCoord(1, 1),
139
+ cutlass.conv.Mode.cross_correlation,
140
+ 1, 1
141
+ ),
142
+ ]
143
+
144
+ self.assertTrue(test_all_conv2d(operation, problem_sizes))
145
+
146
+ def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_align4(self):
147
+ math_inst = MathInstruction(
148
+ instruction_shape=[16, 8, 16],
149
+ element_a=cutlass.float16, element_b=cutlass.float16,
150
+ element_accumulator=cutlass.float16, opcode_class=cutlass.OpClass.TensorOp,
151
+ math_operation=MathOperation.multiply_add
152
+ )
153
+
154
+ A = TensorDescription(
155
+ element=math_inst.element_a,
156
+ layout=cutlass.TensorNHWC,
157
+ alignment=4)
158
+ B = TensorDescription(
159
+ element=math_inst.element_b,
160
+ layout=cutlass.TensorNHWC,
161
+ alignment=4)
162
+ C = TensorDescription(
163
+ element=cutlass.float16,
164
+ layout=cutlass.TensorNHWC,
165
+ alignment=4)
166
+
167
+ tile_description = TileDescription(
168
+ threadblock_shape=[128, 128, 64], stages=3,
169
+ warp_count=[2, 2, 1],
170
+ math_instruction=math_inst
171
+ )
172
+
173
+ epilogue_functor = LinearCombination(
174
+ C.element, C.alignment,
175
+ math_inst.element_accumulator, cutlass.float16)
176
+
177
+ operation = Conv2dOperation(
178
+ conv_kind=cutlass.conv.Operator.dgrad, iterator_algorithm=cutlass.conv.IteratorAlgorithm.optimized,
179
+ arch=80, tile_description=tile_description, A=A, B=B, C=C,
180
+ stride_support=StrideSupport.Unity,
181
+ epilogue_functor=epilogue_functor,
182
+ swizzling_functor=cutlass.IdentitySwizzle1
183
+ )
184
+
185
+ problem_sizes = [
186
+ cutlass.conv.Conv2dProblemSize(
187
+ cutlass.Tensor4DCoord(1, 4, 4, 12),
188
+ cutlass.Tensor4DCoord(8, 3, 3, 12),
189
+ cutlass.Tensor4DCoord(0, 0, 0, 0),
190
+ cutlass.MatrixCoord(3, 3),
191
+ cutlass.MatrixCoord(1, 1),
192
+ cutlass.conv.Mode.cross_correlation,
193
+ 1, 1
194
+ ),
195
+ ]
196
+
197
+ self.assertTrue(test_all_conv2d(operation, problem_sizes))
198
+
199
+ if __name__ == '__main__':
200
+ pycutlass.get_memory_pool(2**26, 2**26)
201
+ unittest.main()