voxcity 0.7.0__py3-none-any.whl → 1.0.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- voxcity/__init__.py +14 -14
- voxcity/downloader/ocean.py +559 -0
- voxcity/exporter/__init__.py +12 -12
- voxcity/exporter/cityles.py +633 -633
- voxcity/exporter/envimet.py +733 -728
- voxcity/exporter/magicavoxel.py +333 -333
- voxcity/exporter/netcdf.py +238 -238
- voxcity/exporter/obj.py +1480 -1480
- voxcity/generator/__init__.py +47 -44
- voxcity/generator/api.py +727 -675
- voxcity/generator/grids.py +394 -379
- voxcity/generator/io.py +94 -94
- voxcity/generator/pipeline.py +582 -282
- voxcity/generator/update.py +429 -0
- voxcity/generator/voxelizer.py +18 -6
- voxcity/geoprocessor/__init__.py +75 -75
- voxcity/geoprocessor/draw.py +1494 -1219
- voxcity/geoprocessor/merge_utils.py +91 -91
- voxcity/geoprocessor/mesh.py +806 -806
- voxcity/geoprocessor/network.py +708 -708
- voxcity/geoprocessor/raster/__init__.py +2 -0
- voxcity/geoprocessor/raster/buildings.py +435 -428
- voxcity/geoprocessor/raster/core.py +31 -0
- voxcity/geoprocessor/raster/export.py +93 -93
- voxcity/geoprocessor/raster/landcover.py +178 -51
- voxcity/geoprocessor/raster/raster.py +1 -1
- voxcity/geoprocessor/utils.py +824 -824
- voxcity/models.py +115 -113
- voxcity/simulator/solar/__init__.py +66 -43
- voxcity/simulator/solar/integration.py +336 -336
- voxcity/simulator/solar/sky.py +668 -0
- voxcity/simulator/solar/temporal.py +792 -434
- voxcity/simulator_gpu/__init__.py +115 -0
- voxcity/simulator_gpu/common/__init__.py +9 -0
- voxcity/simulator_gpu/common/geometry.py +11 -0
- voxcity/simulator_gpu/core.py +322 -0
- voxcity/simulator_gpu/domain.py +262 -0
- voxcity/simulator_gpu/environment.yml +11 -0
- voxcity/simulator_gpu/init_taichi.py +154 -0
- voxcity/simulator_gpu/integration.py +15 -0
- voxcity/simulator_gpu/kernels.py +56 -0
- voxcity/simulator_gpu/radiation.py +28 -0
- voxcity/simulator_gpu/raytracing.py +623 -0
- voxcity/simulator_gpu/sky.py +9 -0
- voxcity/simulator_gpu/solar/__init__.py +178 -0
- voxcity/simulator_gpu/solar/core.py +66 -0
- voxcity/simulator_gpu/solar/csf.py +1249 -0
- voxcity/simulator_gpu/solar/domain.py +561 -0
- voxcity/simulator_gpu/solar/epw.py +421 -0
- voxcity/simulator_gpu/solar/integration.py +2953 -0
- voxcity/simulator_gpu/solar/radiation.py +3019 -0
- voxcity/simulator_gpu/solar/raytracing.py +686 -0
- voxcity/simulator_gpu/solar/reflection.py +533 -0
- voxcity/simulator_gpu/solar/sky.py +907 -0
- voxcity/simulator_gpu/solar/solar.py +337 -0
- voxcity/simulator_gpu/solar/svf.py +446 -0
- voxcity/simulator_gpu/solar/volumetric.py +1151 -0
- voxcity/simulator_gpu/solar/voxcity.py +2953 -0
- voxcity/simulator_gpu/temporal.py +13 -0
- voxcity/simulator_gpu/utils.py +25 -0
- voxcity/simulator_gpu/view.py +32 -0
- voxcity/simulator_gpu/visibility/__init__.py +109 -0
- voxcity/simulator_gpu/visibility/geometry.py +278 -0
- voxcity/simulator_gpu/visibility/integration.py +808 -0
- voxcity/simulator_gpu/visibility/landmark.py +753 -0
- voxcity/simulator_gpu/visibility/view.py +944 -0
- voxcity/utils/__init__.py +11 -0
- voxcity/utils/classes.py +194 -0
- voxcity/utils/lc.py +80 -39
- voxcity/utils/shape.py +230 -0
- voxcity/visualizer/__init__.py +24 -24
- voxcity/visualizer/builder.py +43 -43
- voxcity/visualizer/grids.py +141 -141
- voxcity/visualizer/maps.py +187 -187
- voxcity/visualizer/renderer.py +1146 -928
- {voxcity-0.7.0.dist-info → voxcity-1.0.13.dist-info}/METADATA +56 -52
- voxcity-1.0.13.dist-info/RECORD +116 -0
- voxcity-0.7.0.dist-info/RECORD +0 -77
- {voxcity-0.7.0.dist-info → voxcity-1.0.13.dist-info}/WHEEL +0 -0
- {voxcity-0.7.0.dist-info → voxcity-1.0.13.dist-info}/licenses/AUTHORS.rst +0 -0
- {voxcity-0.7.0.dist-info → voxcity-1.0.13.dist-info}/licenses/LICENSE +0 -0
voxcity/visualizer/maps.py
CHANGED
|
@@ -1,187 +1,187 @@
|
|
|
1
|
-
from __future__ import annotations
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
import matplotlib.pyplot as plt
|
|
5
|
-
import matplotlib.colors as mcolors
|
|
6
|
-
import seaborn as sns
|
|
7
|
-
import contextily as ctx
|
|
8
|
-
from shapely.geometry import Polygon
|
|
9
|
-
from pyproj import CRS
|
|
10
|
-
|
|
11
|
-
from ..geoprocessor.raster import (
|
|
12
|
-
calculate_grid_size,
|
|
13
|
-
create_coordinate_mesh,
|
|
14
|
-
)
|
|
15
|
-
from ..geoprocessor.utils import (
|
|
16
|
-
initialize_geod,
|
|
17
|
-
calculate_distance,
|
|
18
|
-
normalize_to_one_meter,
|
|
19
|
-
setup_transformer,
|
|
20
|
-
transform_coords,
|
|
21
|
-
)
|
|
22
|
-
from ..utils.lc import get_land_cover_classes
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
def plot_grid(grid, origin, adjusted_meshsize, u_vec, v_vec, transformer, vertices, data_type, vmin=None, vmax=None, color_map=None, alpha=0.5, buf=0.2, edge=True, basemap='CartoDB light', **kwargs):
|
|
26
|
-
fig, ax = plt.subplots(figsize=(12, 12))
|
|
27
|
-
|
|
28
|
-
if data_type == 'land_cover':
|
|
29
|
-
land_cover_classes = kwargs.get('land_cover_classes')
|
|
30
|
-
colors = [mcolors.to_rgb(f'#{r:02x}{g:02x}{b:02x}') for r, g, b in land_cover_classes.keys()]
|
|
31
|
-
cmap = mcolors.ListedColormap(colors)
|
|
32
|
-
norm = mcolors.BoundaryNorm(range(len(land_cover_classes)+1), cmap.N)
|
|
33
|
-
elif data_type == 'building_height':
|
|
34
|
-
masked_grid = np.ma.masked_array(grid, mask=(np.isnan(grid) | (grid == 0)))
|
|
35
|
-
cmap = plt.cm.viridis
|
|
36
|
-
if vmin is None:
|
|
37
|
-
vmin = np.nanmin(masked_grid[masked_grid > 0])
|
|
38
|
-
if vmax is None:
|
|
39
|
-
vmax = np.nanmax(masked_grid)
|
|
40
|
-
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
41
|
-
elif data_type == 'dem':
|
|
42
|
-
cmap = plt.cm.terrain
|
|
43
|
-
if vmin is None:
|
|
44
|
-
vmin = np.nanmin(grid)
|
|
45
|
-
if vmax is None:
|
|
46
|
-
vmax = np.nanmax(grid)
|
|
47
|
-
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
48
|
-
elif data_type == 'canopy_height':
|
|
49
|
-
cmap = plt.cm.Greens
|
|
50
|
-
if vmin is None:
|
|
51
|
-
vmin = np.nanmin(grid)
|
|
52
|
-
if vmax is None:
|
|
53
|
-
vmax = np.nanmax(grid)
|
|
54
|
-
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
55
|
-
elif data_type in ('green_view_index', 'sky_view_index'):
|
|
56
|
-
cmap = plt.cm.get_cmap('BuPu_r').copy() if data_type == 'sky_view_index' else plt.cm.Greens
|
|
57
|
-
if vmin is None:
|
|
58
|
-
vmin = np.nanmin(grid)
|
|
59
|
-
if vmax is None:
|
|
60
|
-
vmax = np.nanmax(grid)
|
|
61
|
-
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
62
|
-
else:
|
|
63
|
-
cmap = plt.cm.viridis
|
|
64
|
-
if vmin is None:
|
|
65
|
-
vmin = np.nanmin(grid)
|
|
66
|
-
if vmax is None:
|
|
67
|
-
vmax = np.nanmax(grid)
|
|
68
|
-
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
69
|
-
|
|
70
|
-
if color_map:
|
|
71
|
-
cmap = sns.color_palette(color_map, as_cmap=True).copy()
|
|
72
|
-
|
|
73
|
-
grid = grid.T
|
|
74
|
-
|
|
75
|
-
for i in range(grid.shape[0]):
|
|
76
|
-
for j in range(grid.shape[1]):
|
|
77
|
-
cell = create_cell_polygon(origin, j, i, adjusted_meshsize, u_vec, v_vec) # type: ignore[name-defined]
|
|
78
|
-
x, y = cell.exterior.xy
|
|
79
|
-
x, y = zip(*[transformer.transform(lon, lat) for lat, lon in zip(x, y)])
|
|
80
|
-
value = grid[i, j]
|
|
81
|
-
if data_type == 'building_height':
|
|
82
|
-
if np.isnan(value):
|
|
83
|
-
ax.fill(x, y, alpha=alpha, fc='gray', ec='black' if edge else None, linewidth=0.1)
|
|
84
|
-
elif value == 0:
|
|
85
|
-
if edge:
|
|
86
|
-
ax.plot(x, y, color='black', linewidth=0.1)
|
|
87
|
-
elif value > 0:
|
|
88
|
-
ax.fill(x, y, alpha=alpha, fc=cmap(norm(value)), ec='black' if edge else None, linewidth=0.1)
|
|
89
|
-
elif data_type == 'canopy_height':
|
|
90
|
-
color = cmap(norm(value))
|
|
91
|
-
if value == 0:
|
|
92
|
-
if edge:
|
|
93
|
-
ax.plot(x, y, color='black', linewidth=0.1)
|
|
94
|
-
else:
|
|
95
|
-
ax.fill(x, y, alpha=alpha, fc=color, ec='black' if edge else None, linewidth=0.1)
|
|
96
|
-
elif 'view' in data_type:
|
|
97
|
-
if np.isnan(value):
|
|
98
|
-
if edge:
|
|
99
|
-
ax.plot(x, y, color='black', linewidth=0.1)
|
|
100
|
-
elif value >= 0:
|
|
101
|
-
ax.fill(x, y, alpha=alpha, fc=cmap(norm(value)), ec='black' if edge else None, linewidth=0.1)
|
|
102
|
-
else:
|
|
103
|
-
color = cmap(norm(value))
|
|
104
|
-
ax.fill(x, y, alpha=alpha, fc=color, ec='black' if edge else None, linewidth=0.1)
|
|
105
|
-
|
|
106
|
-
crs_epsg_3857 = CRS.from_epsg(3857)
|
|
107
|
-
basemaps = {
|
|
108
|
-
'CartoDB dark': ctx.providers.CartoDB.DarkMatter,
|
|
109
|
-
'CartoDB light': ctx.providers.CartoDB.Positron,
|
|
110
|
-
'CartoDB voyager': ctx.providers.CartoDB.Voyager,
|
|
111
|
-
'CartoDB light no labels': ctx.providers.CartoDB.PositronNoLabels,
|
|
112
|
-
'CartoDB dark no labels': ctx.providers.CartoDB.DarkMatterNoLabels,
|
|
113
|
-
}
|
|
114
|
-
ctx.add_basemap(ax, crs=crs_epsg_3857, source=basemaps[basemap])
|
|
115
|
-
|
|
116
|
-
all_coords = np.array(vertices)
|
|
117
|
-
x, y = zip(*[transformer.transform(lon, lat) for lat, lon in all_coords])
|
|
118
|
-
x_min, x_max = min(x), max(x)
|
|
119
|
-
y_min, y_max = min(y), max(y)
|
|
120
|
-
if x_min != x_max and y_min != y_max and buf != 0:
|
|
121
|
-
dist_x = x_max - x_min
|
|
122
|
-
dist_y = y_max - y_min
|
|
123
|
-
ax.set_xlim(x_min - buf * dist_x, x_max + buf * dist_x)
|
|
124
|
-
ax.set_ylim(y_min - buf * dist_y, y_max + buf * dist_y)
|
|
125
|
-
else:
|
|
126
|
-
ax.set_xlim(x_min, x_max)
|
|
127
|
-
ax.set_ylim(y_min, y_max)
|
|
128
|
-
|
|
129
|
-
plt.axis('off')
|
|
130
|
-
plt.tight_layout()
|
|
131
|
-
plt.show()
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
def visualize_land_cover_grid_on_map(grid, rectangle_vertices, meshsize, source='Urbanwatch', vmin=None, vmax=None, alpha=0.5, buf=0.2, edge=True, basemap='CartoDB light'):
|
|
135
|
-
geod = initialize_geod()
|
|
136
|
-
land_cover_classes = get_land_cover_classes(source)
|
|
137
|
-
vertex_0 = rectangle_vertices[0]; vertex_1 = rectangle_vertices[1]; vertex_3 = rectangle_vertices[3]
|
|
138
|
-
dist_side_1 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_1[1], vertex_1[0])
|
|
139
|
-
dist_side_2 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_3[1], vertex_3[0])
|
|
140
|
-
side_1 = np.array(vertex_1) - np.array(vertex_0)
|
|
141
|
-
side_2 = np.array(vertex_3) - np.array(vertex_0)
|
|
142
|
-
u_vec = normalize_to_one_meter(side_1, dist_side_1)
|
|
143
|
-
v_vec = normalize_to_one_meter(side_2, dist_side_2)
|
|
144
|
-
origin = np.array(rectangle_vertices[0])
|
|
145
|
-
grid_size, adjusted_meshsize = calculate_grid_size(side_1, side_2, u_vec, v_vec, meshsize)
|
|
146
|
-
transformer = setup_transformer(CRS.from_epsg(4326), CRS.from_epsg(3857))
|
|
147
|
-
plot_grid(grid, origin, adjusted_meshsize, u_vec, v_vec, transformer, rectangle_vertices, 'land_cover', alpha=alpha, buf=buf, edge=edge, basemap=basemap, land_cover_classes=land_cover_classes)
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
def visualize_building_height_grid_on_map(building_height_grid, filtered_buildings, rectangle_vertices, meshsize, vmin=None, vmax=None, color_map=None, alpha=0.5, buf=0.2, edge=True, basemap='CartoDB light'):
|
|
151
|
-
geod = initialize_geod()
|
|
152
|
-
vertex_0, vertex_1, vertex_3 = rectangle_vertices[0], rectangle_vertices[1], rectangle_vertices[3]
|
|
153
|
-
dist_side_1 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_1[1], vertex_1[0])
|
|
154
|
-
dist_side_2 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_3[1], vertex_3[0])
|
|
155
|
-
side_1 = np.array(vertex_1) - np.array(vertex_0)
|
|
156
|
-
side_2 = np.array(vertex_3) - np.array(vertex_0)
|
|
157
|
-
u_vec = normalize_to_one_meter(side_1, dist_side_1)
|
|
158
|
-
v_vec = normalize_to_one_meter(side_2, dist_side_2)
|
|
159
|
-
origin = np.array(rectangle_vertices[0])
|
|
160
|
-
_, adjusted_meshsize = calculate_grid_size(side_1, side_2, u_vec, v_vec, meshsize)
|
|
161
|
-
transformer = setup_transformer(CRS.from_epsg(4326), CRS.from_epsg(3857))
|
|
162
|
-
plot_grid(building_height_grid, origin, adjusted_meshsize, u_vec, v_vec, transformer,
|
|
163
|
-
rectangle_vertices, 'building_height', vmin=vmin, vmax=vmax, color_map=color_map, alpha=alpha, buf=buf, edge=edge, basemap=basemap, buildings=filtered_buildings)
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
def visualize_numerical_grid_on_map(canopy_height_grid, rectangle_vertices, meshsize, type, vmin=None, vmax=None, color_map=None, alpha=0.5, buf=0.2, edge=True, basemap='CartoDB light'):
|
|
167
|
-
geod = initialize_geod()
|
|
168
|
-
vertex_0, vertex_1, vertex_3 = rectangle_vertices[0], rectangle_vertices[1], rectangle_vertices[3]
|
|
169
|
-
dist_side_1 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_1[1], vertex_1[0])
|
|
170
|
-
dist_side_2 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_3[1], vertex_3[0])
|
|
171
|
-
side_1 = np.array(vertex_1) - np.array(vertex_0)
|
|
172
|
-
side_2 = np.array(vertex_3) - np.array(vertex_0)
|
|
173
|
-
u_vec = normalize_to_one_meter(side_1, dist_side_1)
|
|
174
|
-
v_vec = normalize_to_one_meter(side_2, dist_side_2)
|
|
175
|
-
origin = np.array(rectangle_vertices[0])
|
|
176
|
-
_, adjusted_meshsize = calculate_grid_size(side_1, side_2, u_vec, v_vec, meshsize)
|
|
177
|
-
transformer = setup_transformer(CRS.from_epsg(4326), CRS.from_epsg(3857))
|
|
178
|
-
plot_grid(canopy_height_grid, origin, adjusted_meshsize, u_vec, v_vec, transformer,
|
|
179
|
-
rectangle_vertices, type, vmin=vmin, vmax=vmax, color_map=color_map, alpha=alpha, buf=buf, edge=edge, basemap=basemap)
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import matplotlib.pyplot as plt
|
|
5
|
+
import matplotlib.colors as mcolors
|
|
6
|
+
import seaborn as sns
|
|
7
|
+
import contextily as ctx
|
|
8
|
+
from shapely.geometry import Polygon
|
|
9
|
+
from pyproj import CRS
|
|
10
|
+
|
|
11
|
+
from ..geoprocessor.raster import (
|
|
12
|
+
calculate_grid_size,
|
|
13
|
+
create_coordinate_mesh,
|
|
14
|
+
)
|
|
15
|
+
from ..geoprocessor.utils import (
|
|
16
|
+
initialize_geod,
|
|
17
|
+
calculate_distance,
|
|
18
|
+
normalize_to_one_meter,
|
|
19
|
+
setup_transformer,
|
|
20
|
+
transform_coords,
|
|
21
|
+
)
|
|
22
|
+
from ..utils.lc import get_land_cover_classes
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def plot_grid(grid, origin, adjusted_meshsize, u_vec, v_vec, transformer, vertices, data_type, vmin=None, vmax=None, color_map=None, alpha=0.5, buf=0.2, edge=True, basemap='CartoDB light', **kwargs):
|
|
26
|
+
fig, ax = plt.subplots(figsize=(12, 12))
|
|
27
|
+
|
|
28
|
+
if data_type == 'land_cover':
|
|
29
|
+
land_cover_classes = kwargs.get('land_cover_classes')
|
|
30
|
+
colors = [mcolors.to_rgb(f'#{r:02x}{g:02x}{b:02x}') for r, g, b in land_cover_classes.keys()]
|
|
31
|
+
cmap = mcolors.ListedColormap(colors)
|
|
32
|
+
norm = mcolors.BoundaryNorm(range(len(land_cover_classes)+1), cmap.N)
|
|
33
|
+
elif data_type == 'building_height':
|
|
34
|
+
masked_grid = np.ma.masked_array(grid, mask=(np.isnan(grid) | (grid == 0)))
|
|
35
|
+
cmap = plt.cm.viridis
|
|
36
|
+
if vmin is None:
|
|
37
|
+
vmin = np.nanmin(masked_grid[masked_grid > 0])
|
|
38
|
+
if vmax is None:
|
|
39
|
+
vmax = np.nanmax(masked_grid)
|
|
40
|
+
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
41
|
+
elif data_type == 'dem':
|
|
42
|
+
cmap = plt.cm.terrain
|
|
43
|
+
if vmin is None:
|
|
44
|
+
vmin = np.nanmin(grid)
|
|
45
|
+
if vmax is None:
|
|
46
|
+
vmax = np.nanmax(grid)
|
|
47
|
+
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
48
|
+
elif data_type == 'canopy_height':
|
|
49
|
+
cmap = plt.cm.Greens
|
|
50
|
+
if vmin is None:
|
|
51
|
+
vmin = np.nanmin(grid)
|
|
52
|
+
if vmax is None:
|
|
53
|
+
vmax = np.nanmax(grid)
|
|
54
|
+
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
55
|
+
elif data_type in ('green_view_index', 'sky_view_index'):
|
|
56
|
+
cmap = plt.cm.get_cmap('BuPu_r').copy() if data_type == 'sky_view_index' else plt.cm.Greens
|
|
57
|
+
if vmin is None:
|
|
58
|
+
vmin = np.nanmin(grid)
|
|
59
|
+
if vmax is None:
|
|
60
|
+
vmax = np.nanmax(grid)
|
|
61
|
+
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
62
|
+
else:
|
|
63
|
+
cmap = plt.cm.viridis
|
|
64
|
+
if vmin is None:
|
|
65
|
+
vmin = np.nanmin(grid)
|
|
66
|
+
if vmax is None:
|
|
67
|
+
vmax = np.nanmax(grid)
|
|
68
|
+
norm = mcolors.Normalize(vmin=vmin, vmax=vmax)
|
|
69
|
+
|
|
70
|
+
if color_map:
|
|
71
|
+
cmap = sns.color_palette(color_map, as_cmap=True).copy()
|
|
72
|
+
|
|
73
|
+
grid = grid.T
|
|
74
|
+
|
|
75
|
+
for i in range(grid.shape[0]):
|
|
76
|
+
for j in range(grid.shape[1]):
|
|
77
|
+
cell = create_cell_polygon(origin, j, i, adjusted_meshsize, u_vec, v_vec) # type: ignore[name-defined]
|
|
78
|
+
x, y = cell.exterior.xy
|
|
79
|
+
x, y = zip(*[transformer.transform(lon, lat) for lat, lon in zip(x, y)])
|
|
80
|
+
value = grid[i, j]
|
|
81
|
+
if data_type == 'building_height':
|
|
82
|
+
if np.isnan(value):
|
|
83
|
+
ax.fill(x, y, alpha=alpha, fc='gray', ec='black' if edge else None, linewidth=0.1)
|
|
84
|
+
elif value == 0:
|
|
85
|
+
if edge:
|
|
86
|
+
ax.plot(x, y, color='black', linewidth=0.1)
|
|
87
|
+
elif value > 0:
|
|
88
|
+
ax.fill(x, y, alpha=alpha, fc=cmap(norm(value)), ec='black' if edge else None, linewidth=0.1)
|
|
89
|
+
elif data_type == 'canopy_height':
|
|
90
|
+
color = cmap(norm(value))
|
|
91
|
+
if value == 0:
|
|
92
|
+
if edge:
|
|
93
|
+
ax.plot(x, y, color='black', linewidth=0.1)
|
|
94
|
+
else:
|
|
95
|
+
ax.fill(x, y, alpha=alpha, fc=color, ec='black' if edge else None, linewidth=0.1)
|
|
96
|
+
elif 'view' in data_type:
|
|
97
|
+
if np.isnan(value):
|
|
98
|
+
if edge:
|
|
99
|
+
ax.plot(x, y, color='black', linewidth=0.1)
|
|
100
|
+
elif value >= 0:
|
|
101
|
+
ax.fill(x, y, alpha=alpha, fc=cmap(norm(value)), ec='black' if edge else None, linewidth=0.1)
|
|
102
|
+
else:
|
|
103
|
+
color = cmap(norm(value))
|
|
104
|
+
ax.fill(x, y, alpha=alpha, fc=color, ec='black' if edge else None, linewidth=0.1)
|
|
105
|
+
|
|
106
|
+
crs_epsg_3857 = CRS.from_epsg(3857)
|
|
107
|
+
basemaps = {
|
|
108
|
+
'CartoDB dark': ctx.providers.CartoDB.DarkMatter,
|
|
109
|
+
'CartoDB light': ctx.providers.CartoDB.Positron,
|
|
110
|
+
'CartoDB voyager': ctx.providers.CartoDB.Voyager,
|
|
111
|
+
'CartoDB light no labels': ctx.providers.CartoDB.PositronNoLabels,
|
|
112
|
+
'CartoDB dark no labels': ctx.providers.CartoDB.DarkMatterNoLabels,
|
|
113
|
+
}
|
|
114
|
+
ctx.add_basemap(ax, crs=crs_epsg_3857, source=basemaps[basemap])
|
|
115
|
+
|
|
116
|
+
all_coords = np.array(vertices)
|
|
117
|
+
x, y = zip(*[transformer.transform(lon, lat) for lat, lon in all_coords])
|
|
118
|
+
x_min, x_max = min(x), max(x)
|
|
119
|
+
y_min, y_max = min(y), max(y)
|
|
120
|
+
if x_min != x_max and y_min != y_max and buf != 0:
|
|
121
|
+
dist_x = x_max - x_min
|
|
122
|
+
dist_y = y_max - y_min
|
|
123
|
+
ax.set_xlim(x_min - buf * dist_x, x_max + buf * dist_x)
|
|
124
|
+
ax.set_ylim(y_min - buf * dist_y, y_max + buf * dist_y)
|
|
125
|
+
else:
|
|
126
|
+
ax.set_xlim(x_min, x_max)
|
|
127
|
+
ax.set_ylim(y_min, y_max)
|
|
128
|
+
|
|
129
|
+
plt.axis('off')
|
|
130
|
+
plt.tight_layout()
|
|
131
|
+
plt.show()
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def visualize_land_cover_grid_on_map(grid, rectangle_vertices, meshsize, source='Urbanwatch', vmin=None, vmax=None, alpha=0.5, buf=0.2, edge=True, basemap='CartoDB light'):
|
|
135
|
+
geod = initialize_geod()
|
|
136
|
+
land_cover_classes = get_land_cover_classes(source)
|
|
137
|
+
vertex_0 = rectangle_vertices[0]; vertex_1 = rectangle_vertices[1]; vertex_3 = rectangle_vertices[3]
|
|
138
|
+
dist_side_1 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_1[1], vertex_1[0])
|
|
139
|
+
dist_side_2 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_3[1], vertex_3[0])
|
|
140
|
+
side_1 = np.array(vertex_1) - np.array(vertex_0)
|
|
141
|
+
side_2 = np.array(vertex_3) - np.array(vertex_0)
|
|
142
|
+
u_vec = normalize_to_one_meter(side_1, dist_side_1)
|
|
143
|
+
v_vec = normalize_to_one_meter(side_2, dist_side_2)
|
|
144
|
+
origin = np.array(rectangle_vertices[0])
|
|
145
|
+
grid_size, adjusted_meshsize = calculate_grid_size(side_1, side_2, u_vec, v_vec, meshsize)
|
|
146
|
+
transformer = setup_transformer(CRS.from_epsg(4326), CRS.from_epsg(3857))
|
|
147
|
+
plot_grid(grid, origin, adjusted_meshsize, u_vec, v_vec, transformer, rectangle_vertices, 'land_cover', alpha=alpha, buf=buf, edge=edge, basemap=basemap, land_cover_classes=land_cover_classes)
|
|
148
|
+
|
|
149
|
+
|
|
150
|
+
def visualize_building_height_grid_on_map(building_height_grid, filtered_buildings, rectangle_vertices, meshsize, vmin=None, vmax=None, color_map=None, alpha=0.5, buf=0.2, edge=True, basemap='CartoDB light'):
|
|
151
|
+
geod = initialize_geod()
|
|
152
|
+
vertex_0, vertex_1, vertex_3 = rectangle_vertices[0], rectangle_vertices[1], rectangle_vertices[3]
|
|
153
|
+
dist_side_1 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_1[1], vertex_1[0])
|
|
154
|
+
dist_side_2 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_3[1], vertex_3[0])
|
|
155
|
+
side_1 = np.array(vertex_1) - np.array(vertex_0)
|
|
156
|
+
side_2 = np.array(vertex_3) - np.array(vertex_0)
|
|
157
|
+
u_vec = normalize_to_one_meter(side_1, dist_side_1)
|
|
158
|
+
v_vec = normalize_to_one_meter(side_2, dist_side_2)
|
|
159
|
+
origin = np.array(rectangle_vertices[0])
|
|
160
|
+
_, adjusted_meshsize = calculate_grid_size(side_1, side_2, u_vec, v_vec, meshsize)
|
|
161
|
+
transformer = setup_transformer(CRS.from_epsg(4326), CRS.from_epsg(3857))
|
|
162
|
+
plot_grid(building_height_grid, origin, adjusted_meshsize, u_vec, v_vec, transformer,
|
|
163
|
+
rectangle_vertices, 'building_height', vmin=vmin, vmax=vmax, color_map=color_map, alpha=alpha, buf=buf, edge=edge, basemap=basemap, buildings=filtered_buildings)
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
def visualize_numerical_grid_on_map(canopy_height_grid, rectangle_vertices, meshsize, type, vmin=None, vmax=None, color_map=None, alpha=0.5, buf=0.2, edge=True, basemap='CartoDB light'):
|
|
167
|
+
geod = initialize_geod()
|
|
168
|
+
vertex_0, vertex_1, vertex_3 = rectangle_vertices[0], rectangle_vertices[1], rectangle_vertices[3]
|
|
169
|
+
dist_side_1 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_1[1], vertex_1[0])
|
|
170
|
+
dist_side_2 = calculate_distance(geod, vertex_0[1], vertex_0[0], vertex_3[1], vertex_3[0])
|
|
171
|
+
side_1 = np.array(vertex_1) - np.array(vertex_0)
|
|
172
|
+
side_2 = np.array(vertex_3) - np.array(vertex_0)
|
|
173
|
+
u_vec = normalize_to_one_meter(side_1, dist_side_1)
|
|
174
|
+
v_vec = normalize_to_one_meter(side_2, dist_side_2)
|
|
175
|
+
origin = np.array(rectangle_vertices[0])
|
|
176
|
+
_, adjusted_meshsize = calculate_grid_size(side_1, side_2, u_vec, v_vec, meshsize)
|
|
177
|
+
transformer = setup_transformer(CRS.from_epsg(4326), CRS.from_epsg(3857))
|
|
178
|
+
plot_grid(canopy_height_grid, origin, adjusted_meshsize, u_vec, v_vec, transformer,
|
|
179
|
+
rectangle_vertices, type, vmin=vmin, vmax=vmax, color_map=color_map, alpha=alpha, buf=buf, edge=edge, basemap=basemap)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
|
|
186
|
+
|
|
187
|
+
|