voxcity 0.7.0__py3-none-any.whl → 1.0.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- voxcity/__init__.py +14 -14
- voxcity/downloader/ocean.py +559 -0
- voxcity/exporter/__init__.py +12 -12
- voxcity/exporter/cityles.py +633 -633
- voxcity/exporter/envimet.py +733 -728
- voxcity/exporter/magicavoxel.py +333 -333
- voxcity/exporter/netcdf.py +238 -238
- voxcity/exporter/obj.py +1480 -1480
- voxcity/generator/__init__.py +47 -44
- voxcity/generator/api.py +727 -675
- voxcity/generator/grids.py +394 -379
- voxcity/generator/io.py +94 -94
- voxcity/generator/pipeline.py +582 -282
- voxcity/generator/update.py +429 -0
- voxcity/generator/voxelizer.py +18 -6
- voxcity/geoprocessor/__init__.py +75 -75
- voxcity/geoprocessor/draw.py +1494 -1219
- voxcity/geoprocessor/merge_utils.py +91 -91
- voxcity/geoprocessor/mesh.py +806 -806
- voxcity/geoprocessor/network.py +708 -708
- voxcity/geoprocessor/raster/__init__.py +2 -0
- voxcity/geoprocessor/raster/buildings.py +435 -428
- voxcity/geoprocessor/raster/core.py +31 -0
- voxcity/geoprocessor/raster/export.py +93 -93
- voxcity/geoprocessor/raster/landcover.py +178 -51
- voxcity/geoprocessor/raster/raster.py +1 -1
- voxcity/geoprocessor/utils.py +824 -824
- voxcity/models.py +115 -113
- voxcity/simulator/solar/__init__.py +66 -43
- voxcity/simulator/solar/integration.py +336 -336
- voxcity/simulator/solar/sky.py +668 -0
- voxcity/simulator/solar/temporal.py +792 -434
- voxcity/simulator_gpu/__init__.py +115 -0
- voxcity/simulator_gpu/common/__init__.py +9 -0
- voxcity/simulator_gpu/common/geometry.py +11 -0
- voxcity/simulator_gpu/core.py +322 -0
- voxcity/simulator_gpu/domain.py +262 -0
- voxcity/simulator_gpu/environment.yml +11 -0
- voxcity/simulator_gpu/init_taichi.py +154 -0
- voxcity/simulator_gpu/integration.py +15 -0
- voxcity/simulator_gpu/kernels.py +56 -0
- voxcity/simulator_gpu/radiation.py +28 -0
- voxcity/simulator_gpu/raytracing.py +623 -0
- voxcity/simulator_gpu/sky.py +9 -0
- voxcity/simulator_gpu/solar/__init__.py +178 -0
- voxcity/simulator_gpu/solar/core.py +66 -0
- voxcity/simulator_gpu/solar/csf.py +1249 -0
- voxcity/simulator_gpu/solar/domain.py +561 -0
- voxcity/simulator_gpu/solar/epw.py +421 -0
- voxcity/simulator_gpu/solar/integration.py +2953 -0
- voxcity/simulator_gpu/solar/radiation.py +3019 -0
- voxcity/simulator_gpu/solar/raytracing.py +686 -0
- voxcity/simulator_gpu/solar/reflection.py +533 -0
- voxcity/simulator_gpu/solar/sky.py +907 -0
- voxcity/simulator_gpu/solar/solar.py +337 -0
- voxcity/simulator_gpu/solar/svf.py +446 -0
- voxcity/simulator_gpu/solar/volumetric.py +1151 -0
- voxcity/simulator_gpu/solar/voxcity.py +2953 -0
- voxcity/simulator_gpu/temporal.py +13 -0
- voxcity/simulator_gpu/utils.py +25 -0
- voxcity/simulator_gpu/view.py +32 -0
- voxcity/simulator_gpu/visibility/__init__.py +109 -0
- voxcity/simulator_gpu/visibility/geometry.py +278 -0
- voxcity/simulator_gpu/visibility/integration.py +808 -0
- voxcity/simulator_gpu/visibility/landmark.py +753 -0
- voxcity/simulator_gpu/visibility/view.py +944 -0
- voxcity/utils/__init__.py +11 -0
- voxcity/utils/classes.py +194 -0
- voxcity/utils/lc.py +80 -39
- voxcity/utils/shape.py +230 -0
- voxcity/visualizer/__init__.py +24 -24
- voxcity/visualizer/builder.py +43 -43
- voxcity/visualizer/grids.py +141 -141
- voxcity/visualizer/maps.py +187 -187
- voxcity/visualizer/renderer.py +1146 -928
- {voxcity-0.7.0.dist-info → voxcity-1.0.13.dist-info}/METADATA +56 -52
- voxcity-1.0.13.dist-info/RECORD +116 -0
- voxcity-0.7.0.dist-info/RECORD +0 -77
- {voxcity-0.7.0.dist-info → voxcity-1.0.13.dist-info}/WHEEL +0 -0
- {voxcity-0.7.0.dist-info → voxcity-1.0.13.dist-info}/licenses/AUTHORS.rst +0 -0
- {voxcity-0.7.0.dist-info → voxcity-1.0.13.dist-info}/licenses/LICENSE +0 -0
voxcity/visualizer/builder.py
CHANGED
|
@@ -1,43 +1,43 @@
|
|
|
1
|
-
from __future__ import annotations
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
import trimesh
|
|
5
|
-
|
|
6
|
-
from ..models import MeshModel, MeshCollection, VoxelGrid
|
|
7
|
-
from ..geoprocessor.mesh import create_city_meshes
|
|
8
|
-
from .palette import get_voxel_color_map
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
class MeshBuilder:
|
|
12
|
-
"""Build mesh collections from voxel grids for rendering/export."""
|
|
13
|
-
|
|
14
|
-
@staticmethod
|
|
15
|
-
def from_voxel_grid(voxel_grid: VoxelGrid, meshsize: float, voxel_color_map: "str|dict" = "default",
|
|
16
|
-
include_classes=None, exclude_classes=None) -> MeshCollection:
|
|
17
|
-
if isinstance(voxel_color_map, dict):
|
|
18
|
-
vox_dict = voxel_color_map
|
|
19
|
-
else:
|
|
20
|
-
vox_dict = get_voxel_color_map(voxel_color_map)
|
|
21
|
-
|
|
22
|
-
meshes = create_city_meshes(
|
|
23
|
-
voxel_grid.classes,
|
|
24
|
-
vox_dict,
|
|
25
|
-
meshsize=meshsize,
|
|
26
|
-
include_classes=include_classes,
|
|
27
|
-
exclude_classes=exclude_classes,
|
|
28
|
-
)
|
|
29
|
-
|
|
30
|
-
collection = MeshCollection()
|
|
31
|
-
for key, m in meshes.items():
|
|
32
|
-
if m is None:
|
|
33
|
-
continue
|
|
34
|
-
colors = getattr(m.visual, 'face_colors', None)
|
|
35
|
-
collection.add(str(key), MeshModel(
|
|
36
|
-
vertices=m.vertices.copy(),
|
|
37
|
-
faces=m.faces.copy(),
|
|
38
|
-
colors=colors.copy() if colors is not None else None,
|
|
39
|
-
name=str(key)
|
|
40
|
-
))
|
|
41
|
-
return collection
|
|
42
|
-
|
|
43
|
-
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import trimesh
|
|
5
|
+
|
|
6
|
+
from ..models import MeshModel, MeshCollection, VoxelGrid
|
|
7
|
+
from ..geoprocessor.mesh import create_city_meshes
|
|
8
|
+
from .palette import get_voxel_color_map
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class MeshBuilder:
|
|
12
|
+
"""Build mesh collections from voxel grids for rendering/export."""
|
|
13
|
+
|
|
14
|
+
@staticmethod
|
|
15
|
+
def from_voxel_grid(voxel_grid: VoxelGrid, meshsize: float, voxel_color_map: "str|dict" = "default",
|
|
16
|
+
include_classes=None, exclude_classes=None) -> MeshCollection:
|
|
17
|
+
if isinstance(voxel_color_map, dict):
|
|
18
|
+
vox_dict = voxel_color_map
|
|
19
|
+
else:
|
|
20
|
+
vox_dict = get_voxel_color_map(voxel_color_map)
|
|
21
|
+
|
|
22
|
+
meshes = create_city_meshes(
|
|
23
|
+
voxel_grid.classes,
|
|
24
|
+
vox_dict,
|
|
25
|
+
meshsize=meshsize,
|
|
26
|
+
include_classes=include_classes,
|
|
27
|
+
exclude_classes=exclude_classes,
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
collection = MeshCollection()
|
|
31
|
+
for key, m in meshes.items():
|
|
32
|
+
if m is None:
|
|
33
|
+
continue
|
|
34
|
+
colors = getattr(m.visual, 'face_colors', None)
|
|
35
|
+
collection.add(str(key), MeshModel(
|
|
36
|
+
vertices=m.vertices.copy(),
|
|
37
|
+
faces=m.faces.copy(),
|
|
38
|
+
colors=colors.copy() if colors is not None else None,
|
|
39
|
+
name=str(key)
|
|
40
|
+
))
|
|
41
|
+
return collection
|
|
42
|
+
|
|
43
|
+
|
voxcity/visualizer/grids.py
CHANGED
|
@@ -1,141 +1,141 @@
|
|
|
1
|
-
from __future__ import annotations
|
|
2
|
-
|
|
3
|
-
import numpy as np
|
|
4
|
-
import matplotlib.pyplot as plt
|
|
5
|
-
import matplotlib.colors as mcolors
|
|
6
|
-
from matplotlib.colors import ListedColormap, BoundaryNorm
|
|
7
|
-
import contextily as ctx
|
|
8
|
-
|
|
9
|
-
from ..geoprocessor.raster import grid_to_geodataframe
|
|
10
|
-
from ..utils.lc import get_land_cover_classes
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
def visualize_landcover_grid_on_basemap(landcover_grid, rectangle_vertices, meshsize, source='Standard', alpha=0.6, figsize=(12, 8), basemap='CartoDB light', show_edge=False, edge_color='black', edge_width=0.5):
|
|
14
|
-
land_cover_classes = get_land_cover_classes(source)
|
|
15
|
-
gdf = grid_to_geodataframe(landcover_grid, rectangle_vertices, meshsize)
|
|
16
|
-
colors = [(r/255, g/255, b/255) for (r,g,b) in land_cover_classes.keys()]
|
|
17
|
-
cmap = ListedColormap(colors)
|
|
18
|
-
bounds = np.arange(len(colors) + 1)
|
|
19
|
-
norm = BoundaryNorm(bounds, cmap.N)
|
|
20
|
-
gdf_web = gdf.to_crs(epsg=3857)
|
|
21
|
-
fig, ax = plt.subplots(figsize=figsize)
|
|
22
|
-
gdf_web.plot(column='value', ax=ax, alpha=alpha, cmap=cmap, norm=norm, legend=True,
|
|
23
|
-
legend_kwds={'label': 'Land Cover Class', 'ticks': bounds[:-1] + 0.5, 'boundaries': bounds,
|
|
24
|
-
'format': lambda x, p: list(land_cover_classes.values())[int(x)]},
|
|
25
|
-
edgecolor=edge_color if show_edge else 'none', linewidth=edge_width if show_edge else 0)
|
|
26
|
-
basemaps = {
|
|
27
|
-
'CartoDB dark': ctx.providers.CartoDB.DarkMatter,
|
|
28
|
-
'CartoDB light': ctx.providers.CartoDB.Positron,
|
|
29
|
-
'CartoDB voyager': ctx.providers.CartoDB.Voyager,
|
|
30
|
-
'CartoDB light no labels': ctx.providers.CartoDB.PositronNoLabels,
|
|
31
|
-
'CartoDB dark no labels': ctx.providers.CartoDB.DarkMatterNoLabels,
|
|
32
|
-
}
|
|
33
|
-
ctx.add_basemap(ax, source=basemaps[basemap])
|
|
34
|
-
ax.set_axis_off()
|
|
35
|
-
plt.tight_layout(); plt.show()
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
def visualize_numerical_grid_on_basemap(grid, rectangle_vertices, meshsize, value_name="value", cmap='viridis', vmin=None, vmax=None,
|
|
39
|
-
alpha=0.6, figsize=(12, 8), basemap='CartoDB light', show_edge=False, edge_color='black', edge_width=0.5):
|
|
40
|
-
gdf = grid_to_geodataframe(grid, rectangle_vertices, meshsize)
|
|
41
|
-
gdf_web = gdf.to_crs(epsg=3857)
|
|
42
|
-
fig, ax = plt.subplots(figsize=figsize)
|
|
43
|
-
gdf_web.plot(column='value', ax=ax, alpha=alpha, cmap=cmap, vmin=vmin, vmax=vmax, legend=True,
|
|
44
|
-
legend_kwds={'label': value_name}, edgecolor=edge_color if show_edge else 'none', linewidth=edge_width if show_edge else 0)
|
|
45
|
-
basemaps = {
|
|
46
|
-
'CartoDB dark': ctx.providers.CartoDB.DarkMatter,
|
|
47
|
-
'CartoDB light': ctx.providers.CartoDB.Positron,
|
|
48
|
-
'CartoDB voyager': ctx.providers.CartoDB.Voyager,
|
|
49
|
-
'CartoDB light no labels': ctx.providers.CartoDB.PositronNoLabels,
|
|
50
|
-
'CartoDB dark no labels': ctx.providers.CartoDB.DarkMatterNoLabels,
|
|
51
|
-
}
|
|
52
|
-
ctx.add_basemap(ax, source=basemaps[basemap])
|
|
53
|
-
ax.set_axis_off()
|
|
54
|
-
plt.tight_layout(); plt.show()
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
def visualize_numerical_gdf_on_basemap(gdf, value_name="value", cmap='viridis', vmin=None, vmax=None,
|
|
58
|
-
alpha=0.6, figsize=(12, 8), basemap='CartoDB light',
|
|
59
|
-
show_edge=False, edge_color='black', edge_width=0.5, input_crs=None):
|
|
60
|
-
if gdf.crs is None:
|
|
61
|
-
if input_crs is not None:
|
|
62
|
-
gdf = gdf.set_crs(input_crs, allow_override=True)
|
|
63
|
-
else:
|
|
64
|
-
try:
|
|
65
|
-
minx, miny, maxx, maxy = gdf.total_bounds
|
|
66
|
-
looks_like_lonlat = (-180.0 <= minx <= 180.0 and -180.0 <= maxx <= 180.0 and -90.0 <= miny <= 90.0 and -90.0 <= maxy <= 90.0)
|
|
67
|
-
except Exception:
|
|
68
|
-
looks_like_lonlat = False
|
|
69
|
-
if looks_like_lonlat:
|
|
70
|
-
gdf = gdf.set_crs("EPSG:4326", allow_override=True)
|
|
71
|
-
else:
|
|
72
|
-
raise ValueError("Input GeoDataFrame has no CRS. Provide 'input_crs' or set gdf.crs.")
|
|
73
|
-
|
|
74
|
-
gdf_web = gdf.to_crs(epsg=3857) if str(gdf.crs) != 'EPSG:3857' else gdf
|
|
75
|
-
fig, ax = plt.subplots(figsize=figsize)
|
|
76
|
-
gdf_web.plot(column=value_name, ax=ax, alpha=alpha, cmap=cmap, vmin=vmin, vmax=vmax, legend=True,
|
|
77
|
-
legend_kwds={'label': value_name}, edgecolor=edge_color if show_edge else 'none', linewidth=edge_width if show_edge else 0)
|
|
78
|
-
basemaps = {
|
|
79
|
-
'CartoDB dark': ctx.providers.CartoDB.DarkMatter,
|
|
80
|
-
'CartoDB light': ctx.providers.CartoDB.Positron,
|
|
81
|
-
'CartoDB voyager': ctx.providers.CartoDB.Voyager,
|
|
82
|
-
'CartoDB light no labels': ctx.providers.CartoDB.PositronNoLabels,
|
|
83
|
-
'CartoDB dark no labels': ctx.providers.CartoDB.DarkMatterNoLabels,
|
|
84
|
-
}
|
|
85
|
-
ctx.add_basemap(ax, source=basemaps[basemap])
|
|
86
|
-
ax.set_axis_off()
|
|
87
|
-
plt.tight_layout(); plt.show()
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
def visualize_point_gdf_on_basemap(point_gdf, value_name='value', **kwargs):
|
|
91
|
-
import contextily as ctx
|
|
92
|
-
defaults = {
|
|
93
|
-
'figsize': (12, 8),
|
|
94
|
-
'colormap': 'viridis',
|
|
95
|
-
'markersize': 20,
|
|
96
|
-
'alpha': 0.7,
|
|
97
|
-
'vmin': None,
|
|
98
|
-
'vmax': None,
|
|
99
|
-
'title': None,
|
|
100
|
-
'basemap_style': ctx.providers.CartoDB.Positron,
|
|
101
|
-
'zoom': 15
|
|
102
|
-
}
|
|
103
|
-
settings = {**defaults, **kwargs}
|
|
104
|
-
fig, ax = plt.subplots(figsize=settings['figsize'])
|
|
105
|
-
point_gdf_web = point_gdf.to_crs(epsg=3857)
|
|
106
|
-
point_gdf_web.plot(column=value_name, ax=ax, cmap=settings['colormap'], markersize=settings['markersize'], alpha=settings['alpha'], vmin=settings['vmin'], vmax=settings['vmax'], legend=True, legend_kwds={'label': value_name})
|
|
107
|
-
ctx.add_basemap(ax, source=settings['basemap_style'], zoom=settings['zoom'])
|
|
108
|
-
if settings['title']:
|
|
109
|
-
plt.title(settings['title'])
|
|
110
|
-
ax.set_axis_off(); plt.tight_layout(); plt.show()
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
def visualize_land_cover_grid(grid, mesh_size, color_map, land_cover_classes):
|
|
114
|
-
all_classes = list(land_cover_classes.values())
|
|
115
|
-
unique_classes = list(dict.fromkeys(all_classes))
|
|
116
|
-
colors = [color_map[cls] for cls in unique_classes]
|
|
117
|
-
cmap = mcolors.ListedColormap(colors)
|
|
118
|
-
bounds = np.arange(len(unique_classes) + 1)
|
|
119
|
-
norm = mcolors.BoundaryNorm(bounds, cmap.N)
|
|
120
|
-
class_to_num = {cls: i for i, cls in enumerate(unique_classes)}
|
|
121
|
-
numeric_grid = np.vectorize(class_to_num.get)(grid)
|
|
122
|
-
plt.figure(figsize=(10, 10))
|
|
123
|
-
im = plt.imshow(numeric_grid, cmap=cmap, norm=norm, interpolation='nearest')
|
|
124
|
-
cbar = plt.colorbar(im, ticks=bounds[:-1] + 0.5)
|
|
125
|
-
cbar.set_ticklabels(unique_classes)
|
|
126
|
-
plt.title(f'Land Use/Land Cover Grid (Mesh Size: {mesh_size}m)')
|
|
127
|
-
plt.xlabel('Grid Cells (X)')
|
|
128
|
-
plt.ylabel('Grid Cells (Y)')
|
|
129
|
-
plt.show()
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
def visualize_numerical_grid(grid, mesh_size, title, cmap='viridis', label='Value', vmin=None, vmax=None):
|
|
133
|
-
plt.figure(figsize=(10, 10))
|
|
134
|
-
plt.imshow(grid, cmap=cmap, vmin=vmin, vmax=vmax)
|
|
135
|
-
plt.colorbar(label=label)
|
|
136
|
-
plt.title(f'{title} (Mesh Size: {mesh_size}m)')
|
|
137
|
-
plt.xlabel('Grid Cells (X)')
|
|
138
|
-
plt.ylabel('Grid Cells (Y)')
|
|
139
|
-
plt.show()
|
|
140
|
-
|
|
141
|
-
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import numpy as np
|
|
4
|
+
import matplotlib.pyplot as plt
|
|
5
|
+
import matplotlib.colors as mcolors
|
|
6
|
+
from matplotlib.colors import ListedColormap, BoundaryNorm
|
|
7
|
+
import contextily as ctx
|
|
8
|
+
|
|
9
|
+
from ..geoprocessor.raster import grid_to_geodataframe
|
|
10
|
+
from ..utils.lc import get_land_cover_classes
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
def visualize_landcover_grid_on_basemap(landcover_grid, rectangle_vertices, meshsize, source='Standard', alpha=0.6, figsize=(12, 8), basemap='CartoDB light', show_edge=False, edge_color='black', edge_width=0.5):
|
|
14
|
+
land_cover_classes = get_land_cover_classes(source)
|
|
15
|
+
gdf = grid_to_geodataframe(landcover_grid, rectangle_vertices, meshsize)
|
|
16
|
+
colors = [(r/255, g/255, b/255) for (r,g,b) in land_cover_classes.keys()]
|
|
17
|
+
cmap = ListedColormap(colors)
|
|
18
|
+
bounds = np.arange(len(colors) + 1)
|
|
19
|
+
norm = BoundaryNorm(bounds, cmap.N)
|
|
20
|
+
gdf_web = gdf.to_crs(epsg=3857)
|
|
21
|
+
fig, ax = plt.subplots(figsize=figsize)
|
|
22
|
+
gdf_web.plot(column='value', ax=ax, alpha=alpha, cmap=cmap, norm=norm, legend=True,
|
|
23
|
+
legend_kwds={'label': 'Land Cover Class', 'ticks': bounds[:-1] + 0.5, 'boundaries': bounds,
|
|
24
|
+
'format': lambda x, p: list(land_cover_classes.values())[int(x)]},
|
|
25
|
+
edgecolor=edge_color if show_edge else 'none', linewidth=edge_width if show_edge else 0)
|
|
26
|
+
basemaps = {
|
|
27
|
+
'CartoDB dark': ctx.providers.CartoDB.DarkMatter,
|
|
28
|
+
'CartoDB light': ctx.providers.CartoDB.Positron,
|
|
29
|
+
'CartoDB voyager': ctx.providers.CartoDB.Voyager,
|
|
30
|
+
'CartoDB light no labels': ctx.providers.CartoDB.PositronNoLabels,
|
|
31
|
+
'CartoDB dark no labels': ctx.providers.CartoDB.DarkMatterNoLabels,
|
|
32
|
+
}
|
|
33
|
+
ctx.add_basemap(ax, source=basemaps[basemap])
|
|
34
|
+
ax.set_axis_off()
|
|
35
|
+
plt.tight_layout(); plt.show()
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def visualize_numerical_grid_on_basemap(grid, rectangle_vertices, meshsize, value_name="value", cmap='viridis', vmin=None, vmax=None,
|
|
39
|
+
alpha=0.6, figsize=(12, 8), basemap='CartoDB light', show_edge=False, edge_color='black', edge_width=0.5):
|
|
40
|
+
gdf = grid_to_geodataframe(grid, rectangle_vertices, meshsize)
|
|
41
|
+
gdf_web = gdf.to_crs(epsg=3857)
|
|
42
|
+
fig, ax = plt.subplots(figsize=figsize)
|
|
43
|
+
gdf_web.plot(column='value', ax=ax, alpha=alpha, cmap=cmap, vmin=vmin, vmax=vmax, legend=True,
|
|
44
|
+
legend_kwds={'label': value_name}, edgecolor=edge_color if show_edge else 'none', linewidth=edge_width if show_edge else 0)
|
|
45
|
+
basemaps = {
|
|
46
|
+
'CartoDB dark': ctx.providers.CartoDB.DarkMatter,
|
|
47
|
+
'CartoDB light': ctx.providers.CartoDB.Positron,
|
|
48
|
+
'CartoDB voyager': ctx.providers.CartoDB.Voyager,
|
|
49
|
+
'CartoDB light no labels': ctx.providers.CartoDB.PositronNoLabels,
|
|
50
|
+
'CartoDB dark no labels': ctx.providers.CartoDB.DarkMatterNoLabels,
|
|
51
|
+
}
|
|
52
|
+
ctx.add_basemap(ax, source=basemaps[basemap])
|
|
53
|
+
ax.set_axis_off()
|
|
54
|
+
plt.tight_layout(); plt.show()
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def visualize_numerical_gdf_on_basemap(gdf, value_name="value", cmap='viridis', vmin=None, vmax=None,
|
|
58
|
+
alpha=0.6, figsize=(12, 8), basemap='CartoDB light',
|
|
59
|
+
show_edge=False, edge_color='black', edge_width=0.5, input_crs=None):
|
|
60
|
+
if gdf.crs is None:
|
|
61
|
+
if input_crs is not None:
|
|
62
|
+
gdf = gdf.set_crs(input_crs, allow_override=True)
|
|
63
|
+
else:
|
|
64
|
+
try:
|
|
65
|
+
minx, miny, maxx, maxy = gdf.total_bounds
|
|
66
|
+
looks_like_lonlat = (-180.0 <= minx <= 180.0 and -180.0 <= maxx <= 180.0 and -90.0 <= miny <= 90.0 and -90.0 <= maxy <= 90.0)
|
|
67
|
+
except Exception:
|
|
68
|
+
looks_like_lonlat = False
|
|
69
|
+
if looks_like_lonlat:
|
|
70
|
+
gdf = gdf.set_crs("EPSG:4326", allow_override=True)
|
|
71
|
+
else:
|
|
72
|
+
raise ValueError("Input GeoDataFrame has no CRS. Provide 'input_crs' or set gdf.crs.")
|
|
73
|
+
|
|
74
|
+
gdf_web = gdf.to_crs(epsg=3857) if str(gdf.crs) != 'EPSG:3857' else gdf
|
|
75
|
+
fig, ax = plt.subplots(figsize=figsize)
|
|
76
|
+
gdf_web.plot(column=value_name, ax=ax, alpha=alpha, cmap=cmap, vmin=vmin, vmax=vmax, legend=True,
|
|
77
|
+
legend_kwds={'label': value_name}, edgecolor=edge_color if show_edge else 'none', linewidth=edge_width if show_edge else 0)
|
|
78
|
+
basemaps = {
|
|
79
|
+
'CartoDB dark': ctx.providers.CartoDB.DarkMatter,
|
|
80
|
+
'CartoDB light': ctx.providers.CartoDB.Positron,
|
|
81
|
+
'CartoDB voyager': ctx.providers.CartoDB.Voyager,
|
|
82
|
+
'CartoDB light no labels': ctx.providers.CartoDB.PositronNoLabels,
|
|
83
|
+
'CartoDB dark no labels': ctx.providers.CartoDB.DarkMatterNoLabels,
|
|
84
|
+
}
|
|
85
|
+
ctx.add_basemap(ax, source=basemaps[basemap])
|
|
86
|
+
ax.set_axis_off()
|
|
87
|
+
plt.tight_layout(); plt.show()
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def visualize_point_gdf_on_basemap(point_gdf, value_name='value', **kwargs):
|
|
91
|
+
import contextily as ctx
|
|
92
|
+
defaults = {
|
|
93
|
+
'figsize': (12, 8),
|
|
94
|
+
'colormap': 'viridis',
|
|
95
|
+
'markersize': 20,
|
|
96
|
+
'alpha': 0.7,
|
|
97
|
+
'vmin': None,
|
|
98
|
+
'vmax': None,
|
|
99
|
+
'title': None,
|
|
100
|
+
'basemap_style': ctx.providers.CartoDB.Positron,
|
|
101
|
+
'zoom': 15
|
|
102
|
+
}
|
|
103
|
+
settings = {**defaults, **kwargs}
|
|
104
|
+
fig, ax = plt.subplots(figsize=settings['figsize'])
|
|
105
|
+
point_gdf_web = point_gdf.to_crs(epsg=3857)
|
|
106
|
+
point_gdf_web.plot(column=value_name, ax=ax, cmap=settings['colormap'], markersize=settings['markersize'], alpha=settings['alpha'], vmin=settings['vmin'], vmax=settings['vmax'], legend=True, legend_kwds={'label': value_name})
|
|
107
|
+
ctx.add_basemap(ax, source=settings['basemap_style'], zoom=settings['zoom'])
|
|
108
|
+
if settings['title']:
|
|
109
|
+
plt.title(settings['title'])
|
|
110
|
+
ax.set_axis_off(); plt.tight_layout(); plt.show()
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def visualize_land_cover_grid(grid, mesh_size, color_map, land_cover_classes):
|
|
114
|
+
all_classes = list(land_cover_classes.values())
|
|
115
|
+
unique_classes = list(dict.fromkeys(all_classes))
|
|
116
|
+
colors = [color_map[cls] for cls in unique_classes]
|
|
117
|
+
cmap = mcolors.ListedColormap(colors)
|
|
118
|
+
bounds = np.arange(len(unique_classes) + 1)
|
|
119
|
+
norm = mcolors.BoundaryNorm(bounds, cmap.N)
|
|
120
|
+
class_to_num = {cls: i for i, cls in enumerate(unique_classes)}
|
|
121
|
+
numeric_grid = np.vectorize(class_to_num.get)(grid)
|
|
122
|
+
plt.figure(figsize=(10, 10))
|
|
123
|
+
im = plt.imshow(numeric_grid, cmap=cmap, norm=norm, interpolation='nearest')
|
|
124
|
+
cbar = plt.colorbar(im, ticks=bounds[:-1] + 0.5)
|
|
125
|
+
cbar.set_ticklabels(unique_classes)
|
|
126
|
+
plt.title(f'Land Use/Land Cover Grid (Mesh Size: {mesh_size}m)')
|
|
127
|
+
plt.xlabel('Grid Cells (X)')
|
|
128
|
+
plt.ylabel('Grid Cells (Y)')
|
|
129
|
+
plt.show()
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
def visualize_numerical_grid(grid, mesh_size, title, cmap='viridis', label='Value', vmin=None, vmax=None):
|
|
133
|
+
plt.figure(figsize=(10, 10))
|
|
134
|
+
plt.imshow(grid, cmap=cmap, vmin=vmin, vmax=vmax)
|
|
135
|
+
plt.colorbar(label=label)
|
|
136
|
+
plt.title(f'{title} (Mesh Size: {mesh_size}m)')
|
|
137
|
+
plt.xlabel('Grid Cells (X)')
|
|
138
|
+
plt.ylabel('Grid Cells (Y)')
|
|
139
|
+
plt.show()
|
|
140
|
+
|
|
141
|
+
|