ultralytics 8.1.29__py3-none-any.whl → 8.3.62__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +122 -0
- tests/test_cuda.py +155 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +216 -0
- tests/test_integrations.py +150 -0
- tests/test_python.py +615 -0
- tests/test_solutions.py +94 -0
- ultralytics/__init__.py +11 -8
- ultralytics/cfg/__init__.py +569 -131
- ultralytics/cfg/datasets/Argoverse.yaml +2 -1
- ultralytics/cfg/datasets/DOTAv1.5.yaml +3 -2
- ultralytics/cfg/datasets/DOTAv1.yaml +3 -2
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +3 -2
- ultralytics/cfg/datasets/ImageNet.yaml +2 -1
- ultralytics/cfg/datasets/Objects365.yaml +5 -4
- ultralytics/cfg/datasets/SKU-110K.yaml +2 -1
- ultralytics/cfg/datasets/VOC.yaml +3 -2
- ultralytics/cfg/datasets/VisDrone.yaml +6 -5
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +3 -2
- ultralytics/cfg/datasets/coco-pose.yaml +7 -6
- ultralytics/cfg/datasets/coco.yaml +3 -2
- ultralytics/cfg/datasets/coco128-seg.yaml +4 -3
- ultralytics/cfg/datasets/coco128.yaml +4 -3
- ultralytics/cfg/datasets/coco8-pose.yaml +3 -2
- ultralytics/cfg/datasets/coco8-seg.yaml +3 -2
- ultralytics/cfg/datasets/coco8.yaml +3 -2
- ultralytics/cfg/datasets/crack-seg.yaml +3 -2
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8.yaml +3 -2
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1236 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +2 -1
- ultralytics/cfg/datasets/package-seg.yaml +5 -4
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +3 -2
- ultralytics/cfg/datasets/xView.yaml +2 -1
- ultralytics/cfg/default.yaml +14 -11
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +24 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +5 -2
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +5 -2
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +5 -2
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +5 -2
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +5 -2
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +5 -2
- ultralytics/cfg/models/v3/yolov3.yaml +5 -2
- ultralytics/cfg/models/v5/yolov5-p6.yaml +5 -2
- ultralytics/cfg/models/v5/yolov5.yaml +5 -2
- ultralytics/cfg/models/v6/yolov6.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-cls.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +6 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +6 -2
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-obb.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-p2.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-p6.yaml +10 -7
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-pose.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-seg.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-world.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8.yaml +5 -2
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +30 -25
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +46 -42
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/solutions/default.yaml +24 -0
- ultralytics/cfg/trackers/botsort.yaml +8 -5
- ultralytics/cfg/trackers/bytetrack.yaml +8 -5
- ultralytics/data/__init__.py +14 -3
- ultralytics/data/annotator.py +37 -15
- ultralytics/data/augment.py +1783 -289
- ultralytics/data/base.py +62 -27
- ultralytics/data/build.py +36 -8
- ultralytics/data/converter.py +196 -36
- ultralytics/data/dataset.py +233 -94
- ultralytics/data/loaders.py +199 -96
- ultralytics/data/split_dota.py +39 -29
- ultralytics/data/utils.py +110 -40
- ultralytics/engine/__init__.py +1 -1
- ultralytics/engine/exporter.py +569 -242
- ultralytics/engine/model.py +604 -252
- ultralytics/engine/predictor.py +22 -11
- ultralytics/engine/results.py +1228 -218
- ultralytics/engine/trainer.py +190 -129
- ultralytics/engine/tuner.py +18 -18
- ultralytics/engine/validator.py +18 -15
- ultralytics/hub/__init__.py +31 -13
- ultralytics/hub/auth.py +11 -7
- ultralytics/hub/google/__init__.py +159 -0
- ultralytics/hub/session.py +128 -94
- ultralytics/hub/utils.py +20 -21
- ultralytics/models/__init__.py +4 -2
- ultralytics/models/fastsam/__init__.py +2 -3
- ultralytics/models/fastsam/model.py +26 -4
- ultralytics/models/fastsam/predict.py +127 -63
- ultralytics/models/fastsam/utils.py +1 -44
- ultralytics/models/fastsam/val.py +1 -1
- ultralytics/models/nas/__init__.py +1 -1
- ultralytics/models/nas/model.py +21 -10
- ultralytics/models/nas/predict.py +3 -6
- ultralytics/models/nas/val.py +4 -4
- ultralytics/models/rtdetr/__init__.py +1 -1
- ultralytics/models/rtdetr/model.py +1 -1
- ultralytics/models/rtdetr/predict.py +6 -8
- ultralytics/models/rtdetr/train.py +6 -2
- ultralytics/models/rtdetr/val.py +3 -3
- ultralytics/models/sam/__init__.py +3 -3
- ultralytics/models/sam/amg.py +29 -23
- ultralytics/models/sam/build.py +211 -13
- ultralytics/models/sam/model.py +91 -30
- ultralytics/models/sam/modules/__init__.py +1 -1
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +381 -53
- ultralytics/models/sam/modules/encoders.py +515 -324
- ultralytics/models/sam/modules/memory_attention.py +237 -0
- ultralytics/models/sam/modules/sam.py +969 -21
- ultralytics/models/sam/modules/tiny_encoder.py +425 -154
- ultralytics/models/sam/modules/transformer.py +159 -60
- ultralytics/models/sam/modules/utils.py +293 -0
- ultralytics/models/sam/predict.py +1263 -132
- ultralytics/models/utils/__init__.py +1 -1
- ultralytics/models/utils/loss.py +36 -24
- ultralytics/models/utils/ops.py +3 -7
- ultralytics/models/yolo/__init__.py +3 -3
- ultralytics/models/yolo/classify/__init__.py +1 -1
- ultralytics/models/yolo/classify/predict.py +7 -8
- ultralytics/models/yolo/classify/train.py +17 -22
- ultralytics/models/yolo/classify/val.py +8 -4
- ultralytics/models/yolo/detect/__init__.py +1 -1
- ultralytics/models/yolo/detect/predict.py +3 -5
- ultralytics/models/yolo/detect/train.py +11 -4
- ultralytics/models/yolo/detect/val.py +90 -52
- ultralytics/models/yolo/model.py +14 -9
- ultralytics/models/yolo/obb/__init__.py +1 -1
- ultralytics/models/yolo/obb/predict.py +2 -2
- ultralytics/models/yolo/obb/train.py +5 -3
- ultralytics/models/yolo/obb/val.py +41 -23
- ultralytics/models/yolo/pose/__init__.py +1 -1
- ultralytics/models/yolo/pose/predict.py +3 -5
- ultralytics/models/yolo/pose/train.py +2 -2
- ultralytics/models/yolo/pose/val.py +51 -17
- ultralytics/models/yolo/segment/__init__.py +1 -1
- ultralytics/models/yolo/segment/predict.py +3 -5
- ultralytics/models/yolo/segment/train.py +2 -2
- ultralytics/models/yolo/segment/val.py +60 -19
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +92 -0
- ultralytics/models/yolo/world/train_world.py +109 -0
- ultralytics/nn/__init__.py +1 -1
- ultralytics/nn/autobackend.py +228 -93
- ultralytics/nn/modules/__init__.py +39 -14
- ultralytics/nn/modules/activation.py +21 -0
- ultralytics/nn/modules/block.py +526 -66
- ultralytics/nn/modules/conv.py +24 -7
- ultralytics/nn/modules/head.py +177 -34
- ultralytics/nn/modules/transformer.py +6 -5
- ultralytics/nn/modules/utils.py +1 -2
- ultralytics/nn/tasks.py +225 -77
- ultralytics/solutions/__init__.py +30 -1
- ultralytics/solutions/ai_gym.py +96 -143
- ultralytics/solutions/analytics.py +247 -0
- ultralytics/solutions/distance_calculation.py +78 -135
- ultralytics/solutions/heatmap.py +93 -247
- ultralytics/solutions/object_counter.py +184 -259
- ultralytics/solutions/parking_management.py +246 -0
- ultralytics/solutions/queue_management.py +112 -0
- ultralytics/solutions/region_counter.py +116 -0
- ultralytics/solutions/security_alarm.py +144 -0
- ultralytics/solutions/solutions.py +178 -0
- ultralytics/solutions/speed_estimation.py +86 -174
- ultralytics/solutions/streamlit_inference.py +190 -0
- ultralytics/solutions/trackzone.py +68 -0
- ultralytics/trackers/__init__.py +1 -1
- ultralytics/trackers/basetrack.py +32 -13
- ultralytics/trackers/bot_sort.py +61 -28
- ultralytics/trackers/byte_tracker.py +83 -51
- ultralytics/trackers/track.py +21 -6
- ultralytics/trackers/utils/__init__.py +1 -1
- ultralytics/trackers/utils/gmc.py +62 -48
- ultralytics/trackers/utils/kalman_filter.py +166 -35
- ultralytics/trackers/utils/matching.py +40 -21
- ultralytics/utils/__init__.py +511 -239
- ultralytics/utils/autobatch.py +40 -22
- ultralytics/utils/benchmarks.py +266 -85
- ultralytics/utils/callbacks/__init__.py +1 -1
- ultralytics/utils/callbacks/base.py +1 -3
- ultralytics/utils/callbacks/clearml.py +7 -6
- ultralytics/utils/callbacks/comet.py +39 -17
- ultralytics/utils/callbacks/dvc.py +1 -1
- ultralytics/utils/callbacks/hub.py +16 -16
- ultralytics/utils/callbacks/mlflow.py +28 -24
- ultralytics/utils/callbacks/neptune.py +6 -2
- ultralytics/utils/callbacks/raytune.py +3 -4
- ultralytics/utils/callbacks/tensorboard.py +18 -18
- ultralytics/utils/callbacks/wb.py +27 -20
- ultralytics/utils/checks.py +160 -100
- ultralytics/utils/dist.py +2 -1
- ultralytics/utils/downloads.py +40 -34
- ultralytics/utils/errors.py +1 -1
- ultralytics/utils/files.py +72 -38
- ultralytics/utils/instance.py +41 -19
- ultralytics/utils/loss.py +83 -55
- ultralytics/utils/metrics.py +61 -56
- ultralytics/utils/ops.py +94 -89
- ultralytics/utils/patches.py +30 -14
- ultralytics/utils/plotting.py +600 -269
- ultralytics/utils/tal.py +67 -26
- ultralytics/utils/torch_utils.py +302 -102
- ultralytics/utils/triton.py +2 -1
- ultralytics/utils/tuner.py +21 -12
- ultralytics-8.3.62.dist-info/METADATA +370 -0
- ultralytics-8.3.62.dist-info/RECORD +241 -0
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/WHEEL +1 -1
- ultralytics/data/explorer/__init__.py +0 -5
- ultralytics/data/explorer/explorer.py +0 -472
- ultralytics/data/explorer/gui/__init__.py +0 -1
- ultralytics/data/explorer/gui/dash.py +0 -268
- ultralytics/data/explorer/utils.py +0 -166
- ultralytics/models/fastsam/prompt.py +0 -357
- ultralytics-8.1.29.dist-info/METADATA +0 -373
- ultralytics-8.1.29.dist-info/RECORD +0 -197
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/LICENSE +0 -0
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,4 @@
|
|
1
|
-
# Ultralytics
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
3
|
# --------------------------------------------------------
|
4
4
|
# TinyViT Model Architecture
|
@@ -17,16 +17,40 @@ import torch.nn as nn
|
|
17
17
|
import torch.nn.functional as F
|
18
18
|
import torch.utils.checkpoint as checkpoint
|
19
19
|
|
20
|
+
from ultralytics.nn.modules import LayerNorm2d
|
20
21
|
from ultralytics.utils.instance import to_2tuple
|
21
22
|
|
22
23
|
|
23
24
|
class Conv2d_BN(torch.nn.Sequential):
|
24
|
-
"""
|
25
|
+
"""
|
26
|
+
A sequential container that performs 2D convolution followed by batch normalization.
|
27
|
+
|
28
|
+
Attributes:
|
29
|
+
c (torch.nn.Conv2d): 2D convolution layer.
|
30
|
+
1 (torch.nn.BatchNorm2d): Batch normalization layer.
|
31
|
+
|
32
|
+
Methods:
|
33
|
+
__init__: Initializes the Conv2d_BN with specified parameters.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
a (int): Number of input channels.
|
37
|
+
b (int): Number of output channels.
|
38
|
+
ks (int): Kernel size for the convolution. Defaults to 1.
|
39
|
+
stride (int): Stride for the convolution. Defaults to 1.
|
40
|
+
pad (int): Padding for the convolution. Defaults to 0.
|
41
|
+
dilation (int): Dilation factor for the convolution. Defaults to 1.
|
42
|
+
groups (int): Number of groups for the convolution. Defaults to 1.
|
43
|
+
bn_weight_init (float): Initial value for batch normalization weight. Defaults to 1.
|
44
|
+
|
45
|
+
Examples:
|
46
|
+
>>> conv_bn = Conv2d_BN(3, 64, ks=3, stride=1, pad=1)
|
47
|
+
>>> input_tensor = torch.randn(1, 3, 224, 224)
|
48
|
+
>>> output = conv_bn(input_tensor)
|
49
|
+
>>> print(output.shape)
|
50
|
+
"""
|
25
51
|
|
26
52
|
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
|
27
|
-
"""Initializes
|
28
|
-
drop path.
|
29
|
-
"""
|
53
|
+
"""Initializes a sequential container with 2D convolution followed by batch normalization."""
|
30
54
|
super().__init__()
|
31
55
|
self.add_module("c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
|
32
56
|
bn = torch.nn.BatchNorm2d(b)
|
@@ -36,12 +60,29 @@ class Conv2d_BN(torch.nn.Sequential):
|
|
36
60
|
|
37
61
|
|
38
62
|
class PatchEmbed(nn.Module):
|
39
|
-
"""
|
63
|
+
"""
|
64
|
+
Embeds images into patches and projects them into a specified embedding dimension.
|
65
|
+
|
66
|
+
Attributes:
|
67
|
+
patches_resolution (Tuple[int, int]): Resolution of the patches after embedding.
|
68
|
+
num_patches (int): Total number of patches.
|
69
|
+
in_chans (int): Number of input channels.
|
70
|
+
embed_dim (int): Dimension of the embedding.
|
71
|
+
seq (nn.Sequential): Sequence of convolutional and activation layers for patch embedding.
|
72
|
+
|
73
|
+
Methods:
|
74
|
+
forward: Processes the input tensor through the patch embedding sequence.
|
75
|
+
|
76
|
+
Examples:
|
77
|
+
>>> import torch
|
78
|
+
>>> patch_embed = PatchEmbed(in_chans=3, embed_dim=96, resolution=224, activation=nn.GELU)
|
79
|
+
>>> x = torch.randn(1, 3, 224, 224)
|
80
|
+
>>> output = patch_embed(x)
|
81
|
+
>>> print(output.shape)
|
82
|
+
"""
|
40
83
|
|
41
84
|
def __init__(self, in_chans, embed_dim, resolution, activation):
|
42
|
-
"""
|
43
|
-
function.
|
44
|
-
"""
|
85
|
+
"""Initializes patch embedding with convolutional layers for image-to-patch conversion and projection."""
|
45
86
|
super().__init__()
|
46
87
|
img_size: Tuple[int, int] = to_2tuple(resolution)
|
47
88
|
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
|
@@ -56,17 +97,40 @@ class PatchEmbed(nn.Module):
|
|
56
97
|
)
|
57
98
|
|
58
99
|
def forward(self, x):
|
59
|
-
"""
|
100
|
+
"""Processes input tensor through patch embedding sequence, converting images to patch embeddings."""
|
60
101
|
return self.seq(x)
|
61
102
|
|
62
103
|
|
63
104
|
class MBConv(nn.Module):
|
64
|
-
"""
|
105
|
+
"""
|
106
|
+
Mobile Inverted Bottleneck Conv (MBConv) layer, part of the EfficientNet architecture.
|
107
|
+
|
108
|
+
Attributes:
|
109
|
+
in_chans (int): Number of input channels.
|
110
|
+
hidden_chans (int): Number of hidden channels.
|
111
|
+
out_chans (int): Number of output channels.
|
112
|
+
conv1 (Conv2d_BN): First convolutional layer.
|
113
|
+
act1 (nn.Module): First activation function.
|
114
|
+
conv2 (Conv2d_BN): Depthwise convolutional layer.
|
115
|
+
act2 (nn.Module): Second activation function.
|
116
|
+
conv3 (Conv2d_BN): Final convolutional layer.
|
117
|
+
act3 (nn.Module): Third activation function.
|
118
|
+
drop_path (nn.Module): Drop path layer (Identity for inference).
|
119
|
+
|
120
|
+
Methods:
|
121
|
+
forward: Performs the forward pass through the MBConv layer.
|
122
|
+
|
123
|
+
Examples:
|
124
|
+
>>> in_chans, out_chans = 32, 64
|
125
|
+
>>> mbconv = MBConv(in_chans, out_chans, expand_ratio=4, activation=nn.ReLU, drop_path=0.1)
|
126
|
+
>>> x = torch.randn(1, in_chans, 56, 56)
|
127
|
+
>>> output = mbconv(x)
|
128
|
+
>>> print(output.shape)
|
129
|
+
torch.Size([1, 64, 56, 56])
|
130
|
+
"""
|
65
131
|
|
66
132
|
def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path):
|
67
|
-
"""Initializes
|
68
|
-
function.
|
69
|
-
"""
|
133
|
+
"""Initializes the MBConv layer with specified input/output channels, expansion ratio, and activation."""
|
70
134
|
super().__init__()
|
71
135
|
self.in_chans = in_chans
|
72
136
|
self.hidden_chans = int(in_chans * expand_ratio)
|
@@ -86,7 +150,7 @@ class MBConv(nn.Module):
|
|
86
150
|
self.drop_path = nn.Identity()
|
87
151
|
|
88
152
|
def forward(self, x):
|
89
|
-
"""Implements the forward pass
|
153
|
+
"""Implements the forward pass of MBConv, applying convolutions and skip connection."""
|
90
154
|
shortcut = x
|
91
155
|
x = self.conv1(x)
|
92
156
|
x = self.act1(x)
|
@@ -99,12 +163,34 @@ class MBConv(nn.Module):
|
|
99
163
|
|
100
164
|
|
101
165
|
class PatchMerging(nn.Module):
|
102
|
-
"""
|
166
|
+
"""
|
167
|
+
Merges neighboring patches in the feature map and projects to a new dimension.
|
168
|
+
|
169
|
+
This class implements a patch merging operation that combines spatial information and adjusts the feature
|
170
|
+
dimension. It uses a series of convolutional layers with batch normalization to achieve this.
|
171
|
+
|
172
|
+
Attributes:
|
173
|
+
input_resolution (Tuple[int, int]): The input resolution (height, width) of the feature map.
|
174
|
+
dim (int): The input dimension of the feature map.
|
175
|
+
out_dim (int): The output dimension after merging and projection.
|
176
|
+
act (nn.Module): The activation function used between convolutions.
|
177
|
+
conv1 (Conv2d_BN): The first convolutional layer for dimension projection.
|
178
|
+
conv2 (Conv2d_BN): The second convolutional layer for spatial merging.
|
179
|
+
conv3 (Conv2d_BN): The third convolutional layer for final projection.
|
180
|
+
|
181
|
+
Methods:
|
182
|
+
forward: Applies the patch merging operation to the input tensor.
|
183
|
+
|
184
|
+
Examples:
|
185
|
+
>>> input_resolution = (56, 56)
|
186
|
+
>>> patch_merging = PatchMerging(input_resolution, dim=64, out_dim=128, activation=nn.ReLU)
|
187
|
+
>>> x = torch.randn(4, 64, 56, 56)
|
188
|
+
>>> output = patch_merging(x)
|
189
|
+
>>> print(output.shape)
|
190
|
+
"""
|
103
191
|
|
104
192
|
def __init__(self, input_resolution, dim, out_dim, activation):
|
105
|
-
"""Initializes the
|
106
|
-
optional parameters.
|
107
|
-
"""
|
193
|
+
"""Initializes the PatchMerging module for merging and projecting neighboring patches in feature maps."""
|
108
194
|
super().__init__()
|
109
195
|
|
110
196
|
self.input_resolution = input_resolution
|
@@ -112,12 +198,12 @@ class PatchMerging(nn.Module):
|
|
112
198
|
self.out_dim = out_dim
|
113
199
|
self.act = activation()
|
114
200
|
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
|
115
|
-
stride_c = 1 if out_dim in
|
201
|
+
stride_c = 1 if out_dim in {320, 448, 576} else 2
|
116
202
|
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
|
117
203
|
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
|
118
204
|
|
119
205
|
def forward(self, x):
|
120
|
-
"""Applies
|
206
|
+
"""Applies patch merging and dimension projection to the input feature map."""
|
121
207
|
if x.ndim == 3:
|
122
208
|
H, W = self.input_resolution
|
123
209
|
B = len(x)
|
@@ -137,7 +223,24 @@ class ConvLayer(nn.Module):
|
|
137
223
|
"""
|
138
224
|
Convolutional Layer featuring multiple MobileNetV3-style inverted bottleneck convolutions (MBConv).
|
139
225
|
|
140
|
-
|
226
|
+
This layer optionally applies downsample operations to the output and supports gradient checkpointing.
|
227
|
+
|
228
|
+
Attributes:
|
229
|
+
dim (int): Dimensionality of the input and output.
|
230
|
+
input_resolution (Tuple[int, int]): Resolution of the input image.
|
231
|
+
depth (int): Number of MBConv layers in the block.
|
232
|
+
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
|
233
|
+
blocks (nn.ModuleList): List of MBConv layers.
|
234
|
+
downsample (Optional[Callable]): Function for downsampling the output.
|
235
|
+
|
236
|
+
Methods:
|
237
|
+
forward: Processes the input through the convolutional layers.
|
238
|
+
|
239
|
+
Examples:
|
240
|
+
>>> input_tensor = torch.randn(1, 64, 56, 56)
|
241
|
+
>>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU)
|
242
|
+
>>> output = conv_layer(input_tensor)
|
243
|
+
>>> print(output.shape)
|
141
244
|
"""
|
142
245
|
|
143
246
|
def __init__(
|
@@ -155,16 +258,25 @@ class ConvLayer(nn.Module):
|
|
155
258
|
"""
|
156
259
|
Initializes the ConvLayer with the given dimensions and settings.
|
157
260
|
|
261
|
+
This layer consists of multiple MobileNetV3-style inverted bottleneck convolutions (MBConv) and
|
262
|
+
optionally applies downsampling to the output.
|
263
|
+
|
158
264
|
Args:
|
159
265
|
dim (int): The dimensionality of the input and output.
|
160
266
|
input_resolution (Tuple[int, int]): The resolution of the input image.
|
161
267
|
depth (int): The number of MBConv layers in the block.
|
162
268
|
activation (Callable): Activation function applied after each convolution.
|
163
|
-
drop_path (
|
269
|
+
drop_path (float | List[float]): Drop path rate. Single float or a list of floats for each MBConv.
|
164
270
|
downsample (Optional[Callable]): Function for downsampling the output. None to skip downsampling.
|
165
271
|
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
|
166
272
|
out_dim (Optional[int]): The dimensionality of the output. None means it will be the same as `dim`.
|
167
273
|
conv_expand_ratio (float): Expansion ratio for the MBConv layers.
|
274
|
+
|
275
|
+
Examples:
|
276
|
+
>>> input_tensor = torch.randn(1, 64, 56, 56)
|
277
|
+
>>> conv_layer = ConvLayer(64, (56, 56), depth=3, activation=nn.ReLU)
|
278
|
+
>>> output = conv_layer(input_tensor)
|
279
|
+
>>> print(output.shape)
|
168
280
|
"""
|
169
281
|
super().__init__()
|
170
282
|
self.dim = dim
|
@@ -194,7 +306,7 @@ class ConvLayer(nn.Module):
|
|
194
306
|
)
|
195
307
|
|
196
308
|
def forward(self, x):
|
197
|
-
"""Processes
|
309
|
+
"""Processes input through convolutional layers, applying MBConv blocks and optional downsampling."""
|
198
310
|
for blk in self.blocks:
|
199
311
|
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
|
200
312
|
return x if self.downsample is None else self.downsample(x)
|
@@ -202,13 +314,33 @@ class ConvLayer(nn.Module):
|
|
202
314
|
|
203
315
|
class Mlp(nn.Module):
|
204
316
|
"""
|
205
|
-
Multi-layer Perceptron (MLP) for transformer architectures.
|
317
|
+
Multi-layer Perceptron (MLP) module for transformer architectures.
|
318
|
+
|
319
|
+
This module applies layer normalization, two fully-connected layers with an activation function in between,
|
320
|
+
and dropout. It is commonly used in transformer-based architectures.
|
206
321
|
|
207
|
-
|
322
|
+
Attributes:
|
323
|
+
norm (nn.LayerNorm): Layer normalization applied to the input.
|
324
|
+
fc1 (nn.Linear): First fully-connected layer.
|
325
|
+
fc2 (nn.Linear): Second fully-connected layer.
|
326
|
+
act (nn.Module): Activation function applied after the first fully-connected layer.
|
327
|
+
drop (nn.Dropout): Dropout layer applied after the activation function.
|
328
|
+
|
329
|
+
Methods:
|
330
|
+
forward: Applies the MLP operations on the input tensor.
|
331
|
+
|
332
|
+
Examples:
|
333
|
+
>>> import torch
|
334
|
+
>>> from torch import nn
|
335
|
+
>>> mlp = Mlp(in_features=256, hidden_features=512, out_features=256, act_layer=nn.GELU, drop=0.1)
|
336
|
+
>>> x = torch.randn(32, 100, 256)
|
337
|
+
>>> output = mlp(x)
|
338
|
+
>>> print(output.shape)
|
339
|
+
torch.Size([32, 100, 256])
|
208
340
|
"""
|
209
341
|
|
210
342
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
|
211
|
-
"""Initializes
|
343
|
+
"""Initializes a multi-layer perceptron with configurable input, hidden, and output dimensions."""
|
212
344
|
super().__init__()
|
213
345
|
out_features = out_features or in_features
|
214
346
|
hidden_features = hidden_features or in_features
|
@@ -219,7 +351,7 @@ class Mlp(nn.Module):
|
|
219
351
|
self.drop = nn.Dropout(drop)
|
220
352
|
|
221
353
|
def forward(self, x):
|
222
|
-
"""Applies operations
|
354
|
+
"""Applies MLP operations: layer norm, FC layers, activation, and dropout to the input tensor."""
|
223
355
|
x = self.norm(x)
|
224
356
|
x = self.fc1(x)
|
225
357
|
x = self.act(x)
|
@@ -230,12 +362,37 @@ class Mlp(nn.Module):
|
|
230
362
|
|
231
363
|
class Attention(torch.nn.Module):
|
232
364
|
"""
|
233
|
-
Multi-head attention module with
|
234
|
-
|
235
|
-
|
365
|
+
Multi-head attention module with spatial awareness and trainable attention biases.
|
366
|
+
|
367
|
+
This module implements a multi-head attention mechanism with support for spatial awareness, applying
|
368
|
+
attention biases based on spatial resolution. It includes trainable attention biases for each unique
|
369
|
+
offset between spatial positions in the resolution grid.
|
236
370
|
|
237
371
|
Attributes:
|
238
|
-
|
372
|
+
num_heads (int): Number of attention heads.
|
373
|
+
scale (float): Scaling factor for attention scores.
|
374
|
+
key_dim (int): Dimensionality of the keys and queries.
|
375
|
+
nh_kd (int): Product of num_heads and key_dim.
|
376
|
+
d (int): Dimensionality of the value vectors.
|
377
|
+
dh (int): Product of d and num_heads.
|
378
|
+
attn_ratio (float): Attention ratio affecting the dimensions of the value vectors.
|
379
|
+
norm (nn.LayerNorm): Layer normalization applied to input.
|
380
|
+
qkv (nn.Linear): Linear layer for computing query, key, and value projections.
|
381
|
+
proj (nn.Linear): Linear layer for final projection.
|
382
|
+
attention_biases (nn.Parameter): Learnable attention biases.
|
383
|
+
attention_bias_idxs (Tensor): Indices for attention biases.
|
384
|
+
ab (Tensor): Cached attention biases for inference, deleted during training.
|
385
|
+
|
386
|
+
Methods:
|
387
|
+
train: Sets the module in training mode and handles the 'ab' attribute.
|
388
|
+
forward: Performs the forward pass of the attention mechanism.
|
389
|
+
|
390
|
+
Examples:
|
391
|
+
>>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14))
|
392
|
+
>>> x = torch.randn(1, 196, 256)
|
393
|
+
>>> output = attn(x)
|
394
|
+
>>> print(output.shape)
|
395
|
+
torch.Size([1, 196, 256])
|
239
396
|
"""
|
240
397
|
|
241
398
|
def __init__(
|
@@ -247,21 +404,32 @@ class Attention(torch.nn.Module):
|
|
247
404
|
resolution=(14, 14),
|
248
405
|
):
|
249
406
|
"""
|
250
|
-
Initializes the Attention module.
|
407
|
+
Initializes the Attention module for multi-head attention with spatial awareness.
|
408
|
+
|
409
|
+
This module implements a multi-head attention mechanism with support for spatial awareness, applying
|
410
|
+
attention biases based on spatial resolution. It includes trainable attention biases for each unique
|
411
|
+
offset between spatial positions in the resolution grid.
|
251
412
|
|
252
413
|
Args:
|
253
414
|
dim (int): The dimensionality of the input and output.
|
254
415
|
key_dim (int): The dimensionality of the keys and queries.
|
255
|
-
num_heads (int
|
256
|
-
attn_ratio (float
|
257
|
-
resolution (Tuple[int, int]
|
416
|
+
num_heads (int): Number of attention heads. Default is 8.
|
417
|
+
attn_ratio (float): Attention ratio, affecting the dimensions of the value vectors. Default is 4.
|
418
|
+
resolution (Tuple[int, int]): Spatial resolution of the input feature map. Default is (14, 14).
|
258
419
|
|
259
420
|
Raises:
|
260
|
-
AssertionError: If
|
421
|
+
AssertionError: If 'resolution' is not a tuple of length 2.
|
422
|
+
|
423
|
+
Examples:
|
424
|
+
>>> attn = Attention(dim=256, key_dim=64, num_heads=8, resolution=(14, 14))
|
425
|
+
>>> x = torch.randn(1, 196, 256)
|
426
|
+
>>> output = attn(x)
|
427
|
+
>>> print(output.shape)
|
428
|
+
torch.Size([1, 196, 256])
|
261
429
|
"""
|
262
430
|
super().__init__()
|
263
431
|
|
264
|
-
assert isinstance(resolution, tuple) and len(resolution) == 2
|
432
|
+
assert isinstance(resolution, tuple) and len(resolution) == 2, "'resolution' argument not tuple of length 2"
|
265
433
|
self.num_heads = num_heads
|
266
434
|
self.scale = key_dim**-0.5
|
267
435
|
self.key_dim = key_dim
|
@@ -290,7 +458,7 @@ class Attention(torch.nn.Module):
|
|
290
458
|
|
291
459
|
@torch.no_grad()
|
292
460
|
def train(self, mode=True):
|
293
|
-
"""
|
461
|
+
"""Performs multi-head attention with spatial awareness and trainable attention biases."""
|
294
462
|
super().train(mode)
|
295
463
|
if mode and hasattr(self, "ab"):
|
296
464
|
del self.ab
|
@@ -298,7 +466,7 @@ class Attention(torch.nn.Module):
|
|
298
466
|
self.ab = self.attention_biases[:, self.attention_bias_idxs]
|
299
467
|
|
300
468
|
def forward(self, x): # x
|
301
|
-
"""
|
469
|
+
"""Applies multi-head attention with spatial awareness and trainable attention biases."""
|
302
470
|
B, N, _ = x.shape # B, N, C
|
303
471
|
|
304
472
|
# Normalization
|
@@ -322,7 +490,34 @@ class Attention(torch.nn.Module):
|
|
322
490
|
|
323
491
|
|
324
492
|
class TinyViTBlock(nn.Module):
|
325
|
-
"""
|
493
|
+
"""
|
494
|
+
TinyViT Block that applies self-attention and a local convolution to the input.
|
495
|
+
|
496
|
+
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with
|
497
|
+
local convolutions to process input features efficiently.
|
498
|
+
|
499
|
+
Attributes:
|
500
|
+
dim (int): The dimensionality of the input and output.
|
501
|
+
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
|
502
|
+
num_heads (int): Number of attention heads.
|
503
|
+
window_size (int): Size of the attention window.
|
504
|
+
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
|
505
|
+
drop_path (nn.Module): Stochastic depth layer, identity function during inference.
|
506
|
+
attn (Attention): Self-attention module.
|
507
|
+
mlp (Mlp): Multi-layer perceptron module.
|
508
|
+
local_conv (Conv2d_BN): Depth-wise local convolution layer.
|
509
|
+
|
510
|
+
Methods:
|
511
|
+
forward: Processes the input through the TinyViT block.
|
512
|
+
extra_repr: Returns a string with extra information about the block's parameters.
|
513
|
+
|
514
|
+
Examples:
|
515
|
+
>>> input_tensor = torch.randn(1, 196, 192)
|
516
|
+
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3)
|
517
|
+
>>> output = block(input_tensor)
|
518
|
+
>>> print(output.shape)
|
519
|
+
torch.Size([1, 196, 192])
|
520
|
+
"""
|
326
521
|
|
327
522
|
def __init__(
|
328
523
|
self,
|
@@ -337,22 +532,32 @@ class TinyViTBlock(nn.Module):
|
|
337
532
|
activation=nn.GELU,
|
338
533
|
):
|
339
534
|
"""
|
340
|
-
Initializes
|
535
|
+
Initializes a TinyViT block with self-attention and local convolution.
|
536
|
+
|
537
|
+
This block is a key component of the TinyViT architecture, combining self-attention mechanisms with
|
538
|
+
local convolutions to process input features efficiently.
|
341
539
|
|
342
540
|
Args:
|
343
|
-
dim (int):
|
344
|
-
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
|
541
|
+
dim (int): Dimensionality of the input and output features.
|
542
|
+
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width).
|
345
543
|
num_heads (int): Number of attention heads.
|
346
|
-
window_size (int
|
347
|
-
mlp_ratio (float
|
348
|
-
drop (float
|
349
|
-
drop_path (float
|
350
|
-
local_conv_size (int
|
351
|
-
activation (torch.nn
|
544
|
+
window_size (int): Size of the attention window. Must be greater than 0.
|
545
|
+
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
|
546
|
+
drop (float): Dropout rate.
|
547
|
+
drop_path (float): Stochastic depth rate.
|
548
|
+
local_conv_size (int): Kernel size of the local convolution.
|
549
|
+
activation (torch.nn.Module): Activation function for MLP.
|
352
550
|
|
353
551
|
Raises:
|
354
|
-
AssertionError: If
|
355
|
-
AssertionError: If
|
552
|
+
AssertionError: If window_size is not greater than 0.
|
553
|
+
AssertionError: If dim is not divisible by num_heads.
|
554
|
+
|
555
|
+
Examples:
|
556
|
+
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3)
|
557
|
+
>>> input_tensor = torch.randn(1, 196, 192)
|
558
|
+
>>> output = block(input_tensor)
|
559
|
+
>>> print(output.shape)
|
560
|
+
torch.Size([1, 196, 192])
|
356
561
|
"""
|
357
562
|
super().__init__()
|
358
563
|
self.dim = dim
|
@@ -380,53 +585,61 @@ class TinyViTBlock(nn.Module):
|
|
380
585
|
self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
|
381
586
|
|
382
587
|
def forward(self, x):
|
383
|
-
"""Applies attention
|
384
|
-
|
385
|
-
|
386
|
-
|
387
|
-
B, L, C = x.shape
|
388
|
-
assert L == H * W, "input feature has wrong size"
|
588
|
+
"""Applies self-attention, local convolution, and MLP operations to the input tensor."""
|
589
|
+
h, w = self.input_resolution
|
590
|
+
b, hw, c = x.shape # batch, height*width, channels
|
591
|
+
assert hw == h * w, "input feature has wrong size"
|
389
592
|
res_x = x
|
390
|
-
if
|
593
|
+
if h == self.window_size and w == self.window_size:
|
391
594
|
x = self.attn(x)
|
392
595
|
else:
|
393
|
-
x = x.view(
|
394
|
-
pad_b = (self.window_size -
|
395
|
-
pad_r = (self.window_size -
|
596
|
+
x = x.view(b, h, w, c)
|
597
|
+
pad_b = (self.window_size - h % self.window_size) % self.window_size
|
598
|
+
pad_r = (self.window_size - w % self.window_size) % self.window_size
|
396
599
|
padding = pad_b > 0 or pad_r > 0
|
397
|
-
|
398
600
|
if padding:
|
399
601
|
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
|
400
602
|
|
401
|
-
pH, pW =
|
603
|
+
pH, pW = h + pad_b, w + pad_r
|
402
604
|
nH = pH // self.window_size
|
403
605
|
nW = pW // self.window_size
|
606
|
+
|
404
607
|
# Window partition
|
405
608
|
x = (
|
406
|
-
x.view(
|
609
|
+
x.view(b, nH, self.window_size, nW, self.window_size, c)
|
407
610
|
.transpose(2, 3)
|
408
|
-
.reshape(
|
611
|
+
.reshape(b * nH * nW, self.window_size * self.window_size, c)
|
409
612
|
)
|
410
613
|
x = self.attn(x)
|
411
|
-
# Window reverse
|
412
|
-
x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C)
|
413
614
|
|
615
|
+
# Window reverse
|
616
|
+
x = x.view(b, nH, nW, self.window_size, self.window_size, c).transpose(2, 3).reshape(b, pH, pW, c)
|
414
617
|
if padding:
|
415
|
-
x = x[:, :
|
618
|
+
x = x[:, :h, :w].contiguous()
|
416
619
|
|
417
|
-
x = x.view(
|
620
|
+
x = x.view(b, hw, c)
|
418
621
|
|
419
622
|
x = res_x + self.drop_path(x)
|
420
|
-
|
421
|
-
x = x.transpose(1, 2).reshape(B, C, H, W)
|
623
|
+
x = x.transpose(1, 2).reshape(b, c, h, w)
|
422
624
|
x = self.local_conv(x)
|
423
|
-
x = x.view(
|
625
|
+
x = x.view(b, c, hw).transpose(1, 2)
|
424
626
|
|
425
627
|
return x + self.drop_path(self.mlp(x))
|
426
628
|
|
427
629
|
def extra_repr(self) -> str:
|
428
|
-
"""
|
429
|
-
|
630
|
+
"""
|
631
|
+
Returns a string representation of the TinyViTBlock's parameters.
|
632
|
+
|
633
|
+
This method provides a formatted string containing key information about the TinyViTBlock, including its
|
634
|
+
dimension, input resolution, number of attention heads, window size, and MLP ratio.
|
635
|
+
|
636
|
+
Returns:
|
637
|
+
(str): A formatted string containing the block's parameters.
|
638
|
+
|
639
|
+
Examples:
|
640
|
+
>>> block = TinyViTBlock(dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0)
|
641
|
+
>>> print(block.extra_repr())
|
642
|
+
dim=192, input_resolution=(14, 14), num_heads=3, window_size=7, mlp_ratio=4.0
|
430
643
|
"""
|
431
644
|
return (
|
432
645
|
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
|
@@ -435,7 +648,31 @@ class TinyViTBlock(nn.Module):
|
|
435
648
|
|
436
649
|
|
437
650
|
class BasicLayer(nn.Module):
|
438
|
-
"""
|
651
|
+
"""
|
652
|
+
A basic TinyViT layer for one stage in a TinyViT architecture.
|
653
|
+
|
654
|
+
This class represents a single layer in the TinyViT model, consisting of multiple TinyViT blocks
|
655
|
+
and an optional downsampling operation.
|
656
|
+
|
657
|
+
Attributes:
|
658
|
+
dim (int): The dimensionality of the input and output features.
|
659
|
+
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
|
660
|
+
depth (int): Number of TinyViT blocks in this layer.
|
661
|
+
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
|
662
|
+
blocks (nn.ModuleList): List of TinyViT blocks that make up this layer.
|
663
|
+
downsample (nn.Module | None): Downsample layer at the end of the layer, if specified.
|
664
|
+
|
665
|
+
Methods:
|
666
|
+
forward: Processes the input through the layer's blocks and optional downsampling.
|
667
|
+
extra_repr: Returns a string with the layer's parameters for printing.
|
668
|
+
|
669
|
+
Examples:
|
670
|
+
>>> input_tensor = torch.randn(1, 3136, 192)
|
671
|
+
>>> layer = BasicLayer(dim=192, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7)
|
672
|
+
>>> output = layer(input_tensor)
|
673
|
+
>>> print(output.shape)
|
674
|
+
torch.Size([1, 784, 384])
|
675
|
+
"""
|
439
676
|
|
440
677
|
def __init__(
|
441
678
|
self,
|
@@ -454,25 +691,34 @@ class BasicLayer(nn.Module):
|
|
454
691
|
out_dim=None,
|
455
692
|
):
|
456
693
|
"""
|
457
|
-
Initializes the
|
694
|
+
Initializes a BasicLayer in the TinyViT architecture.
|
695
|
+
|
696
|
+
This layer consists of multiple TinyViT blocks and an optional downsampling operation. It is designed to
|
697
|
+
process feature maps at a specific resolution and dimensionality within the TinyViT model.
|
458
698
|
|
459
699
|
Args:
|
460
|
-
dim (int):
|
461
|
-
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
|
462
|
-
depth (int): Number of TinyViT blocks.
|
463
|
-
num_heads (int): Number of attention heads.
|
464
|
-
window_size (int):
|
465
|
-
mlp_ratio (float
|
466
|
-
drop (float
|
467
|
-
drop_path (float |
|
468
|
-
downsample (nn.Module | None
|
469
|
-
use_checkpoint (bool
|
470
|
-
local_conv_size (int
|
471
|
-
activation (
|
472
|
-
out_dim (int | None
|
700
|
+
dim (int): Dimensionality of the input and output features.
|
701
|
+
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map (height, width).
|
702
|
+
depth (int): Number of TinyViT blocks in this layer.
|
703
|
+
num_heads (int): Number of attention heads in each TinyViT block.
|
704
|
+
window_size (int): Size of the local window for attention computation.
|
705
|
+
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
|
706
|
+
drop (float): Dropout rate.
|
707
|
+
drop_path (float | List[float]): Stochastic depth rate. Can be a float or a list of floats for each block.
|
708
|
+
downsample (nn.Module | None): Downsampling layer at the end of the layer. None to skip downsampling.
|
709
|
+
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
|
710
|
+
local_conv_size (int): Kernel size for the local convolution in each TinyViT block.
|
711
|
+
activation (nn.Module): Activation function used in the MLP.
|
712
|
+
out_dim (int | None): Output dimension after downsampling. None means it will be the same as `dim`.
|
473
713
|
|
474
714
|
Raises:
|
475
|
-
ValueError: If `drop_path` is a list
|
715
|
+
ValueError: If `drop_path` is a list and its length doesn't match `depth`.
|
716
|
+
|
717
|
+
Examples:
|
718
|
+
>>> layer = BasicLayer(dim=96, input_resolution=(56, 56), depth=2, num_heads=3, window_size=7)
|
719
|
+
>>> x = torch.randn(1, 56 * 56, 96)
|
720
|
+
>>> output = layer(x)
|
721
|
+
>>> print(output.shape)
|
476
722
|
"""
|
477
723
|
super().__init__()
|
478
724
|
self.dim = dim
|
@@ -506,58 +752,49 @@ class BasicLayer(nn.Module):
|
|
506
752
|
)
|
507
753
|
|
508
754
|
def forward(self, x):
|
509
|
-
"""
|
755
|
+
"""Processes input through TinyViT blocks and optional downsampling."""
|
510
756
|
for blk in self.blocks:
|
511
757
|
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
|
512
758
|
return x if self.downsample is None else self.downsample(x)
|
513
759
|
|
514
760
|
def extra_repr(self) -> str:
|
515
|
-
"""Returns a string
|
761
|
+
"""Returns a string with the layer's parameters for printing."""
|
516
762
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
517
763
|
|
518
764
|
|
519
|
-
class LayerNorm2d(nn.Module):
|
520
|
-
"""A PyTorch implementation of Layer Normalization in 2D."""
|
521
|
-
|
522
|
-
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
523
|
-
"""Initialize LayerNorm2d with the number of channels and an optional epsilon."""
|
524
|
-
super().__init__()
|
525
|
-
self.weight = nn.Parameter(torch.ones(num_channels))
|
526
|
-
self.bias = nn.Parameter(torch.zeros(num_channels))
|
527
|
-
self.eps = eps
|
528
|
-
|
529
|
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
530
|
-
"""Perform a forward pass, normalizing the input tensor."""
|
531
|
-
u = x.mean(1, keepdim=True)
|
532
|
-
s = (x - u).pow(2).mean(1, keepdim=True)
|
533
|
-
x = (x - u) / torch.sqrt(s + self.eps)
|
534
|
-
return self.weight[:, None, None] * x + self.bias[:, None, None]
|
535
|
-
|
536
|
-
|
537
765
|
class TinyViT(nn.Module):
|
538
766
|
"""
|
539
|
-
|
767
|
+
TinyViT: A compact vision transformer architecture for efficient image classification and feature extraction.
|
768
|
+
|
769
|
+
This class implements the TinyViT model, which combines elements of vision transformers and convolutional
|
770
|
+
neural networks for improved efficiency and performance on vision tasks.
|
540
771
|
|
541
772
|
Attributes:
|
542
773
|
img_size (int): Input image size.
|
543
|
-
in_chans (int): Number of input channels.
|
544
774
|
num_classes (int): Number of classification classes.
|
545
|
-
|
546
|
-
|
547
|
-
num_heads (List[int]): List of number of attention heads for each layer.
|
548
|
-
window_sizes (List[int]): List of window sizes for each layer.
|
775
|
+
depths (List[int]): Number of blocks in each stage.
|
776
|
+
num_layers (int): Total number of layers in the network.
|
549
777
|
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
|
550
|
-
|
551
|
-
|
552
|
-
|
553
|
-
|
554
|
-
|
555
|
-
|
556
|
-
|
557
|
-
|
558
|
-
|
559
|
-
|
560
|
-
|
778
|
+
patch_embed (PatchEmbed): Module for patch embedding.
|
779
|
+
patches_resolution (Tuple[int, int]): Resolution of embedded patches.
|
780
|
+
layers (nn.ModuleList): List of network layers.
|
781
|
+
norm_head (nn.LayerNorm): Layer normalization for the classifier head.
|
782
|
+
head (nn.Linear): Linear layer for final classification.
|
783
|
+
neck (nn.Sequential): Neck module for feature refinement.
|
784
|
+
|
785
|
+
Methods:
|
786
|
+
set_layer_lr_decay: Sets layer-wise learning rate decay.
|
787
|
+
_init_weights: Initializes weights for linear and normalization layers.
|
788
|
+
no_weight_decay_keywords: Returns keywords for parameters that should not use weight decay.
|
789
|
+
forward_features: Processes input through the feature extraction layers.
|
790
|
+
forward: Performs a forward pass through the entire network.
|
791
|
+
|
792
|
+
Examples:
|
793
|
+
>>> model = TinyViT(img_size=224, num_classes=1000)
|
794
|
+
>>> x = torch.randn(1, 3, 224, 224)
|
795
|
+
>>> features = model.forward_features(x)
|
796
|
+
>>> print(features.shape)
|
797
|
+
torch.Size([1, 256, 64, 64])
|
561
798
|
"""
|
562
799
|
|
563
800
|
def __init__(
|
@@ -565,10 +802,10 @@ class TinyViT(nn.Module):
|
|
565
802
|
img_size=224,
|
566
803
|
in_chans=3,
|
567
804
|
num_classes=1000,
|
568
|
-
embed_dims=
|
569
|
-
depths=
|
570
|
-
num_heads=
|
571
|
-
window_sizes=
|
805
|
+
embed_dims=(96, 192, 384, 768),
|
806
|
+
depths=(2, 2, 6, 2),
|
807
|
+
num_heads=(3, 6, 12, 24),
|
808
|
+
window_sizes=(7, 7, 14, 7),
|
572
809
|
mlp_ratio=4.0,
|
573
810
|
drop_rate=0.0,
|
574
811
|
drop_path_rate=0.1,
|
@@ -580,21 +817,33 @@ class TinyViT(nn.Module):
|
|
580
817
|
"""
|
581
818
|
Initializes the TinyViT model.
|
582
819
|
|
820
|
+
This constructor sets up the TinyViT architecture, including patch embedding, multiple layers of
|
821
|
+
attention and convolution blocks, and a classification head.
|
822
|
+
|
583
823
|
Args:
|
584
|
-
img_size (int
|
585
|
-
in_chans (int
|
586
|
-
num_classes (int
|
587
|
-
embed_dims (
|
588
|
-
|
589
|
-
|
590
|
-
|
591
|
-
|
592
|
-
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
|
597
|
-
|
824
|
+
img_size (int): Size of the input image. Default is 224.
|
825
|
+
in_chans (int): Number of input channels. Default is 3.
|
826
|
+
num_classes (int): Number of classes for classification. Default is 1000.
|
827
|
+
embed_dims (Tuple[int, int, int, int]): Embedding dimensions for each stage.
|
828
|
+
Default is (96, 192, 384, 768).
|
829
|
+
depths (Tuple[int, int, int, int]): Number of blocks in each stage. Default is (2, 2, 6, 2).
|
830
|
+
num_heads (Tuple[int, int, int, int]): Number of attention heads in each stage.
|
831
|
+
Default is (3, 6, 12, 24).
|
832
|
+
window_sizes (Tuple[int, int, int, int]): Window sizes for each stage. Default is (7, 7, 14, 7).
|
833
|
+
mlp_ratio (float): Ratio of MLP hidden dim to embedding dim. Default is 4.0.
|
834
|
+
drop_rate (float): Dropout rate. Default is 0.0.
|
835
|
+
drop_path_rate (float): Stochastic depth rate. Default is 0.1.
|
836
|
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default is False.
|
837
|
+
mbconv_expand_ratio (float): Expansion ratio for MBConv layer. Default is 4.0.
|
838
|
+
local_conv_size (int): Kernel size for local convolutions. Default is 3.
|
839
|
+
layer_lr_decay (float): Layer-wise learning rate decay factor. Default is 1.0.
|
840
|
+
|
841
|
+
Examples:
|
842
|
+
>>> model = TinyViT(img_size=224, num_classes=1000)
|
843
|
+
>>> x = torch.randn(1, 3, 224, 224)
|
844
|
+
>>> output = model(x)
|
845
|
+
>>> print(output.shape)
|
846
|
+
torch.Size([1, 1000])
|
598
847
|
"""
|
599
848
|
super().__init__()
|
600
849
|
self.img_size = img_size
|
@@ -672,7 +921,7 @@ class TinyViT(nn.Module):
|
|
672
921
|
)
|
673
922
|
|
674
923
|
def set_layer_lr_decay(self, layer_lr_decay):
|
675
|
-
"""Sets
|
924
|
+
"""Sets layer-wise learning rate decay for the TinyViT model based on depth."""
|
676
925
|
decay_rate = layer_lr_decay
|
677
926
|
|
678
927
|
# Layers -> blocks (depth)
|
@@ -706,8 +955,9 @@ class TinyViT(nn.Module):
|
|
706
955
|
|
707
956
|
self.apply(_check_lr_scale)
|
708
957
|
|
709
|
-
|
710
|
-
|
958
|
+
@staticmethod
|
959
|
+
def _init_weights(m):
|
960
|
+
"""Initializes weights for linear and normalization layers in the TinyViT model."""
|
711
961
|
if isinstance(m, nn.Linear):
|
712
962
|
# NOTE: This initialization is needed only for training.
|
713
963
|
# trunc_normal_(m.weight, std=.02)
|
@@ -719,11 +969,11 @@ class TinyViT(nn.Module):
|
|
719
969
|
|
720
970
|
@torch.jit.ignore
|
721
971
|
def no_weight_decay_keywords(self):
|
722
|
-
"""Returns a
|
972
|
+
"""Returns a set of keywords for parameters that should not use weight decay."""
|
723
973
|
return {"attention_biases"}
|
724
974
|
|
725
975
|
def forward_features(self, x):
|
726
|
-
"""
|
976
|
+
"""Processes input through feature extraction layers, returning spatial features."""
|
727
977
|
x = self.patch_embed(x) # x input is (N, C, H, W)
|
728
978
|
|
729
979
|
x = self.layers[0](x)
|
@@ -732,11 +982,32 @@ class TinyViT(nn.Module):
|
|
732
982
|
for i in range(start_i, len(self.layers)):
|
733
983
|
layer = self.layers[i]
|
734
984
|
x = layer(x)
|
735
|
-
|
736
|
-
x = x.view(
|
985
|
+
batch, _, channel = x.shape
|
986
|
+
x = x.view(batch, self.patches_resolution[0] // 4, self.patches_resolution[1] // 4, channel)
|
737
987
|
x = x.permute(0, 3, 1, 2)
|
738
988
|
return self.neck(x)
|
739
989
|
|
740
990
|
def forward(self, x):
|
741
|
-
"""
|
991
|
+
"""Performs the forward pass through the TinyViT model, extracting features from the input image."""
|
742
992
|
return self.forward_features(x)
|
993
|
+
|
994
|
+
def set_imgsz(self, imgsz=[1024, 1024]):
|
995
|
+
"""
|
996
|
+
Set image size to make model compatible with different image sizes.
|
997
|
+
|
998
|
+
Args:
|
999
|
+
imgsz (Tuple[int, int]): The size of the input image.
|
1000
|
+
"""
|
1001
|
+
imgsz = [s // 4 for s in imgsz]
|
1002
|
+
self.patches_resolution = imgsz
|
1003
|
+
for i, layer in enumerate(self.layers):
|
1004
|
+
input_resolution = (
|
1005
|
+
imgsz[0] // (2 ** (i - 1 if i == 3 else i)),
|
1006
|
+
imgsz[1] // (2 ** (i - 1 if i == 3 else i)),
|
1007
|
+
)
|
1008
|
+
layer.input_resolution = input_resolution
|
1009
|
+
if layer.downsample is not None:
|
1010
|
+
layer.downsample.input_resolution = input_resolution
|
1011
|
+
if isinstance(layer, BasicLayer):
|
1012
|
+
for b in layer.blocks:
|
1013
|
+
b.input_resolution = input_resolution
|