ultralytics 8.1.29__py3-none-any.whl → 8.3.62__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +122 -0
- tests/test_cuda.py +155 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +216 -0
- tests/test_integrations.py +150 -0
- tests/test_python.py +615 -0
- tests/test_solutions.py +94 -0
- ultralytics/__init__.py +11 -8
- ultralytics/cfg/__init__.py +569 -131
- ultralytics/cfg/datasets/Argoverse.yaml +2 -1
- ultralytics/cfg/datasets/DOTAv1.5.yaml +3 -2
- ultralytics/cfg/datasets/DOTAv1.yaml +3 -2
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +3 -2
- ultralytics/cfg/datasets/ImageNet.yaml +2 -1
- ultralytics/cfg/datasets/Objects365.yaml +5 -4
- ultralytics/cfg/datasets/SKU-110K.yaml +2 -1
- ultralytics/cfg/datasets/VOC.yaml +3 -2
- ultralytics/cfg/datasets/VisDrone.yaml +6 -5
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +3 -2
- ultralytics/cfg/datasets/coco-pose.yaml +7 -6
- ultralytics/cfg/datasets/coco.yaml +3 -2
- ultralytics/cfg/datasets/coco128-seg.yaml +4 -3
- ultralytics/cfg/datasets/coco128.yaml +4 -3
- ultralytics/cfg/datasets/coco8-pose.yaml +3 -2
- ultralytics/cfg/datasets/coco8-seg.yaml +3 -2
- ultralytics/cfg/datasets/coco8.yaml +3 -2
- ultralytics/cfg/datasets/crack-seg.yaml +3 -2
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8.yaml +3 -2
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1236 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +2 -1
- ultralytics/cfg/datasets/package-seg.yaml +5 -4
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +3 -2
- ultralytics/cfg/datasets/xView.yaml +2 -1
- ultralytics/cfg/default.yaml +14 -11
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +24 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +5 -2
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +5 -2
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +5 -2
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +5 -2
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +5 -2
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +5 -2
- ultralytics/cfg/models/v3/yolov3.yaml +5 -2
- ultralytics/cfg/models/v5/yolov5-p6.yaml +5 -2
- ultralytics/cfg/models/v5/yolov5.yaml +5 -2
- ultralytics/cfg/models/v6/yolov6.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-cls.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +6 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +6 -2
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-obb.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-p2.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-p6.yaml +10 -7
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-pose.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-seg.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-world.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8.yaml +5 -2
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +30 -25
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +46 -42
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/solutions/default.yaml +24 -0
- ultralytics/cfg/trackers/botsort.yaml +8 -5
- ultralytics/cfg/trackers/bytetrack.yaml +8 -5
- ultralytics/data/__init__.py +14 -3
- ultralytics/data/annotator.py +37 -15
- ultralytics/data/augment.py +1783 -289
- ultralytics/data/base.py +62 -27
- ultralytics/data/build.py +36 -8
- ultralytics/data/converter.py +196 -36
- ultralytics/data/dataset.py +233 -94
- ultralytics/data/loaders.py +199 -96
- ultralytics/data/split_dota.py +39 -29
- ultralytics/data/utils.py +110 -40
- ultralytics/engine/__init__.py +1 -1
- ultralytics/engine/exporter.py +569 -242
- ultralytics/engine/model.py +604 -252
- ultralytics/engine/predictor.py +22 -11
- ultralytics/engine/results.py +1228 -218
- ultralytics/engine/trainer.py +190 -129
- ultralytics/engine/tuner.py +18 -18
- ultralytics/engine/validator.py +18 -15
- ultralytics/hub/__init__.py +31 -13
- ultralytics/hub/auth.py +11 -7
- ultralytics/hub/google/__init__.py +159 -0
- ultralytics/hub/session.py +128 -94
- ultralytics/hub/utils.py +20 -21
- ultralytics/models/__init__.py +4 -2
- ultralytics/models/fastsam/__init__.py +2 -3
- ultralytics/models/fastsam/model.py +26 -4
- ultralytics/models/fastsam/predict.py +127 -63
- ultralytics/models/fastsam/utils.py +1 -44
- ultralytics/models/fastsam/val.py +1 -1
- ultralytics/models/nas/__init__.py +1 -1
- ultralytics/models/nas/model.py +21 -10
- ultralytics/models/nas/predict.py +3 -6
- ultralytics/models/nas/val.py +4 -4
- ultralytics/models/rtdetr/__init__.py +1 -1
- ultralytics/models/rtdetr/model.py +1 -1
- ultralytics/models/rtdetr/predict.py +6 -8
- ultralytics/models/rtdetr/train.py +6 -2
- ultralytics/models/rtdetr/val.py +3 -3
- ultralytics/models/sam/__init__.py +3 -3
- ultralytics/models/sam/amg.py +29 -23
- ultralytics/models/sam/build.py +211 -13
- ultralytics/models/sam/model.py +91 -30
- ultralytics/models/sam/modules/__init__.py +1 -1
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +381 -53
- ultralytics/models/sam/modules/encoders.py +515 -324
- ultralytics/models/sam/modules/memory_attention.py +237 -0
- ultralytics/models/sam/modules/sam.py +969 -21
- ultralytics/models/sam/modules/tiny_encoder.py +425 -154
- ultralytics/models/sam/modules/transformer.py +159 -60
- ultralytics/models/sam/modules/utils.py +293 -0
- ultralytics/models/sam/predict.py +1263 -132
- ultralytics/models/utils/__init__.py +1 -1
- ultralytics/models/utils/loss.py +36 -24
- ultralytics/models/utils/ops.py +3 -7
- ultralytics/models/yolo/__init__.py +3 -3
- ultralytics/models/yolo/classify/__init__.py +1 -1
- ultralytics/models/yolo/classify/predict.py +7 -8
- ultralytics/models/yolo/classify/train.py +17 -22
- ultralytics/models/yolo/classify/val.py +8 -4
- ultralytics/models/yolo/detect/__init__.py +1 -1
- ultralytics/models/yolo/detect/predict.py +3 -5
- ultralytics/models/yolo/detect/train.py +11 -4
- ultralytics/models/yolo/detect/val.py +90 -52
- ultralytics/models/yolo/model.py +14 -9
- ultralytics/models/yolo/obb/__init__.py +1 -1
- ultralytics/models/yolo/obb/predict.py +2 -2
- ultralytics/models/yolo/obb/train.py +5 -3
- ultralytics/models/yolo/obb/val.py +41 -23
- ultralytics/models/yolo/pose/__init__.py +1 -1
- ultralytics/models/yolo/pose/predict.py +3 -5
- ultralytics/models/yolo/pose/train.py +2 -2
- ultralytics/models/yolo/pose/val.py +51 -17
- ultralytics/models/yolo/segment/__init__.py +1 -1
- ultralytics/models/yolo/segment/predict.py +3 -5
- ultralytics/models/yolo/segment/train.py +2 -2
- ultralytics/models/yolo/segment/val.py +60 -19
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +92 -0
- ultralytics/models/yolo/world/train_world.py +109 -0
- ultralytics/nn/__init__.py +1 -1
- ultralytics/nn/autobackend.py +228 -93
- ultralytics/nn/modules/__init__.py +39 -14
- ultralytics/nn/modules/activation.py +21 -0
- ultralytics/nn/modules/block.py +526 -66
- ultralytics/nn/modules/conv.py +24 -7
- ultralytics/nn/modules/head.py +177 -34
- ultralytics/nn/modules/transformer.py +6 -5
- ultralytics/nn/modules/utils.py +1 -2
- ultralytics/nn/tasks.py +225 -77
- ultralytics/solutions/__init__.py +30 -1
- ultralytics/solutions/ai_gym.py +96 -143
- ultralytics/solutions/analytics.py +247 -0
- ultralytics/solutions/distance_calculation.py +78 -135
- ultralytics/solutions/heatmap.py +93 -247
- ultralytics/solutions/object_counter.py +184 -259
- ultralytics/solutions/parking_management.py +246 -0
- ultralytics/solutions/queue_management.py +112 -0
- ultralytics/solutions/region_counter.py +116 -0
- ultralytics/solutions/security_alarm.py +144 -0
- ultralytics/solutions/solutions.py +178 -0
- ultralytics/solutions/speed_estimation.py +86 -174
- ultralytics/solutions/streamlit_inference.py +190 -0
- ultralytics/solutions/trackzone.py +68 -0
- ultralytics/trackers/__init__.py +1 -1
- ultralytics/trackers/basetrack.py +32 -13
- ultralytics/trackers/bot_sort.py +61 -28
- ultralytics/trackers/byte_tracker.py +83 -51
- ultralytics/trackers/track.py +21 -6
- ultralytics/trackers/utils/__init__.py +1 -1
- ultralytics/trackers/utils/gmc.py +62 -48
- ultralytics/trackers/utils/kalman_filter.py +166 -35
- ultralytics/trackers/utils/matching.py +40 -21
- ultralytics/utils/__init__.py +511 -239
- ultralytics/utils/autobatch.py +40 -22
- ultralytics/utils/benchmarks.py +266 -85
- ultralytics/utils/callbacks/__init__.py +1 -1
- ultralytics/utils/callbacks/base.py +1 -3
- ultralytics/utils/callbacks/clearml.py +7 -6
- ultralytics/utils/callbacks/comet.py +39 -17
- ultralytics/utils/callbacks/dvc.py +1 -1
- ultralytics/utils/callbacks/hub.py +16 -16
- ultralytics/utils/callbacks/mlflow.py +28 -24
- ultralytics/utils/callbacks/neptune.py +6 -2
- ultralytics/utils/callbacks/raytune.py +3 -4
- ultralytics/utils/callbacks/tensorboard.py +18 -18
- ultralytics/utils/callbacks/wb.py +27 -20
- ultralytics/utils/checks.py +160 -100
- ultralytics/utils/dist.py +2 -1
- ultralytics/utils/downloads.py +40 -34
- ultralytics/utils/errors.py +1 -1
- ultralytics/utils/files.py +72 -38
- ultralytics/utils/instance.py +41 -19
- ultralytics/utils/loss.py +83 -55
- ultralytics/utils/metrics.py +61 -56
- ultralytics/utils/ops.py +94 -89
- ultralytics/utils/patches.py +30 -14
- ultralytics/utils/plotting.py +600 -269
- ultralytics/utils/tal.py +67 -26
- ultralytics/utils/torch_utils.py +302 -102
- ultralytics/utils/triton.py +2 -1
- ultralytics/utils/tuner.py +21 -12
- ultralytics-8.3.62.dist-info/METADATA +370 -0
- ultralytics-8.3.62.dist-info/RECORD +241 -0
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/WHEEL +1 -1
- ultralytics/data/explorer/__init__.py +0 -5
- ultralytics/data/explorer/explorer.py +0 -472
- ultralytics/data/explorer/gui/__init__.py +0 -1
- ultralytics/data/explorer/gui/dash.py +0 -268
- ultralytics/data/explorer/utils.py +0 -166
- ultralytics/models/fastsam/prompt.py +0 -357
- ultralytics-8.1.29.dist-info/METADATA +0 -373
- ultralytics-8.1.29.dist-info/RECORD +0 -197
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/LICENSE +0 -0
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/top_level.txt +0 -0
ultralytics/data/augment.py
CHANGED
@@ -1,107 +1,388 @@
|
|
1
|
-
# Ultralytics
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
3
|
import math
|
4
4
|
import random
|
5
5
|
from copy import deepcopy
|
6
|
+
from typing import Tuple, Union
|
6
7
|
|
7
8
|
import cv2
|
8
9
|
import numpy as np
|
9
10
|
import torch
|
10
|
-
|
11
|
+
from PIL import Image
|
11
12
|
|
13
|
+
from ultralytics.data.utils import polygons2masks, polygons2masks_overlap
|
12
14
|
from ultralytics.utils import LOGGER, colorstr
|
13
15
|
from ultralytics.utils.checks import check_version
|
14
16
|
from ultralytics.utils.instance import Instances
|
15
17
|
from ultralytics.utils.metrics import bbox_ioa
|
16
18
|
from ultralytics.utils.ops import segment2box, xyxyxyxy2xywhr
|
17
19
|
from ultralytics.utils.torch_utils import TORCHVISION_0_10, TORCHVISION_0_11, TORCHVISION_0_13
|
18
|
-
from .utils import polygons2masks, polygons2masks_overlap
|
19
20
|
|
20
21
|
DEFAULT_MEAN = (0.0, 0.0, 0.0)
|
21
22
|
DEFAULT_STD = (1.0, 1.0, 1.0)
|
22
|
-
|
23
|
+
DEFAULT_CROP_FRACTION = 1.0
|
23
24
|
|
24
25
|
|
25
|
-
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
|
26
26
|
class BaseTransform:
|
27
27
|
"""
|
28
|
-
Base class for image transformations.
|
28
|
+
Base class for image transformations in the Ultralytics library.
|
29
29
|
|
30
|
-
This
|
31
|
-
|
30
|
+
This class serves as a foundation for implementing various image processing operations, designed to be
|
31
|
+
compatible with both classification and semantic segmentation tasks.
|
32
32
|
|
33
33
|
Methods:
|
34
|
-
|
35
|
-
apply_image: Applies image transformation to labels.
|
34
|
+
apply_image: Applies image transformations to labels.
|
36
35
|
apply_instances: Applies transformations to object instances in labels.
|
37
36
|
apply_semantic: Applies semantic segmentation to an image.
|
38
37
|
__call__: Applies all label transformations to an image, instances, and semantic masks.
|
38
|
+
|
39
|
+
Examples:
|
40
|
+
>>> transform = BaseTransform()
|
41
|
+
>>> labels = {"image": np.array(...), "instances": [...], "semantic": np.array(...)}
|
42
|
+
>>> transformed_labels = transform(labels)
|
39
43
|
"""
|
40
44
|
|
41
45
|
def __init__(self) -> None:
|
42
|
-
"""
|
46
|
+
"""
|
47
|
+
Initializes the BaseTransform object.
|
48
|
+
|
49
|
+
This constructor sets up the base transformation object, which can be extended for specific image
|
50
|
+
processing tasks. It is designed to be compatible with both classification and semantic segmentation.
|
51
|
+
|
52
|
+
Examples:
|
53
|
+
>>> transform = BaseTransform()
|
54
|
+
"""
|
43
55
|
pass
|
44
56
|
|
45
57
|
def apply_image(self, labels):
|
46
|
-
"""
|
58
|
+
"""
|
59
|
+
Applies image transformations to labels.
|
60
|
+
|
61
|
+
This method is intended to be overridden by subclasses to implement specific image transformation
|
62
|
+
logic. In its base form, it returns the input labels unchanged.
|
63
|
+
|
64
|
+
Args:
|
65
|
+
labels (Any): The input labels to be transformed. The exact type and structure of labels may
|
66
|
+
vary depending on the specific implementation.
|
67
|
+
|
68
|
+
Returns:
|
69
|
+
(Any): The transformed labels. In the base implementation, this is identical to the input.
|
70
|
+
|
71
|
+
Examples:
|
72
|
+
>>> transform = BaseTransform()
|
73
|
+
>>> original_labels = [1, 2, 3]
|
74
|
+
>>> transformed_labels = transform.apply_image(original_labels)
|
75
|
+
>>> print(transformed_labels)
|
76
|
+
[1, 2, 3]
|
77
|
+
"""
|
47
78
|
pass
|
48
79
|
|
49
80
|
def apply_instances(self, labels):
|
50
|
-
"""
|
81
|
+
"""
|
82
|
+
Applies transformations to object instances in labels.
|
83
|
+
|
84
|
+
This method is responsible for applying various transformations to object instances within the given
|
85
|
+
labels. It is designed to be overridden by subclasses to implement specific instance transformation
|
86
|
+
logic.
|
87
|
+
|
88
|
+
Args:
|
89
|
+
labels (Dict): A dictionary containing label information, including object instances.
|
90
|
+
|
91
|
+
Returns:
|
92
|
+
(Dict): The modified labels dictionary with transformed object instances.
|
93
|
+
|
94
|
+
Examples:
|
95
|
+
>>> transform = BaseTransform()
|
96
|
+
>>> labels = {"instances": Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))}
|
97
|
+
>>> transformed_labels = transform.apply_instances(labels)
|
98
|
+
"""
|
51
99
|
pass
|
52
100
|
|
53
101
|
def apply_semantic(self, labels):
|
54
|
-
"""
|
102
|
+
"""
|
103
|
+
Applies semantic segmentation transformations to an image.
|
104
|
+
|
105
|
+
This method is intended to be overridden by subclasses to implement specific semantic segmentation
|
106
|
+
transformations. In its base form, it does not perform any operations.
|
107
|
+
|
108
|
+
Args:
|
109
|
+
labels (Any): The input labels or semantic segmentation mask to be transformed.
|
110
|
+
|
111
|
+
Returns:
|
112
|
+
(Any): The transformed semantic segmentation mask or labels.
|
113
|
+
|
114
|
+
Examples:
|
115
|
+
>>> transform = BaseTransform()
|
116
|
+
>>> semantic_mask = np.zeros((100, 100), dtype=np.uint8)
|
117
|
+
>>> transformed_mask = transform.apply_semantic(semantic_mask)
|
118
|
+
"""
|
55
119
|
pass
|
56
120
|
|
57
121
|
def __call__(self, labels):
|
58
|
-
"""
|
122
|
+
"""
|
123
|
+
Applies all label transformations to an image, instances, and semantic masks.
|
124
|
+
|
125
|
+
This method orchestrates the application of various transformations defined in the BaseTransform class
|
126
|
+
to the input labels. It sequentially calls the apply_image and apply_instances methods to process the
|
127
|
+
image and object instances, respectively.
|
128
|
+
|
129
|
+
Args:
|
130
|
+
labels (Dict): A dictionary containing image data and annotations. Expected keys include 'img' for
|
131
|
+
the image data, and 'instances' for object instances.
|
132
|
+
|
133
|
+
Returns:
|
134
|
+
(Dict): The input labels dictionary with transformed image and instances.
|
135
|
+
|
136
|
+
Examples:
|
137
|
+
>>> transform = BaseTransform()
|
138
|
+
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": []}
|
139
|
+
>>> transformed_labels = transform(labels)
|
140
|
+
"""
|
59
141
|
self.apply_image(labels)
|
60
142
|
self.apply_instances(labels)
|
61
143
|
self.apply_semantic(labels)
|
62
144
|
|
63
145
|
|
64
146
|
class Compose:
|
65
|
-
"""
|
147
|
+
"""
|
148
|
+
A class for composing multiple image transformations.
|
149
|
+
|
150
|
+
Attributes:
|
151
|
+
transforms (List[Callable]): A list of transformation functions to be applied sequentially.
|
152
|
+
|
153
|
+
Methods:
|
154
|
+
__call__: Applies a series of transformations to input data.
|
155
|
+
append: Appends a new transform to the existing list of transforms.
|
156
|
+
insert: Inserts a new transform at a specified index in the list of transforms.
|
157
|
+
__getitem__: Retrieves a specific transform or a set of transforms using indexing.
|
158
|
+
__setitem__: Sets a specific transform or a set of transforms using indexing.
|
159
|
+
tolist: Converts the list of transforms to a standard Python list.
|
160
|
+
|
161
|
+
Examples:
|
162
|
+
>>> transforms = [RandomFlip(), RandomPerspective(30)]
|
163
|
+
>>> compose = Compose(transforms)
|
164
|
+
>>> transformed_data = compose(data)
|
165
|
+
>>> compose.append(CenterCrop((224, 224)))
|
166
|
+
>>> compose.insert(0, RandomFlip())
|
167
|
+
"""
|
66
168
|
|
67
169
|
def __init__(self, transforms):
|
68
|
-
"""
|
69
|
-
|
170
|
+
"""
|
171
|
+
Initializes the Compose object with a list of transforms.
|
172
|
+
|
173
|
+
Args:
|
174
|
+
transforms (List[Callable]): A list of callable transform objects to be applied sequentially.
|
175
|
+
|
176
|
+
Examples:
|
177
|
+
>>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip
|
178
|
+
>>> transforms = [RandomHSV(), RandomFlip()]
|
179
|
+
>>> compose = Compose(transforms)
|
180
|
+
"""
|
181
|
+
self.transforms = transforms if isinstance(transforms, list) else [transforms]
|
70
182
|
|
71
183
|
def __call__(self, data):
|
72
|
-
"""
|
184
|
+
"""
|
185
|
+
Applies a series of transformations to input data. This method sequentially applies each transformation in the
|
186
|
+
Compose object's list of transforms to the input data.
|
187
|
+
|
188
|
+
Args:
|
189
|
+
data (Any): The input data to be transformed. This can be of any type, depending on the
|
190
|
+
transformations in the list.
|
191
|
+
|
192
|
+
Returns:
|
193
|
+
(Any): The transformed data after applying all transformations in sequence.
|
194
|
+
|
195
|
+
Examples:
|
196
|
+
>>> transforms = [Transform1(), Transform2(), Transform3()]
|
197
|
+
>>> compose = Compose(transforms)
|
198
|
+
>>> transformed_data = compose(input_data)
|
199
|
+
"""
|
73
200
|
for t in self.transforms:
|
74
201
|
data = t(data)
|
75
202
|
return data
|
76
203
|
|
77
204
|
def append(self, transform):
|
78
|
-
"""
|
205
|
+
"""
|
206
|
+
Appends a new transform to the existing list of transforms.
|
207
|
+
|
208
|
+
Args:
|
209
|
+
transform (BaseTransform): The transformation to be added to the composition.
|
210
|
+
|
211
|
+
Examples:
|
212
|
+
>>> compose = Compose([RandomFlip(), RandomPerspective()])
|
213
|
+
>>> compose.append(RandomHSV())
|
214
|
+
"""
|
79
215
|
self.transforms.append(transform)
|
80
216
|
|
217
|
+
def insert(self, index, transform):
|
218
|
+
"""
|
219
|
+
Inserts a new transform at a specified index in the existing list of transforms.
|
220
|
+
|
221
|
+
Args:
|
222
|
+
index (int): The index at which to insert the new transform.
|
223
|
+
transform (BaseTransform): The transform object to be inserted.
|
224
|
+
|
225
|
+
Examples:
|
226
|
+
>>> compose = Compose([Transform1(), Transform2()])
|
227
|
+
>>> compose.insert(1, Transform3())
|
228
|
+
>>> len(compose.transforms)
|
229
|
+
3
|
230
|
+
"""
|
231
|
+
self.transforms.insert(index, transform)
|
232
|
+
|
233
|
+
def __getitem__(self, index: Union[list, int]) -> "Compose":
|
234
|
+
"""
|
235
|
+
Retrieves a specific transform or a set of transforms using indexing.
|
236
|
+
|
237
|
+
Args:
|
238
|
+
index (int | List[int]): Index or list of indices of the transforms to retrieve.
|
239
|
+
|
240
|
+
Returns:
|
241
|
+
(Compose): A new Compose object containing the selected transform(s).
|
242
|
+
|
243
|
+
Raises:
|
244
|
+
AssertionError: If the index is not of type int or list.
|
245
|
+
|
246
|
+
Examples:
|
247
|
+
>>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)]
|
248
|
+
>>> compose = Compose(transforms)
|
249
|
+
>>> single_transform = compose[1] # Returns a Compose object with only RandomPerspective
|
250
|
+
>>> multiple_transforms = compose[0:2] # Returns a Compose object with RandomFlip and RandomPerspective
|
251
|
+
"""
|
252
|
+
assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
|
253
|
+
index = [index] if isinstance(index, int) else index
|
254
|
+
return Compose([self.transforms[i] for i in index])
|
255
|
+
|
256
|
+
def __setitem__(self, index: Union[list, int], value: Union[list, int]) -> None:
|
257
|
+
"""
|
258
|
+
Sets one or more transforms in the composition using indexing.
|
259
|
+
|
260
|
+
Args:
|
261
|
+
index (int | List[int]): Index or list of indices to set transforms at.
|
262
|
+
value (Any | List[Any]): Transform or list of transforms to set at the specified index(es).
|
263
|
+
|
264
|
+
Raises:
|
265
|
+
AssertionError: If index type is invalid, value type doesn't match index type, or index is out of range.
|
266
|
+
|
267
|
+
Examples:
|
268
|
+
>>> compose = Compose([Transform1(), Transform2(), Transform3()])
|
269
|
+
>>> compose[1] = NewTransform() # Replace second transform
|
270
|
+
>>> compose[0:2] = [NewTransform1(), NewTransform2()] # Replace first two transforms
|
271
|
+
"""
|
272
|
+
assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
|
273
|
+
if isinstance(index, list):
|
274
|
+
assert isinstance(value, list), (
|
275
|
+
f"The indices should be the same type as values, but got {type(index)} and {type(value)}"
|
276
|
+
)
|
277
|
+
if isinstance(index, int):
|
278
|
+
index, value = [index], [value]
|
279
|
+
for i, v in zip(index, value):
|
280
|
+
assert i < len(self.transforms), f"list index {i} out of range {len(self.transforms)}."
|
281
|
+
self.transforms[i] = v
|
282
|
+
|
81
283
|
def tolist(self):
|
82
|
-
"""
|
284
|
+
"""
|
285
|
+
Converts the list of transforms to a standard Python list.
|
286
|
+
|
287
|
+
Returns:
|
288
|
+
(List): A list containing all the transform objects in the Compose instance.
|
289
|
+
|
290
|
+
Examples:
|
291
|
+
>>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()]
|
292
|
+
>>> compose = Compose(transforms)
|
293
|
+
>>> transform_list = compose.tolist()
|
294
|
+
>>> print(len(transform_list))
|
295
|
+
3
|
296
|
+
"""
|
83
297
|
return self.transforms
|
84
298
|
|
85
299
|
def __repr__(self):
|
86
|
-
"""
|
300
|
+
"""
|
301
|
+
Returns a string representation of the Compose object.
|
302
|
+
|
303
|
+
Returns:
|
304
|
+
(str): A string representation of the Compose object, including the list of transforms.
|
305
|
+
|
306
|
+
Examples:
|
307
|
+
>>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)]
|
308
|
+
>>> compose = Compose(transforms)
|
309
|
+
>>> print(compose)
|
310
|
+
Compose([
|
311
|
+
RandomFlip(),
|
312
|
+
RandomPerspective(degrees=10, translate=0.1, scale=0.1)
|
313
|
+
])
|
314
|
+
"""
|
87
315
|
return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})"
|
88
316
|
|
89
317
|
|
90
318
|
class BaseMixTransform:
|
91
319
|
"""
|
92
|
-
|
320
|
+
Base class for mix transformations like MixUp and Mosaic.
|
321
|
+
|
322
|
+
This class provides a foundation for implementing mix transformations on datasets. It handles the
|
323
|
+
probability-based application of transforms and manages the mixing of multiple images and labels.
|
93
324
|
|
94
|
-
|
325
|
+
Attributes:
|
326
|
+
dataset (Any): The dataset object containing images and labels.
|
327
|
+
pre_transform (Callable | None): Optional transform to apply before mixing.
|
328
|
+
p (float): Probability of applying the mix transformation.
|
329
|
+
|
330
|
+
Methods:
|
331
|
+
__call__: Applies the mix transformation to the input labels.
|
332
|
+
_mix_transform: Abstract method to be implemented by subclasses for specific mix operations.
|
333
|
+
get_indexes: Abstract method to get indexes of images to be mixed.
|
334
|
+
_update_label_text: Updates label text for mixed images.
|
335
|
+
|
336
|
+
Examples:
|
337
|
+
>>> class CustomMixTransform(BaseMixTransform):
|
338
|
+
... def _mix_transform(self, labels):
|
339
|
+
... # Implement custom mix logic here
|
340
|
+
... return labels
|
341
|
+
...
|
342
|
+
... def get_indexes(self):
|
343
|
+
... return [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
|
344
|
+
>>> dataset = YourDataset()
|
345
|
+
>>> transform = CustomMixTransform(dataset, p=0.5)
|
346
|
+
>>> mixed_labels = transform(original_labels)
|
95
347
|
"""
|
96
348
|
|
97
349
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
|
98
|
-
"""
|
350
|
+
"""
|
351
|
+
Initializes the BaseMixTransform object for mix transformations like MixUp and Mosaic.
|
352
|
+
|
353
|
+
This class serves as a base for implementing mix transformations in image processing pipelines.
|
354
|
+
|
355
|
+
Args:
|
356
|
+
dataset (Any): The dataset object containing images and labels for mixing.
|
357
|
+
pre_transform (Callable | None): Optional transform to apply before mixing.
|
358
|
+
p (float): Probability of applying the mix transformation. Should be in the range [0.0, 1.0].
|
359
|
+
|
360
|
+
Examples:
|
361
|
+
>>> dataset = YOLODataset("path/to/data")
|
362
|
+
>>> pre_transform = Compose([RandomFlip(), RandomPerspective()])
|
363
|
+
>>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)
|
364
|
+
"""
|
99
365
|
self.dataset = dataset
|
100
366
|
self.pre_transform = pre_transform
|
101
367
|
self.p = p
|
102
368
|
|
103
369
|
def __call__(self, labels):
|
104
|
-
"""
|
370
|
+
"""
|
371
|
+
Applies pre-processing transforms and mixup/mosaic transforms to labels data.
|
372
|
+
|
373
|
+
This method determines whether to apply the mix transform based on a probability factor. If applied, it
|
374
|
+
selects additional images, applies pre-transforms if specified, and then performs the mix transform.
|
375
|
+
|
376
|
+
Args:
|
377
|
+
labels (Dict): A dictionary containing label data for an image.
|
378
|
+
|
379
|
+
Returns:
|
380
|
+
(Dict): The transformed labels dictionary, which may include mixed data from other images.
|
381
|
+
|
382
|
+
Examples:
|
383
|
+
>>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5)
|
384
|
+
>>> result = transform({"image": img, "bboxes": boxes, "cls": classes})
|
385
|
+
"""
|
105
386
|
if random.uniform(0, 1) > self.p:
|
106
387
|
return labels
|
107
388
|
|
@@ -118,53 +399,197 @@ class BaseMixTransform:
|
|
118
399
|
mix_labels[i] = self.pre_transform(data)
|
119
400
|
labels["mix_labels"] = mix_labels
|
120
401
|
|
402
|
+
# Update cls and texts
|
403
|
+
labels = self._update_label_text(labels)
|
121
404
|
# Mosaic or MixUp
|
122
405
|
labels = self._mix_transform(labels)
|
123
406
|
labels.pop("mix_labels", None)
|
124
407
|
return labels
|
125
408
|
|
126
409
|
def _mix_transform(self, labels):
|
127
|
-
"""
|
410
|
+
"""
|
411
|
+
Applies MixUp or Mosaic augmentation to the label dictionary.
|
412
|
+
|
413
|
+
This method should be implemented by subclasses to perform specific mix transformations like MixUp or
|
414
|
+
Mosaic. It modifies the input label dictionary in-place with the augmented data.
|
415
|
+
|
416
|
+
Args:
|
417
|
+
labels (Dict): A dictionary containing image and label data. Expected to have a 'mix_labels' key
|
418
|
+
with a list of additional image and label data for mixing.
|
419
|
+
|
420
|
+
Returns:
|
421
|
+
(Dict): The modified labels dictionary with augmented data after applying the mix transform.
|
422
|
+
|
423
|
+
Examples:
|
424
|
+
>>> transform = BaseMixTransform(dataset)
|
425
|
+
>>> labels = {"image": img, "bboxes": boxes, "mix_labels": [{"image": img2, "bboxes": boxes2}]}
|
426
|
+
>>> augmented_labels = transform._mix_transform(labels)
|
427
|
+
"""
|
128
428
|
raise NotImplementedError
|
129
429
|
|
130
430
|
def get_indexes(self):
|
131
|
-
"""
|
431
|
+
"""
|
432
|
+
Gets a list of shuffled indexes for mosaic augmentation.
|
433
|
+
|
434
|
+
Returns:
|
435
|
+
(List[int]): A list of shuffled indexes from the dataset.
|
436
|
+
|
437
|
+
Examples:
|
438
|
+
>>> transform = BaseMixTransform(dataset)
|
439
|
+
>>> indexes = transform.get_indexes()
|
440
|
+
>>> print(indexes) # [3, 18, 7, 2]
|
441
|
+
"""
|
132
442
|
raise NotImplementedError
|
133
443
|
|
444
|
+
@staticmethod
|
445
|
+
def _update_label_text(labels):
|
446
|
+
"""
|
447
|
+
Updates label text and class IDs for mixed labels in image augmentation.
|
448
|
+
|
449
|
+
This method processes the 'texts' and 'cls' fields of the input labels dictionary and any mixed labels,
|
450
|
+
creating a unified set of text labels and updating class IDs accordingly.
|
451
|
+
|
452
|
+
Args:
|
453
|
+
labels (Dict): A dictionary containing label information, including 'texts' and 'cls' fields,
|
454
|
+
and optionally a 'mix_labels' field with additional label dictionaries.
|
455
|
+
|
456
|
+
Returns:
|
457
|
+
(Dict): The updated labels dictionary with unified text labels and updated class IDs.
|
458
|
+
|
459
|
+
Examples:
|
460
|
+
>>> labels = {
|
461
|
+
... "texts": [["cat"], ["dog"]],
|
462
|
+
... "cls": torch.tensor([[0], [1]]),
|
463
|
+
... "mix_labels": [{"texts": [["bird"], ["fish"]], "cls": torch.tensor([[0], [1]])}],
|
464
|
+
... }
|
465
|
+
>>> updated_labels = self._update_label_text(labels)
|
466
|
+
>>> print(updated_labels["texts"])
|
467
|
+
[['cat'], ['dog'], ['bird'], ['fish']]
|
468
|
+
>>> print(updated_labels["cls"])
|
469
|
+
tensor([[0],
|
470
|
+
[1]])
|
471
|
+
>>> print(updated_labels["mix_labels"][0]["cls"])
|
472
|
+
tensor([[2],
|
473
|
+
[3]])
|
474
|
+
"""
|
475
|
+
if "texts" not in labels:
|
476
|
+
return labels
|
477
|
+
|
478
|
+
mix_texts = sum([labels["texts"]] + [x["texts"] for x in labels["mix_labels"]], [])
|
479
|
+
mix_texts = list({tuple(x) for x in mix_texts})
|
480
|
+
text2id = {text: i for i, text in enumerate(mix_texts)}
|
481
|
+
|
482
|
+
for label in [labels] + labels["mix_labels"]:
|
483
|
+
for i, cls in enumerate(label["cls"].squeeze(-1).tolist()):
|
484
|
+
text = label["texts"][int(cls)]
|
485
|
+
label["cls"][i] = text2id[tuple(text)]
|
486
|
+
label["texts"] = mix_texts
|
487
|
+
return labels
|
488
|
+
|
134
489
|
|
135
490
|
class Mosaic(BaseMixTransform):
|
136
491
|
"""
|
137
|
-
Mosaic augmentation.
|
492
|
+
Mosaic augmentation for image datasets.
|
138
493
|
|
139
494
|
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
|
140
495
|
The augmentation is applied to a dataset with a given probability.
|
141
496
|
|
142
497
|
Attributes:
|
143
498
|
dataset: The dataset on which the mosaic augmentation is applied.
|
144
|
-
imgsz (int
|
145
|
-
p (float
|
146
|
-
n (int
|
499
|
+
imgsz (int): Image size (height and width) after mosaic pipeline of a single image.
|
500
|
+
p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.
|
501
|
+
n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).
|
502
|
+
border (Tuple[int, int]): Border size for width and height.
|
503
|
+
|
504
|
+
Methods:
|
505
|
+
get_indexes: Returns a list of random indexes from the dataset.
|
506
|
+
_mix_transform: Applies mixup transformation to the input image and labels.
|
507
|
+
_mosaic3: Creates a 1x3 image mosaic.
|
508
|
+
_mosaic4: Creates a 2x2 image mosaic.
|
509
|
+
_mosaic9: Creates a 3x3 image mosaic.
|
510
|
+
_update_labels: Updates labels with padding.
|
511
|
+
_cat_labels: Concatenates labels and clips mosaic border instances.
|
512
|
+
|
513
|
+
Examples:
|
514
|
+
>>> from ultralytics.data.augment import Mosaic
|
515
|
+
>>> dataset = YourDataset(...) # Your image dataset
|
516
|
+
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
|
517
|
+
>>> augmented_labels = mosaic_aug(original_labels)
|
147
518
|
"""
|
148
519
|
|
149
520
|
def __init__(self, dataset, imgsz=640, p=1.0, n=4):
|
150
|
-
"""
|
521
|
+
"""
|
522
|
+
Initializes the Mosaic augmentation object.
|
523
|
+
|
524
|
+
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
|
525
|
+
The augmentation is applied to a dataset with a given probability.
|
526
|
+
|
527
|
+
Args:
|
528
|
+
dataset (Any): The dataset on which the mosaic augmentation is applied.
|
529
|
+
imgsz (int): Image size (height and width) after mosaic pipeline of a single image.
|
530
|
+
p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.
|
531
|
+
n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).
|
532
|
+
|
533
|
+
Examples:
|
534
|
+
>>> from ultralytics.data.augment import Mosaic
|
535
|
+
>>> dataset = YourDataset(...)
|
536
|
+
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
|
537
|
+
"""
|
151
538
|
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
|
152
|
-
assert n in
|
539
|
+
assert n in {4, 9}, "grid must be equal to 4 or 9."
|
153
540
|
super().__init__(dataset=dataset, p=p)
|
154
|
-
self.dataset = dataset
|
155
541
|
self.imgsz = imgsz
|
156
542
|
self.border = (-imgsz // 2, -imgsz // 2) # width, height
|
157
543
|
self.n = n
|
158
544
|
|
159
545
|
def get_indexes(self, buffer=True):
|
160
|
-
"""
|
546
|
+
"""
|
547
|
+
Returns a list of random indexes from the dataset for mosaic augmentation.
|
548
|
+
|
549
|
+
This method selects random image indexes either from a buffer or from the entire dataset, depending on
|
550
|
+
the 'buffer' parameter. It is used to choose images for creating mosaic augmentations.
|
551
|
+
|
552
|
+
Args:
|
553
|
+
buffer (bool): If True, selects images from the dataset buffer. If False, selects from the entire
|
554
|
+
dataset.
|
555
|
+
|
556
|
+
Returns:
|
557
|
+
(List[int]): A list of random image indexes. The length of the list is n-1, where n is the number
|
558
|
+
of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9).
|
559
|
+
|
560
|
+
Examples:
|
561
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
|
562
|
+
>>> indexes = mosaic.get_indexes()
|
563
|
+
>>> print(len(indexes)) # Output: 3
|
564
|
+
"""
|
161
565
|
if buffer: # select images from buffer
|
162
566
|
return random.choices(list(self.dataset.buffer), k=self.n - 1)
|
163
567
|
else: # select any images
|
164
568
|
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)]
|
165
569
|
|
166
570
|
def _mix_transform(self, labels):
|
167
|
-
"""
|
571
|
+
"""
|
572
|
+
Applies mosaic augmentation to the input image and labels.
|
573
|
+
|
574
|
+
This method combines multiple images (3, 4, or 9) into a single mosaic image based on the 'n' attribute.
|
575
|
+
It ensures that rectangular annotations are not present and that there are other images available for
|
576
|
+
mosaic augmentation.
|
577
|
+
|
578
|
+
Args:
|
579
|
+
labels (Dict): A dictionary containing image data and annotations. Expected keys include:
|
580
|
+
- 'rect_shape': Should be None as rect and mosaic are mutually exclusive.
|
581
|
+
- 'mix_labels': A list of dictionaries containing data for other images to be used in the mosaic.
|
582
|
+
|
583
|
+
Returns:
|
584
|
+
(Dict): A dictionary containing the mosaic-augmented image and updated annotations.
|
585
|
+
|
586
|
+
Raises:
|
587
|
+
AssertionError: If 'rect_shape' is not None or if 'mix_labels' is empty.
|
588
|
+
|
589
|
+
Examples:
|
590
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
|
591
|
+
>>> augmented_data = mosaic._mix_transform(labels)
|
592
|
+
"""
|
168
593
|
assert labels.get("rect_shape", None) is None, "rect and mosaic are mutually exclusive."
|
169
594
|
assert len(labels.get("mix_labels", [])), "There are no other images for mosaic augment."
|
170
595
|
return (
|
@@ -172,7 +597,32 @@ class Mosaic(BaseMixTransform):
|
|
172
597
|
) # This code is modified for mosaic3 method.
|
173
598
|
|
174
599
|
def _mosaic3(self, labels):
|
175
|
-
"""
|
600
|
+
"""
|
601
|
+
Creates a 1x3 image mosaic by combining three images.
|
602
|
+
|
603
|
+
This method arranges three images in a horizontal layout, with the main image in the center and two
|
604
|
+
additional images on either side. It's part of the Mosaic augmentation technique used in object detection.
|
605
|
+
|
606
|
+
Args:
|
607
|
+
labels (Dict): A dictionary containing image and label information for the main (center) image.
|
608
|
+
Must include 'img' key with the image array, and 'mix_labels' key with a list of two
|
609
|
+
dictionaries containing information for the side images.
|
610
|
+
|
611
|
+
Returns:
|
612
|
+
(Dict): A dictionary with the mosaic image and updated labels. Keys include:
|
613
|
+
- 'img' (np.ndarray): The mosaic image array with shape (H, W, C).
|
614
|
+
- Other keys from the input labels, updated to reflect the new image dimensions.
|
615
|
+
|
616
|
+
Examples:
|
617
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=3)
|
618
|
+
>>> labels = {
|
619
|
+
... "img": np.random.rand(480, 640, 3),
|
620
|
+
... "mix_labels": [{"img": np.random.rand(480, 640, 3)} for _ in range(2)],
|
621
|
+
... }
|
622
|
+
>>> result = mosaic._mosaic3(labels)
|
623
|
+
>>> print(result["img"].shape)
|
624
|
+
(640, 640, 3)
|
625
|
+
"""
|
176
626
|
mosaic_labels = []
|
177
627
|
s = self.imgsz
|
178
628
|
for i in range(3):
|
@@ -192,7 +642,7 @@ class Mosaic(BaseMixTransform):
|
|
192
642
|
c = s - w, s + h0 - h, s, s + h0
|
193
643
|
|
194
644
|
padw, padh = c[:2]
|
195
|
-
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate
|
645
|
+
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coordinates
|
196
646
|
|
197
647
|
img3[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img3[ymin:ymax, xmin:xmax]
|
198
648
|
# hp, wp = h, w # height, width previous for next iteration
|
@@ -206,7 +656,29 @@ class Mosaic(BaseMixTransform):
|
|
206
656
|
return final_labels
|
207
657
|
|
208
658
|
def _mosaic4(self, labels):
|
209
|
-
"""
|
659
|
+
"""
|
660
|
+
Creates a 2x2 image mosaic from four input images.
|
661
|
+
|
662
|
+
This method combines four images into a single mosaic image by placing them in a 2x2 grid. It also
|
663
|
+
updates the corresponding labels for each image in the mosaic.
|
664
|
+
|
665
|
+
Args:
|
666
|
+
labels (Dict): A dictionary containing image data and labels for the base image (index 0) and three
|
667
|
+
additional images (indices 1-3) in the 'mix_labels' key.
|
668
|
+
|
669
|
+
Returns:
|
670
|
+
(Dict): A dictionary containing the mosaic image and updated labels. The 'img' key contains the mosaic
|
671
|
+
image as a numpy array, and other keys contain the combined and adjusted labels for all four images.
|
672
|
+
|
673
|
+
Examples:
|
674
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
|
675
|
+
>>> labels = {
|
676
|
+
... "img": np.random.rand(480, 640, 3),
|
677
|
+
... "mix_labels": [{"img": np.random.rand(480, 640, 3)} for _ in range(3)],
|
678
|
+
... }
|
679
|
+
>>> result = mosaic._mosaic4(labels)
|
680
|
+
>>> assert result["img"].shape == (1280, 1280, 3)
|
681
|
+
"""
|
210
682
|
mosaic_labels = []
|
211
683
|
s = self.imgsz
|
212
684
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y
|
@@ -242,7 +714,31 @@ class Mosaic(BaseMixTransform):
|
|
242
714
|
return final_labels
|
243
715
|
|
244
716
|
def _mosaic9(self, labels):
|
245
|
-
"""
|
717
|
+
"""
|
718
|
+
Creates a 3x3 image mosaic from the input image and eight additional images.
|
719
|
+
|
720
|
+
This method combines nine images into a single mosaic image. The input image is placed at the center,
|
721
|
+
and eight additional images from the dataset are placed around it in a 3x3 grid pattern.
|
722
|
+
|
723
|
+
Args:
|
724
|
+
labels (Dict): A dictionary containing the input image and its associated labels. It should have
|
725
|
+
the following keys:
|
726
|
+
- 'img' (numpy.ndarray): The input image.
|
727
|
+
- 'resized_shape' (Tuple[int, int]): The shape of the resized image (height, width).
|
728
|
+
- 'mix_labels' (List[Dict]): A list of dictionaries containing information for the additional
|
729
|
+
eight images, each with the same structure as the input labels.
|
730
|
+
|
731
|
+
Returns:
|
732
|
+
(Dict): A dictionary containing the mosaic image and updated labels. It includes the following keys:
|
733
|
+
- 'img' (numpy.ndarray): The final mosaic image.
|
734
|
+
- Other keys from the input labels, updated to reflect the new mosaic arrangement.
|
735
|
+
|
736
|
+
Examples:
|
737
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=9)
|
738
|
+
>>> input_labels = dataset[0]
|
739
|
+
>>> mosaic_result = mosaic._mosaic9(input_labels)
|
740
|
+
>>> mosaic_image = mosaic_result["img"]
|
741
|
+
"""
|
246
742
|
mosaic_labels = []
|
247
743
|
s = self.imgsz
|
248
744
|
hp, wp = -1, -1 # height, width previous
|
@@ -275,7 +771,7 @@ class Mosaic(BaseMixTransform):
|
|
275
771
|
c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
276
772
|
|
277
773
|
padw, padh = c[:2]
|
278
|
-
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate
|
774
|
+
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coordinates
|
279
775
|
|
280
776
|
# Image
|
281
777
|
img9[y1:y2, x1:x2] = img[y1 - padh :, x1 - padw :] # img9[ymin:ymax, xmin:xmax]
|
@@ -291,7 +787,25 @@ class Mosaic(BaseMixTransform):
|
|
291
787
|
|
292
788
|
@staticmethod
|
293
789
|
def _update_labels(labels, padw, padh):
|
294
|
-
"""
|
790
|
+
"""
|
791
|
+
Updates label coordinates with padding values.
|
792
|
+
|
793
|
+
This method adjusts the bounding box coordinates of object instances in the labels by adding padding
|
794
|
+
values. It also denormalizes the coordinates if they were previously normalized.
|
795
|
+
|
796
|
+
Args:
|
797
|
+
labels (Dict): A dictionary containing image and instance information.
|
798
|
+
padw (int): Padding width to be added to the x-coordinates.
|
799
|
+
padh (int): Padding height to be added to the y-coordinates.
|
800
|
+
|
801
|
+
Returns:
|
802
|
+
(Dict): Updated labels dictionary with adjusted instance coordinates.
|
803
|
+
|
804
|
+
Examples:
|
805
|
+
>>> labels = {"img": np.zeros((100, 100, 3)), "instances": Instances(...)}
|
806
|
+
>>> padw, padh = 50, 50
|
807
|
+
>>> updated_labels = Mosaic._update_labels(labels, padw, padh)
|
808
|
+
"""
|
295
809
|
nh, nw = labels["img"].shape[:2]
|
296
810
|
labels["instances"].convert_bbox(format="xyxy")
|
297
811
|
labels["instances"].denormalize(nw, nh)
|
@@ -299,7 +813,32 @@ class Mosaic(BaseMixTransform):
|
|
299
813
|
return labels
|
300
814
|
|
301
815
|
def _cat_labels(self, mosaic_labels):
|
302
|
-
"""
|
816
|
+
"""
|
817
|
+
Concatenates and processes labels for mosaic augmentation.
|
818
|
+
|
819
|
+
This method combines labels from multiple images used in mosaic augmentation, clips instances to the
|
820
|
+
mosaic border, and removes zero-area boxes.
|
821
|
+
|
822
|
+
Args:
|
823
|
+
mosaic_labels (List[Dict]): A list of label dictionaries for each image in the mosaic.
|
824
|
+
|
825
|
+
Returns:
|
826
|
+
(Dict): A dictionary containing concatenated and processed labels for the mosaic image, including:
|
827
|
+
- im_file (str): File path of the first image in the mosaic.
|
828
|
+
- ori_shape (Tuple[int, int]): Original shape of the first image.
|
829
|
+
- resized_shape (Tuple[int, int]): Shape of the mosaic image (imgsz * 2, imgsz * 2).
|
830
|
+
- cls (np.ndarray): Concatenated class labels.
|
831
|
+
- instances (Instances): Concatenated instance annotations.
|
832
|
+
- mosaic_border (Tuple[int, int]): Mosaic border size.
|
833
|
+
- texts (List[str], optional): Text labels if present in the original labels.
|
834
|
+
|
835
|
+
Examples:
|
836
|
+
>>> mosaic = Mosaic(dataset, imgsz=640)
|
837
|
+
>>> mosaic_labels = [{"cls": np.array([0, 1]), "instances": Instances(...)} for _ in range(4)]
|
838
|
+
>>> result = mosaic._cat_labels(mosaic_labels)
|
839
|
+
>>> print(result.keys())
|
840
|
+
dict_keys(['im_file', 'ori_shape', 'resized_shape', 'cls', 'instances', 'mosaic_border'])
|
841
|
+
"""
|
303
842
|
if len(mosaic_labels) == 0:
|
304
843
|
return {}
|
305
844
|
cls = []
|
@@ -320,22 +859,88 @@ class Mosaic(BaseMixTransform):
|
|
320
859
|
final_labels["instances"].clip(imgsz, imgsz)
|
321
860
|
good = final_labels["instances"].remove_zero_area_boxes()
|
322
861
|
final_labels["cls"] = final_labels["cls"][good]
|
862
|
+
if "texts" in mosaic_labels[0]:
|
863
|
+
final_labels["texts"] = mosaic_labels[0]["texts"]
|
323
864
|
return final_labels
|
324
865
|
|
325
866
|
|
326
867
|
class MixUp(BaseMixTransform):
|
327
|
-
"""
|
868
|
+
"""
|
869
|
+
Applies MixUp augmentation to image datasets.
|
870
|
+
|
871
|
+
This class implements the MixUp augmentation technique as described in the paper "mixup: Beyond Empirical Risk
|
872
|
+
Minimization" (https://arxiv.org/abs/1710.09412). MixUp combines two images and their labels using a random weight.
|
873
|
+
|
874
|
+
Attributes:
|
875
|
+
dataset (Any): The dataset to which MixUp augmentation will be applied.
|
876
|
+
pre_transform (Callable | None): Optional transform to apply before MixUp.
|
877
|
+
p (float): Probability of applying MixUp augmentation.
|
878
|
+
|
879
|
+
Methods:
|
880
|
+
get_indexes: Returns a random index from the dataset.
|
881
|
+
_mix_transform: Applies MixUp augmentation to the input labels.
|
882
|
+
|
883
|
+
Examples:
|
884
|
+
>>> from ultralytics.data.augment import MixUp
|
885
|
+
>>> dataset = YourDataset(...) # Your image dataset
|
886
|
+
>>> mixup = MixUp(dataset, p=0.5)
|
887
|
+
>>> augmented_labels = mixup(original_labels)
|
888
|
+
"""
|
328
889
|
|
329
890
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
|
330
|
-
"""
|
891
|
+
"""
|
892
|
+
Initializes the MixUp augmentation object.
|
893
|
+
|
894
|
+
MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel
|
895
|
+
values and labels. This implementation is designed for use with the Ultralytics YOLO framework.
|
896
|
+
|
897
|
+
Args:
|
898
|
+
dataset (Any): The dataset to which MixUp augmentation will be applied.
|
899
|
+
pre_transform (Callable | None): Optional transform to apply to images before MixUp.
|
900
|
+
p (float): Probability of applying MixUp augmentation to an image. Must be in the range [0, 1].
|
901
|
+
|
902
|
+
Examples:
|
903
|
+
>>> from ultralytics.data.dataset import YOLODataset
|
904
|
+
>>> dataset = YOLODataset("path/to/data.yaml")
|
905
|
+
>>> mixup = MixUp(dataset, pre_transform=None, p=0.5)
|
906
|
+
"""
|
331
907
|
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
|
332
908
|
|
333
909
|
def get_indexes(self):
|
334
|
-
"""
|
910
|
+
"""
|
911
|
+
Get a random index from the dataset.
|
912
|
+
|
913
|
+
This method returns a single random index from the dataset, which is used to select an image for MixUp
|
914
|
+
augmentation.
|
915
|
+
|
916
|
+
Returns:
|
917
|
+
(int): A random integer index within the range of the dataset length.
|
918
|
+
|
919
|
+
Examples:
|
920
|
+
>>> mixup = MixUp(dataset)
|
921
|
+
>>> index = mixup.get_indexes()
|
922
|
+
>>> print(index)
|
923
|
+
42
|
924
|
+
"""
|
335
925
|
return random.randint(0, len(self.dataset) - 1)
|
336
926
|
|
337
927
|
def _mix_transform(self, labels):
|
338
|
-
"""
|
928
|
+
"""
|
929
|
+
Applies MixUp augmentation to the input labels.
|
930
|
+
|
931
|
+
This method implements the MixUp augmentation technique as described in the paper
|
932
|
+
"mixup: Beyond Empirical Risk Minimization" (https://arxiv.org/abs/1710.09412).
|
933
|
+
|
934
|
+
Args:
|
935
|
+
labels (Dict): A dictionary containing the original image and label information.
|
936
|
+
|
937
|
+
Returns:
|
938
|
+
(Dict): A dictionary containing the mixed-up image and combined label information.
|
939
|
+
|
940
|
+
Examples:
|
941
|
+
>>> mixer = MixUp(dataset)
|
942
|
+
>>> mixed_labels = mixer._mix_transform(labels)
|
943
|
+
"""
|
339
944
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
340
945
|
labels2 = labels["mix_labels"][0]
|
341
946
|
labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8)
|
@@ -346,33 +951,61 @@ class MixUp(BaseMixTransform):
|
|
346
951
|
|
347
952
|
class RandomPerspective:
|
348
953
|
"""
|
349
|
-
Implements random perspective and affine transformations on images and corresponding
|
350
|
-
|
351
|
-
|
954
|
+
Implements random perspective and affine transformations on images and corresponding annotations.
|
955
|
+
|
956
|
+
This class applies random rotations, translations, scaling, shearing, and perspective transformations
|
957
|
+
to images and their associated bounding boxes, segments, and keypoints. It can be used as part of an
|
958
|
+
augmentation pipeline for object detection and instance segmentation tasks.
|
352
959
|
|
353
960
|
Attributes:
|
354
|
-
degrees (float):
|
355
|
-
translate (float):
|
356
|
-
scale (float): Scaling factor
|
357
|
-
shear (float):
|
961
|
+
degrees (float): Maximum absolute degree range for random rotations.
|
962
|
+
translate (float): Maximum translation as a fraction of the image size.
|
963
|
+
scale (float): Scaling factor range, e.g., scale=0.1 means 0.9-1.1.
|
964
|
+
shear (float): Maximum shear angle in degrees.
|
358
965
|
perspective (float): Perspective distortion factor.
|
359
|
-
border (
|
360
|
-
pre_transform (
|
966
|
+
border (Tuple[int, int]): Mosaic border size as (x, y).
|
967
|
+
pre_transform (Callable | None): Optional transform to apply before the random perspective.
|
361
968
|
|
362
969
|
Methods:
|
363
|
-
affine_transform
|
364
|
-
apply_bboxes
|
365
|
-
apply_segments
|
366
|
-
apply_keypoints
|
367
|
-
__call__
|
368
|
-
box_candidates
|
970
|
+
affine_transform: Applies affine transformations to the input image.
|
971
|
+
apply_bboxes: Transforms bounding boxes using the affine matrix.
|
972
|
+
apply_segments: Transforms segments and generates new bounding boxes.
|
973
|
+
apply_keypoints: Transforms keypoints using the affine matrix.
|
974
|
+
__call__: Applies the random perspective transformation to images and annotations.
|
975
|
+
box_candidates: Filters transformed bounding boxes based on size and aspect ratio.
|
976
|
+
|
977
|
+
Examples:
|
978
|
+
>>> transform = RandomPerspective(degrees=10, translate=0.1, scale=0.1, shear=10)
|
979
|
+
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
980
|
+
>>> labels = {"img": image, "cls": np.array([0, 1]), "instances": Instances(...)}
|
981
|
+
>>> result = transform(labels)
|
982
|
+
>>> transformed_image = result["img"]
|
983
|
+
>>> transformed_instances = result["instances"]
|
369
984
|
"""
|
370
985
|
|
371
986
|
def __init__(
|
372
987
|
self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None
|
373
988
|
):
|
374
|
-
"""
|
989
|
+
"""
|
990
|
+
Initializes RandomPerspective object with transformation parameters.
|
375
991
|
|
992
|
+
This class implements random perspective and affine transformations on images and corresponding bounding boxes,
|
993
|
+
segments, and keypoints. Transformations include rotation, translation, scaling, and shearing.
|
994
|
+
|
995
|
+
Args:
|
996
|
+
degrees (float): Degree range for random rotations.
|
997
|
+
translate (float): Fraction of total width and height for random translation.
|
998
|
+
scale (float): Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%.
|
999
|
+
shear (float): Shear intensity (angle in degrees).
|
1000
|
+
perspective (float): Perspective distortion factor.
|
1001
|
+
border (Tuple[int, int]): Tuple specifying mosaic border (top/bottom, left/right).
|
1002
|
+
pre_transform (Callable | None): Function/transform to apply to the image before starting the random
|
1003
|
+
transformation.
|
1004
|
+
|
1005
|
+
Examples:
|
1006
|
+
>>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)
|
1007
|
+
>>> result = transform(labels) # Apply random perspective to labels
|
1008
|
+
"""
|
376
1009
|
self.degrees = degrees
|
377
1010
|
self.translate = translate
|
378
1011
|
self.scale = scale
|
@@ -385,16 +1018,26 @@ class RandomPerspective:
|
|
385
1018
|
"""
|
386
1019
|
Applies a sequence of affine transformations centered around the image center.
|
387
1020
|
|
1021
|
+
This function performs a series of geometric transformations on the input image, including
|
1022
|
+
translation, perspective change, rotation, scaling, and shearing. The transformations are
|
1023
|
+
applied in a specific order to maintain consistency.
|
1024
|
+
|
388
1025
|
Args:
|
389
|
-
img (ndarray): Input image.
|
390
|
-
border (
|
1026
|
+
img (np.ndarray): Input image to be transformed.
|
1027
|
+
border (Tuple[int, int]): Border dimensions for the transformed image.
|
391
1028
|
|
392
1029
|
Returns:
|
393
|
-
|
394
|
-
|
395
|
-
|
1030
|
+
(Tuple[np.ndarray, np.ndarray, float]): A tuple containing:
|
1031
|
+
- np.ndarray: Transformed image.
|
1032
|
+
- np.ndarray: 3x3 transformation matrix.
|
1033
|
+
- float: Scale factor applied during the transformation.
|
1034
|
+
|
1035
|
+
Examples:
|
1036
|
+
>>> import numpy as np
|
1037
|
+
>>> img = np.random.rand(100, 100, 3)
|
1038
|
+
>>> border = (10, 10)
|
1039
|
+
>>> transformed_img, matrix, scale = affine_transform(img, border)
|
396
1040
|
"""
|
397
|
-
|
398
1041
|
# Center
|
399
1042
|
C = np.eye(3, dtype=np.float32)
|
400
1043
|
|
@@ -436,14 +1079,23 @@ class RandomPerspective:
|
|
436
1079
|
|
437
1080
|
def apply_bboxes(self, bboxes, M):
|
438
1081
|
"""
|
439
|
-
Apply affine to
|
1082
|
+
Apply affine transformation to bounding boxes.
|
1083
|
+
|
1084
|
+
This function applies an affine transformation to a set of bounding boxes using the provided
|
1085
|
+
transformation matrix.
|
440
1086
|
|
441
1087
|
Args:
|
442
|
-
bboxes (
|
443
|
-
|
1088
|
+
bboxes (torch.Tensor): Bounding boxes in xyxy format with shape (N, 4), where N is the number
|
1089
|
+
of bounding boxes.
|
1090
|
+
M (torch.Tensor): Affine transformation matrix with shape (3, 3).
|
444
1091
|
|
445
1092
|
Returns:
|
446
|
-
|
1093
|
+
(torch.Tensor): Transformed bounding boxes in xyxy format with shape (N, 4).
|
1094
|
+
|
1095
|
+
Examples:
|
1096
|
+
>>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]])
|
1097
|
+
>>> M = torch.eye(3)
|
1098
|
+
>>> transformed_bboxes = apply_bboxes(bboxes, M)
|
447
1099
|
"""
|
448
1100
|
n = len(bboxes)
|
449
1101
|
if n == 0:
|
@@ -461,15 +1113,25 @@ class RandomPerspective:
|
|
461
1113
|
|
462
1114
|
def apply_segments(self, segments, M):
|
463
1115
|
"""
|
464
|
-
Apply affine to segments and generate new
|
1116
|
+
Apply affine transformations to segments and generate new bounding boxes.
|
1117
|
+
|
1118
|
+
This function applies affine transformations to input segments and generates new bounding boxes based on
|
1119
|
+
the transformed segments. It clips the transformed segments to fit within the new bounding boxes.
|
465
1120
|
|
466
1121
|
Args:
|
467
|
-
segments (ndarray):
|
468
|
-
|
1122
|
+
segments (np.ndarray): Input segments with shape (N, M, 2), where N is the number of segments and M is the
|
1123
|
+
number of points in each segment.
|
1124
|
+
M (np.ndarray): Affine transformation matrix with shape (3, 3).
|
469
1125
|
|
470
1126
|
Returns:
|
471
|
-
|
472
|
-
|
1127
|
+
(Tuple[np.ndarray, np.ndarray]): A tuple containing:
|
1128
|
+
- New bounding boxes with shape (N, 4) in xyxy format.
|
1129
|
+
- Transformed and clipped segments with shape (N, M, 2).
|
1130
|
+
|
1131
|
+
Examples:
|
1132
|
+
>>> segments = np.random.rand(10, 500, 2) # 10 segments with 500 points each
|
1133
|
+
>>> M = np.eye(3) # Identity transformation matrix
|
1134
|
+
>>> new_bboxes, new_segments = apply_segments(segments, M)
|
473
1135
|
"""
|
474
1136
|
n, num = segments.shape[:2]
|
475
1137
|
if n == 0:
|
@@ -488,14 +1150,25 @@ class RandomPerspective:
|
|
488
1150
|
|
489
1151
|
def apply_keypoints(self, keypoints, M):
|
490
1152
|
"""
|
491
|
-
|
1153
|
+
Applies affine transformation to keypoints.
|
1154
|
+
|
1155
|
+
This method transforms the input keypoints using the provided affine transformation matrix. It handles
|
1156
|
+
perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image
|
1157
|
+
boundaries after transformation.
|
492
1158
|
|
493
1159
|
Args:
|
494
|
-
keypoints (ndarray): keypoints
|
495
|
-
|
1160
|
+
keypoints (np.ndarray): Array of keypoints with shape (N, 17, 3), where N is the number of instances,
|
1161
|
+
17 is the number of keypoints per instance, and 3 represents (x, y, visibility).
|
1162
|
+
M (np.ndarray): 3x3 affine transformation matrix.
|
496
1163
|
|
497
1164
|
Returns:
|
498
|
-
|
1165
|
+
(np.ndarray): Transformed keypoints array with the same shape as input (N, 17, 3).
|
1166
|
+
|
1167
|
+
Examples:
|
1168
|
+
>>> random_perspective = RandomPerspective()
|
1169
|
+
>>> keypoints = np.random.rand(5, 17, 3) # 5 instances, 17 keypoints each
|
1170
|
+
>>> M = np.eye(3) # Identity transformation
|
1171
|
+
>>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M)
|
499
1172
|
"""
|
500
1173
|
n, nkpt = keypoints.shape[:2]
|
501
1174
|
if n == 0:
|
@@ -511,10 +1184,38 @@ class RandomPerspective:
|
|
511
1184
|
|
512
1185
|
def __call__(self, labels):
|
513
1186
|
"""
|
514
|
-
|
1187
|
+
Applies random perspective and affine transformations to an image and its associated labels.
|
1188
|
+
|
1189
|
+
This method performs a series of transformations including rotation, translation, scaling, shearing,
|
1190
|
+
and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments,
|
1191
|
+
and keypoints accordingly.
|
515
1192
|
|
516
1193
|
Args:
|
517
|
-
labels (
|
1194
|
+
labels (Dict): A dictionary containing image data and annotations.
|
1195
|
+
Must include:
|
1196
|
+
'img' (ndarray): The input image.
|
1197
|
+
'cls' (ndarray): Class labels.
|
1198
|
+
'instances' (Instances): Object instances with bounding boxes, segments, and keypoints.
|
1199
|
+
May include:
|
1200
|
+
'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation.
|
1201
|
+
|
1202
|
+
Returns:
|
1203
|
+
(Dict): Transformed labels dictionary containing:
|
1204
|
+
- 'img' (np.ndarray): The transformed image.
|
1205
|
+
- 'cls' (np.ndarray): Updated class labels.
|
1206
|
+
- 'instances' (Instances): Updated object instances.
|
1207
|
+
- 'resized_shape' (Tuple[int, int]): New image shape after transformation.
|
1208
|
+
|
1209
|
+
Examples:
|
1210
|
+
>>> transform = RandomPerspective()
|
1211
|
+
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
1212
|
+
>>> labels = {
|
1213
|
+
... "img": image,
|
1214
|
+
... "cls": np.array([0, 1, 2]),
|
1215
|
+
... "instances": Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]])),
|
1216
|
+
... }
|
1217
|
+
>>> result = transform(labels)
|
1218
|
+
>>> assert result["img"].shape[:2] == result["resized_shape"]
|
518
1219
|
"""
|
519
1220
|
if self.pre_transform and "mosaic_border" not in labels:
|
520
1221
|
labels = self.pre_transform(labels)
|
@@ -559,21 +1260,39 @@ class RandomPerspective:
|
|
559
1260
|
labels["resized_shape"] = img.shape[:2]
|
560
1261
|
return labels
|
561
1262
|
|
562
|
-
|
1263
|
+
@staticmethod
|
1264
|
+
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
|
563
1265
|
"""
|
564
|
-
Compute
|
565
|
-
|
1266
|
+
Compute candidate boxes for further processing based on size and aspect ratio criteria.
|
1267
|
+
|
1268
|
+
This method compares boxes before and after augmentation to determine if they meet specified
|
1269
|
+
thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have
|
1270
|
+
been overly distorted or reduced by the augmentation process.
|
566
1271
|
|
567
1272
|
Args:
|
568
|
-
box1 (numpy.ndarray):
|
569
|
-
|
570
|
-
|
571
|
-
|
572
|
-
|
573
|
-
|
1273
|
+
box1 (numpy.ndarray): Original boxes before augmentation, shape (4, N) where n is the
|
1274
|
+
number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates.
|
1275
|
+
box2 (numpy.ndarray): Augmented boxes after transformation, shape (4, N). Format is
|
1276
|
+
[x1, y1, x2, y2] in absolute coordinates.
|
1277
|
+
wh_thr (float): Width and height threshold in pixels. Boxes smaller than this in either
|
1278
|
+
dimension are rejected.
|
1279
|
+
ar_thr (float): Aspect ratio threshold. Boxes with an aspect ratio greater than this
|
1280
|
+
value are rejected.
|
1281
|
+
area_thr (float): Area ratio threshold. Boxes with an area ratio (new/old) less than
|
1282
|
+
this value are rejected.
|
1283
|
+
eps (float): Small epsilon value to prevent division by zero.
|
574
1284
|
|
575
1285
|
Returns:
|
576
|
-
(numpy.ndarray):
|
1286
|
+
(numpy.ndarray): Boolean array of shape (n) indicating which boxes are candidates.
|
1287
|
+
True values correspond to boxes that meet all criteria.
|
1288
|
+
|
1289
|
+
Examples:
|
1290
|
+
>>> random_perspective = RandomPerspective()
|
1291
|
+
>>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T
|
1292
|
+
>>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T
|
1293
|
+
>>> candidates = random_perspective.box_candidates(box1, box2)
|
1294
|
+
>>> print(candidates)
|
1295
|
+
[True True]
|
577
1296
|
"""
|
578
1297
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
579
1298
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
@@ -583,20 +1302,42 @@ class RandomPerspective:
|
|
583
1302
|
|
584
1303
|
class RandomHSV:
|
585
1304
|
"""
|
586
|
-
|
587
|
-
|
1305
|
+
Randomly adjusts the Hue, Saturation, and Value (HSV) channels of an image.
|
1306
|
+
|
1307
|
+
This class applies random HSV augmentation to images within predefined limits set by hgain, sgain, and vgain.
|
1308
|
+
|
1309
|
+
Attributes:
|
1310
|
+
hgain (float): Maximum variation for hue. Range is typically [0, 1].
|
1311
|
+
sgain (float): Maximum variation for saturation. Range is typically [0, 1].
|
1312
|
+
vgain (float): Maximum variation for value. Range is typically [0, 1].
|
588
1313
|
|
589
|
-
|
1314
|
+
Methods:
|
1315
|
+
__call__: Applies random HSV augmentation to an image.
|
1316
|
+
|
1317
|
+
Examples:
|
1318
|
+
>>> import numpy as np
|
1319
|
+
>>> from ultralytics.data.augment import RandomHSV
|
1320
|
+
>>> augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
|
1321
|
+
>>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
|
1322
|
+
>>> labels = {"img": image}
|
1323
|
+
>>> augmenter(labels)
|
1324
|
+
>>> augmented_image = augmented_labels["img"]
|
590
1325
|
"""
|
591
1326
|
|
592
1327
|
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
|
593
1328
|
"""
|
594
|
-
|
1329
|
+
Initializes the RandomHSV object for random HSV (Hue, Saturation, Value) augmentation.
|
1330
|
+
|
1331
|
+
This class applies random adjustments to the HSV channels of an image within specified limits.
|
595
1332
|
|
596
1333
|
Args:
|
597
|
-
hgain (float
|
598
|
-
sgain (float
|
599
|
-
vgain (float
|
1334
|
+
hgain (float): Maximum variation for hue. Should be in the range [0, 1].
|
1335
|
+
sgain (float): Maximum variation for saturation. Should be in the range [0, 1].
|
1336
|
+
vgain (float): Maximum variation for value. Should be in the range [0, 1].
|
1337
|
+
|
1338
|
+
Examples:
|
1339
|
+
>>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
|
1340
|
+
>>> hsv_aug(image)
|
600
1341
|
"""
|
601
1342
|
self.hgain = hgain
|
602
1343
|
self.sgain = sgain
|
@@ -604,9 +1345,24 @@ class RandomHSV:
|
|
604
1345
|
|
605
1346
|
def __call__(self, labels):
|
606
1347
|
"""
|
607
|
-
Applies random HSV augmentation to an image within
|
1348
|
+
Applies random HSV augmentation to an image within predefined limits.
|
608
1349
|
|
609
|
-
|
1350
|
+
This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels.
|
1351
|
+
The adjustments are made within the limits set by hgain, sgain, and vgain during initialization.
|
1352
|
+
|
1353
|
+
Args:
|
1354
|
+
labels (Dict): A dictionary containing image data and metadata. Must include an 'img' key with
|
1355
|
+
the image as a numpy array.
|
1356
|
+
|
1357
|
+
Returns:
|
1358
|
+
(None): The function modifies the input 'labels' dictionary in-place, updating the 'img' key
|
1359
|
+
with the HSV-augmented image.
|
1360
|
+
|
1361
|
+
Examples:
|
1362
|
+
>>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
|
1363
|
+
>>> labels = {"img": np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)}
|
1364
|
+
>>> hsv_augmenter(labels)
|
1365
|
+
>>> augmented_img = labels["img"]
|
610
1366
|
"""
|
611
1367
|
img = labels["img"]
|
612
1368
|
if self.hgain or self.sgain or self.vgain:
|
@@ -628,21 +1384,45 @@ class RandomFlip:
|
|
628
1384
|
"""
|
629
1385
|
Applies a random horizontal or vertical flip to an image with a given probability.
|
630
1386
|
|
631
|
-
|
1387
|
+
This class performs random image flipping and updates corresponding instance annotations such as
|
1388
|
+
bounding boxes and keypoints.
|
1389
|
+
|
1390
|
+
Attributes:
|
1391
|
+
p (float): Probability of applying the flip. Must be between 0 and 1.
|
1392
|
+
direction (str): Direction of flip, either 'horizontal' or 'vertical'.
|
1393
|
+
flip_idx (array-like): Index mapping for flipping keypoints, if applicable.
|
1394
|
+
|
1395
|
+
Methods:
|
1396
|
+
__call__: Applies the random flip transformation to an image and its annotations.
|
1397
|
+
|
1398
|
+
Examples:
|
1399
|
+
>>> transform = RandomFlip(p=0.5, direction="horizontal")
|
1400
|
+
>>> result = transform({"img": image, "instances": instances})
|
1401
|
+
>>> flipped_image = result["img"]
|
1402
|
+
>>> flipped_instances = result["instances"]
|
632
1403
|
"""
|
633
1404
|
|
634
1405
|
def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None:
|
635
1406
|
"""
|
636
1407
|
Initializes the RandomFlip class with probability and direction.
|
637
1408
|
|
1409
|
+
This class applies a random horizontal or vertical flip to an image with a given probability.
|
1410
|
+
It also updates any instances (bounding boxes, keypoints, etc.) accordingly.
|
1411
|
+
|
638
1412
|
Args:
|
639
|
-
p (float
|
640
|
-
direction (str
|
641
|
-
|
642
|
-
|
1413
|
+
p (float): The probability of applying the flip. Must be between 0 and 1.
|
1414
|
+
direction (str): The direction to apply the flip. Must be 'horizontal' or 'vertical'.
|
1415
|
+
flip_idx (List[int] | None): Index mapping for flipping keypoints, if any.
|
1416
|
+
|
1417
|
+
Raises:
|
1418
|
+
AssertionError: If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1.
|
1419
|
+
|
1420
|
+
Examples:
|
1421
|
+
>>> flip = RandomFlip(p=0.5, direction="horizontal")
|
1422
|
+
>>> flip_with_idx = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4])
|
643
1423
|
"""
|
644
|
-
assert direction in
|
645
|
-
assert 0 <= p <= 1.0
|
1424
|
+
assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}"
|
1425
|
+
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
|
646
1426
|
|
647
1427
|
self.p = p
|
648
1428
|
self.direction = direction
|
@@ -652,12 +1432,25 @@ class RandomFlip:
|
|
652
1432
|
"""
|
653
1433
|
Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.
|
654
1434
|
|
1435
|
+
This method randomly flips the input image either horizontally or vertically based on the initialized
|
1436
|
+
probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to
|
1437
|
+
match the flipped image.
|
1438
|
+
|
655
1439
|
Args:
|
656
|
-
labels (
|
657
|
-
|
1440
|
+
labels (Dict): A dictionary containing the following keys:
|
1441
|
+
'img' (numpy.ndarray): The image to be flipped.
|
1442
|
+
'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and
|
1443
|
+
optionally keypoints.
|
658
1444
|
|
659
1445
|
Returns:
|
660
|
-
(
|
1446
|
+
(Dict): The same dictionary with the flipped image and updated instances:
|
1447
|
+
'img' (numpy.ndarray): The flipped image.
|
1448
|
+
'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image.
|
1449
|
+
|
1450
|
+
Examples:
|
1451
|
+
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": Instances(...)}
|
1452
|
+
>>> random_flip = RandomFlip(p=0.5, direction="horizontal")
|
1453
|
+
>>> flipped_labels = random_flip(labels)
|
661
1454
|
"""
|
662
1455
|
img = labels["img"]
|
663
1456
|
instances = labels.pop("instances")
|
@@ -682,10 +1475,56 @@ class RandomFlip:
|
|
682
1475
|
|
683
1476
|
|
684
1477
|
class LetterBox:
|
685
|
-
"""
|
1478
|
+
"""
|
1479
|
+
Resize image and padding for detection, instance segmentation, pose.
|
1480
|
+
|
1481
|
+
This class resizes and pads images to a specified shape while preserving aspect ratio. It also updates
|
1482
|
+
corresponding labels and bounding boxes.
|
1483
|
+
|
1484
|
+
Attributes:
|
1485
|
+
new_shape (tuple): Target shape (height, width) for resizing.
|
1486
|
+
auto (bool): Whether to use minimum rectangle.
|
1487
|
+
scaleFill (bool): Whether to stretch the image to new_shape.
|
1488
|
+
scaleup (bool): Whether to allow scaling up. If False, only scale down.
|
1489
|
+
stride (int): Stride for rounding padding.
|
1490
|
+
center (bool): Whether to center the image or align to top-left.
|
1491
|
+
|
1492
|
+
Methods:
|
1493
|
+
__call__: Resize and pad image, update labels and bounding boxes.
|
1494
|
+
|
1495
|
+
Examples:
|
1496
|
+
>>> transform = LetterBox(new_shape=(640, 640))
|
1497
|
+
>>> result = transform(labels)
|
1498
|
+
>>> resized_img = result["img"]
|
1499
|
+
>>> updated_instances = result["instances"]
|
1500
|
+
"""
|
686
1501
|
|
687
1502
|
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):
|
688
|
-
"""
|
1503
|
+
"""
|
1504
|
+
Initialize LetterBox object for resizing and padding images.
|
1505
|
+
|
1506
|
+
This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation
|
1507
|
+
tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing.
|
1508
|
+
|
1509
|
+
Args:
|
1510
|
+
new_shape (Tuple[int, int]): Target size (height, width) for the resized image.
|
1511
|
+
auto (bool): If True, use minimum rectangle to resize. If False, use new_shape directly.
|
1512
|
+
scaleFill (bool): If True, stretch the image to new_shape without padding.
|
1513
|
+
scaleup (bool): If True, allow scaling up. If False, only scale down.
|
1514
|
+
center (bool): If True, center the placed image. If False, place image in top-left corner.
|
1515
|
+
stride (int): Stride of the model (e.g., 32 for YOLOv5).
|
1516
|
+
|
1517
|
+
Attributes:
|
1518
|
+
new_shape (Tuple[int, int]): Target size for the resized image.
|
1519
|
+
auto (bool): Flag for using minimum rectangle resizing.
|
1520
|
+
scaleFill (bool): Flag for stretching image without padding.
|
1521
|
+
scaleup (bool): Flag for allowing upscaling.
|
1522
|
+
stride (int): Stride value for ensuring image size is divisible by stride.
|
1523
|
+
|
1524
|
+
Examples:
|
1525
|
+
>>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32)
|
1526
|
+
>>> resized_img = letterbox(original_img)
|
1527
|
+
"""
|
689
1528
|
self.new_shape = new_shape
|
690
1529
|
self.auto = auto
|
691
1530
|
self.scaleFill = scaleFill
|
@@ -694,7 +1533,27 @@ class LetterBox:
|
|
694
1533
|
self.center = center # Put the image in the middle or top-left
|
695
1534
|
|
696
1535
|
def __call__(self, labels=None, image=None):
|
697
|
-
"""
|
1536
|
+
"""
|
1537
|
+
Resizes and pads an image for object detection, instance segmentation, or pose estimation tasks.
|
1538
|
+
|
1539
|
+
This method applies letterboxing to the input image, which involves resizing the image while maintaining its
|
1540
|
+
aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly.
|
1541
|
+
|
1542
|
+
Args:
|
1543
|
+
labels (Dict | None): A dictionary containing image data and associated labels, or empty dict if None.
|
1544
|
+
image (np.ndarray | None): The input image as a numpy array. If None, the image is taken from 'labels'.
|
1545
|
+
|
1546
|
+
Returns:
|
1547
|
+
(Dict | Tuple): If 'labels' is provided, returns an updated dictionary with the resized and padded image,
|
1548
|
+
updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized
|
1549
|
+
and padded image, and a tuple of (ratio, (left_pad, top_pad)).
|
1550
|
+
|
1551
|
+
Examples:
|
1552
|
+
>>> letterbox = LetterBox(new_shape=(640, 640))
|
1553
|
+
>>> result = letterbox(labels={"img": np.zeros((480, 640, 3)), "instances": Instances(...)})
|
1554
|
+
>>> resized_img = result["img"]
|
1555
|
+
>>> updated_instances = result["instances"]
|
1556
|
+
"""
|
698
1557
|
if labels is None:
|
699
1558
|
labels = {}
|
700
1559
|
img = labels.get("img") if image is None else image
|
@@ -734,15 +1593,37 @@ class LetterBox:
|
|
734
1593
|
labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation
|
735
1594
|
|
736
1595
|
if len(labels):
|
737
|
-
labels = self._update_labels(labels, ratio,
|
1596
|
+
labels = self._update_labels(labels, ratio, left, top)
|
738
1597
|
labels["img"] = img
|
739
1598
|
labels["resized_shape"] = new_shape
|
740
1599
|
return labels
|
741
1600
|
else:
|
742
1601
|
return img
|
743
1602
|
|
744
|
-
|
745
|
-
|
1603
|
+
@staticmethod
|
1604
|
+
def _update_labels(labels, ratio, padw, padh):
|
1605
|
+
"""
|
1606
|
+
Updates labels after applying letterboxing to an image.
|
1607
|
+
|
1608
|
+
This method modifies the bounding box coordinates of instances in the labels
|
1609
|
+
to account for resizing and padding applied during letterboxing.
|
1610
|
+
|
1611
|
+
Args:
|
1612
|
+
labels (Dict): A dictionary containing image labels and instances.
|
1613
|
+
ratio (Tuple[float, float]): Scaling ratios (width, height) applied to the image.
|
1614
|
+
padw (float): Padding width added to the image.
|
1615
|
+
padh (float): Padding height added to the image.
|
1616
|
+
|
1617
|
+
Returns:
|
1618
|
+
(Dict): Updated labels dictionary with modified instance coordinates.
|
1619
|
+
|
1620
|
+
Examples:
|
1621
|
+
>>> letterbox = LetterBox(new_shape=(640, 640))
|
1622
|
+
>>> labels = {"instances": Instances(...)}
|
1623
|
+
>>> ratio = (0.5, 0.5)
|
1624
|
+
>>> padw, padh = 10, 20
|
1625
|
+
>>> updated_labels = letterbox._update_labels(labels, ratio, padw, padh)
|
1626
|
+
"""
|
746
1627
|
labels["instances"].convert_bbox(format="xyxy")
|
747
1628
|
labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
|
748
1629
|
labels["instances"].scale(*ratio)
|
@@ -750,91 +1631,217 @@ class LetterBox:
|
|
750
1631
|
return labels
|
751
1632
|
|
752
1633
|
|
753
|
-
class CopyPaste:
|
1634
|
+
class CopyPaste(BaseMixTransform):
|
754
1635
|
"""
|
755
|
-
|
756
|
-
|
1636
|
+
CopyPaste class for applying Copy-Paste augmentation to image datasets.
|
1637
|
+
|
1638
|
+
This class implements the Copy-Paste augmentation technique as described in the paper "Simple Copy-Paste is a Strong
|
1639
|
+
Data Augmentation Method for Instance Segmentation" (https://arxiv.org/abs/2012.07177). It combines objects from
|
1640
|
+
different images to create new training samples.
|
1641
|
+
|
1642
|
+
Attributes:
|
1643
|
+
dataset (Any): The dataset to which Copy-Paste augmentation will be applied.
|
1644
|
+
pre_transform (Callable | None): Optional transform to apply before Copy-Paste.
|
1645
|
+
p (float): Probability of applying Copy-Paste augmentation.
|
1646
|
+
|
1647
|
+
Methods:
|
1648
|
+
get_indexes: Returns a random index from the dataset.
|
1649
|
+
_mix_transform: Applies Copy-Paste augmentation to the input labels.
|
1650
|
+
__call__: Applies the Copy-Paste transformation to images and annotations.
|
1651
|
+
|
1652
|
+
Examples:
|
1653
|
+
>>> from ultralytics.data.augment import CopyPaste
|
1654
|
+
>>> dataset = YourDataset(...) # Your image dataset
|
1655
|
+
>>> copypaste = CopyPaste(dataset, p=0.5)
|
1656
|
+
>>> augmented_labels = copypaste(original_labels)
|
757
1657
|
"""
|
758
1658
|
|
759
|
-
def __init__(self, p=0.5) -> None:
|
760
|
-
"""
|
761
|
-
|
1659
|
+
def __init__(self, dataset=None, pre_transform=None, p=0.5, mode="flip") -> None:
|
1660
|
+
"""Initializes CopyPaste object with dataset, pre_transform, and probability of applying MixUp."""
|
1661
|
+
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
|
1662
|
+
assert mode in {"flip", "mixup"}, f"Expected `mode` to be `flip` or `mixup`, but got {mode}."
|
1663
|
+
self.mode = mode
|
762
1664
|
|
763
|
-
|
764
|
-
|
765
|
-
|
766
|
-
|
767
|
-
|
1665
|
+
def get_indexes(self):
|
1666
|
+
"""Returns a list of random indexes from the dataset for CopyPaste augmentation."""
|
1667
|
+
return random.randint(0, len(self.dataset) - 1)
|
1668
|
+
|
1669
|
+
def _mix_transform(self, labels):
|
1670
|
+
"""Applies Copy-Paste augmentation to combine objects from another image into the current image."""
|
1671
|
+
labels2 = labels["mix_labels"][0]
|
1672
|
+
return self._transform(labels, labels2)
|
768
1673
|
|
769
1674
|
def __call__(self, labels):
|
770
|
-
"""
|
771
|
-
|
1675
|
+
"""Applies Copy-Paste augmentation to an image and its labels."""
|
1676
|
+
if len(labels["instances"].segments) == 0 or self.p == 0:
|
1677
|
+
return labels
|
1678
|
+
if self.mode == "flip":
|
1679
|
+
return self._transform(labels)
|
772
1680
|
|
773
|
-
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
- 'instances': Object containing bounding boxes, and optionally, keypoints and segments.
|
1681
|
+
# Get index of one or three other images
|
1682
|
+
indexes = self.get_indexes()
|
1683
|
+
if isinstance(indexes, int):
|
1684
|
+
indexes = [indexes]
|
778
1685
|
|
779
|
-
|
780
|
-
|
1686
|
+
# Get images information will be used for Mosaic or MixUp
|
1687
|
+
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]
|
781
1688
|
|
782
|
-
|
783
|
-
|
784
|
-
|
785
|
-
""
|
786
|
-
|
787
|
-
cls
|
1689
|
+
if self.pre_transform is not None:
|
1690
|
+
for i, data in enumerate(mix_labels):
|
1691
|
+
mix_labels[i] = self.pre_transform(data)
|
1692
|
+
labels["mix_labels"] = mix_labels
|
1693
|
+
|
1694
|
+
# Update cls and texts
|
1695
|
+
labels = self._update_label_text(labels)
|
1696
|
+
# Mosaic or MixUp
|
1697
|
+
labels = self._mix_transform(labels)
|
1698
|
+
labels.pop("mix_labels", None)
|
1699
|
+
return labels
|
1700
|
+
|
1701
|
+
def _transform(self, labels1, labels2={}):
|
1702
|
+
"""Applies Copy-Paste augmentation to combine objects from another image into the current image."""
|
1703
|
+
im = labels1["img"]
|
1704
|
+
cls = labels1["cls"]
|
788
1705
|
h, w = im.shape[:2]
|
789
|
-
instances =
|
1706
|
+
instances = labels1.pop("instances")
|
790
1707
|
instances.convert_bbox(format="xyxy")
|
791
1708
|
instances.denormalize(w, h)
|
792
|
-
|
793
|
-
|
794
|
-
|
795
|
-
|
796
|
-
|
797
|
-
|
798
|
-
|
799
|
-
|
800
|
-
|
801
|
-
|
802
|
-
|
803
|
-
|
804
|
-
|
805
|
-
|
806
|
-
|
807
|
-
|
808
|
-
|
809
|
-
|
810
|
-
|
811
|
-
|
812
|
-
|
813
|
-
|
814
|
-
|
815
|
-
|
816
|
-
return labels
|
1709
|
+
|
1710
|
+
im_new = np.zeros(im.shape, np.uint8)
|
1711
|
+
instances2 = labels2.pop("instances", None)
|
1712
|
+
if instances2 is None:
|
1713
|
+
instances2 = deepcopy(instances)
|
1714
|
+
instances2.fliplr(w)
|
1715
|
+
ioa = bbox_ioa(instances2.bboxes, instances.bboxes) # intersection over area, (N, M)
|
1716
|
+
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
|
1717
|
+
n = len(indexes)
|
1718
|
+
sorted_idx = np.argsort(ioa.max(1)[indexes])
|
1719
|
+
indexes = indexes[sorted_idx]
|
1720
|
+
for j in indexes[: round(self.p * n)]:
|
1721
|
+
cls = np.concatenate((cls, labels2.get("cls", cls)[[j]]), axis=0)
|
1722
|
+
instances = Instances.concatenate((instances, instances2[[j]]), axis=0)
|
1723
|
+
cv2.drawContours(im_new, instances2.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED)
|
1724
|
+
|
1725
|
+
result = labels2.get("img", cv2.flip(im, 1)) # augment segments
|
1726
|
+
i = im_new.astype(bool)
|
1727
|
+
im[i] = result[i]
|
1728
|
+
|
1729
|
+
labels1["img"] = im
|
1730
|
+
labels1["cls"] = cls
|
1731
|
+
labels1["instances"] = instances
|
1732
|
+
return labels1
|
817
1733
|
|
818
1734
|
|
819
1735
|
class Albumentations:
|
820
1736
|
"""
|
821
|
-
Albumentations transformations.
|
1737
|
+
Albumentations transformations for image augmentation.
|
1738
|
+
|
1739
|
+
This class applies various image transformations using the Albumentations library. It includes operations such as
|
1740
|
+
Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization (CLAHE), random changes
|
1741
|
+
in brightness and contrast, RandomGamma, and image quality reduction through compression.
|
822
1742
|
|
823
|
-
|
824
|
-
|
825
|
-
|
1743
|
+
Attributes:
|
1744
|
+
p (float): Probability of applying the transformations.
|
1745
|
+
transform (albumentations.Compose): Composed Albumentations transforms.
|
1746
|
+
contains_spatial (bool): Indicates if the transforms include spatial operations.
|
1747
|
+
|
1748
|
+
Methods:
|
1749
|
+
__call__: Applies the Albumentations transformations to the input labels.
|
1750
|
+
|
1751
|
+
Examples:
|
1752
|
+
>>> transform = Albumentations(p=0.5)
|
1753
|
+
>>> augmented_labels = transform(labels)
|
1754
|
+
|
1755
|
+
Notes:
|
1756
|
+
- The Albumentations package must be installed to use this class.
|
1757
|
+
- If the package is not installed or an error occurs during initialization, the transform will be set to None.
|
1758
|
+
- Spatial transforms are handled differently and require special processing for bounding boxes.
|
826
1759
|
"""
|
827
1760
|
|
828
1761
|
def __init__(self, p=1.0):
|
829
|
-
"""
|
1762
|
+
"""
|
1763
|
+
Initialize the Albumentations transform object for YOLO bbox formatted parameters.
|
1764
|
+
|
1765
|
+
This class applies various image augmentations using the Albumentations library, including Blur, Median Blur,
|
1766
|
+
conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and
|
1767
|
+
contrast, RandomGamma, and image quality reduction through compression.
|
1768
|
+
|
1769
|
+
Args:
|
1770
|
+
p (float): Probability of applying the augmentations. Must be between 0 and 1.
|
1771
|
+
|
1772
|
+
Attributes:
|
1773
|
+
p (float): Probability of applying the augmentations.
|
1774
|
+
transform (albumentations.Compose): Composed Albumentations transforms.
|
1775
|
+
contains_spatial (bool): Indicates if the transforms include spatial transformations.
|
1776
|
+
|
1777
|
+
Raises:
|
1778
|
+
ImportError: If the Albumentations package is not installed.
|
1779
|
+
Exception: For any other errors during initialization.
|
1780
|
+
|
1781
|
+
Examples:
|
1782
|
+
>>> transform = Albumentations(p=0.5)
|
1783
|
+
>>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)
|
1784
|
+
>>> augmented_image = augmented["image"]
|
1785
|
+
>>> augmented_bboxes = augmented["bboxes"]
|
1786
|
+
|
1787
|
+
Notes:
|
1788
|
+
- Requires Albumentations version 1.0.3 or higher.
|
1789
|
+
- Spatial transforms are handled differently to ensure bbox compatibility.
|
1790
|
+
- Some transforms are applied with very low probability (0.01) by default.
|
1791
|
+
"""
|
830
1792
|
self.p = p
|
831
1793
|
self.transform = None
|
832
1794
|
prefix = colorstr("albumentations: ")
|
1795
|
+
|
833
1796
|
try:
|
834
1797
|
import albumentations as A
|
835
1798
|
|
836
1799
|
check_version(A.__version__, "1.0.3", hard=True) # version requirement
|
837
1800
|
|
1801
|
+
# List of possible spatial transforms
|
1802
|
+
spatial_transforms = {
|
1803
|
+
"Affine",
|
1804
|
+
"BBoxSafeRandomCrop",
|
1805
|
+
"CenterCrop",
|
1806
|
+
"CoarseDropout",
|
1807
|
+
"Crop",
|
1808
|
+
"CropAndPad",
|
1809
|
+
"CropNonEmptyMaskIfExists",
|
1810
|
+
"D4",
|
1811
|
+
"ElasticTransform",
|
1812
|
+
"Flip",
|
1813
|
+
"GridDistortion",
|
1814
|
+
"GridDropout",
|
1815
|
+
"HorizontalFlip",
|
1816
|
+
"Lambda",
|
1817
|
+
"LongestMaxSize",
|
1818
|
+
"MaskDropout",
|
1819
|
+
"MixUp",
|
1820
|
+
"Morphological",
|
1821
|
+
"NoOp",
|
1822
|
+
"OpticalDistortion",
|
1823
|
+
"PadIfNeeded",
|
1824
|
+
"Perspective",
|
1825
|
+
"PiecewiseAffine",
|
1826
|
+
"PixelDropout",
|
1827
|
+
"RandomCrop",
|
1828
|
+
"RandomCropFromBorders",
|
1829
|
+
"RandomGridShuffle",
|
1830
|
+
"RandomResizedCrop",
|
1831
|
+
"RandomRotate90",
|
1832
|
+
"RandomScale",
|
1833
|
+
"RandomSizedBBoxSafeCrop",
|
1834
|
+
"RandomSizedCrop",
|
1835
|
+
"Resize",
|
1836
|
+
"Rotate",
|
1837
|
+
"SafeRotate",
|
1838
|
+
"ShiftScaleRotate",
|
1839
|
+
"SmallestMaxSize",
|
1840
|
+
"Transpose",
|
1841
|
+
"VerticalFlip",
|
1842
|
+
"XYMasking",
|
1843
|
+
} # from https://albumentations.ai/docs/getting_started/transforms_and_targets/#spatial-level-transforms
|
1844
|
+
|
838
1845
|
# Transforms
|
839
1846
|
T = [
|
840
1847
|
A.Blur(p=0.01),
|
@@ -845,8 +1852,17 @@ class Albumentations:
|
|
845
1852
|
A.RandomGamma(p=0.0),
|
846
1853
|
A.ImageCompression(quality_lower=75, p=0.0),
|
847
1854
|
]
|
848
|
-
self.transform = A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
|
849
1855
|
|
1856
|
+
# Compose transforms
|
1857
|
+
self.contains_spatial = any(transform.__class__.__name__ in spatial_transforms for transform in T)
|
1858
|
+
self.transform = (
|
1859
|
+
A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
|
1860
|
+
if self.contains_spatial
|
1861
|
+
else A.Compose(T)
|
1862
|
+
)
|
1863
|
+
if hasattr(self.transform, "set_random_seed"):
|
1864
|
+
# Required for deterministic transforms in albumentations>=1.4.21
|
1865
|
+
self.transform.set_random_seed(torch.initial_seed())
|
850
1866
|
LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
|
851
1867
|
except ImportError: # package not installed, skip
|
852
1868
|
pass
|
@@ -854,38 +1870,87 @@ class Albumentations:
|
|
854
1870
|
LOGGER.info(f"{prefix}{e}")
|
855
1871
|
|
856
1872
|
def __call__(self, labels):
|
857
|
-
"""
|
858
|
-
|
859
|
-
|
860
|
-
|
861
|
-
|
862
|
-
|
863
|
-
|
864
|
-
|
865
|
-
|
1873
|
+
"""
|
1874
|
+
Applies Albumentations transformations to input labels.
|
1875
|
+
|
1876
|
+
This method applies a series of image augmentations using the Albumentations library. It can perform both
|
1877
|
+
spatial and non-spatial transformations on the input image and its corresponding labels.
|
1878
|
+
|
1879
|
+
Args:
|
1880
|
+
labels (Dict): A dictionary containing image data and annotations. Expected keys are:
|
1881
|
+
- 'img': numpy.ndarray representing the image
|
1882
|
+
- 'cls': numpy.ndarray of class labels
|
1883
|
+
- 'instances': object containing bounding boxes and other instance information
|
1884
|
+
|
1885
|
+
Returns:
|
1886
|
+
(Dict): The input dictionary with augmented image and updated annotations.
|
1887
|
+
|
1888
|
+
Examples:
|
1889
|
+
>>> transform = Albumentations(p=0.5)
|
1890
|
+
>>> labels = {
|
1891
|
+
... "img": np.random.rand(640, 640, 3),
|
1892
|
+
... "cls": np.array([0, 1]),
|
1893
|
+
... "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]])),
|
1894
|
+
... }
|
1895
|
+
>>> augmented = transform(labels)
|
1896
|
+
>>> assert augmented["img"].shape == (640, 640, 3)
|
1897
|
+
|
1898
|
+
Notes:
|
1899
|
+
- The method applies transformations with probability self.p.
|
1900
|
+
- Spatial transforms update bounding boxes, while non-spatial transforms only modify the image.
|
1901
|
+
- Requires the Albumentations library to be installed.
|
1902
|
+
"""
|
1903
|
+
if self.transform is None or random.random() > self.p:
|
1904
|
+
return labels
|
1905
|
+
|
1906
|
+
if self.contains_spatial:
|
1907
|
+
cls = labels["cls"]
|
1908
|
+
if len(cls):
|
1909
|
+
im = labels["img"]
|
1910
|
+
labels["instances"].convert_bbox("xywh")
|
1911
|
+
labels["instances"].normalize(*im.shape[:2][::-1])
|
1912
|
+
bboxes = labels["instances"].bboxes
|
1913
|
+
# TODO: add supports of segments and keypoints
|
866
1914
|
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed
|
867
1915
|
if len(new["class_labels"]) > 0: # skip update if no bbox in new im
|
868
1916
|
labels["img"] = new["image"]
|
869
1917
|
labels["cls"] = np.array(new["class_labels"])
|
870
1918
|
bboxes = np.array(new["bboxes"], dtype=np.float32)
|
871
|
-
|
1919
|
+
labels["instances"].update(bboxes=bboxes)
|
1920
|
+
else:
|
1921
|
+
labels["img"] = self.transform(image=labels["img"])["image"] # transformed
|
1922
|
+
|
872
1923
|
return labels
|
873
1924
|
|
874
1925
|
|
875
|
-
# TODO: technically this is not an augmentation, maybe we should put this to another files
|
876
1926
|
class Format:
|
877
1927
|
"""
|
878
|
-
|
879
|
-
|
1928
|
+
A class for formatting image annotations for object detection, instance segmentation, and pose estimation tasks.
|
1929
|
+
|
1930
|
+
This class standardizes image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader.
|
880
1931
|
|
881
1932
|
Attributes:
|
882
|
-
bbox_format (str): Format for bounding boxes.
|
883
|
-
normalize (bool): Whether to normalize bounding boxes.
|
884
|
-
return_mask (bool):
|
885
|
-
return_keypoint (bool):
|
886
|
-
|
887
|
-
|
888
|
-
|
1933
|
+
bbox_format (str): Format for bounding boxes. Options are 'xywh' or 'xyxy'.
|
1934
|
+
normalize (bool): Whether to normalize bounding boxes.
|
1935
|
+
return_mask (bool): Whether to return instance masks for segmentation.
|
1936
|
+
return_keypoint (bool): Whether to return keypoints for pose estimation.
|
1937
|
+
return_obb (bool): Whether to return oriented bounding boxes.
|
1938
|
+
mask_ratio (int): Downsample ratio for masks.
|
1939
|
+
mask_overlap (bool): Whether to overlap masks.
|
1940
|
+
batch_idx (bool): Whether to keep batch indexes.
|
1941
|
+
bgr (float): The probability to return BGR images.
|
1942
|
+
|
1943
|
+
Methods:
|
1944
|
+
__call__: Formats labels dictionary with image, classes, bounding boxes, and optionally masks and keypoints.
|
1945
|
+
_format_img: Converts image from Numpy array to PyTorch tensor.
|
1946
|
+
_format_segments: Converts polygon points to bitmap masks.
|
1947
|
+
|
1948
|
+
Examples:
|
1949
|
+
>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
|
1950
|
+
>>> formatted_labels = formatter(labels)
|
1951
|
+
>>> img = formatted_labels["img"]
|
1952
|
+
>>> bboxes = formatted_labels["bboxes"]
|
1953
|
+
>>> masks = formatted_labels["masks"]
|
889
1954
|
"""
|
890
1955
|
|
891
1956
|
def __init__(
|
@@ -898,8 +1963,41 @@ class Format:
|
|
898
1963
|
mask_ratio=4,
|
899
1964
|
mask_overlap=True,
|
900
1965
|
batch_idx=True,
|
1966
|
+
bgr=0.0,
|
901
1967
|
):
|
902
|
-
"""
|
1968
|
+
"""
|
1969
|
+
Initializes the Format class with given parameters for image and instance annotation formatting.
|
1970
|
+
|
1971
|
+
This class standardizes image and instance annotations for object detection, instance segmentation, and pose
|
1972
|
+
estimation tasks, preparing them for use in PyTorch DataLoader's `collate_fn`.
|
1973
|
+
|
1974
|
+
Args:
|
1975
|
+
bbox_format (str): Format for bounding boxes. Options are 'xywh', 'xyxy', etc.
|
1976
|
+
normalize (bool): Whether to normalize bounding boxes to [0,1].
|
1977
|
+
return_mask (bool): If True, returns instance masks for segmentation tasks.
|
1978
|
+
return_keypoint (bool): If True, returns keypoints for pose estimation tasks.
|
1979
|
+
return_obb (bool): If True, returns oriented bounding boxes.
|
1980
|
+
mask_ratio (int): Downsample ratio for masks.
|
1981
|
+
mask_overlap (bool): If True, allows mask overlap.
|
1982
|
+
batch_idx (bool): If True, keeps batch indexes.
|
1983
|
+
bgr (float): Probability of returning BGR images instead of RGB.
|
1984
|
+
|
1985
|
+
Attributes:
|
1986
|
+
bbox_format (str): Format for bounding boxes.
|
1987
|
+
normalize (bool): Whether bounding boxes are normalized.
|
1988
|
+
return_mask (bool): Whether to return instance masks.
|
1989
|
+
return_keypoint (bool): Whether to return keypoints.
|
1990
|
+
return_obb (bool): Whether to return oriented bounding boxes.
|
1991
|
+
mask_ratio (int): Downsample ratio for masks.
|
1992
|
+
mask_overlap (bool): Whether masks can overlap.
|
1993
|
+
batch_idx (bool): Whether to keep batch indexes.
|
1994
|
+
bgr (float): The probability to return BGR images.
|
1995
|
+
|
1996
|
+
Examples:
|
1997
|
+
>>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False)
|
1998
|
+
>>> print(format.bbox_format)
|
1999
|
+
xyxy
|
2000
|
+
"""
|
903
2001
|
self.bbox_format = bbox_format
|
904
2002
|
self.normalize = normalize
|
905
2003
|
self.return_mask = return_mask # set False when training detection only
|
@@ -908,9 +2006,37 @@ class Format:
|
|
908
2006
|
self.mask_ratio = mask_ratio
|
909
2007
|
self.mask_overlap = mask_overlap
|
910
2008
|
self.batch_idx = batch_idx # keep the batch indexes
|
2009
|
+
self.bgr = bgr
|
911
2010
|
|
912
2011
|
def __call__(self, labels):
|
913
|
-
"""
|
2012
|
+
"""
|
2013
|
+
Formats image annotations for object detection, instance segmentation, and pose estimation tasks.
|
2014
|
+
|
2015
|
+
This method standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch
|
2016
|
+
DataLoader. It processes the input labels dictionary, converting annotations to the specified format and
|
2017
|
+
applying normalization if required.
|
2018
|
+
|
2019
|
+
Args:
|
2020
|
+
labels (Dict): A dictionary containing image and annotation data with the following keys:
|
2021
|
+
- 'img': The input image as a numpy array.
|
2022
|
+
- 'cls': Class labels for instances.
|
2023
|
+
- 'instances': An Instances object containing bounding boxes, segments, and keypoints.
|
2024
|
+
|
2025
|
+
Returns:
|
2026
|
+
(Dict): A dictionary with formatted data, including:
|
2027
|
+
- 'img': Formatted image tensor.
|
2028
|
+
- 'cls': Class label's tensor.
|
2029
|
+
- 'bboxes': Bounding boxes tensor in the specified format.
|
2030
|
+
- 'masks': Instance masks tensor (if return_mask is True).
|
2031
|
+
- 'keypoints': Keypoints tensor (if return_keypoint is True).
|
2032
|
+
- 'batch_idx': Batch index tensor (if batch_idx is True).
|
2033
|
+
|
2034
|
+
Examples:
|
2035
|
+
>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
|
2036
|
+
>>> labels = {"img": np.random.rand(640, 640, 3), "cls": np.array([0, 1]), "instances": Instances(...)}
|
2037
|
+
>>> formatted_labels = formatter(labels)
|
2038
|
+
>>> print(formatted_labels.keys())
|
2039
|
+
"""
|
914
2040
|
img = labels.pop("img")
|
915
2041
|
h, w = img.shape[:2]
|
916
2042
|
cls = labels.pop("cls")
|
@@ -928,32 +2054,78 @@ class Format:
|
|
928
2054
|
1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio
|
929
2055
|
)
|
930
2056
|
labels["masks"] = masks
|
931
|
-
if self.normalize:
|
932
|
-
instances.normalize(w, h)
|
933
2057
|
labels["img"] = self._format_img(img)
|
934
2058
|
labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl)
|
935
2059
|
labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
|
936
2060
|
if self.return_keypoint:
|
937
2061
|
labels["keypoints"] = torch.from_numpy(instances.keypoints)
|
2062
|
+
if self.normalize:
|
2063
|
+
labels["keypoints"][..., 0] /= w
|
2064
|
+
labels["keypoints"][..., 1] /= h
|
938
2065
|
if self.return_obb:
|
939
2066
|
labels["bboxes"] = (
|
940
2067
|
xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5))
|
941
2068
|
)
|
2069
|
+
# NOTE: need to normalize obb in xywhr format for width-height consistency
|
2070
|
+
if self.normalize:
|
2071
|
+
labels["bboxes"][:, [0, 2]] /= w
|
2072
|
+
labels["bboxes"][:, [1, 3]] /= h
|
942
2073
|
# Then we can use collate_fn
|
943
2074
|
if self.batch_idx:
|
944
2075
|
labels["batch_idx"] = torch.zeros(nl)
|
945
2076
|
return labels
|
946
2077
|
|
947
2078
|
def _format_img(self, img):
|
948
|
-
"""
|
2079
|
+
"""
|
2080
|
+
Formats an image for YOLO from a Numpy array to a PyTorch tensor.
|
2081
|
+
|
2082
|
+
This function performs the following operations:
|
2083
|
+
1. Ensures the image has 3 dimensions (adds a channel dimension if needed).
|
2084
|
+
2. Transposes the image from HWC to CHW format.
|
2085
|
+
3. Optionally flips the color channels from RGB to BGR.
|
2086
|
+
4. Converts the image to a contiguous array.
|
2087
|
+
5. Converts the Numpy array to a PyTorch tensor.
|
2088
|
+
|
2089
|
+
Args:
|
2090
|
+
img (np.ndarray): Input image as a Numpy array with shape (H, W, C) or (H, W).
|
2091
|
+
|
2092
|
+
Returns:
|
2093
|
+
(torch.Tensor): Formatted image as a PyTorch tensor with shape (C, H, W).
|
2094
|
+
|
2095
|
+
Examples:
|
2096
|
+
>>> import numpy as np
|
2097
|
+
>>> img = np.random.rand(100, 100, 3)
|
2098
|
+
>>> formatted_img = self._format_img(img)
|
2099
|
+
>>> print(formatted_img.shape)
|
2100
|
+
torch.Size([3, 100, 100])
|
2101
|
+
"""
|
949
2102
|
if len(img.shape) < 3:
|
950
2103
|
img = np.expand_dims(img, -1)
|
951
|
-
img =
|
2104
|
+
img = img.transpose(2, 0, 1)
|
2105
|
+
img = np.ascontiguousarray(img[::-1] if random.uniform(0, 1) > self.bgr else img)
|
952
2106
|
img = torch.from_numpy(img)
|
953
2107
|
return img
|
954
2108
|
|
955
2109
|
def _format_segments(self, instances, cls, w, h):
|
956
|
-
"""
|
2110
|
+
"""
|
2111
|
+
Converts polygon segments to bitmap masks.
|
2112
|
+
|
2113
|
+
Args:
|
2114
|
+
instances (Instances): Object containing segment information.
|
2115
|
+
cls (numpy.ndarray): Class labels for each instance.
|
2116
|
+
w (int): Width of the image.
|
2117
|
+
h (int): Height of the image.
|
2118
|
+
|
2119
|
+
Returns:
|
2120
|
+
masks (numpy.ndarray): Bitmap masks with shape (N, H, W) or (1, H, W) if mask_overlap is True.
|
2121
|
+
instances (Instances): Updated instances object with sorted segments if mask_overlap is True.
|
2122
|
+
cls (numpy.ndarray): Updated class labels, sorted if mask_overlap is True.
|
2123
|
+
|
2124
|
+
Notes:
|
2125
|
+
- If self.mask_overlap is True, masks are overlapped and sorted by area.
|
2126
|
+
- If self.mask_overlap is False, each mask is represented separately.
|
2127
|
+
- Masks are downsampled according to self.mask_ratio.
|
2128
|
+
"""
|
957
2129
|
segments = instances.segments
|
958
2130
|
if self.mask_overlap:
|
959
2131
|
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
|
@@ -966,22 +2138,189 @@ class Format:
|
|
966
2138
|
return masks, instances, cls
|
967
2139
|
|
968
2140
|
|
2141
|
+
class RandomLoadText:
|
2142
|
+
"""
|
2143
|
+
Randomly samples positive and negative texts and updates class indices accordingly.
|
2144
|
+
|
2145
|
+
This class is responsible for sampling texts from a given set of class texts, including both positive
|
2146
|
+
(present in the image) and negative (not present in the image) samples. It updates the class indices
|
2147
|
+
to reflect the sampled texts and can optionally pad the text list to a fixed length.
|
2148
|
+
|
2149
|
+
Attributes:
|
2150
|
+
prompt_format (str): Format string for text prompts.
|
2151
|
+
neg_samples (Tuple[int, int]): Range for randomly sampling negative texts.
|
2152
|
+
max_samples (int): Maximum number of different text samples in one image.
|
2153
|
+
padding (bool): Whether to pad texts to max_samples.
|
2154
|
+
padding_value (str): The text used for padding when padding is True.
|
2155
|
+
|
2156
|
+
Methods:
|
2157
|
+
__call__: Processes the input labels and returns updated classes and texts.
|
2158
|
+
|
2159
|
+
Examples:
|
2160
|
+
>>> loader = RandomLoadText(prompt_format="Object: {}", neg_samples=(5, 10), max_samples=20)
|
2161
|
+
>>> labels = {"cls": [0, 1, 2], "texts": [["cat"], ["dog"], ["bird"]], "instances": [...]}
|
2162
|
+
>>> updated_labels = loader(labels)
|
2163
|
+
>>> print(updated_labels["texts"])
|
2164
|
+
['Object: cat', 'Object: dog', 'Object: bird', 'Object: elephant', 'Object: car']
|
2165
|
+
"""
|
2166
|
+
|
2167
|
+
def __init__(
|
2168
|
+
self,
|
2169
|
+
prompt_format: str = "{}",
|
2170
|
+
neg_samples: Tuple[int, int] = (80, 80),
|
2171
|
+
max_samples: int = 80,
|
2172
|
+
padding: bool = False,
|
2173
|
+
padding_value: str = "",
|
2174
|
+
) -> None:
|
2175
|
+
"""
|
2176
|
+
Initializes the RandomLoadText class for randomly sampling positive and negative texts.
|
2177
|
+
|
2178
|
+
This class is designed to randomly sample positive texts and negative texts, and update the class
|
2179
|
+
indices accordingly to the number of samples. It can be used for text-based object detection tasks.
|
2180
|
+
|
2181
|
+
Args:
|
2182
|
+
prompt_format (str): Format string for the prompt. Default is '{}'. The format string should
|
2183
|
+
contain a single pair of curly braces {} where the text will be inserted.
|
2184
|
+
neg_samples (Tuple[int, int]): A range to randomly sample negative texts. The first integer
|
2185
|
+
specifies the minimum number of negative samples, and the second integer specifies the
|
2186
|
+
maximum. Default is (80, 80).
|
2187
|
+
max_samples (int): The maximum number of different text samples in one image. Default is 80.
|
2188
|
+
padding (bool): Whether to pad texts to max_samples. If True, the number of texts will always
|
2189
|
+
be equal to max_samples. Default is False.
|
2190
|
+
padding_value (str): The padding text to use when padding is True. Default is an empty string.
|
2191
|
+
|
2192
|
+
Attributes:
|
2193
|
+
prompt_format (str): The format string for the prompt.
|
2194
|
+
neg_samples (Tuple[int, int]): The range for sampling negative texts.
|
2195
|
+
max_samples (int): The maximum number of text samples.
|
2196
|
+
padding (bool): Whether padding is enabled.
|
2197
|
+
padding_value (str): The value used for padding.
|
2198
|
+
|
2199
|
+
Examples:
|
2200
|
+
>>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)
|
2201
|
+
>>> random_load_text.prompt_format
|
2202
|
+
'Object: {}'
|
2203
|
+
>>> random_load_text.neg_samples
|
2204
|
+
(50, 100)
|
2205
|
+
>>> random_load_text.max_samples
|
2206
|
+
120
|
2207
|
+
"""
|
2208
|
+
self.prompt_format = prompt_format
|
2209
|
+
self.neg_samples = neg_samples
|
2210
|
+
self.max_samples = max_samples
|
2211
|
+
self.padding = padding
|
2212
|
+
self.padding_value = padding_value
|
2213
|
+
|
2214
|
+
def __call__(self, labels: dict) -> dict:
|
2215
|
+
"""
|
2216
|
+
Randomly samples positive and negative texts and updates class indices accordingly.
|
2217
|
+
|
2218
|
+
This method samples positive texts based on the existing class labels in the image, and randomly
|
2219
|
+
selects negative texts from the remaining classes. It then updates the class indices to match the
|
2220
|
+
new sampled text order.
|
2221
|
+
|
2222
|
+
Args:
|
2223
|
+
labels (Dict): A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys.
|
2224
|
+
|
2225
|
+
Returns:
|
2226
|
+
(Dict): Updated labels dictionary with new 'cls' and 'texts' entries.
|
2227
|
+
|
2228
|
+
Examples:
|
2229
|
+
>>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20)
|
2230
|
+
>>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]}
|
2231
|
+
>>> updated_labels = loader(labels)
|
2232
|
+
"""
|
2233
|
+
assert "texts" in labels, "No texts found in labels."
|
2234
|
+
class_texts = labels["texts"]
|
2235
|
+
num_classes = len(class_texts)
|
2236
|
+
cls = np.asarray(labels.pop("cls"), dtype=int)
|
2237
|
+
pos_labels = np.unique(cls).tolist()
|
2238
|
+
|
2239
|
+
if len(pos_labels) > self.max_samples:
|
2240
|
+
pos_labels = random.sample(pos_labels, k=self.max_samples)
|
2241
|
+
|
2242
|
+
neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples))
|
2243
|
+
neg_labels = [i for i in range(num_classes) if i not in pos_labels]
|
2244
|
+
neg_labels = random.sample(neg_labels, k=neg_samples)
|
2245
|
+
|
2246
|
+
sampled_labels = pos_labels + neg_labels
|
2247
|
+
random.shuffle(sampled_labels)
|
2248
|
+
|
2249
|
+
label2ids = {label: i for i, label in enumerate(sampled_labels)}
|
2250
|
+
valid_idx = np.zeros(len(labels["instances"]), dtype=bool)
|
2251
|
+
new_cls = []
|
2252
|
+
for i, label in enumerate(cls.squeeze(-1).tolist()):
|
2253
|
+
if label not in label2ids:
|
2254
|
+
continue
|
2255
|
+
valid_idx[i] = True
|
2256
|
+
new_cls.append([label2ids[label]])
|
2257
|
+
labels["instances"] = labels["instances"][valid_idx]
|
2258
|
+
labels["cls"] = np.array(new_cls)
|
2259
|
+
|
2260
|
+
# Randomly select one prompt when there's more than one prompts
|
2261
|
+
texts = []
|
2262
|
+
for label in sampled_labels:
|
2263
|
+
prompts = class_texts[label]
|
2264
|
+
assert len(prompts) > 0
|
2265
|
+
prompt = self.prompt_format.format(prompts[random.randrange(len(prompts))])
|
2266
|
+
texts.append(prompt)
|
2267
|
+
|
2268
|
+
if self.padding:
|
2269
|
+
valid_labels = len(pos_labels) + len(neg_labels)
|
2270
|
+
num_padding = self.max_samples - valid_labels
|
2271
|
+
if num_padding > 0:
|
2272
|
+
texts += [self.padding_value] * num_padding
|
2273
|
+
|
2274
|
+
labels["texts"] = texts
|
2275
|
+
return labels
|
2276
|
+
|
2277
|
+
|
969
2278
|
def v8_transforms(dataset, imgsz, hyp, stretch=False):
|
970
|
-
"""
|
971
|
-
|
972
|
-
|
973
|
-
|
974
|
-
|
975
|
-
|
976
|
-
|
977
|
-
|
978
|
-
|
979
|
-
|
980
|
-
|
981
|
-
|
982
|
-
|
983
|
-
|
2279
|
+
"""
|
2280
|
+
Applies a series of image transformations for training.
|
2281
|
+
|
2282
|
+
This function creates a composition of image augmentation techniques to prepare images for YOLO training.
|
2283
|
+
It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments.
|
2284
|
+
|
2285
|
+
Args:
|
2286
|
+
dataset (Dataset): The dataset object containing image data and annotations.
|
2287
|
+
imgsz (int): The target image size for resizing.
|
2288
|
+
hyp (Namespace): A dictionary of hyperparameters controlling various aspects of the transformations.
|
2289
|
+
stretch (bool): If True, applies stretching to the image. If False, uses LetterBox resizing.
|
2290
|
+
|
2291
|
+
Returns:
|
2292
|
+
(Compose): A composition of image transformations to be applied to the dataset.
|
2293
|
+
|
2294
|
+
Examples:
|
2295
|
+
>>> from ultralytics.data.dataset import YOLODataset
|
2296
|
+
>>> from ultralytics.utils import IterableSimpleNamespace
|
2297
|
+
>>> dataset = YOLODataset(img_path="path/to/images", imgsz=640)
|
2298
|
+
>>> hyp = IterableSimpleNamespace(mosaic=1.0, copy_paste=0.5, degrees=10.0, translate=0.2, scale=0.9)
|
2299
|
+
>>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp)
|
2300
|
+
>>> augmented_data = transforms(dataset[0])
|
2301
|
+
"""
|
2302
|
+
mosaic = Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic)
|
2303
|
+
affine = RandomPerspective(
|
2304
|
+
degrees=hyp.degrees,
|
2305
|
+
translate=hyp.translate,
|
2306
|
+
scale=hyp.scale,
|
2307
|
+
shear=hyp.shear,
|
2308
|
+
perspective=hyp.perspective,
|
2309
|
+
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)),
|
984
2310
|
)
|
2311
|
+
|
2312
|
+
pre_transform = Compose([mosaic, affine])
|
2313
|
+
if hyp.copy_paste_mode == "flip":
|
2314
|
+
pre_transform.insert(1, CopyPaste(p=hyp.copy_paste, mode=hyp.copy_paste_mode))
|
2315
|
+
else:
|
2316
|
+
pre_transform.append(
|
2317
|
+
CopyPaste(
|
2318
|
+
dataset,
|
2319
|
+
pre_transform=Compose([Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), affine]),
|
2320
|
+
p=hyp.copy_paste,
|
2321
|
+
mode=hyp.copy_paste_mode,
|
2322
|
+
)
|
2323
|
+
)
|
985
2324
|
flip_idx = dataset.data.get("flip_idx", []) # for keypoints augmentation
|
986
2325
|
if dataset.use_keypoints:
|
987
2326
|
kpt_shape = dataset.data.get("kpt_shape", None)
|
@@ -1008,51 +2347,59 @@ def classify_transforms(
|
|
1008
2347
|
size=224,
|
1009
2348
|
mean=DEFAULT_MEAN,
|
1010
2349
|
std=DEFAULT_STD,
|
1011
|
-
interpolation
|
1012
|
-
crop_fraction: float =
|
2350
|
+
interpolation="BILINEAR",
|
2351
|
+
crop_fraction: float = DEFAULT_CROP_FRACTION,
|
1013
2352
|
):
|
1014
2353
|
"""
|
1015
|
-
|
2354
|
+
Creates a composition of image transforms for classification tasks.
|
2355
|
+
|
2356
|
+
This function generates a sequence of torchvision transforms suitable for preprocessing images
|
2357
|
+
for classification models during evaluation or inference. The transforms include resizing,
|
2358
|
+
center cropping, conversion to tensor, and normalization.
|
1016
2359
|
|
1017
2360
|
Args:
|
1018
|
-
size (int): image
|
1019
|
-
|
1020
|
-
|
1021
|
-
|
1022
|
-
|
2361
|
+
size (int | tuple): The target size for the transformed image. If an int, it defines the shortest edge. If a
|
2362
|
+
tuple, it defines (height, width).
|
2363
|
+
mean (tuple): Mean values for each RGB channel used in normalization.
|
2364
|
+
std (tuple): Standard deviation values for each RGB channel used in normalization.
|
2365
|
+
interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.
|
2366
|
+
crop_fraction (float): Fraction of the image to be cropped.
|
1023
2367
|
|
1024
2368
|
Returns:
|
1025
|
-
(
|
2369
|
+
(torchvision.transforms.Compose): A composition of torchvision transforms.
|
2370
|
+
|
2371
|
+
Examples:
|
2372
|
+
>>> transforms = classify_transforms(size=224)
|
2373
|
+
>>> img = Image.open("path/to/image.jpg")
|
2374
|
+
>>> transformed_img = transforms(img)
|
1026
2375
|
"""
|
2376
|
+
import torchvision.transforms as T # scope for faster 'import ultralytics'
|
1027
2377
|
|
1028
2378
|
if isinstance(size, (tuple, list)):
|
1029
|
-
assert len(size) == 2
|
2379
|
+
assert len(size) == 2, f"'size' tuples must be length 2, not length {len(size)}"
|
1030
2380
|
scale_size = tuple(math.floor(x / crop_fraction) for x in size)
|
1031
2381
|
else:
|
1032
2382
|
scale_size = math.floor(size / crop_fraction)
|
1033
2383
|
scale_size = (scale_size, scale_size)
|
1034
2384
|
|
1035
|
-
#
|
2385
|
+
# Aspect ratio is preserved, crops center within image, no borders are added, image is lost
|
1036
2386
|
if scale_size[0] == scale_size[1]:
|
1037
|
-
#
|
1038
|
-
tfl = [T.Resize(scale_size[0], interpolation=interpolation)]
|
2387
|
+
# Simple case, use torchvision built-in Resize with the shortest edge mode (scalar size arg)
|
2388
|
+
tfl = [T.Resize(scale_size[0], interpolation=getattr(T.InterpolationMode, interpolation))]
|
1039
2389
|
else:
|
1040
|
-
#
|
2390
|
+
# Resize the shortest edge to matching target dim for non-square target
|
1041
2391
|
tfl = [T.Resize(scale_size)]
|
1042
|
-
tfl
|
1043
|
-
|
1044
|
-
|
1045
|
-
|
1046
|
-
|
1047
|
-
|
1048
|
-
|
1049
|
-
),
|
1050
|
-
]
|
1051
|
-
|
2392
|
+
tfl.extend(
|
2393
|
+
[
|
2394
|
+
T.CenterCrop(size),
|
2395
|
+
T.ToTensor(),
|
2396
|
+
T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
|
2397
|
+
]
|
2398
|
+
)
|
1052
2399
|
return T.Compose(tfl)
|
1053
2400
|
|
1054
2401
|
|
1055
|
-
# Classification augmentations
|
2402
|
+
# Classification training augmentations --------------------------------------------------------------------------------
|
1056
2403
|
def classify_augmentations(
|
1057
2404
|
size=224,
|
1058
2405
|
mean=DEFAULT_MEAN,
|
@@ -1067,64 +2414,74 @@ def classify_augmentations(
|
|
1067
2414
|
hsv_v=0.4, # image HSV-Value augmentation (fraction)
|
1068
2415
|
force_color_jitter=False,
|
1069
2416
|
erasing=0.0,
|
1070
|
-
interpolation
|
2417
|
+
interpolation="BILINEAR",
|
1071
2418
|
):
|
1072
2419
|
"""
|
1073
|
-
|
2420
|
+
Creates a composition of image augmentation transforms for classification tasks.
|
2421
|
+
|
2422
|
+
This function generates a set of image transformations suitable for training classification models. It includes
|
2423
|
+
options for resizing, flipping, color jittering, auto augmentation, and random erasing.
|
1074
2424
|
|
1075
2425
|
Args:
|
1076
|
-
size (int): image
|
1077
|
-
|
1078
|
-
|
1079
|
-
|
1080
|
-
|
1081
|
-
hflip (float):
|
1082
|
-
vflip (float):
|
1083
|
-
auto_augment (str):
|
1084
|
-
hsv_h (float):
|
1085
|
-
hsv_s (float):
|
1086
|
-
hsv_v (float):
|
1087
|
-
force_color_jitter (bool):
|
1088
|
-
erasing (float):
|
1089
|
-
interpolation (
|
2426
|
+
size (int): Target size for the image after transformations.
|
2427
|
+
mean (tuple): Mean values for normalization, one per channel.
|
2428
|
+
std (tuple): Standard deviation values for normalization, one per channel.
|
2429
|
+
scale (tuple | None): Range of size of the origin size cropped.
|
2430
|
+
ratio (tuple | None): Range of aspect ratio of the origin aspect ratio cropped.
|
2431
|
+
hflip (float): Probability of horizontal flip.
|
2432
|
+
vflip (float): Probability of vertical flip.
|
2433
|
+
auto_augment (str | None): Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None.
|
2434
|
+
hsv_h (float): Image HSV-Hue augmentation factor.
|
2435
|
+
hsv_s (float): Image HSV-Saturation augmentation factor.
|
2436
|
+
hsv_v (float): Image HSV-Value augmentation factor.
|
2437
|
+
force_color_jitter (bool): Whether to apply color jitter even if auto augment is enabled.
|
2438
|
+
erasing (float): Probability of random erasing.
|
2439
|
+
interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.
|
1090
2440
|
|
1091
2441
|
Returns:
|
1092
|
-
(
|
2442
|
+
(torchvision.transforms.Compose): A composition of image augmentation transforms.
|
2443
|
+
|
2444
|
+
Examples:
|
2445
|
+
>>> transforms = classify_augmentations(size=224, auto_augment="randaugment")
|
2446
|
+
>>> augmented_image = transforms(original_image)
|
1093
2447
|
"""
|
1094
|
-
# Transforms to apply if
|
2448
|
+
# Transforms to apply if Albumentations not installed
|
2449
|
+
import torchvision.transforms as T # scope for faster 'import ultralytics'
|
2450
|
+
|
1095
2451
|
if not isinstance(size, int):
|
1096
2452
|
raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)")
|
1097
2453
|
scale = tuple(scale or (0.08, 1.0)) # default imagenet scale range
|
1098
2454
|
ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0)) # default imagenet ratio range
|
2455
|
+
interpolation = getattr(T.InterpolationMode, interpolation)
|
1099
2456
|
primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)]
|
1100
2457
|
if hflip > 0.0:
|
1101
|
-
primary_tfl
|
2458
|
+
primary_tfl.append(T.RandomHorizontalFlip(p=hflip))
|
1102
2459
|
if vflip > 0.0:
|
1103
|
-
primary_tfl
|
2460
|
+
primary_tfl.append(T.RandomVerticalFlip(p=vflip))
|
1104
2461
|
|
1105
2462
|
secondary_tfl = []
|
1106
2463
|
disable_color_jitter = False
|
1107
2464
|
if auto_augment:
|
1108
|
-
assert isinstance(auto_augment, str)
|
2465
|
+
assert isinstance(auto_augment, str), f"Provided argument should be string, but got type {type(auto_augment)}"
|
1109
2466
|
# color jitter is typically disabled if AA/RA on,
|
1110
2467
|
# this allows override without breaking old hparm cfgs
|
1111
2468
|
disable_color_jitter = not force_color_jitter
|
1112
2469
|
|
1113
2470
|
if auto_augment == "randaugment":
|
1114
2471
|
if TORCHVISION_0_11:
|
1115
|
-
secondary_tfl
|
2472
|
+
secondary_tfl.append(T.RandAugment(interpolation=interpolation))
|
1116
2473
|
else:
|
1117
2474
|
LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.')
|
1118
2475
|
|
1119
2476
|
elif auto_augment == "augmix":
|
1120
2477
|
if TORCHVISION_0_13:
|
1121
|
-
secondary_tfl
|
2478
|
+
secondary_tfl.append(T.AugMix(interpolation=interpolation))
|
1122
2479
|
else:
|
1123
2480
|
LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.')
|
1124
2481
|
|
1125
2482
|
elif auto_augment == "autoaugment":
|
1126
2483
|
if TORCHVISION_0_10:
|
1127
|
-
secondary_tfl
|
2484
|
+
secondary_tfl.append(T.AutoAugment(interpolation=interpolation))
|
1128
2485
|
else:
|
1129
2486
|
LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.')
|
1130
2487
|
|
@@ -1135,7 +2492,7 @@ def classify_augmentations(
|
|
1135
2492
|
)
|
1136
2493
|
|
1137
2494
|
if not disable_color_jitter:
|
1138
|
-
secondary_tfl
|
2495
|
+
secondary_tfl.append(T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h))
|
1139
2496
|
|
1140
2497
|
final_tfl = [
|
1141
2498
|
T.ToTensor(),
|
@@ -1149,24 +2506,53 @@ def classify_augmentations(
|
|
1149
2506
|
# NOTE: keep this class for backward compatibility
|
1150
2507
|
class ClassifyLetterBox:
|
1151
2508
|
"""
|
1152
|
-
|
1153
|
-
|
2509
|
+
A class for resizing and padding images for classification tasks.
|
2510
|
+
|
2511
|
+
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).
|
2512
|
+
It resizes and pads images to a specified size while maintaining the original aspect ratio.
|
1154
2513
|
|
1155
2514
|
Attributes:
|
1156
2515
|
h (int): Target height of the image.
|
1157
2516
|
w (int): Target width of the image.
|
1158
|
-
auto (bool): If True, automatically
|
2517
|
+
auto (bool): If True, automatically calculates the short side using stride.
|
1159
2518
|
stride (int): The stride value, used when 'auto' is True.
|
2519
|
+
|
2520
|
+
Methods:
|
2521
|
+
__call__: Applies the letterbox transformation to an input image.
|
2522
|
+
|
2523
|
+
Examples:
|
2524
|
+
>>> transform = ClassifyLetterBox(size=(640, 640), auto=False, stride=32)
|
2525
|
+
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
|
2526
|
+
>>> result = transform(img)
|
2527
|
+
>>> print(result.shape)
|
2528
|
+
(640, 640, 3)
|
1160
2529
|
"""
|
1161
2530
|
|
1162
2531
|
def __init__(self, size=(640, 640), auto=False, stride=32):
|
1163
2532
|
"""
|
1164
|
-
Initializes the ClassifyLetterBox
|
2533
|
+
Initializes the ClassifyLetterBox object for image preprocessing.
|
2534
|
+
|
2535
|
+
This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and
|
2536
|
+
pads images to a specified size while maintaining the original aspect ratio.
|
1165
2537
|
|
1166
2538
|
Args:
|
1167
|
-
size (
|
1168
|
-
|
1169
|
-
|
2539
|
+
size (int | Tuple[int, int]): Target size for the letterboxed image. If an int, a square image of
|
2540
|
+
(size, size) is created. If a tuple, it should be (height, width).
|
2541
|
+
auto (bool): If True, automatically calculates the short side based on stride. Default is False.
|
2542
|
+
stride (int): The stride value, used when 'auto' is True. Default is 32.
|
2543
|
+
|
2544
|
+
Attributes:
|
2545
|
+
h (int): Target height of the letterboxed image.
|
2546
|
+
w (int): Target width of the letterboxed image.
|
2547
|
+
auto (bool): Flag indicating whether to automatically calculate short side.
|
2548
|
+
stride (int): Stride value for automatic short side calculation.
|
2549
|
+
|
2550
|
+
Examples:
|
2551
|
+
>>> transform = ClassifyLetterBox(size=224)
|
2552
|
+
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
|
2553
|
+
>>> result = transform(img)
|
2554
|
+
>>> print(result.shape)
|
2555
|
+
(224, 224, 3)
|
1170
2556
|
"""
|
1171
2557
|
super().__init__()
|
1172
2558
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
@@ -1175,13 +2561,24 @@ class ClassifyLetterBox:
|
|
1175
2561
|
|
1176
2562
|
def __call__(self, im):
|
1177
2563
|
"""
|
1178
|
-
Resizes
|
2564
|
+
Resizes and pads an image using the letterbox method.
|
2565
|
+
|
2566
|
+
This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio,
|
2567
|
+
then pads the resized image to match the target size.
|
1179
2568
|
|
1180
2569
|
Args:
|
1181
|
-
im (numpy.ndarray):
|
2570
|
+
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C).
|
1182
2571
|
|
1183
2572
|
Returns:
|
1184
|
-
(numpy.ndarray):
|
2573
|
+
(numpy.ndarray): Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are
|
2574
|
+
the target height and width respectively.
|
2575
|
+
|
2576
|
+
Examples:
|
2577
|
+
>>> letterbox = ClassifyLetterBox(size=(640, 640))
|
2578
|
+
>>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8)
|
2579
|
+
>>> resized_image = letterbox(image)
|
2580
|
+
>>> print(resized_image.shape)
|
2581
|
+
(640, 640, 3)
|
1185
2582
|
"""
|
1186
2583
|
imh, imw = im.shape[:2]
|
1187
2584
|
r = min(self.h / imh, self.w / imw) # ratio of new/old dimensions
|
@@ -1199,25 +2596,73 @@ class ClassifyLetterBox:
|
|
1199
2596
|
|
1200
2597
|
# NOTE: keep this class for backward compatibility
|
1201
2598
|
class CenterCrop:
|
1202
|
-
"""
|
1203
|
-
|
2599
|
+
"""
|
2600
|
+
Applies center cropping to images for classification tasks.
|
2601
|
+
|
2602
|
+
This class performs center cropping on input images, resizing them to a specified size while maintaining the aspect
|
2603
|
+
ratio. It is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).
|
2604
|
+
|
2605
|
+
Attributes:
|
2606
|
+
h (int): Target height of the cropped image.
|
2607
|
+
w (int): Target width of the cropped image.
|
2608
|
+
|
2609
|
+
Methods:
|
2610
|
+
__call__: Applies the center crop transformation to an input image.
|
2611
|
+
|
2612
|
+
Examples:
|
2613
|
+
>>> transform = CenterCrop(640)
|
2614
|
+
>>> image = np.random.randint(0, 255, (1080, 1920, 3), dtype=np.uint8)
|
2615
|
+
>>> cropped_image = transform(image)
|
2616
|
+
>>> print(cropped_image.shape)
|
2617
|
+
(640, 640, 3)
|
1204
2618
|
"""
|
1205
2619
|
|
1206
2620
|
def __init__(self, size=640):
|
1207
|
-
"""
|
2621
|
+
"""
|
2622
|
+
Initializes the CenterCrop object for image preprocessing.
|
2623
|
+
|
2624
|
+
This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).
|
2625
|
+
It performs a center crop on input images to a specified size.
|
2626
|
+
|
2627
|
+
Args:
|
2628
|
+
size (int | Tuple[int, int]): The desired output size of the crop. If size is an int, a square crop
|
2629
|
+
(size, size) is made. If size is a sequence like (h, w), it is used as the output size.
|
2630
|
+
|
2631
|
+
Returns:
|
2632
|
+
(None): This method initializes the object and does not return anything.
|
2633
|
+
|
2634
|
+
Examples:
|
2635
|
+
>>> transform = CenterCrop(224)
|
2636
|
+
>>> img = np.random.rand(300, 300, 3)
|
2637
|
+
>>> cropped_img = transform(img)
|
2638
|
+
>>> print(cropped_img.shape)
|
2639
|
+
(224, 224, 3)
|
2640
|
+
"""
|
1208
2641
|
super().__init__()
|
1209
2642
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
1210
2643
|
|
1211
2644
|
def __call__(self, im):
|
1212
2645
|
"""
|
1213
|
-
|
2646
|
+
Applies center cropping to an input image.
|
2647
|
+
|
2648
|
+
This method resizes and crops the center of the image using a letterbox method. It maintains the aspect
|
2649
|
+
ratio of the original image while fitting it into the specified dimensions.
|
1214
2650
|
|
1215
2651
|
Args:
|
1216
|
-
im (numpy.ndarray): The input image as a numpy array of shape
|
2652
|
+
im (numpy.ndarray | PIL.Image.Image): The input image as a numpy array of shape (H, W, C) or a
|
2653
|
+
PIL Image object.
|
1217
2654
|
|
1218
2655
|
Returns:
|
1219
|
-
(numpy.ndarray): The center-cropped and resized image as a numpy array.
|
2656
|
+
(numpy.ndarray): The center-cropped and resized image as a numpy array of shape (self.h, self.w, C).
|
2657
|
+
|
2658
|
+
Examples:
|
2659
|
+
>>> transform = CenterCrop(size=224)
|
2660
|
+
>>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)
|
2661
|
+
>>> cropped_image = transform(image)
|
2662
|
+
>>> assert cropped_image.shape == (224, 224, 3)
|
1220
2663
|
"""
|
2664
|
+
if isinstance(im, Image.Image): # convert from PIL to numpy array if required
|
2665
|
+
im = np.asarray(im)
|
1221
2666
|
imh, imw = im.shape[:2]
|
1222
2667
|
m = min(imh, imw) # min dimension
|
1223
2668
|
top, left = (imh - m) // 2, (imw - m) // 2
|
@@ -1226,22 +2671,71 @@ class CenterCrop:
|
|
1226
2671
|
|
1227
2672
|
# NOTE: keep this class for backward compatibility
|
1228
2673
|
class ToTensor:
|
1229
|
-
"""
|
2674
|
+
"""
|
2675
|
+
Converts an image from a numpy array to a PyTorch tensor.
|
2676
|
+
|
2677
|
+
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).
|
2678
|
+
|
2679
|
+
Attributes:
|
2680
|
+
half (bool): If True, converts the image to half precision (float16).
|
2681
|
+
|
2682
|
+
Methods:
|
2683
|
+
__call__: Applies the tensor conversion to an input image.
|
2684
|
+
|
2685
|
+
Examples:
|
2686
|
+
>>> transform = ToTensor(half=True)
|
2687
|
+
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
2688
|
+
>>> tensor_img = transform(img)
|
2689
|
+
>>> print(tensor_img.shape, tensor_img.dtype)
|
2690
|
+
torch.Size([3, 640, 640]) torch.float16
|
2691
|
+
|
2692
|
+
Notes:
|
2693
|
+
The input image is expected to be in BGR format with shape (H, W, C).
|
2694
|
+
The output tensor will be in RGB format with shape (C, H, W), normalized to [0, 1].
|
2695
|
+
"""
|
1230
2696
|
|
1231
2697
|
def __init__(self, half=False):
|
1232
|
-
"""
|
2698
|
+
"""
|
2699
|
+
Initializes the ToTensor object for converting images to PyTorch tensors.
|
2700
|
+
|
2701
|
+
This class is designed to be used as part of a transformation pipeline for image preprocessing in the
|
2702
|
+
Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option
|
2703
|
+
for half-precision (float16) conversion.
|
2704
|
+
|
2705
|
+
Args:
|
2706
|
+
half (bool): If True, converts the tensor to half precision (float16). Default is False.
|
2707
|
+
|
2708
|
+
Examples:
|
2709
|
+
>>> transform = ToTensor(half=True)
|
2710
|
+
>>> img = np.random.rand(640, 640, 3)
|
2711
|
+
>>> tensor_img = transform(img)
|
2712
|
+
>>> print(tensor_img.dtype)
|
2713
|
+
torch.float16
|
2714
|
+
"""
|
1233
2715
|
super().__init__()
|
1234
2716
|
self.half = half
|
1235
2717
|
|
1236
2718
|
def __call__(self, im):
|
1237
2719
|
"""
|
1238
|
-
Transforms an image from a numpy array to a PyTorch tensor
|
2720
|
+
Transforms an image from a numpy array to a PyTorch tensor.
|
2721
|
+
|
2722
|
+
This method converts the input image from a numpy array to a PyTorch tensor, applying optional
|
2723
|
+
half-precision conversion and normalization. The image is transposed from HWC to CHW format and
|
2724
|
+
the color channels are reversed from BGR to RGB.
|
1239
2725
|
|
1240
2726
|
Args:
|
1241
2727
|
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order.
|
1242
2728
|
|
1243
2729
|
Returns:
|
1244
|
-
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized
|
2730
|
+
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized
|
2731
|
+
to [0, 1] with shape (C, H, W) in RGB order.
|
2732
|
+
|
2733
|
+
Examples:
|
2734
|
+
>>> transform = ToTensor(half=True)
|
2735
|
+
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
2736
|
+
>>> tensor_img = transform(img)
|
2737
|
+
>>> print(tensor_img.shape, tensor_img.dtype)
|
2738
|
+
torch.Size([3, 640, 640]) torch.float16
|
1245
2739
|
"""
|
1246
2740
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
1247
2741
|
im = torch.from_numpy(im) # to torch
|