ultralytics 8.1.29__py3-none-any.whl → 8.3.62__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/__init__.py +22 -0
- tests/conftest.py +83 -0
- tests/test_cli.py +122 -0
- tests/test_cuda.py +155 -0
- tests/test_engine.py +131 -0
- tests/test_exports.py +216 -0
- tests/test_integrations.py +150 -0
- tests/test_python.py +615 -0
- tests/test_solutions.py +94 -0
- ultralytics/__init__.py +11 -8
- ultralytics/cfg/__init__.py +569 -131
- ultralytics/cfg/datasets/Argoverse.yaml +2 -1
- ultralytics/cfg/datasets/DOTAv1.5.yaml +3 -2
- ultralytics/cfg/datasets/DOTAv1.yaml +3 -2
- ultralytics/cfg/datasets/GlobalWheat2020.yaml +3 -2
- ultralytics/cfg/datasets/ImageNet.yaml +2 -1
- ultralytics/cfg/datasets/Objects365.yaml +5 -4
- ultralytics/cfg/datasets/SKU-110K.yaml +2 -1
- ultralytics/cfg/datasets/VOC.yaml +3 -2
- ultralytics/cfg/datasets/VisDrone.yaml +6 -5
- ultralytics/cfg/datasets/african-wildlife.yaml +25 -0
- ultralytics/cfg/datasets/brain-tumor.yaml +23 -0
- ultralytics/cfg/datasets/carparts-seg.yaml +3 -2
- ultralytics/cfg/datasets/coco-pose.yaml +7 -6
- ultralytics/cfg/datasets/coco.yaml +3 -2
- ultralytics/cfg/datasets/coco128-seg.yaml +4 -3
- ultralytics/cfg/datasets/coco128.yaml +4 -3
- ultralytics/cfg/datasets/coco8-pose.yaml +3 -2
- ultralytics/cfg/datasets/coco8-seg.yaml +3 -2
- ultralytics/cfg/datasets/coco8.yaml +3 -2
- ultralytics/cfg/datasets/crack-seg.yaml +3 -2
- ultralytics/cfg/datasets/dog-pose.yaml +24 -0
- ultralytics/cfg/datasets/dota8.yaml +3 -2
- ultralytics/cfg/datasets/hand-keypoints.yaml +26 -0
- ultralytics/cfg/datasets/lvis.yaml +1236 -0
- ultralytics/cfg/datasets/medical-pills.yaml +22 -0
- ultralytics/cfg/datasets/open-images-v7.yaml +2 -1
- ultralytics/cfg/datasets/package-seg.yaml +5 -4
- ultralytics/cfg/datasets/signature.yaml +21 -0
- ultralytics/cfg/datasets/tiger-pose.yaml +3 -2
- ultralytics/cfg/datasets/xView.yaml +2 -1
- ultralytics/cfg/default.yaml +14 -11
- ultralytics/cfg/models/11/yolo11-cls-resnet18.yaml +24 -0
- ultralytics/cfg/models/11/yolo11-cls.yaml +33 -0
- ultralytics/cfg/models/11/yolo11-obb.yaml +50 -0
- ultralytics/cfg/models/11/yolo11-pose.yaml +51 -0
- ultralytics/cfg/models/11/yolo11-seg.yaml +50 -0
- ultralytics/cfg/models/11/yolo11.yaml +50 -0
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +5 -2
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +5 -2
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +5 -2
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +5 -2
- ultralytics/cfg/models/v10/yolov10b.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10l.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10m.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10n.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10s.yaml +45 -0
- ultralytics/cfg/models/v10/yolov10x.yaml +45 -0
- ultralytics/cfg/models/v3/yolov3-spp.yaml +5 -2
- ultralytics/cfg/models/v3/yolov3-tiny.yaml +5 -2
- ultralytics/cfg/models/v3/yolov3.yaml +5 -2
- ultralytics/cfg/models/v5/yolov5-p6.yaml +5 -2
- ultralytics/cfg/models/v5/yolov5.yaml +5 -2
- ultralytics/cfg/models/v6/yolov6.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-cls.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +6 -2
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +6 -2
- ultralytics/cfg/models/v8/yolov8-ghost.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-obb.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-p2.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-p6.yaml +10 -7
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-pose.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-seg.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-world.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8-worldv2.yaml +5 -2
- ultralytics/cfg/models/v8/yolov8.yaml +5 -2
- ultralytics/cfg/models/v9/yolov9c-seg.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9c.yaml +30 -25
- ultralytics/cfg/models/v9/yolov9e-seg.yaml +64 -0
- ultralytics/cfg/models/v9/yolov9e.yaml +46 -42
- ultralytics/cfg/models/v9/yolov9m.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9s.yaml +41 -0
- ultralytics/cfg/models/v9/yolov9t.yaml +41 -0
- ultralytics/cfg/solutions/default.yaml +24 -0
- ultralytics/cfg/trackers/botsort.yaml +8 -5
- ultralytics/cfg/trackers/bytetrack.yaml +8 -5
- ultralytics/data/__init__.py +14 -3
- ultralytics/data/annotator.py +37 -15
- ultralytics/data/augment.py +1783 -289
- ultralytics/data/base.py +62 -27
- ultralytics/data/build.py +36 -8
- ultralytics/data/converter.py +196 -36
- ultralytics/data/dataset.py +233 -94
- ultralytics/data/loaders.py +199 -96
- ultralytics/data/split_dota.py +39 -29
- ultralytics/data/utils.py +110 -40
- ultralytics/engine/__init__.py +1 -1
- ultralytics/engine/exporter.py +569 -242
- ultralytics/engine/model.py +604 -252
- ultralytics/engine/predictor.py +22 -11
- ultralytics/engine/results.py +1228 -218
- ultralytics/engine/trainer.py +190 -129
- ultralytics/engine/tuner.py +18 -18
- ultralytics/engine/validator.py +18 -15
- ultralytics/hub/__init__.py +31 -13
- ultralytics/hub/auth.py +11 -7
- ultralytics/hub/google/__init__.py +159 -0
- ultralytics/hub/session.py +128 -94
- ultralytics/hub/utils.py +20 -21
- ultralytics/models/__init__.py +4 -2
- ultralytics/models/fastsam/__init__.py +2 -3
- ultralytics/models/fastsam/model.py +26 -4
- ultralytics/models/fastsam/predict.py +127 -63
- ultralytics/models/fastsam/utils.py +1 -44
- ultralytics/models/fastsam/val.py +1 -1
- ultralytics/models/nas/__init__.py +1 -1
- ultralytics/models/nas/model.py +21 -10
- ultralytics/models/nas/predict.py +3 -6
- ultralytics/models/nas/val.py +4 -4
- ultralytics/models/rtdetr/__init__.py +1 -1
- ultralytics/models/rtdetr/model.py +1 -1
- ultralytics/models/rtdetr/predict.py +6 -8
- ultralytics/models/rtdetr/train.py +6 -2
- ultralytics/models/rtdetr/val.py +3 -3
- ultralytics/models/sam/__init__.py +3 -3
- ultralytics/models/sam/amg.py +29 -23
- ultralytics/models/sam/build.py +211 -13
- ultralytics/models/sam/model.py +91 -30
- ultralytics/models/sam/modules/__init__.py +1 -1
- ultralytics/models/sam/modules/blocks.py +1129 -0
- ultralytics/models/sam/modules/decoders.py +381 -53
- ultralytics/models/sam/modules/encoders.py +515 -324
- ultralytics/models/sam/modules/memory_attention.py +237 -0
- ultralytics/models/sam/modules/sam.py +969 -21
- ultralytics/models/sam/modules/tiny_encoder.py +425 -154
- ultralytics/models/sam/modules/transformer.py +159 -60
- ultralytics/models/sam/modules/utils.py +293 -0
- ultralytics/models/sam/predict.py +1263 -132
- ultralytics/models/utils/__init__.py +1 -1
- ultralytics/models/utils/loss.py +36 -24
- ultralytics/models/utils/ops.py +3 -7
- ultralytics/models/yolo/__init__.py +3 -3
- ultralytics/models/yolo/classify/__init__.py +1 -1
- ultralytics/models/yolo/classify/predict.py +7 -8
- ultralytics/models/yolo/classify/train.py +17 -22
- ultralytics/models/yolo/classify/val.py +8 -4
- ultralytics/models/yolo/detect/__init__.py +1 -1
- ultralytics/models/yolo/detect/predict.py +3 -5
- ultralytics/models/yolo/detect/train.py +11 -4
- ultralytics/models/yolo/detect/val.py +90 -52
- ultralytics/models/yolo/model.py +14 -9
- ultralytics/models/yolo/obb/__init__.py +1 -1
- ultralytics/models/yolo/obb/predict.py +2 -2
- ultralytics/models/yolo/obb/train.py +5 -3
- ultralytics/models/yolo/obb/val.py +41 -23
- ultralytics/models/yolo/pose/__init__.py +1 -1
- ultralytics/models/yolo/pose/predict.py +3 -5
- ultralytics/models/yolo/pose/train.py +2 -2
- ultralytics/models/yolo/pose/val.py +51 -17
- ultralytics/models/yolo/segment/__init__.py +1 -1
- ultralytics/models/yolo/segment/predict.py +3 -5
- ultralytics/models/yolo/segment/train.py +2 -2
- ultralytics/models/yolo/segment/val.py +60 -19
- ultralytics/models/yolo/world/__init__.py +5 -0
- ultralytics/models/yolo/world/train.py +92 -0
- ultralytics/models/yolo/world/train_world.py +109 -0
- ultralytics/nn/__init__.py +1 -1
- ultralytics/nn/autobackend.py +228 -93
- ultralytics/nn/modules/__init__.py +39 -14
- ultralytics/nn/modules/activation.py +21 -0
- ultralytics/nn/modules/block.py +526 -66
- ultralytics/nn/modules/conv.py +24 -7
- ultralytics/nn/modules/head.py +177 -34
- ultralytics/nn/modules/transformer.py +6 -5
- ultralytics/nn/modules/utils.py +1 -2
- ultralytics/nn/tasks.py +225 -77
- ultralytics/solutions/__init__.py +30 -1
- ultralytics/solutions/ai_gym.py +96 -143
- ultralytics/solutions/analytics.py +247 -0
- ultralytics/solutions/distance_calculation.py +78 -135
- ultralytics/solutions/heatmap.py +93 -247
- ultralytics/solutions/object_counter.py +184 -259
- ultralytics/solutions/parking_management.py +246 -0
- ultralytics/solutions/queue_management.py +112 -0
- ultralytics/solutions/region_counter.py +116 -0
- ultralytics/solutions/security_alarm.py +144 -0
- ultralytics/solutions/solutions.py +178 -0
- ultralytics/solutions/speed_estimation.py +86 -174
- ultralytics/solutions/streamlit_inference.py +190 -0
- ultralytics/solutions/trackzone.py +68 -0
- ultralytics/trackers/__init__.py +1 -1
- ultralytics/trackers/basetrack.py +32 -13
- ultralytics/trackers/bot_sort.py +61 -28
- ultralytics/trackers/byte_tracker.py +83 -51
- ultralytics/trackers/track.py +21 -6
- ultralytics/trackers/utils/__init__.py +1 -1
- ultralytics/trackers/utils/gmc.py +62 -48
- ultralytics/trackers/utils/kalman_filter.py +166 -35
- ultralytics/trackers/utils/matching.py +40 -21
- ultralytics/utils/__init__.py +511 -239
- ultralytics/utils/autobatch.py +40 -22
- ultralytics/utils/benchmarks.py +266 -85
- ultralytics/utils/callbacks/__init__.py +1 -1
- ultralytics/utils/callbacks/base.py +1 -3
- ultralytics/utils/callbacks/clearml.py +7 -6
- ultralytics/utils/callbacks/comet.py +39 -17
- ultralytics/utils/callbacks/dvc.py +1 -1
- ultralytics/utils/callbacks/hub.py +16 -16
- ultralytics/utils/callbacks/mlflow.py +28 -24
- ultralytics/utils/callbacks/neptune.py +6 -2
- ultralytics/utils/callbacks/raytune.py +3 -4
- ultralytics/utils/callbacks/tensorboard.py +18 -18
- ultralytics/utils/callbacks/wb.py +27 -20
- ultralytics/utils/checks.py +160 -100
- ultralytics/utils/dist.py +2 -1
- ultralytics/utils/downloads.py +40 -34
- ultralytics/utils/errors.py +1 -1
- ultralytics/utils/files.py +72 -38
- ultralytics/utils/instance.py +41 -19
- ultralytics/utils/loss.py +83 -55
- ultralytics/utils/metrics.py +61 -56
- ultralytics/utils/ops.py +94 -89
- ultralytics/utils/patches.py +30 -14
- ultralytics/utils/plotting.py +600 -269
- ultralytics/utils/tal.py +67 -26
- ultralytics/utils/torch_utils.py +302 -102
- ultralytics/utils/triton.py +2 -1
- ultralytics/utils/tuner.py +21 -12
- ultralytics-8.3.62.dist-info/METADATA +370 -0
- ultralytics-8.3.62.dist-info/RECORD +241 -0
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/WHEEL +1 -1
- ultralytics/data/explorer/__init__.py +0 -5
- ultralytics/data/explorer/explorer.py +0 -472
- ultralytics/data/explorer/gui/__init__.py +0 -1
- ultralytics/data/explorer/gui/dash.py +0 -268
- ultralytics/data/explorer/utils.py +0 -166
- ultralytics/models/fastsam/prompt.py +0 -357
- ultralytics-8.1.29.dist-info/METADATA +0 -373
- ultralytics-8.1.29.dist-info/RECORD +0 -197
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/LICENSE +0 -0
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.1.29.dist-info → ultralytics-8.3.62.dist-info}/top_level.txt +0 -0
ultralytics/data/base.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
# Ultralytics
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
3
|
import glob
|
4
4
|
import math
|
@@ -14,8 +14,8 @@ import numpy as np
|
|
14
14
|
import psutil
|
15
15
|
from torch.utils.data import Dataset
|
16
16
|
|
17
|
+
from ultralytics.data.utils import FORMATS_HELP_MSG, HELP_URL, IMG_FORMATS
|
17
18
|
from ultralytics.utils import DEFAULT_CFG, LOCAL_RANK, LOGGER, NUM_THREADS, TQDM
|
18
|
-
from .utils import HELP_URL, IMG_FORMATS
|
19
19
|
|
20
20
|
|
21
21
|
class BaseDataset(Dataset):
|
@@ -86,13 +86,19 @@ class BaseDataset(Dataset):
|
|
86
86
|
self.buffer = [] # buffer size = batch size
|
87
87
|
self.max_buffer_length = min((self.ni, self.batch_size * 8, 1000)) if self.augment else 0
|
88
88
|
|
89
|
-
# Cache images
|
90
|
-
if cache == "ram" and not self.check_cache_ram():
|
91
|
-
cache = False
|
89
|
+
# Cache images (options are cache = True, False, None, "ram", "disk")
|
92
90
|
self.ims, self.im_hw0, self.im_hw = [None] * self.ni, [None] * self.ni, [None] * self.ni
|
93
91
|
self.npy_files = [Path(f).with_suffix(".npy") for f in self.im_files]
|
94
|
-
if cache
|
95
|
-
|
92
|
+
self.cache = cache.lower() if isinstance(cache, str) else "ram" if cache is True else None
|
93
|
+
if self.cache == "ram" and self.check_cache_ram():
|
94
|
+
if hyp.deterministic:
|
95
|
+
LOGGER.warning(
|
96
|
+
"WARNING ⚠️ cache='ram' may produce non-deterministic training results. "
|
97
|
+
"Consider cache='disk' as a deterministic alternative if your disk space allows."
|
98
|
+
)
|
99
|
+
self.cache_images()
|
100
|
+
elif self.cache == "disk" and self.check_cache_disk():
|
101
|
+
self.cache_images()
|
96
102
|
|
97
103
|
# Transforms
|
98
104
|
self.transforms = self.build_transforms(hyp=hyp)
|
@@ -116,13 +122,11 @@ class BaseDataset(Dataset):
|
|
116
122
|
raise FileNotFoundError(f"{self.prefix}{p} does not exist")
|
117
123
|
im_files = sorted(x.replace("/", os.sep) for x in f if x.split(".")[-1].lower() in IMG_FORMATS)
|
118
124
|
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
119
|
-
assert im_files, f"{self.prefix}No images found in {img_path}"
|
125
|
+
assert im_files, f"{self.prefix}No images found in {img_path}. {FORMATS_HELP_MSG}"
|
120
126
|
except Exception as e:
|
121
127
|
raise FileNotFoundError(f"{self.prefix}Error loading data from {img_path}\n{HELP_URL}") from e
|
122
128
|
if self.fraction < 1:
|
123
|
-
|
124
|
-
num_elements_to_select = round(len(im_files) * self.fraction)
|
125
|
-
im_files = random.sample(im_files, num_elements_to_select)
|
129
|
+
im_files = im_files[: round(len(im_files) * self.fraction)] # retain a fraction of the dataset
|
126
130
|
return im_files
|
127
131
|
|
128
132
|
def update_labels(self, include_class: Optional[list]):
|
@@ -173,28 +177,29 @@ class BaseDataset(Dataset):
|
|
173
177
|
if self.augment:
|
174
178
|
self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
175
179
|
self.buffer.append(i)
|
176
|
-
if len(self.buffer) >= self.max_buffer_length:
|
180
|
+
if 1 < len(self.buffer) >= self.max_buffer_length: # prevent empty buffer
|
177
181
|
j = self.buffer.pop(0)
|
178
|
-
|
182
|
+
if self.cache != "ram":
|
183
|
+
self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None
|
179
184
|
|
180
185
|
return im, (h0, w0), im.shape[:2]
|
181
186
|
|
182
187
|
return self.ims[i], self.im_hw0[i], self.im_hw[i]
|
183
188
|
|
184
|
-
def cache_images(self
|
189
|
+
def cache_images(self):
|
185
190
|
"""Cache images to memory or disk."""
|
186
191
|
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
187
|
-
fcn = self.cache_images_to_disk if cache == "disk" else self.load_image
|
192
|
+
fcn, storage = (self.cache_images_to_disk, "Disk") if self.cache == "disk" else (self.load_image, "RAM")
|
188
193
|
with ThreadPool(NUM_THREADS) as pool:
|
189
194
|
results = pool.imap(fcn, range(self.ni))
|
190
195
|
pbar = TQDM(enumerate(results), total=self.ni, disable=LOCAL_RANK > 0)
|
191
196
|
for i, x in pbar:
|
192
|
-
if cache == "disk":
|
197
|
+
if self.cache == "disk":
|
193
198
|
b += self.npy_files[i].stat().st_size
|
194
199
|
else: # 'ram'
|
195
200
|
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
196
201
|
b += self.ims[i].nbytes
|
197
|
-
pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {
|
202
|
+
pbar.desc = f"{self.prefix}Caching images ({b / gb:.1f}GB {storage})"
|
198
203
|
pbar.close()
|
199
204
|
|
200
205
|
def cache_images_to_disk(self, i):
|
@@ -203,25 +208,55 @@ class BaseDataset(Dataset):
|
|
203
208
|
if not f.exists():
|
204
209
|
np.save(f.as_posix(), cv2.imread(self.im_files[i]), allow_pickle=False)
|
205
210
|
|
211
|
+
def check_cache_disk(self, safety_margin=0.5):
|
212
|
+
"""Check image caching requirements vs available disk space."""
|
213
|
+
import shutil
|
214
|
+
|
215
|
+
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
216
|
+
n = min(self.ni, 30) # extrapolate from 30 random images
|
217
|
+
for _ in range(n):
|
218
|
+
im_file = random.choice(self.im_files)
|
219
|
+
im = cv2.imread(im_file)
|
220
|
+
if im is None:
|
221
|
+
continue
|
222
|
+
b += im.nbytes
|
223
|
+
if not os.access(Path(im_file).parent, os.W_OK):
|
224
|
+
self.cache = None
|
225
|
+
LOGGER.info(f"{self.prefix}Skipping caching images to disk, directory not writeable ⚠️")
|
226
|
+
return False
|
227
|
+
disk_required = b * self.ni / n * (1 + safety_margin) # bytes required to cache dataset to disk
|
228
|
+
total, used, free = shutil.disk_usage(Path(self.im_files[0]).parent)
|
229
|
+
if disk_required > free:
|
230
|
+
self.cache = None
|
231
|
+
LOGGER.info(
|
232
|
+
f"{self.prefix}{disk_required / gb:.1f}GB disk space required, "
|
233
|
+
f"with {int(safety_margin * 100)}% safety margin but only "
|
234
|
+
f"{free / gb:.1f}/{total / gb:.1f}GB free, not caching images to disk ⚠️"
|
235
|
+
)
|
236
|
+
return False
|
237
|
+
return True
|
238
|
+
|
206
239
|
def check_cache_ram(self, safety_margin=0.5):
|
207
240
|
"""Check image caching requirements vs available memory."""
|
208
241
|
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
209
242
|
n = min(self.ni, 30) # extrapolate from 30 random images
|
210
243
|
for _ in range(n):
|
211
244
|
im = cv2.imread(random.choice(self.im_files)) # sample image
|
245
|
+
if im is None:
|
246
|
+
continue
|
212
247
|
ratio = self.imgsz / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
|
213
248
|
b += im.nbytes * ratio**2
|
214
249
|
mem_required = b * self.ni / n * (1 + safety_margin) # GB required to cache dataset into RAM
|
215
250
|
mem = psutil.virtual_memory()
|
216
|
-
|
217
|
-
|
251
|
+
if mem_required > mem.available:
|
252
|
+
self.cache = None
|
218
253
|
LOGGER.info(
|
219
|
-
f
|
220
|
-
f
|
221
|
-
f
|
222
|
-
f"{'caching images ✅' if cache else 'not caching images ⚠️'}"
|
254
|
+
f"{self.prefix}{mem_required / gb:.1f}GB RAM required to cache images "
|
255
|
+
f"with {int(safety_margin * 100)}% safety margin but only "
|
256
|
+
f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, not caching images ⚠️"
|
223
257
|
)
|
224
|
-
|
258
|
+
return False
|
259
|
+
return True
|
225
260
|
|
226
261
|
def set_rectangle(self):
|
227
262
|
"""Sets the shape of bounding boxes for YOLO detections as rectangles."""
|
@@ -300,10 +335,10 @@ class BaseDataset(Dataset):
|
|
300
335
|
im_file=im_file,
|
301
336
|
shape=shape, # format: (height, width)
|
302
337
|
cls=cls,
|
303
|
-
bboxes=bboxes,
|
338
|
+
bboxes=bboxes, # xywh
|
304
339
|
segments=segments, # xy
|
305
|
-
keypoints=keypoints,
|
306
|
-
normalized=True,
|
340
|
+
keypoints=keypoints, # xy
|
341
|
+
normalized=True, # or False
|
307
342
|
bbox_format="xyxy", # or xywh, ltwh
|
308
343
|
)
|
309
344
|
```
|
ultralytics/data/build.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
# Ultralytics
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
3
|
import os
|
4
4
|
import random
|
@@ -9,6 +9,7 @@ import torch
|
|
9
9
|
from PIL import Image
|
10
10
|
from torch.utils.data import dataloader, distributed
|
11
11
|
|
12
|
+
from ultralytics.data.dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset
|
12
13
|
from ultralytics.data.loaders import (
|
13
14
|
LOADERS,
|
14
15
|
LoadImagesAndVideos,
|
@@ -19,11 +20,9 @@ from ultralytics.data.loaders import (
|
|
19
20
|
SourceTypes,
|
20
21
|
autocast_list,
|
21
22
|
)
|
22
|
-
from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
|
23
|
+
from ultralytics.data.utils import IMG_FORMATS, PIN_MEMORY, VID_FORMATS
|
23
24
|
from ultralytics.utils import RANK, colorstr
|
24
25
|
from ultralytics.utils.checks import check_file
|
25
|
-
from .dataset import YOLODataset
|
26
|
-
from .utils import PIN_MEMORY
|
27
26
|
|
28
27
|
|
29
28
|
class InfiniteDataLoader(dataloader.DataLoader):
|
@@ -48,6 +47,13 @@ class InfiniteDataLoader(dataloader.DataLoader):
|
|
48
47
|
for _ in range(len(self)):
|
49
48
|
yield next(self.iterator)
|
50
49
|
|
50
|
+
def __del__(self):
|
51
|
+
"""Ensure that workers are terminated."""
|
52
|
+
for w in self.iterator._workers: # force terminate
|
53
|
+
if w.is_alive():
|
54
|
+
w.terminate()
|
55
|
+
self.iterator._shutdown_workers() # cleanup
|
56
|
+
|
51
57
|
def reset(self):
|
52
58
|
"""
|
53
59
|
Reset iterator.
|
@@ -82,9 +88,10 @@ def seed_worker(worker_id): # noqa
|
|
82
88
|
random.seed(worker_seed)
|
83
89
|
|
84
90
|
|
85
|
-
def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32):
|
91
|
+
def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32, multi_modal=False):
|
86
92
|
"""Build YOLO Dataset."""
|
87
|
-
|
93
|
+
dataset = YOLOMultiModalDataset if multi_modal else YOLODataset
|
94
|
+
return dataset(
|
88
95
|
img_path=img_path,
|
89
96
|
imgsz=cfg.imgsz,
|
90
97
|
batch_size=batch,
|
@@ -103,11 +110,32 @@ def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, str
|
|
103
110
|
)
|
104
111
|
|
105
112
|
|
113
|
+
def build_grounding(cfg, img_path, json_file, batch, mode="train", rect=False, stride=32):
|
114
|
+
"""Build YOLO Dataset."""
|
115
|
+
return GroundingDataset(
|
116
|
+
img_path=img_path,
|
117
|
+
json_file=json_file,
|
118
|
+
imgsz=cfg.imgsz,
|
119
|
+
batch_size=batch,
|
120
|
+
augment=mode == "train", # augmentation
|
121
|
+
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
122
|
+
rect=cfg.rect or rect, # rectangular batches
|
123
|
+
cache=cfg.cache or None,
|
124
|
+
single_cls=cfg.single_cls or False,
|
125
|
+
stride=int(stride),
|
126
|
+
pad=0.0 if mode == "train" else 0.5,
|
127
|
+
prefix=colorstr(f"{mode}: "),
|
128
|
+
task=cfg.task,
|
129
|
+
classes=cfg.classes,
|
130
|
+
fraction=cfg.fraction if mode == "train" else 1.0,
|
131
|
+
)
|
132
|
+
|
133
|
+
|
106
134
|
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
|
107
135
|
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
|
108
136
|
batch = min(batch, len(dataset))
|
109
137
|
nd = torch.cuda.device_count() # number of CUDA devices
|
110
|
-
nw = min(
|
138
|
+
nw = min(os.cpu_count() // max(nd, 1), workers) # number of workers
|
111
139
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
112
140
|
generator = torch.Generator()
|
113
141
|
generator.manual_seed(6148914691236517205 + RANK)
|
@@ -129,7 +157,7 @@ def check_source(source):
|
|
129
157
|
webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
|
130
158
|
if isinstance(source, (str, int, Path)): # int for local usb camera
|
131
159
|
source = str(source)
|
132
|
-
is_file = Path(source).suffix[1:] in (IMG_FORMATS
|
160
|
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS | VID_FORMATS)
|
133
161
|
is_url = source.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
|
134
162
|
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
|
135
163
|
screenshot = source.lower() == "screen"
|
ultralytics/data/converter.py
CHANGED
@@ -1,13 +1,18 @@
|
|
1
|
-
# Ultralytics
|
1
|
+
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
2
2
|
|
3
3
|
import json
|
4
|
+
import random
|
5
|
+
import shutil
|
4
6
|
from collections import defaultdict
|
7
|
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
5
8
|
from pathlib import Path
|
6
9
|
|
7
10
|
import cv2
|
8
11
|
import numpy as np
|
12
|
+
from PIL import Image
|
9
13
|
|
10
|
-
from ultralytics.utils import LOGGER, TQDM
|
14
|
+
from ultralytics.utils import DATASETS_DIR, LOGGER, NUM_THREADS, TQDM
|
15
|
+
from ultralytics.utils.downloads import download
|
11
16
|
from ultralytics.utils.files import increment_path
|
12
17
|
|
13
18
|
|
@@ -115,7 +120,7 @@ def coco91_to_coco80_class():
|
|
115
120
|
|
116
121
|
|
117
122
|
def coco80_to_coco91_class():
|
118
|
-
"""
|
123
|
+
r"""
|
119
124
|
Converts 80-index (val2014) to 91-index (paper).
|
120
125
|
For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/.
|
121
126
|
|
@@ -123,8 +128,8 @@ def coco80_to_coco91_class():
|
|
123
128
|
```python
|
124
129
|
import numpy as np
|
125
130
|
|
126
|
-
a = np.loadtxt(
|
127
|
-
b = np.loadtxt(
|
131
|
+
a = np.loadtxt("data/coco.names", dtype="str", delimiter="\n")
|
132
|
+
b = np.loadtxt("data/coco_paper.names", dtype="str", delimiter="\n")
|
128
133
|
x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
129
134
|
x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
130
135
|
```
|
@@ -219,6 +224,7 @@ def convert_coco(
|
|
219
224
|
use_segments=False,
|
220
225
|
use_keypoints=False,
|
221
226
|
cls91to80=True,
|
227
|
+
lvis=False,
|
222
228
|
):
|
223
229
|
"""
|
224
230
|
Converts COCO dataset annotations to a YOLO annotation format suitable for training YOLO models.
|
@@ -229,18 +235,21 @@ def convert_coco(
|
|
229
235
|
use_segments (bool, optional): Whether to include segmentation masks in the output.
|
230
236
|
use_keypoints (bool, optional): Whether to include keypoint annotations in the output.
|
231
237
|
cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs.
|
238
|
+
lvis (bool, optional): Whether to convert data in lvis dataset way.
|
232
239
|
|
233
240
|
Example:
|
234
241
|
```python
|
235
242
|
from ultralytics.data.converter import convert_coco
|
236
243
|
|
237
|
-
convert_coco(
|
244
|
+
convert_coco("../datasets/coco/annotations/", use_segments=True, use_keypoints=False, cls91to80=False)
|
245
|
+
convert_coco(
|
246
|
+
"../datasets/lvis/annotations/", use_segments=True, use_keypoints=False, cls91to80=False, lvis=True
|
247
|
+
)
|
238
248
|
```
|
239
249
|
|
240
250
|
Output:
|
241
251
|
Generates output files in the specified output directory.
|
242
252
|
"""
|
243
|
-
|
244
253
|
# Create dataset directory
|
245
254
|
save_dir = increment_path(save_dir) # increment if save directory already exists
|
246
255
|
for p in save_dir / "labels", save_dir / "images":
|
@@ -251,28 +260,38 @@ def convert_coco(
|
|
251
260
|
|
252
261
|
# Import json
|
253
262
|
for json_file in sorted(Path(labels_dir).resolve().glob("*.json")):
|
254
|
-
|
263
|
+
lname = "" if lvis else json_file.stem.replace("instances_", "")
|
264
|
+
fn = Path(save_dir) / "labels" / lname # folder name
|
255
265
|
fn.mkdir(parents=True, exist_ok=True)
|
256
|
-
|
266
|
+
if lvis:
|
267
|
+
# NOTE: create folders for both train and val in advance,
|
268
|
+
# since LVIS val set contains images from COCO 2017 train in addition to the COCO 2017 val split.
|
269
|
+
(fn / "train2017").mkdir(parents=True, exist_ok=True)
|
270
|
+
(fn / "val2017").mkdir(parents=True, exist_ok=True)
|
271
|
+
with open(json_file, encoding="utf-8") as f:
|
257
272
|
data = json.load(f)
|
258
273
|
|
259
274
|
# Create image dict
|
260
|
-
images = {f
|
275
|
+
images = {f"{x['id']:d}": x for x in data["images"]}
|
261
276
|
# Create image-annotations dict
|
262
277
|
imgToAnns = defaultdict(list)
|
263
278
|
for ann in data["annotations"]:
|
264
279
|
imgToAnns[ann["image_id"]].append(ann)
|
265
280
|
|
281
|
+
image_txt = []
|
266
282
|
# Write labels file
|
267
283
|
for img_id, anns in TQDM(imgToAnns.items(), desc=f"Annotations {json_file}"):
|
268
284
|
img = images[f"{img_id:d}"]
|
269
|
-
h, w
|
285
|
+
h, w = img["height"], img["width"]
|
286
|
+
f = str(Path(img["coco_url"]).relative_to("http://images.cocodataset.org")) if lvis else img["file_name"]
|
287
|
+
if lvis:
|
288
|
+
image_txt.append(str(Path("./images") / f))
|
270
289
|
|
271
290
|
bboxes = []
|
272
291
|
segments = []
|
273
292
|
keypoints = []
|
274
293
|
for ann in anns:
|
275
|
-
if ann
|
294
|
+
if ann.get("iscrowd", False):
|
276
295
|
continue
|
277
296
|
# The COCO box format is [top left x, top left y, width, height]
|
278
297
|
box = np.array(ann["bbox"], dtype=np.float64)
|
@@ -314,7 +333,89 @@ def convert_coco(
|
|
314
333
|
) # cls, box or segments
|
315
334
|
file.write(("%g " * len(line)).rstrip() % line + "\n")
|
316
335
|
|
317
|
-
|
336
|
+
if lvis:
|
337
|
+
with open((Path(save_dir) / json_file.name.replace("lvis_v1_", "").replace(".json", ".txt")), "a") as f:
|
338
|
+
f.writelines(f"{line}\n" for line in image_txt)
|
339
|
+
|
340
|
+
LOGGER.info(f"{'LVIS' if lvis else 'COCO'} data converted successfully.\nResults saved to {save_dir.resolve()}")
|
341
|
+
|
342
|
+
|
343
|
+
def convert_segment_masks_to_yolo_seg(masks_dir, output_dir, classes):
|
344
|
+
"""
|
345
|
+
Converts a dataset of segmentation mask images to the YOLO segmentation format.
|
346
|
+
|
347
|
+
This function takes the directory containing the binary format mask images and converts them into YOLO segmentation format.
|
348
|
+
The converted masks are saved in the specified output directory.
|
349
|
+
|
350
|
+
Args:
|
351
|
+
masks_dir (str): The path to the directory where all mask images (png, jpg) are stored.
|
352
|
+
output_dir (str): The path to the directory where the converted YOLO segmentation masks will be stored.
|
353
|
+
classes (int): Total classes in the dataset i.e. for COCO classes=80
|
354
|
+
|
355
|
+
Example:
|
356
|
+
```python
|
357
|
+
from ultralytics.data.converter import convert_segment_masks_to_yolo_seg
|
358
|
+
|
359
|
+
# The classes here is the total classes in the dataset, for COCO dataset we have 80 classes
|
360
|
+
convert_segment_masks_to_yolo_seg("path/to/masks_directory", "path/to/output/directory", classes=80)
|
361
|
+
```
|
362
|
+
|
363
|
+
Notes:
|
364
|
+
The expected directory structure for the masks is:
|
365
|
+
|
366
|
+
- masks
|
367
|
+
├─ mask_image_01.png or mask_image_01.jpg
|
368
|
+
├─ mask_image_02.png or mask_image_02.jpg
|
369
|
+
├─ mask_image_03.png or mask_image_03.jpg
|
370
|
+
└─ mask_image_04.png or mask_image_04.jpg
|
371
|
+
|
372
|
+
After execution, the labels will be organized in the following structure:
|
373
|
+
|
374
|
+
- output_dir
|
375
|
+
├─ mask_yolo_01.txt
|
376
|
+
├─ mask_yolo_02.txt
|
377
|
+
├─ mask_yolo_03.txt
|
378
|
+
└─ mask_yolo_04.txt
|
379
|
+
"""
|
380
|
+
pixel_to_class_mapping = {i + 1: i for i in range(classes)}
|
381
|
+
for mask_path in Path(masks_dir).iterdir():
|
382
|
+
if mask_path.suffix in {".png", ".jpg"}:
|
383
|
+
mask = cv2.imread(str(mask_path), cv2.IMREAD_GRAYSCALE) # Read the mask image in grayscale
|
384
|
+
img_height, img_width = mask.shape # Get image dimensions
|
385
|
+
LOGGER.info(f"Processing {mask_path} imgsz = {img_height} x {img_width}")
|
386
|
+
|
387
|
+
unique_values = np.unique(mask) # Get unique pixel values representing different classes
|
388
|
+
yolo_format_data = []
|
389
|
+
|
390
|
+
for value in unique_values:
|
391
|
+
if value == 0:
|
392
|
+
continue # Skip background
|
393
|
+
class_index = pixel_to_class_mapping.get(value, -1)
|
394
|
+
if class_index == -1:
|
395
|
+
LOGGER.warning(f"Unknown class for pixel value {value} in file {mask_path}, skipping.")
|
396
|
+
continue
|
397
|
+
|
398
|
+
# Create a binary mask for the current class and find contours
|
399
|
+
contours, _ = cv2.findContours(
|
400
|
+
(mask == value).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
401
|
+
) # Find contours
|
402
|
+
|
403
|
+
for contour in contours:
|
404
|
+
if len(contour) >= 3: # YOLO requires at least 3 points for a valid segmentation
|
405
|
+
contour = contour.squeeze() # Remove single-dimensional entries
|
406
|
+
yolo_format = [class_index]
|
407
|
+
for point in contour:
|
408
|
+
# Normalize the coordinates
|
409
|
+
yolo_format.append(round(point[0] / img_width, 6)) # Rounding to 6 decimal places
|
410
|
+
yolo_format.append(round(point[1] / img_height, 6))
|
411
|
+
yolo_format_data.append(yolo_format)
|
412
|
+
# Save Ultralytics YOLO format data to file
|
413
|
+
output_path = Path(output_dir) / f"{mask_path.stem}.txt"
|
414
|
+
with open(output_path, "w") as file:
|
415
|
+
for item in yolo_format_data:
|
416
|
+
line = " ".join(map(str, item))
|
417
|
+
file.write(line + "\n")
|
418
|
+
LOGGER.info(f"Processed and stored at {output_path} imgsz = {img_height} x {img_width}")
|
318
419
|
|
319
420
|
|
320
421
|
def convert_dota_to_yolo_obb(dota_root_path: str):
|
@@ -331,7 +432,7 @@ def convert_dota_to_yolo_obb(dota_root_path: str):
|
|
331
432
|
```python
|
332
433
|
from ultralytics.data.converter import convert_dota_to_yolo_obb
|
333
434
|
|
334
|
-
convert_dota_to_yolo_obb(
|
435
|
+
convert_dota_to_yolo_obb("path/to/DOTA")
|
335
436
|
```
|
336
437
|
|
337
438
|
Notes:
|
@@ -393,7 +494,7 @@ def convert_dota_to_yolo_obb(dota_root_path: str):
|
|
393
494
|
normalized_coords = [
|
394
495
|
coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8)
|
395
496
|
]
|
396
|
-
formatted_coords = ["{:.6g}"
|
497
|
+
formatted_coords = [f"{coord:.6g}" for coord in normalized_coords]
|
397
498
|
g.write(f"{class_idx} {' '.join(formatted_coords)}\n")
|
398
499
|
|
399
500
|
for phase in ["train", "val"]:
|
@@ -463,7 +564,7 @@ def merge_multi_segment(segments):
|
|
463
564
|
segments[i] = np.roll(segments[i], -idx[0], axis=0)
|
464
565
|
segments[i] = np.concatenate([segments[i], segments[i][:1]])
|
465
566
|
# Deal with the first segment and the last one
|
466
|
-
if i in
|
567
|
+
if i in {0, len(idx_list) - 1}:
|
467
568
|
s.append(segments[i])
|
468
569
|
else:
|
469
570
|
idx = [0, idx[1] - idx[0]]
|
@@ -471,14 +572,14 @@ def merge_multi_segment(segments):
|
|
471
572
|
|
472
573
|
else:
|
473
574
|
for i in range(len(idx_list) - 1, -1, -1):
|
474
|
-
if i not in
|
575
|
+
if i not in {0, len(idx_list) - 1}:
|
475
576
|
idx = idx_list[i]
|
476
577
|
nidx = abs(idx[1] - idx[0])
|
477
578
|
s.append(segments[i][nidx:])
|
478
579
|
return s
|
479
580
|
|
480
581
|
|
481
|
-
def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
|
582
|
+
def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt", device=None):
|
482
583
|
"""
|
483
584
|
Converts existing object detection dataset (bounding boxes) to segmentation dataset or oriented bounding box (OBB)
|
484
585
|
in YOLO format. Generates segmentation data using SAM auto-annotator as needed.
|
@@ -488,24 +589,24 @@ def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
|
|
488
589
|
save_dir (str | Path): Path to save the generated labels, labels will be saved
|
489
590
|
into `labels-segment` in the same directory level of `im_dir` if save_dir is None. Default: None.
|
490
591
|
sam_model (str): Segmentation model to use for intermediate segmentation data; optional.
|
592
|
+
device (int | str): The specific device to run SAM models. Default: None.
|
491
593
|
|
492
594
|
Notes:
|
493
595
|
The input directory structure assumed for dataset:
|
494
596
|
|
495
597
|
- im_dir
|
496
598
|
├─ 001.jpg
|
497
|
-
├─
|
599
|
+
├─ ...
|
498
600
|
└─ NNN.jpg
|
499
601
|
- labels
|
500
602
|
├─ 001.txt
|
501
|
-
├─
|
603
|
+
├─ ...
|
502
604
|
└─ NNN.txt
|
503
605
|
"""
|
606
|
+
from ultralytics import SAM
|
504
607
|
from ultralytics.data import YOLODataset
|
505
|
-
from ultralytics.utils.ops import xywh2xyxy
|
506
608
|
from ultralytics.utils import LOGGER
|
507
|
-
from ultralytics import
|
508
|
-
from tqdm import tqdm
|
609
|
+
from ultralytics.utils.ops import xywh2xyxy
|
509
610
|
|
510
611
|
# NOTE: add placeholder to pass class index check
|
511
612
|
dataset = YOLODataset(im_dir, data=dict(names=list(range(1000))))
|
@@ -515,28 +616,87 @@ def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"):
|
|
515
616
|
|
516
617
|
LOGGER.info("Detection labels detected, generating segment labels by SAM model!")
|
517
618
|
sam_model = SAM(sam_model)
|
518
|
-
for
|
519
|
-
h, w =
|
520
|
-
boxes =
|
619
|
+
for label in TQDM(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"):
|
620
|
+
h, w = label["shape"]
|
621
|
+
boxes = label["bboxes"]
|
521
622
|
if len(boxes) == 0: # skip empty labels
|
522
623
|
continue
|
523
624
|
boxes[:, [0, 2]] *= w
|
524
625
|
boxes[:, [1, 3]] *= h
|
525
|
-
im = cv2.imread(
|
526
|
-
sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False)
|
527
|
-
|
626
|
+
im = cv2.imread(label["im_file"])
|
627
|
+
sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False, device=device)
|
628
|
+
label["segments"] = sam_results[0].masks.xyn
|
528
629
|
|
529
630
|
save_dir = Path(save_dir) if save_dir else Path(im_dir).parent / "labels-segment"
|
530
631
|
save_dir.mkdir(parents=True, exist_ok=True)
|
531
|
-
for
|
632
|
+
for label in dataset.labels:
|
532
633
|
texts = []
|
533
|
-
lb_name = Path(
|
634
|
+
lb_name = Path(label["im_file"]).with_suffix(".txt").name
|
534
635
|
txt_file = save_dir / lb_name
|
535
|
-
cls =
|
536
|
-
for i, s in enumerate(
|
636
|
+
cls = label["cls"]
|
637
|
+
for i, s in enumerate(label["segments"]):
|
638
|
+
if len(s) == 0:
|
639
|
+
continue
|
537
640
|
line = (int(cls[i]), *s.reshape(-1))
|
538
641
|
texts.append(("%g " * len(line)).rstrip() % line)
|
539
|
-
|
540
|
-
|
541
|
-
f.writelines(text + "\n" for text in texts)
|
642
|
+
with open(txt_file, "a") as f:
|
643
|
+
f.writelines(text + "\n" for text in texts)
|
542
644
|
LOGGER.info(f"Generated segment labels saved in {save_dir}")
|
645
|
+
|
646
|
+
|
647
|
+
def create_synthetic_coco_dataset():
|
648
|
+
"""
|
649
|
+
Creates a synthetic COCO dataset with random images based on filenames from label lists.
|
650
|
+
|
651
|
+
This function downloads COCO labels, reads image filenames from label list files,
|
652
|
+
creates synthetic images for train2017 and val2017 subsets, and organizes
|
653
|
+
them in the COCO dataset structure. It uses multithreading to generate images efficiently.
|
654
|
+
|
655
|
+
Examples:
|
656
|
+
>>> from ultralytics.data.converter import create_synthetic_coco_dataset
|
657
|
+
>>> create_synthetic_coco_dataset()
|
658
|
+
|
659
|
+
Notes:
|
660
|
+
- Requires internet connection to download label files.
|
661
|
+
- Generates random RGB images of varying sizes (480x480 to 640x640 pixels).
|
662
|
+
- Existing test2017 directory is removed as it's not needed.
|
663
|
+
- Reads image filenames from train2017.txt and val2017.txt files.
|
664
|
+
"""
|
665
|
+
|
666
|
+
def create_synthetic_image(image_file):
|
667
|
+
"""Generates synthetic images with random sizes and colors for dataset augmentation or testing purposes."""
|
668
|
+
if not image_file.exists():
|
669
|
+
size = (random.randint(480, 640), random.randint(480, 640))
|
670
|
+
Image.new(
|
671
|
+
"RGB",
|
672
|
+
size=size,
|
673
|
+
color=(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)),
|
674
|
+
).save(image_file)
|
675
|
+
|
676
|
+
# Download labels
|
677
|
+
dir = DATASETS_DIR / "coco"
|
678
|
+
url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/"
|
679
|
+
label_zip = "coco2017labels-segments.zip"
|
680
|
+
download([url + label_zip], dir=dir.parent)
|
681
|
+
|
682
|
+
# Create synthetic images
|
683
|
+
shutil.rmtree(dir / "labels" / "test2017", ignore_errors=True) # Remove test2017 directory as not needed
|
684
|
+
with ThreadPoolExecutor(max_workers=NUM_THREADS) as executor:
|
685
|
+
for subset in ["train2017", "val2017"]:
|
686
|
+
subset_dir = dir / "images" / subset
|
687
|
+
subset_dir.mkdir(parents=True, exist_ok=True)
|
688
|
+
|
689
|
+
# Read image filenames from label list file
|
690
|
+
label_list_file = dir / f"{subset}.txt"
|
691
|
+
if label_list_file.exists():
|
692
|
+
with open(label_list_file) as f:
|
693
|
+
image_files = [dir / line.strip() for line in f]
|
694
|
+
|
695
|
+
# Submit all tasks
|
696
|
+
futures = [executor.submit(create_synthetic_image, image_file) for image_file in image_files]
|
697
|
+
for _ in TQDM(as_completed(futures), total=len(futures), desc=f"Generating images for {subset}"):
|
698
|
+
pass # The actual work is done in the background
|
699
|
+
else:
|
700
|
+
print(f"Warning: Labels file {label_list_file} does not exist. Skipping image creation for {subset}.")
|
701
|
+
|
702
|
+
print("Synthetic COCO dataset created successfully.")
|