transformers 5.0.0rc3__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +4 -11
- transformers/activations.py +2 -2
- transformers/backbone_utils.py +326 -0
- transformers/cache_utils.py +11 -2
- transformers/cli/serve.py +11 -8
- transformers/configuration_utils.py +1 -69
- transformers/conversion_mapping.py +146 -26
- transformers/convert_slow_tokenizer.py +6 -4
- transformers/core_model_loading.py +207 -118
- transformers/dependency_versions_check.py +0 -1
- transformers/dependency_versions_table.py +7 -8
- transformers/file_utils.py +0 -2
- transformers/generation/candidate_generator.py +1 -2
- transformers/generation/continuous_batching/cache.py +40 -38
- transformers/generation/continuous_batching/cache_manager.py +3 -16
- transformers/generation/continuous_batching/continuous_api.py +94 -406
- transformers/generation/continuous_batching/input_ouputs.py +464 -0
- transformers/generation/continuous_batching/requests.py +54 -17
- transformers/generation/continuous_batching/scheduler.py +77 -95
- transformers/generation/logits_process.py +10 -5
- transformers/generation/stopping_criteria.py +1 -2
- transformers/generation/utils.py +75 -95
- transformers/image_processing_utils.py +0 -3
- transformers/image_processing_utils_fast.py +17 -18
- transformers/image_transforms.py +44 -13
- transformers/image_utils.py +0 -5
- transformers/initialization.py +57 -0
- transformers/integrations/__init__.py +10 -24
- transformers/integrations/accelerate.py +47 -11
- transformers/integrations/deepspeed.py +145 -3
- transformers/integrations/executorch.py +2 -6
- transformers/integrations/finegrained_fp8.py +142 -7
- transformers/integrations/flash_attention.py +2 -7
- transformers/integrations/hub_kernels.py +18 -7
- transformers/integrations/moe.py +226 -106
- transformers/integrations/mxfp4.py +47 -34
- transformers/integrations/peft.py +488 -176
- transformers/integrations/tensor_parallel.py +641 -581
- transformers/masking_utils.py +153 -9
- transformers/modeling_flash_attention_utils.py +1 -2
- transformers/modeling_utils.py +359 -358
- transformers/models/__init__.py +6 -0
- transformers/models/afmoe/configuration_afmoe.py +14 -4
- transformers/models/afmoe/modeling_afmoe.py +8 -8
- transformers/models/afmoe/modular_afmoe.py +7 -7
- transformers/models/aimv2/configuration_aimv2.py +2 -7
- transformers/models/aimv2/modeling_aimv2.py +26 -24
- transformers/models/aimv2/modular_aimv2.py +8 -12
- transformers/models/albert/configuration_albert.py +8 -1
- transformers/models/albert/modeling_albert.py +3 -3
- transformers/models/align/configuration_align.py +8 -5
- transformers/models/align/modeling_align.py +22 -24
- transformers/models/altclip/configuration_altclip.py +4 -6
- transformers/models/altclip/modeling_altclip.py +30 -26
- transformers/models/apertus/configuration_apertus.py +5 -7
- transformers/models/apertus/modeling_apertus.py +4 -4
- transformers/models/apertus/modular_apertus.py +8 -10
- transformers/models/arcee/configuration_arcee.py +5 -7
- transformers/models/arcee/modeling_arcee.py +4 -4
- transformers/models/aria/configuration_aria.py +11 -21
- transformers/models/aria/modeling_aria.py +39 -36
- transformers/models/aria/modular_aria.py +33 -39
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +3 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +39 -30
- transformers/models/audioflamingo3/modular_audioflamingo3.py +41 -27
- transformers/models/auto/auto_factory.py +8 -6
- transformers/models/auto/configuration_auto.py +22 -0
- transformers/models/auto/image_processing_auto.py +17 -13
- transformers/models/auto/modeling_auto.py +15 -0
- transformers/models/auto/processing_auto.py +9 -18
- transformers/models/auto/tokenization_auto.py +17 -15
- transformers/models/autoformer/modeling_autoformer.py +2 -1
- transformers/models/aya_vision/configuration_aya_vision.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +29 -62
- transformers/models/aya_vision/modular_aya_vision.py +20 -45
- transformers/models/bamba/configuration_bamba.py +17 -7
- transformers/models/bamba/modeling_bamba.py +23 -55
- transformers/models/bamba/modular_bamba.py +19 -54
- transformers/models/bark/configuration_bark.py +2 -1
- transformers/models/bark/modeling_bark.py +24 -10
- transformers/models/bart/configuration_bart.py +9 -4
- transformers/models/bart/modeling_bart.py +9 -12
- transformers/models/beit/configuration_beit.py +2 -4
- transformers/models/beit/image_processing_beit_fast.py +3 -3
- transformers/models/beit/modeling_beit.py +14 -9
- transformers/models/bert/configuration_bert.py +12 -1
- transformers/models/bert/modeling_bert.py +6 -30
- transformers/models/bert_generation/configuration_bert_generation.py +17 -1
- transformers/models/bert_generation/modeling_bert_generation.py +6 -6
- transformers/models/big_bird/configuration_big_bird.py +12 -8
- transformers/models/big_bird/modeling_big_bird.py +0 -15
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -8
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +9 -7
- transformers/models/biogpt/configuration_biogpt.py +8 -1
- transformers/models/biogpt/modeling_biogpt.py +4 -8
- transformers/models/biogpt/modular_biogpt.py +1 -5
- transformers/models/bit/configuration_bit.py +2 -4
- transformers/models/bit/modeling_bit.py +6 -5
- transformers/models/bitnet/configuration_bitnet.py +5 -7
- transformers/models/bitnet/modeling_bitnet.py +3 -4
- transformers/models/bitnet/modular_bitnet.py +3 -4
- transformers/models/blenderbot/configuration_blenderbot.py +8 -4
- transformers/models/blenderbot/modeling_blenderbot.py +4 -4
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -4
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +4 -4
- transformers/models/blip/configuration_blip.py +9 -9
- transformers/models/blip/modeling_blip.py +55 -37
- transformers/models/blip_2/configuration_blip_2.py +2 -1
- transformers/models/blip_2/modeling_blip_2.py +81 -56
- transformers/models/bloom/configuration_bloom.py +5 -1
- transformers/models/bloom/modeling_bloom.py +2 -1
- transformers/models/blt/configuration_blt.py +23 -12
- transformers/models/blt/modeling_blt.py +20 -14
- transformers/models/blt/modular_blt.py +70 -10
- transformers/models/bridgetower/configuration_bridgetower.py +7 -1
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +6 -6
- transformers/models/bridgetower/modeling_bridgetower.py +29 -15
- transformers/models/bros/configuration_bros.py +24 -17
- transformers/models/camembert/configuration_camembert.py +8 -1
- transformers/models/camembert/modeling_camembert.py +6 -6
- transformers/models/canine/configuration_canine.py +4 -1
- transformers/models/chameleon/configuration_chameleon.py +5 -7
- transformers/models/chameleon/image_processing_chameleon_fast.py +5 -5
- transformers/models/chameleon/modeling_chameleon.py +82 -36
- transformers/models/chinese_clip/configuration_chinese_clip.py +10 -7
- transformers/models/chinese_clip/modeling_chinese_clip.py +28 -29
- transformers/models/clap/configuration_clap.py +4 -8
- transformers/models/clap/modeling_clap.py +21 -22
- transformers/models/clip/configuration_clip.py +4 -1
- transformers/models/clip/image_processing_clip_fast.py +9 -0
- transformers/models/clip/modeling_clip.py +25 -22
- transformers/models/clipseg/configuration_clipseg.py +4 -1
- transformers/models/clipseg/modeling_clipseg.py +27 -25
- transformers/models/clipseg/processing_clipseg.py +11 -3
- transformers/models/clvp/configuration_clvp.py +14 -2
- transformers/models/clvp/modeling_clvp.py +19 -30
- transformers/models/codegen/configuration_codegen.py +4 -3
- transformers/models/codegen/modeling_codegen.py +2 -1
- transformers/models/cohere/configuration_cohere.py +5 -7
- transformers/models/cohere/modeling_cohere.py +4 -4
- transformers/models/cohere/modular_cohere.py +3 -3
- transformers/models/cohere2/configuration_cohere2.py +6 -8
- transformers/models/cohere2/modeling_cohere2.py +4 -4
- transformers/models/cohere2/modular_cohere2.py +9 -11
- transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +3 -3
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +24 -25
- transformers/models/cohere2_vision/modular_cohere2_vision.py +20 -20
- transformers/models/colqwen2/modeling_colqwen2.py +7 -6
- transformers/models/colqwen2/modular_colqwen2.py +7 -6
- transformers/models/conditional_detr/configuration_conditional_detr.py +19 -46
- transformers/models/conditional_detr/image_processing_conditional_detr.py +3 -4
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +28 -14
- transformers/models/conditional_detr/modeling_conditional_detr.py +794 -942
- transformers/models/conditional_detr/modular_conditional_detr.py +901 -3
- transformers/models/convbert/configuration_convbert.py +11 -7
- transformers/models/convnext/configuration_convnext.py +2 -4
- transformers/models/convnext/image_processing_convnext_fast.py +2 -2
- transformers/models/convnext/modeling_convnext.py +7 -6
- transformers/models/convnextv2/configuration_convnextv2.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +7 -6
- transformers/models/cpmant/configuration_cpmant.py +4 -0
- transformers/models/csm/configuration_csm.py +9 -15
- transformers/models/csm/modeling_csm.py +3 -3
- transformers/models/ctrl/configuration_ctrl.py +16 -0
- transformers/models/ctrl/modeling_ctrl.py +13 -25
- transformers/models/cwm/configuration_cwm.py +5 -7
- transformers/models/cwm/modeling_cwm.py +4 -4
- transformers/models/d_fine/configuration_d_fine.py +10 -56
- transformers/models/d_fine/modeling_d_fine.py +728 -868
- transformers/models/d_fine/modular_d_fine.py +335 -412
- transformers/models/dab_detr/configuration_dab_detr.py +22 -48
- transformers/models/dab_detr/modeling_dab_detr.py +11 -7
- transformers/models/dac/modeling_dac.py +1 -1
- transformers/models/data2vec/configuration_data2vec_audio.py +4 -1
- transformers/models/data2vec/configuration_data2vec_text.py +11 -2
- transformers/models/data2vec/modeling_data2vec_audio.py +3 -3
- transformers/models/data2vec/modeling_data2vec_text.py +6 -6
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -2
- transformers/models/dbrx/configuration_dbrx.py +11 -3
- transformers/models/dbrx/modeling_dbrx.py +6 -6
- transformers/models/dbrx/modular_dbrx.py +6 -6
- transformers/models/deberta/configuration_deberta.py +6 -0
- transformers/models/deberta_v2/configuration_deberta_v2.py +6 -0
- transformers/models/decision_transformer/configuration_decision_transformer.py +3 -1
- transformers/models/decision_transformer/modeling_decision_transformer.py +3 -3
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +7 -10
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -8
- transformers/models/deepseek_v2/modular_deepseek_v2.py +8 -10
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +7 -10
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +7 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -5
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +4 -0
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +2 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +5 -5
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +17 -12
- transformers/models/deepseek_vl/modular_deepseek_vl.py +4 -0
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +4 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +2 -2
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +6 -6
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +68 -24
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +70 -19
- transformers/models/deformable_detr/configuration_deformable_detr.py +22 -45
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +25 -11
- transformers/models/deformable_detr/modeling_deformable_detr.py +410 -607
- transformers/models/deformable_detr/modular_deformable_detr.py +1385 -3
- transformers/models/deit/modeling_deit.py +11 -7
- transformers/models/depth_anything/configuration_depth_anything.py +12 -42
- transformers/models/depth_anything/modeling_depth_anything.py +5 -3
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +2 -2
- transformers/models/depth_pro/modeling_depth_pro.py +8 -4
- transformers/models/detr/configuration_detr.py +18 -49
- transformers/models/detr/image_processing_detr_fast.py +11 -11
- transformers/models/detr/modeling_detr.py +695 -734
- transformers/models/dia/configuration_dia.py +4 -7
- transformers/models/dia/generation_dia.py +8 -17
- transformers/models/dia/modeling_dia.py +7 -7
- transformers/models/dia/modular_dia.py +4 -4
- transformers/models/diffllama/configuration_diffllama.py +5 -7
- transformers/models/diffllama/modeling_diffllama.py +3 -8
- transformers/models/diffllama/modular_diffllama.py +2 -7
- transformers/models/dinat/configuration_dinat.py +2 -4
- transformers/models/dinat/modeling_dinat.py +7 -6
- transformers/models/dinov2/configuration_dinov2.py +2 -4
- transformers/models/dinov2/modeling_dinov2.py +9 -8
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +2 -4
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +9 -8
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +6 -7
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +2 -4
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +2 -3
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +2 -4
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +2 -2
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -6
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -6
- transformers/models/distilbert/configuration_distilbert.py +8 -1
- transformers/models/distilbert/modeling_distilbert.py +3 -3
- transformers/models/doge/configuration_doge.py +17 -7
- transformers/models/doge/modeling_doge.py +4 -4
- transformers/models/doge/modular_doge.py +20 -10
- transformers/models/donut/image_processing_donut_fast.py +4 -4
- transformers/models/dots1/configuration_dots1.py +16 -7
- transformers/models/dots1/modeling_dots1.py +4 -4
- transformers/models/dpr/configuration_dpr.py +19 -1
- transformers/models/dpt/configuration_dpt.py +23 -65
- transformers/models/dpt/image_processing_dpt_fast.py +5 -5
- transformers/models/dpt/modeling_dpt.py +19 -15
- transformers/models/dpt/modular_dpt.py +4 -4
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +53 -53
- transformers/models/edgetam/modular_edgetam.py +5 -7
- transformers/models/edgetam_video/modeling_edgetam_video.py +55 -56
- transformers/models/edgetam_video/modular_edgetam_video.py +9 -9
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +4 -3
- transformers/models/efficientloftr/modeling_efficientloftr.py +19 -9
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +2 -2
- transformers/models/electra/configuration_electra.py +13 -2
- transformers/models/electra/modeling_electra.py +6 -6
- transformers/models/emu3/configuration_emu3.py +12 -10
- transformers/models/emu3/modeling_emu3.py +84 -47
- transformers/models/emu3/modular_emu3.py +77 -39
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -1
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +20 -24
- transformers/models/eomt/configuration_eomt.py +12 -13
- transformers/models/eomt/image_processing_eomt_fast.py +3 -3
- transformers/models/eomt/modeling_eomt.py +3 -3
- transformers/models/eomt/modular_eomt.py +17 -17
- transformers/models/eomt_dinov3/__init__.py +28 -0
- transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
- transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
- transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
- transformers/models/ernie/configuration_ernie.py +24 -2
- transformers/models/ernie/modeling_ernie.py +6 -30
- transformers/models/ernie4_5/configuration_ernie4_5.py +5 -7
- transformers/models/ernie4_5/modeling_ernie4_5.py +4 -4
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +7 -10
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +4 -4
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -6
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +229 -188
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +79 -55
- transformers/models/esm/configuration_esm.py +9 -11
- transformers/models/esm/modeling_esm.py +3 -3
- transformers/models/esm/modeling_esmfold.py +1 -6
- transformers/models/esm/openfold_utils/protein.py +2 -3
- transformers/models/evolla/configuration_evolla.py +21 -8
- transformers/models/evolla/modeling_evolla.py +11 -7
- transformers/models/evolla/modular_evolla.py +5 -1
- transformers/models/exaone4/configuration_exaone4.py +8 -5
- transformers/models/exaone4/modeling_exaone4.py +4 -4
- transformers/models/exaone4/modular_exaone4.py +11 -8
- transformers/models/exaone_moe/__init__.py +27 -0
- transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
- transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
- transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
- transformers/models/falcon/configuration_falcon.py +9 -1
- transformers/models/falcon/modeling_falcon.py +3 -8
- transformers/models/falcon_h1/configuration_falcon_h1.py +17 -8
- transformers/models/falcon_h1/modeling_falcon_h1.py +22 -54
- transformers/models/falcon_h1/modular_falcon_h1.py +21 -52
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -1
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +18 -26
- transformers/models/falcon_mamba/modular_falcon_mamba.py +4 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +10 -1
- transformers/models/fast_vlm/modeling_fast_vlm.py +37 -64
- transformers/models/fast_vlm/modular_fast_vlm.py +146 -35
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +0 -1
- transformers/models/flaubert/configuration_flaubert.py +10 -4
- transformers/models/flaubert/modeling_flaubert.py +1 -1
- transformers/models/flava/configuration_flava.py +4 -3
- transformers/models/flava/image_processing_flava_fast.py +4 -4
- transformers/models/flava/modeling_flava.py +36 -28
- transformers/models/flex_olmo/configuration_flex_olmo.py +11 -14
- transformers/models/flex_olmo/modeling_flex_olmo.py +4 -4
- transformers/models/flex_olmo/modular_flex_olmo.py +11 -14
- transformers/models/florence2/configuration_florence2.py +4 -0
- transformers/models/florence2/modeling_florence2.py +57 -32
- transformers/models/florence2/modular_florence2.py +48 -26
- transformers/models/fnet/configuration_fnet.py +6 -1
- transformers/models/focalnet/configuration_focalnet.py +2 -4
- transformers/models/focalnet/modeling_focalnet.py +10 -7
- transformers/models/fsmt/configuration_fsmt.py +12 -16
- transformers/models/funnel/configuration_funnel.py +8 -0
- transformers/models/fuyu/configuration_fuyu.py +5 -8
- transformers/models/fuyu/image_processing_fuyu_fast.py +5 -4
- transformers/models/fuyu/modeling_fuyu.py +24 -23
- transformers/models/gemma/configuration_gemma.py +5 -7
- transformers/models/gemma/modeling_gemma.py +4 -4
- transformers/models/gemma/modular_gemma.py +5 -7
- transformers/models/gemma2/configuration_gemma2.py +5 -7
- transformers/models/gemma2/modeling_gemma2.py +4 -4
- transformers/models/gemma2/modular_gemma2.py +8 -10
- transformers/models/gemma3/configuration_gemma3.py +28 -22
- transformers/models/gemma3/image_processing_gemma3_fast.py +2 -2
- transformers/models/gemma3/modeling_gemma3.py +37 -33
- transformers/models/gemma3/modular_gemma3.py +46 -42
- transformers/models/gemma3n/configuration_gemma3n.py +35 -22
- transformers/models/gemma3n/modeling_gemma3n.py +86 -58
- transformers/models/gemma3n/modular_gemma3n.py +112 -75
- transformers/models/git/configuration_git.py +5 -7
- transformers/models/git/modeling_git.py +31 -41
- transformers/models/glm/configuration_glm.py +7 -9
- transformers/models/glm/modeling_glm.py +4 -4
- transformers/models/glm4/configuration_glm4.py +7 -9
- transformers/models/glm4/modeling_glm4.py +4 -4
- transformers/models/glm46v/configuration_glm46v.py +4 -0
- transformers/models/glm46v/image_processing_glm46v.py +5 -2
- transformers/models/glm46v/image_processing_glm46v_fast.py +2 -2
- transformers/models/glm46v/modeling_glm46v.py +91 -46
- transformers/models/glm46v/modular_glm46v.py +4 -0
- transformers/models/glm4_moe/configuration_glm4_moe.py +17 -7
- transformers/models/glm4_moe/modeling_glm4_moe.py +4 -4
- transformers/models/glm4_moe/modular_glm4_moe.py +17 -7
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +8 -10
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +7 -7
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +8 -10
- transformers/models/glm4v/configuration_glm4v.py +12 -8
- transformers/models/glm4v/image_processing_glm4v.py +5 -2
- transformers/models/glm4v/image_processing_glm4v_fast.py +2 -2
- transformers/models/glm4v/modeling_glm4v.py +120 -63
- transformers/models/glm4v/modular_glm4v.py +82 -50
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +18 -6
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +115 -63
- transformers/models/glm4v_moe/modular_glm4v_moe.py +23 -12
- transformers/models/glm_image/configuration_glm_image.py +26 -20
- transformers/models/glm_image/image_processing_glm_image.py +1 -1
- transformers/models/glm_image/image_processing_glm_image_fast.py +5 -7
- transformers/models/glm_image/modeling_glm_image.py +337 -236
- transformers/models/glm_image/modular_glm_image.py +415 -255
- transformers/models/glm_image/processing_glm_image.py +65 -17
- transformers/{pipelines/deprecated → models/glm_ocr}/__init__.py +15 -2
- transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
- transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
- transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
- transformers/models/glmasr/modeling_glmasr.py +34 -28
- transformers/models/glmasr/modular_glmasr.py +23 -11
- transformers/models/glpn/image_processing_glpn_fast.py +3 -3
- transformers/models/glpn/modeling_glpn.py +4 -2
- transformers/models/got_ocr2/configuration_got_ocr2.py +6 -6
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +3 -3
- transformers/models/got_ocr2/modeling_got_ocr2.py +31 -37
- transformers/models/got_ocr2/modular_got_ocr2.py +30 -19
- transformers/models/gpt2/configuration_gpt2.py +13 -1
- transformers/models/gpt2/modeling_gpt2.py +5 -5
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -1
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +5 -4
- transformers/models/gpt_neo/configuration_gpt_neo.py +9 -1
- transformers/models/gpt_neo/modeling_gpt_neo.py +3 -7
- transformers/models/gpt_neox/configuration_gpt_neox.py +8 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +4 -4
- transformers/models/gpt_neox/modular_gpt_neox.py +4 -4
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +9 -1
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +2 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +10 -6
- transformers/models/gpt_oss/modeling_gpt_oss.py +46 -79
- transformers/models/gpt_oss/modular_gpt_oss.py +45 -78
- transformers/models/gptj/configuration_gptj.py +4 -4
- transformers/models/gptj/modeling_gptj.py +3 -7
- transformers/models/granite/configuration_granite.py +5 -7
- transformers/models/granite/modeling_granite.py +4 -4
- transformers/models/granite_speech/modeling_granite_speech.py +63 -37
- transformers/models/granitemoe/configuration_granitemoe.py +5 -7
- transformers/models/granitemoe/modeling_granitemoe.py +4 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +17 -7
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +22 -54
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +39 -45
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +6 -7
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +4 -4
- transformers/models/grounding_dino/configuration_grounding_dino.py +10 -45
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +11 -11
- transformers/models/grounding_dino/modeling_grounding_dino.py +68 -86
- transformers/models/groupvit/configuration_groupvit.py +4 -1
- transformers/models/groupvit/modeling_groupvit.py +29 -22
- transformers/models/helium/configuration_helium.py +5 -7
- transformers/models/helium/modeling_helium.py +4 -4
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -4
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +6 -5
- transformers/models/hgnet_v2/modular_hgnet_v2.py +7 -8
- transformers/models/hiera/configuration_hiera.py +2 -4
- transformers/models/hiera/modeling_hiera.py +11 -8
- transformers/models/hubert/configuration_hubert.py +4 -1
- transformers/models/hubert/modeling_hubert.py +7 -4
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +5 -7
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +28 -4
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +28 -6
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +6 -8
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +22 -9
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +22 -8
- transformers/models/ibert/configuration_ibert.py +4 -1
- transformers/models/idefics/configuration_idefics.py +5 -7
- transformers/models/idefics/modeling_idefics.py +3 -4
- transformers/models/idefics/vision.py +5 -4
- transformers/models/idefics2/configuration_idefics2.py +1 -2
- transformers/models/idefics2/image_processing_idefics2_fast.py +1 -0
- transformers/models/idefics2/modeling_idefics2.py +72 -50
- transformers/models/idefics3/configuration_idefics3.py +1 -3
- transformers/models/idefics3/image_processing_idefics3_fast.py +29 -3
- transformers/models/idefics3/modeling_idefics3.py +63 -40
- transformers/models/ijepa/modeling_ijepa.py +3 -3
- transformers/models/imagegpt/configuration_imagegpt.py +9 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +2 -2
- transformers/models/imagegpt/modeling_imagegpt.py +8 -4
- transformers/models/informer/modeling_informer.py +3 -3
- transformers/models/instructblip/configuration_instructblip.py +2 -1
- transformers/models/instructblip/modeling_instructblip.py +65 -39
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -1
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +60 -57
- transformers/models/instructblipvideo/modular_instructblipvideo.py +43 -32
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +2 -2
- transformers/models/internvl/configuration_internvl.py +5 -0
- transformers/models/internvl/modeling_internvl.py +35 -55
- transformers/models/internvl/modular_internvl.py +26 -38
- transformers/models/internvl/video_processing_internvl.py +2 -2
- transformers/models/jais2/configuration_jais2.py +5 -7
- transformers/models/jais2/modeling_jais2.py +4 -4
- transformers/models/jamba/configuration_jamba.py +5 -7
- transformers/models/jamba/modeling_jamba.py +4 -4
- transformers/models/jamba/modular_jamba.py +3 -3
- transformers/models/janus/image_processing_janus.py +2 -2
- transformers/models/janus/image_processing_janus_fast.py +8 -8
- transformers/models/janus/modeling_janus.py +63 -146
- transformers/models/janus/modular_janus.py +62 -20
- transformers/models/jetmoe/configuration_jetmoe.py +6 -4
- transformers/models/jetmoe/modeling_jetmoe.py +3 -3
- transformers/models/jetmoe/modular_jetmoe.py +3 -3
- transformers/models/kosmos2/configuration_kosmos2.py +10 -8
- transformers/models/kosmos2/modeling_kosmos2.py +56 -34
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -8
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +54 -63
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +8 -3
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +44 -40
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +1 -1
- transformers/models/lasr/configuration_lasr.py +2 -4
- transformers/models/lasr/modeling_lasr.py +3 -3
- transformers/models/lasr/modular_lasr.py +3 -3
- transformers/models/layoutlm/configuration_layoutlm.py +14 -1
- transformers/models/layoutlm/modeling_layoutlm.py +3 -3
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -16
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +2 -2
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -18
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +2 -2
- transformers/models/layoutxlm/configuration_layoutxlm.py +14 -16
- transformers/models/led/configuration_led.py +7 -8
- transformers/models/levit/image_processing_levit_fast.py +4 -4
- transformers/models/lfm2/configuration_lfm2.py +5 -7
- transformers/models/lfm2/modeling_lfm2.py +4 -4
- transformers/models/lfm2/modular_lfm2.py +3 -3
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +5 -7
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +4 -4
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +9 -15
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +42 -28
- transformers/models/lfm2_vl/modular_lfm2_vl.py +42 -27
- transformers/models/lightglue/image_processing_lightglue_fast.py +4 -3
- transformers/models/lightglue/modeling_lightglue.py +3 -3
- transformers/models/lightglue/modular_lightglue.py +3 -3
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +31 -28
- transformers/models/lighton_ocr/modular_lighton_ocr.py +19 -18
- transformers/models/lilt/configuration_lilt.py +6 -1
- transformers/models/llama/configuration_llama.py +5 -7
- transformers/models/llama/modeling_llama.py +4 -4
- transformers/models/llama4/configuration_llama4.py +67 -47
- transformers/models/llama4/image_processing_llama4_fast.py +3 -3
- transformers/models/llama4/modeling_llama4.py +46 -44
- transformers/models/llava/configuration_llava.py +10 -0
- transformers/models/llava/image_processing_llava_fast.py +3 -3
- transformers/models/llava/modeling_llava.py +38 -65
- transformers/models/llava_next/configuration_llava_next.py +2 -1
- transformers/models/llava_next/image_processing_llava_next_fast.py +6 -6
- transformers/models/llava_next/modeling_llava_next.py +61 -60
- transformers/models/llava_next_video/configuration_llava_next_video.py +10 -6
- transformers/models/llava_next_video/modeling_llava_next_video.py +115 -100
- transformers/models/llava_next_video/modular_llava_next_video.py +110 -101
- transformers/models/llava_onevision/configuration_llava_onevision.py +10 -6
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +8 -7
- transformers/models/llava_onevision/modeling_llava_onevision.py +111 -105
- transformers/models/llava_onevision/modular_llava_onevision.py +106 -101
- transformers/models/longcat_flash/configuration_longcat_flash.py +7 -10
- transformers/models/longcat_flash/modeling_longcat_flash.py +7 -7
- transformers/models/longcat_flash/modular_longcat_flash.py +6 -5
- transformers/models/longformer/configuration_longformer.py +4 -1
- transformers/models/longt5/configuration_longt5.py +9 -6
- transformers/models/longt5/modeling_longt5.py +2 -1
- transformers/models/luke/configuration_luke.py +8 -1
- transformers/models/lw_detr/configuration_lw_detr.py +19 -31
- transformers/models/lw_detr/modeling_lw_detr.py +43 -44
- transformers/models/lw_detr/modular_lw_detr.py +36 -38
- transformers/models/lxmert/configuration_lxmert.py +16 -0
- transformers/models/m2m_100/configuration_m2m_100.py +7 -8
- transformers/models/m2m_100/modeling_m2m_100.py +3 -3
- transformers/models/mamba/configuration_mamba.py +5 -2
- transformers/models/mamba/modeling_mamba.py +18 -26
- transformers/models/mamba2/configuration_mamba2.py +5 -7
- transformers/models/mamba2/modeling_mamba2.py +22 -33
- transformers/models/marian/configuration_marian.py +10 -4
- transformers/models/marian/modeling_marian.py +4 -4
- transformers/models/markuplm/configuration_markuplm.py +4 -6
- transformers/models/markuplm/modeling_markuplm.py +3 -3
- transformers/models/mask2former/configuration_mask2former.py +12 -47
- transformers/models/mask2former/image_processing_mask2former_fast.py +8 -8
- transformers/models/mask2former/modeling_mask2former.py +18 -12
- transformers/models/maskformer/configuration_maskformer.py +14 -45
- transformers/models/maskformer/configuration_maskformer_swin.py +2 -4
- transformers/models/maskformer/image_processing_maskformer_fast.py +8 -8
- transformers/models/maskformer/modeling_maskformer.py +15 -9
- transformers/models/maskformer/modeling_maskformer_swin.py +2 -3
- transformers/models/mbart/configuration_mbart.py +9 -4
- transformers/models/mbart/modeling_mbart.py +9 -6
- transformers/models/megatron_bert/configuration_megatron_bert.py +13 -2
- transformers/models/megatron_bert/modeling_megatron_bert.py +0 -15
- transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
- transformers/models/metaclip_2/modeling_metaclip_2.py +49 -42
- transformers/models/metaclip_2/modular_metaclip_2.py +41 -25
- transformers/models/mgp_str/modeling_mgp_str.py +4 -2
- transformers/models/mimi/configuration_mimi.py +4 -0
- transformers/models/mimi/modeling_mimi.py +40 -36
- transformers/models/minimax/configuration_minimax.py +8 -11
- transformers/models/minimax/modeling_minimax.py +5 -5
- transformers/models/minimax/modular_minimax.py +9 -12
- transformers/models/minimax_m2/configuration_minimax_m2.py +8 -31
- transformers/models/minimax_m2/modeling_minimax_m2.py +4 -4
- transformers/models/minimax_m2/modular_minimax_m2.py +8 -31
- transformers/models/ministral/configuration_ministral.py +5 -7
- transformers/models/ministral/modeling_ministral.py +4 -4
- transformers/models/ministral/modular_ministral.py +5 -8
- transformers/models/ministral3/configuration_ministral3.py +4 -4
- transformers/models/ministral3/modeling_ministral3.py +4 -4
- transformers/models/ministral3/modular_ministral3.py +3 -3
- transformers/models/mistral/configuration_mistral.py +5 -7
- transformers/models/mistral/modeling_mistral.py +4 -4
- transformers/models/mistral/modular_mistral.py +3 -3
- transformers/models/mistral3/configuration_mistral3.py +4 -0
- transformers/models/mistral3/modeling_mistral3.py +36 -40
- transformers/models/mistral3/modular_mistral3.py +31 -32
- transformers/models/mixtral/configuration_mixtral.py +8 -11
- transformers/models/mixtral/modeling_mixtral.py +4 -4
- transformers/models/mlcd/modeling_mlcd.py +7 -5
- transformers/models/mlcd/modular_mlcd.py +7 -5
- transformers/models/mllama/configuration_mllama.py +5 -7
- transformers/models/mllama/image_processing_mllama_fast.py +6 -5
- transformers/models/mllama/modeling_mllama.py +19 -19
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -45
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +66 -84
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -45
- transformers/models/mobilebert/configuration_mobilebert.py +4 -1
- transformers/models/mobilebert/modeling_mobilebert.py +3 -3
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +4 -4
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +4 -2
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +4 -4
- transformers/models/mobilevit/modeling_mobilevit.py +4 -2
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -2
- transformers/models/modernbert/configuration_modernbert.py +46 -21
- transformers/models/modernbert/modeling_modernbert.py +146 -899
- transformers/models/modernbert/modular_modernbert.py +185 -908
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +21 -13
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -17
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +24 -23
- transformers/models/moonshine/configuration_moonshine.py +12 -7
- transformers/models/moonshine/modeling_moonshine.py +7 -7
- transformers/models/moonshine/modular_moonshine.py +19 -13
- transformers/models/moshi/configuration_moshi.py +28 -2
- transformers/models/moshi/modeling_moshi.py +4 -9
- transformers/models/mpnet/configuration_mpnet.py +6 -1
- transformers/models/mpt/configuration_mpt.py +16 -0
- transformers/models/mra/configuration_mra.py +8 -1
- transformers/models/mt5/configuration_mt5.py +9 -5
- transformers/models/mt5/modeling_mt5.py +5 -8
- transformers/models/musicgen/configuration_musicgen.py +12 -7
- transformers/models/musicgen/modeling_musicgen.py +6 -5
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -7
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -17
- transformers/models/mvp/configuration_mvp.py +8 -4
- transformers/models/mvp/modeling_mvp.py +6 -4
- transformers/models/nanochat/configuration_nanochat.py +5 -7
- transformers/models/nanochat/modeling_nanochat.py +4 -4
- transformers/models/nanochat/modular_nanochat.py +4 -4
- transformers/models/nemotron/configuration_nemotron.py +5 -7
- transformers/models/nemotron/modeling_nemotron.py +4 -14
- transformers/models/nllb/tokenization_nllb.py +7 -5
- transformers/models/nllb_moe/configuration_nllb_moe.py +7 -9
- transformers/models/nllb_moe/modeling_nllb_moe.py +3 -3
- transformers/models/nougat/image_processing_nougat_fast.py +8 -8
- transformers/models/nystromformer/configuration_nystromformer.py +8 -1
- transformers/models/olmo/configuration_olmo.py +5 -7
- transformers/models/olmo/modeling_olmo.py +4 -4
- transformers/models/olmo/modular_olmo.py +3 -3
- transformers/models/olmo2/configuration_olmo2.py +9 -11
- transformers/models/olmo2/modeling_olmo2.py +4 -4
- transformers/models/olmo2/modular_olmo2.py +7 -7
- transformers/models/olmo3/configuration_olmo3.py +10 -11
- transformers/models/olmo3/modeling_olmo3.py +4 -4
- transformers/models/olmo3/modular_olmo3.py +13 -14
- transformers/models/olmoe/configuration_olmoe.py +5 -7
- transformers/models/olmoe/modeling_olmoe.py +4 -4
- transformers/models/olmoe/modular_olmoe.py +3 -3
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -49
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +22 -18
- transformers/models/oneformer/configuration_oneformer.py +9 -46
- transformers/models/oneformer/image_processing_oneformer_fast.py +8 -8
- transformers/models/oneformer/modeling_oneformer.py +14 -9
- transformers/models/openai/configuration_openai.py +16 -0
- transformers/models/opt/configuration_opt.py +6 -6
- transformers/models/opt/modeling_opt.py +5 -5
- transformers/models/ovis2/configuration_ovis2.py +4 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +3 -3
- transformers/models/ovis2/modeling_ovis2.py +58 -99
- transformers/models/ovis2/modular_ovis2.py +52 -13
- transformers/models/owlv2/configuration_owlv2.py +4 -1
- transformers/models/owlv2/image_processing_owlv2_fast.py +5 -5
- transformers/models/owlv2/modeling_owlv2.py +40 -27
- transformers/models/owlv2/modular_owlv2.py +5 -5
- transformers/models/owlvit/configuration_owlvit.py +4 -1
- transformers/models/owlvit/modeling_owlvit.py +40 -27
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +9 -10
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +88 -87
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +82 -53
- transformers/models/paligemma/configuration_paligemma.py +4 -0
- transformers/models/paligemma/modeling_paligemma.py +30 -26
- transformers/models/parakeet/configuration_parakeet.py +2 -4
- transformers/models/parakeet/modeling_parakeet.py +3 -3
- transformers/models/parakeet/modular_parakeet.py +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +3 -3
- transformers/models/patchtst/modeling_patchtst.py +3 -3
- transformers/models/pe_audio/modeling_pe_audio.py +4 -4
- transformers/models/pe_audio/modular_pe_audio.py +1 -1
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +4 -4
- transformers/models/pe_audio_video/modular_pe_audio_video.py +4 -4
- transformers/models/pe_video/modeling_pe_video.py +36 -24
- transformers/models/pe_video/modular_pe_video.py +36 -23
- transformers/models/pegasus/configuration_pegasus.py +8 -5
- transformers/models/pegasus/modeling_pegasus.py +4 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +5 -3
- transformers/models/pegasus_x/modeling_pegasus_x.py +3 -3
- transformers/models/perceiver/image_processing_perceiver_fast.py +2 -2
- transformers/models/perceiver/modeling_perceiver.py +17 -9
- transformers/models/perception_lm/modeling_perception_lm.py +26 -27
- transformers/models/perception_lm/modular_perception_lm.py +27 -25
- transformers/models/persimmon/configuration_persimmon.py +5 -7
- transformers/models/persimmon/modeling_persimmon.py +5 -5
- transformers/models/phi/configuration_phi.py +8 -6
- transformers/models/phi/modeling_phi.py +4 -4
- transformers/models/phi/modular_phi.py +3 -3
- transformers/models/phi3/configuration_phi3.py +9 -11
- transformers/models/phi3/modeling_phi3.py +4 -4
- transformers/models/phi3/modular_phi3.py +3 -3
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +11 -13
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +4 -4
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +46 -61
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +44 -30
- transformers/models/phimoe/configuration_phimoe.py +5 -7
- transformers/models/phimoe/modeling_phimoe.py +15 -39
- transformers/models/phimoe/modular_phimoe.py +12 -7
- transformers/models/pix2struct/configuration_pix2struct.py +12 -9
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +5 -5
- transformers/models/pix2struct/modeling_pix2struct.py +14 -7
- transformers/models/pixio/configuration_pixio.py +2 -4
- transformers/models/pixio/modeling_pixio.py +9 -8
- transformers/models/pixio/modular_pixio.py +4 -2
- transformers/models/pixtral/image_processing_pixtral_fast.py +5 -5
- transformers/models/pixtral/modeling_pixtral.py +9 -12
- transformers/models/plbart/configuration_plbart.py +8 -5
- transformers/models/plbart/modeling_plbart.py +9 -7
- transformers/models/plbart/modular_plbart.py +1 -1
- transformers/models/poolformer/image_processing_poolformer_fast.py +7 -7
- transformers/models/pop2piano/configuration_pop2piano.py +7 -6
- transformers/models/pop2piano/modeling_pop2piano.py +2 -1
- transformers/models/pp_doclayout_v3/__init__.py +30 -0
- transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
- transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
- transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
- transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +12 -46
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +6 -6
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +8 -6
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +12 -10
- transformers/models/prophetnet/configuration_prophetnet.py +11 -10
- transformers/models/prophetnet/modeling_prophetnet.py +12 -23
- transformers/models/pvt/image_processing_pvt.py +7 -7
- transformers/models/pvt/image_processing_pvt_fast.py +1 -1
- transformers/models/pvt_v2/configuration_pvt_v2.py +2 -4
- transformers/models/pvt_v2/modeling_pvt_v2.py +6 -5
- transformers/models/qwen2/configuration_qwen2.py +14 -4
- transformers/models/qwen2/modeling_qwen2.py +4 -4
- transformers/models/qwen2/modular_qwen2.py +3 -3
- transformers/models/qwen2/tokenization_qwen2.py +0 -4
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +17 -5
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +108 -88
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +115 -87
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +7 -10
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +98 -53
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +18 -6
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +12 -12
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +14 -4
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +4 -4
- transformers/models/qwen2_moe/modular_qwen2_moe.py +3 -3
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +7 -10
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +4 -6
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +97 -53
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +4 -6
- transformers/models/qwen3/configuration_qwen3.py +15 -5
- transformers/models/qwen3/modeling_qwen3.py +4 -4
- transformers/models/qwen3/modular_qwen3.py +3 -3
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +20 -7
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +4 -4
- transformers/models/qwen3_next/configuration_qwen3_next.py +16 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +5 -5
- transformers/models/qwen3_next/modular_qwen3_next.py +4 -4
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +55 -19
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +161 -98
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +107 -34
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +7 -6
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +115 -49
- transformers/models/qwen3_vl/modular_qwen3_vl.py +88 -37
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +7 -6
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +173 -99
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +23 -7
- transformers/models/rag/configuration_rag.py +6 -6
- transformers/models/rag/modeling_rag.py +3 -3
- transformers/models/rag/retrieval_rag.py +1 -1
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +8 -6
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +4 -5
- transformers/models/reformer/configuration_reformer.py +7 -7
- transformers/models/rembert/configuration_rembert.py +8 -1
- transformers/models/rembert/modeling_rembert.py +0 -22
- transformers/models/resnet/configuration_resnet.py +2 -4
- transformers/models/resnet/modeling_resnet.py +6 -5
- transformers/models/roberta/configuration_roberta.py +11 -2
- transformers/models/roberta/modeling_roberta.py +6 -6
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -2
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +6 -6
- transformers/models/roc_bert/configuration_roc_bert.py +8 -1
- transformers/models/roc_bert/modeling_roc_bert.py +6 -41
- transformers/models/roformer/configuration_roformer.py +13 -2
- transformers/models/roformer/modeling_roformer.py +0 -14
- transformers/models/rt_detr/configuration_rt_detr.py +8 -49
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -4
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +24 -11
- transformers/models/rt_detr/modeling_rt_detr.py +578 -737
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +2 -3
- transformers/models/rt_detr/modular_rt_detr.py +1508 -6
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -57
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +318 -453
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +25 -66
- transformers/models/rwkv/configuration_rwkv.py +2 -3
- transformers/models/rwkv/modeling_rwkv.py +0 -23
- transformers/models/sam/configuration_sam.py +2 -0
- transformers/models/sam/image_processing_sam_fast.py +4 -4
- transformers/models/sam/modeling_sam.py +13 -8
- transformers/models/sam/processing_sam.py +3 -3
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +56 -52
- transformers/models/sam2/modular_sam2.py +47 -55
- transformers/models/sam2_video/modeling_sam2_video.py +50 -51
- transformers/models/sam2_video/modular_sam2_video.py +12 -10
- transformers/models/sam3/modeling_sam3.py +43 -47
- transformers/models/sam3/processing_sam3.py +8 -4
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -2
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +50 -49
- transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -1
- transformers/models/sam3_tracker/processing_sam3_tracker.py +0 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +50 -49
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -22
- transformers/models/sam3_video/modeling_sam3_video.py +27 -14
- transformers/models/sam_hq/configuration_sam_hq.py +2 -0
- transformers/models/sam_hq/modeling_sam_hq.py +13 -9
- transformers/models/sam_hq/modular_sam_hq.py +6 -6
- transformers/models/sam_hq/processing_sam_hq.py +7 -6
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -9
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -9
- transformers/models/seed_oss/configuration_seed_oss.py +7 -9
- transformers/models/seed_oss/modeling_seed_oss.py +4 -4
- transformers/models/seed_oss/modular_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +4 -4
- transformers/models/segformer/modeling_segformer.py +4 -2
- transformers/models/segformer/modular_segformer.py +3 -3
- transformers/models/seggpt/modeling_seggpt.py +20 -8
- transformers/models/sew/configuration_sew.py +4 -1
- transformers/models/sew/modeling_sew.py +9 -5
- transformers/models/sew/modular_sew.py +2 -1
- transformers/models/sew_d/configuration_sew_d.py +4 -1
- transformers/models/sew_d/modeling_sew_d.py +4 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +4 -4
- transformers/models/siglip/configuration_siglip.py +4 -1
- transformers/models/siglip/modeling_siglip.py +27 -71
- transformers/models/siglip2/__init__.py +1 -0
- transformers/models/siglip2/configuration_siglip2.py +4 -2
- transformers/models/siglip2/image_processing_siglip2_fast.py +2 -2
- transformers/models/siglip2/modeling_siglip2.py +37 -78
- transformers/models/siglip2/modular_siglip2.py +74 -25
- transformers/models/siglip2/tokenization_siglip2.py +95 -0
- transformers/models/smollm3/configuration_smollm3.py +6 -6
- transformers/models/smollm3/modeling_smollm3.py +4 -4
- transformers/models/smollm3/modular_smollm3.py +9 -9
- transformers/models/smolvlm/configuration_smolvlm.py +1 -3
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +29 -3
- transformers/models/smolvlm/modeling_smolvlm.py +75 -46
- transformers/models/smolvlm/modular_smolvlm.py +36 -23
- transformers/models/smolvlm/video_processing_smolvlm.py +9 -9
- transformers/models/solar_open/__init__.py +27 -0
- transformers/models/solar_open/configuration_solar_open.py +184 -0
- transformers/models/solar_open/modeling_solar_open.py +642 -0
- transformers/models/solar_open/modular_solar_open.py +224 -0
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +6 -4
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -8
- transformers/models/speech_to_text/modeling_speech_to_text.py +3 -3
- transformers/models/speecht5/configuration_speecht5.py +7 -8
- transformers/models/splinter/configuration_splinter.py +6 -6
- transformers/models/splinter/modeling_splinter.py +8 -3
- transformers/models/squeezebert/configuration_squeezebert.py +14 -1
- transformers/models/stablelm/configuration_stablelm.py +8 -6
- transformers/models/stablelm/modeling_stablelm.py +5 -5
- transformers/models/starcoder2/configuration_starcoder2.py +11 -5
- transformers/models/starcoder2/modeling_starcoder2.py +5 -5
- transformers/models/starcoder2/modular_starcoder2.py +4 -4
- transformers/models/superglue/configuration_superglue.py +4 -0
- transformers/models/superglue/image_processing_superglue_fast.py +4 -3
- transformers/models/superglue/modeling_superglue.py +9 -4
- transformers/models/superpoint/image_processing_superpoint_fast.py +3 -4
- transformers/models/superpoint/modeling_superpoint.py +4 -2
- transformers/models/swin/configuration_swin.py +2 -4
- transformers/models/swin/modeling_swin.py +11 -8
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +2 -2
- transformers/models/swin2sr/modeling_swin2sr.py +4 -2
- transformers/models/swinv2/configuration_swinv2.py +2 -4
- transformers/models/swinv2/modeling_swinv2.py +10 -7
- transformers/models/switch_transformers/configuration_switch_transformers.py +11 -6
- transformers/models/switch_transformers/modeling_switch_transformers.py +3 -3
- transformers/models/switch_transformers/modular_switch_transformers.py +3 -3
- transformers/models/t5/configuration_t5.py +9 -8
- transformers/models/t5/modeling_t5.py +5 -8
- transformers/models/t5gemma/configuration_t5gemma.py +10 -25
- transformers/models/t5gemma/modeling_t5gemma.py +9 -9
- transformers/models/t5gemma/modular_t5gemma.py +11 -24
- transformers/models/t5gemma2/configuration_t5gemma2.py +35 -48
- transformers/models/t5gemma2/modeling_t5gemma2.py +143 -100
- transformers/models/t5gemma2/modular_t5gemma2.py +152 -136
- transformers/models/table_transformer/configuration_table_transformer.py +18 -49
- transformers/models/table_transformer/modeling_table_transformer.py +27 -53
- transformers/models/tapas/configuration_tapas.py +12 -1
- transformers/models/tapas/modeling_tapas.py +1 -1
- transformers/models/tapas/tokenization_tapas.py +1 -0
- transformers/models/textnet/configuration_textnet.py +4 -6
- transformers/models/textnet/image_processing_textnet_fast.py +3 -3
- transformers/models/textnet/modeling_textnet.py +15 -14
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +3 -3
- transformers/models/timesfm/modeling_timesfm.py +5 -6
- transformers/models/timesfm/modular_timesfm.py +5 -6
- transformers/models/timm_backbone/configuration_timm_backbone.py +33 -7
- transformers/models/timm_backbone/modeling_timm_backbone.py +21 -24
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +9 -4
- transformers/models/trocr/configuration_trocr.py +11 -7
- transformers/models/trocr/modeling_trocr.py +4 -2
- transformers/models/tvp/configuration_tvp.py +10 -35
- transformers/models/tvp/image_processing_tvp_fast.py +6 -5
- transformers/models/tvp/modeling_tvp.py +1 -1
- transformers/models/udop/configuration_udop.py +16 -7
- transformers/models/udop/modeling_udop.py +10 -6
- transformers/models/umt5/configuration_umt5.py +8 -6
- transformers/models/umt5/modeling_umt5.py +7 -3
- transformers/models/unispeech/configuration_unispeech.py +4 -1
- transformers/models/unispeech/modeling_unispeech.py +7 -4
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -1
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +7 -4
- transformers/models/upernet/configuration_upernet.py +8 -35
- transformers/models/upernet/modeling_upernet.py +1 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +5 -7
- transformers/models/vaultgemma/modeling_vaultgemma.py +4 -4
- transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +4 -6
- transformers/models/video_llama_3/modeling_video_llama_3.py +85 -48
- transformers/models/video_llama_3/modular_video_llama_3.py +56 -43
- transformers/models/video_llama_3/video_processing_video_llama_3.py +29 -8
- transformers/models/video_llava/configuration_video_llava.py +4 -0
- transformers/models/video_llava/modeling_video_llava.py +87 -89
- transformers/models/videomae/modeling_videomae.py +4 -5
- transformers/models/vilt/configuration_vilt.py +4 -1
- transformers/models/vilt/image_processing_vilt_fast.py +6 -6
- transformers/models/vilt/modeling_vilt.py +27 -12
- transformers/models/vipllava/configuration_vipllava.py +4 -0
- transformers/models/vipllava/modeling_vipllava.py +57 -31
- transformers/models/vipllava/modular_vipllava.py +50 -24
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +10 -6
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +27 -20
- transformers/models/visual_bert/configuration_visual_bert.py +6 -1
- transformers/models/vit/configuration_vit.py +2 -2
- transformers/models/vit/modeling_vit.py +7 -5
- transformers/models/vit_mae/modeling_vit_mae.py +11 -7
- transformers/models/vit_msn/modeling_vit_msn.py +11 -7
- transformers/models/vitdet/configuration_vitdet.py +2 -4
- transformers/models/vitdet/modeling_vitdet.py +2 -3
- transformers/models/vitmatte/configuration_vitmatte.py +6 -35
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +2 -2
- transformers/models/vitmatte/modeling_vitmatte.py +1 -1
- transformers/models/vitpose/configuration_vitpose.py +6 -43
- transformers/models/vitpose/modeling_vitpose.py +5 -3
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -4
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +5 -6
- transformers/models/vits/configuration_vits.py +4 -0
- transformers/models/vits/modeling_vits.py +9 -7
- transformers/models/vivit/modeling_vivit.py +4 -4
- transformers/models/vjepa2/modeling_vjepa2.py +9 -9
- transformers/models/voxtral/configuration_voxtral.py +0 -1
- transformers/models/voxtral/modeling_voxtral.py +25 -24
- transformers/models/voxtral/modular_voxtral.py +26 -20
- transformers/models/wav2vec2/configuration_wav2vec2.py +4 -1
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -4
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -1
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -1
- transformers/models/wavlm/configuration_wavlm.py +4 -1
- transformers/models/wavlm/modeling_wavlm.py +4 -1
- transformers/models/whisper/configuration_whisper.py +6 -4
- transformers/models/whisper/generation_whisper.py +0 -1
- transformers/models/whisper/modeling_whisper.py +3 -3
- transformers/models/x_clip/configuration_x_clip.py +4 -1
- transformers/models/x_clip/modeling_x_clip.py +26 -27
- transformers/models/xglm/configuration_xglm.py +9 -7
- transformers/models/xlm/configuration_xlm.py +10 -7
- transformers/models/xlm/modeling_xlm.py +1 -1
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -2
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +6 -6
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -1
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +6 -6
- transformers/models/xlnet/configuration_xlnet.py +3 -1
- transformers/models/xlstm/configuration_xlstm.py +5 -7
- transformers/models/xlstm/modeling_xlstm.py +0 -32
- transformers/models/xmod/configuration_xmod.py +11 -2
- transformers/models/xmod/modeling_xmod.py +13 -16
- transformers/models/yolos/image_processing_yolos_fast.py +25 -28
- transformers/models/yolos/modeling_yolos.py +7 -7
- transformers/models/yolos/modular_yolos.py +16 -16
- transformers/models/yoso/configuration_yoso.py +8 -1
- transformers/models/youtu/__init__.py +27 -0
- transformers/models/youtu/configuration_youtu.py +194 -0
- transformers/models/youtu/modeling_youtu.py +619 -0
- transformers/models/youtu/modular_youtu.py +254 -0
- transformers/models/zamba/configuration_zamba.py +5 -7
- transformers/models/zamba/modeling_zamba.py +25 -56
- transformers/models/zamba2/configuration_zamba2.py +8 -13
- transformers/models/zamba2/modeling_zamba2.py +53 -78
- transformers/models/zamba2/modular_zamba2.py +36 -29
- transformers/models/zoedepth/configuration_zoedepth.py +17 -40
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +9 -9
- transformers/models/zoedepth/modeling_zoedepth.py +5 -3
- transformers/pipelines/__init__.py +1 -61
- transformers/pipelines/any_to_any.py +1 -1
- transformers/pipelines/automatic_speech_recognition.py +0 -2
- transformers/pipelines/base.py +1 -1
- transformers/pipelines/image_text_to_text.py +1 -1
- transformers/pipelines/text_to_audio.py +5 -1
- transformers/processing_utils.py +35 -44
- transformers/pytorch_utils.py +2 -26
- transformers/quantizers/quantizer_compressed_tensors.py +7 -5
- transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
- transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
- transformers/quantizers/quantizer_mxfp4.py +1 -1
- transformers/quantizers/quantizer_torchao.py +0 -16
- transformers/safetensors_conversion.py +11 -4
- transformers/testing_utils.py +3 -28
- transformers/tokenization_mistral_common.py +9 -0
- transformers/tokenization_python.py +6 -4
- transformers/tokenization_utils_base.py +119 -219
- transformers/tokenization_utils_tokenizers.py +31 -2
- transformers/trainer.py +25 -33
- transformers/trainer_seq2seq.py +1 -1
- transformers/training_args.py +411 -417
- transformers/utils/__init__.py +1 -4
- transformers/utils/auto_docstring.py +15 -18
- transformers/utils/backbone_utils.py +13 -373
- transformers/utils/doc.py +4 -36
- transformers/utils/generic.py +69 -33
- transformers/utils/import_utils.py +72 -75
- transformers/utils/loading_report.py +133 -105
- transformers/utils/quantization_config.py +0 -21
- transformers/video_processing_utils.py +5 -5
- transformers/video_utils.py +3 -1
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/METADATA +118 -237
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/RECORD +1019 -994
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
- transformers/pipelines/deprecated/text2text_generation.py +0 -408
- transformers/pipelines/image_to_text.py +0 -189
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1633 @@
|
|
|
1
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
2
|
+
# This file was automatically generated from src/transformers/models/glm_ocr/modular_glm_ocr.py.
|
|
3
|
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
4
|
+
# the file from the modular. If any change should be done, please apply the change to the
|
|
5
|
+
# modular_glm_ocr.py file directly. One of our CI enforces this.
|
|
6
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
7
|
+
# Copyright 2026 the HuggingFace Team. All rights reserved.
|
|
8
|
+
#
|
|
9
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
10
|
+
# you may not use this file except in compliance with the License.
|
|
11
|
+
# You may obtain a copy of the License at
|
|
12
|
+
#
|
|
13
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
14
|
+
#
|
|
15
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
16
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
17
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
18
|
+
# See the License for the specific language governing permissions and
|
|
19
|
+
# limitations under the License.
|
|
20
|
+
|
|
21
|
+
import itertools
|
|
22
|
+
from collections.abc import Callable
|
|
23
|
+
from dataclasses import dataclass
|
|
24
|
+
from typing import Any, Optional
|
|
25
|
+
|
|
26
|
+
import torch
|
|
27
|
+
import torch.nn as nn
|
|
28
|
+
import torch.nn.functional as F
|
|
29
|
+
from torch.nn import LayerNorm
|
|
30
|
+
|
|
31
|
+
from ... import initialization as init
|
|
32
|
+
from ...activations import ACT2FN
|
|
33
|
+
from ...cache_utils import Cache, DynamicCache
|
|
34
|
+
from ...generation import GenerationMixin
|
|
35
|
+
from ...integrations import use_kernel_forward_from_hub
|
|
36
|
+
from ...masking_utils import create_causal_mask
|
|
37
|
+
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
|
38
|
+
from ...modeling_layers import GradientCheckpointingLayer
|
|
39
|
+
from ...modeling_outputs import BaseModelOutputWithPast, BaseModelOutputWithPooling, ModelOutput
|
|
40
|
+
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
41
|
+
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
42
|
+
from ...processing_utils import Unpack
|
|
43
|
+
from ...utils import (
|
|
44
|
+
TransformersKwargs,
|
|
45
|
+
auto_docstring,
|
|
46
|
+
can_return_tuple,
|
|
47
|
+
is_torchdynamo_compiling,
|
|
48
|
+
torch_compilable_check,
|
|
49
|
+
)
|
|
50
|
+
from ...utils.generic import check_model_inputs, is_flash_attention_requested, maybe_autocast
|
|
51
|
+
from .configuration_glm_ocr import GlmOcrConfig, GlmOcrTextConfig, GlmOcrVisionConfig
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
@use_kernel_forward_from_hub("RMSNorm")
|
|
55
|
+
class GlmOcrRMSNorm(nn.Module):
|
|
56
|
+
def __init__(self, hidden_size, eps=1e-6):
|
|
57
|
+
"""
|
|
58
|
+
GlmOcrRMSNorm is equivalent to T5LayerNorm
|
|
59
|
+
"""
|
|
60
|
+
super().__init__()
|
|
61
|
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
62
|
+
self.variance_epsilon = eps
|
|
63
|
+
|
|
64
|
+
def forward(self, hidden_states):
|
|
65
|
+
input_dtype = hidden_states.dtype
|
|
66
|
+
hidden_states = hidden_states.to(torch.float32)
|
|
67
|
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
68
|
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
69
|
+
return self.weight * hidden_states.to(input_dtype)
|
|
70
|
+
|
|
71
|
+
def extra_repr(self):
|
|
72
|
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
class GlmOcrVisionMlp(nn.Module):
|
|
76
|
+
def __init__(self, config, bias: bool = True):
|
|
77
|
+
super().__init__()
|
|
78
|
+
self.hidden_size = config.hidden_size
|
|
79
|
+
self.intermediate_size = config.intermediate_size
|
|
80
|
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
|
|
81
|
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=bias)
|
|
82
|
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=bias)
|
|
83
|
+
self.act_fn = ACT2FN[config.hidden_act]
|
|
84
|
+
|
|
85
|
+
def forward(self, hidden_state):
|
|
86
|
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
90
|
+
"""
|
|
91
|
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
92
|
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
93
|
+
"""
|
|
94
|
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
95
|
+
if n_rep == 1:
|
|
96
|
+
return hidden_states
|
|
97
|
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
98
|
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def eager_attention_forward(
|
|
102
|
+
module: nn.Module,
|
|
103
|
+
query: torch.Tensor,
|
|
104
|
+
key: torch.Tensor,
|
|
105
|
+
value: torch.Tensor,
|
|
106
|
+
attention_mask: torch.Tensor | None,
|
|
107
|
+
scaling: float,
|
|
108
|
+
dropout: float = 0.0,
|
|
109
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
110
|
+
):
|
|
111
|
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
|
112
|
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
|
113
|
+
|
|
114
|
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
|
115
|
+
if attention_mask is not None:
|
|
116
|
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
117
|
+
attn_weights = attn_weights + causal_mask
|
|
118
|
+
|
|
119
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
|
120
|
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
121
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
|
122
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
123
|
+
|
|
124
|
+
return attn_output, attn_weights
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def rotate_half_llm(x):
|
|
128
|
+
"""Rotates half the hidden dims of the input."""
|
|
129
|
+
x1 = x[..., 0::2]
|
|
130
|
+
x2 = x[..., 1::2]
|
|
131
|
+
return torch.stack((-x2, x1), dim=-1).flatten(-2)
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
|
|
135
|
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
136
|
+
|
|
137
|
+
Args:
|
|
138
|
+
q (`torch.Tensor`): The query tensor.
|
|
139
|
+
k (`torch.Tensor`): The key tensor.
|
|
140
|
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
141
|
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
142
|
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
143
|
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
144
|
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
145
|
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
146
|
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
147
|
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
148
|
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
149
|
+
Returns:
|
|
150
|
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
151
|
+
"""
|
|
152
|
+
cos = cos.unsqueeze(unsqueeze_dim)
|
|
153
|
+
sin = sin.unsqueeze(unsqueeze_dim)
|
|
154
|
+
|
|
155
|
+
# Interleave them instead of usual shape
|
|
156
|
+
cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1)
|
|
157
|
+
sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1)
|
|
158
|
+
|
|
159
|
+
# Keep half or full tensor for later concatenation
|
|
160
|
+
rotary_dim = cos.shape[-1]
|
|
161
|
+
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
|
|
162
|
+
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
|
|
163
|
+
|
|
164
|
+
# Apply rotary embeddings on the first half or full tensor
|
|
165
|
+
q_embed = (q_rot * cos) + (rotate_half_llm(q_rot) * sin)
|
|
166
|
+
k_embed = (k_rot * cos) + (rotate_half_llm(k_rot) * sin)
|
|
167
|
+
|
|
168
|
+
# Concatenate back to full shape
|
|
169
|
+
q_embed = torch.cat([q_embed, q_pass], dim=-1)
|
|
170
|
+
k_embed = torch.cat([k_embed, k_pass], dim=-1)
|
|
171
|
+
return q_embed, k_embed
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
class GlmOcrTextAttention(nn.Module):
|
|
175
|
+
"""
|
|
176
|
+
Multi-headed attention from 'Attention Is All You Need' paper.
|
|
177
|
+
and "Generating Long Sequences with Sparse Transformers".
|
|
178
|
+
"""
|
|
179
|
+
|
|
180
|
+
def __init__(self, config: GlmOcrTextConfig, layer_idx: int | None = None):
|
|
181
|
+
super().__init__()
|
|
182
|
+
self.config = config
|
|
183
|
+
self.layer_idx = layer_idx
|
|
184
|
+
|
|
185
|
+
self.hidden_size = config.hidden_size
|
|
186
|
+
self.num_heads = config.num_attention_heads
|
|
187
|
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
|
188
|
+
self.num_key_value_heads = config.num_key_value_heads
|
|
189
|
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
190
|
+
self.is_causal = True
|
|
191
|
+
self.attention_dropout = config.attention_dropout
|
|
192
|
+
self.rope_parameters = config.rope_parameters
|
|
193
|
+
self.scaling = self.head_dim**-0.5
|
|
194
|
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
|
195
|
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
|
196
|
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
|
197
|
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
|
198
|
+
|
|
199
|
+
def forward(
|
|
200
|
+
self,
|
|
201
|
+
hidden_states: torch.Tensor,
|
|
202
|
+
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None,
|
|
203
|
+
attention_mask: torch.Tensor | None = None,
|
|
204
|
+
past_key_values: Cache | None = None,
|
|
205
|
+
cache_position: torch.LongTensor | None = None,
|
|
206
|
+
**kwargs: Unpack[FlashAttentionKwargs],
|
|
207
|
+
) -> tuple[torch.Tensor, torch.Tensor | None, tuple[torch.Tensor] | None]:
|
|
208
|
+
bsz, q_len, _ = hidden_states.size()
|
|
209
|
+
|
|
210
|
+
query_states = self.q_proj(hidden_states)
|
|
211
|
+
key_states = self.k_proj(hidden_states)
|
|
212
|
+
value_states = self.v_proj(hidden_states)
|
|
213
|
+
|
|
214
|
+
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
|
215
|
+
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
|
216
|
+
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
|
217
|
+
|
|
218
|
+
cos, sin = position_embeddings
|
|
219
|
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
220
|
+
|
|
221
|
+
if past_key_values is not None:
|
|
222
|
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
|
223
|
+
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
224
|
+
|
|
225
|
+
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get_interface(
|
|
226
|
+
self.config._attn_implementation, eager_attention_forward
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
attn_output, attn_weights = attention_interface(
|
|
230
|
+
self,
|
|
231
|
+
query_states,
|
|
232
|
+
key_states,
|
|
233
|
+
value_states,
|
|
234
|
+
attention_mask,
|
|
235
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
236
|
+
scaling=self.scaling,
|
|
237
|
+
**kwargs,
|
|
238
|
+
)
|
|
239
|
+
|
|
240
|
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
|
241
|
+
attn_output = self.o_proj(attn_output)
|
|
242
|
+
return attn_output, attn_weights
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
class GlmOcrVisionRotaryEmbedding(nn.Module):
|
|
246
|
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
|
247
|
+
|
|
248
|
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
249
|
+
super().__init__()
|
|
250
|
+
self.dim = dim
|
|
251
|
+
self.theta = theta
|
|
252
|
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
|
253
|
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
254
|
+
|
|
255
|
+
def forward(self, seqlen: int) -> torch.Tensor:
|
|
256
|
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
|
257
|
+
freqs = torch.outer(seq, self.inv_freq)
|
|
258
|
+
return freqs
|
|
259
|
+
|
|
260
|
+
|
|
261
|
+
class GlmOcrTextMLP(nn.Module):
|
|
262
|
+
def __init__(self, config):
|
|
263
|
+
super().__init__()
|
|
264
|
+
|
|
265
|
+
self.config = config
|
|
266
|
+
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
|
267
|
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
|
268
|
+
self.activation_fn = ACT2FN[config.hidden_act]
|
|
269
|
+
|
|
270
|
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
|
271
|
+
up_states = self.gate_up_proj(hidden_states)
|
|
272
|
+
|
|
273
|
+
gate, up_states = up_states.chunk(2, dim=-1)
|
|
274
|
+
up_states = up_states * self.activation_fn(gate)
|
|
275
|
+
|
|
276
|
+
return self.down_proj(up_states)
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
class GlmOcrTextDecoderLayer(GradientCheckpointingLayer):
|
|
280
|
+
def __init__(self, config: GlmOcrTextConfig, layer_idx: int):
|
|
281
|
+
super().__init__()
|
|
282
|
+
self.hidden_size = config.hidden_size
|
|
283
|
+
self.self_attn = GlmOcrTextAttention(config, layer_idx)
|
|
284
|
+
self.mlp = GlmOcrTextMLP(config)
|
|
285
|
+
self.input_layernorm = GlmOcrRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
286
|
+
self.post_attention_layernorm = GlmOcrRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
287
|
+
self.post_self_attn_layernorm = GlmOcrRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
288
|
+
self.post_mlp_layernorm = GlmOcrRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
289
|
+
|
|
290
|
+
@auto_docstring
|
|
291
|
+
def forward(
|
|
292
|
+
self,
|
|
293
|
+
hidden_states: torch.Tensor,
|
|
294
|
+
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None,
|
|
295
|
+
attention_mask: torch.Tensor | None = None,
|
|
296
|
+
position_ids: torch.LongTensor | None = None,
|
|
297
|
+
past_key_values: Cache | None = None,
|
|
298
|
+
use_cache: bool | None = False,
|
|
299
|
+
cache_position: torch.LongTensor | None = None,
|
|
300
|
+
**kwargs,
|
|
301
|
+
) -> tuple[torch.FloatTensor, tuple[torch.FloatTensor, torch.FloatTensor] | None]:
|
|
302
|
+
residual = hidden_states
|
|
303
|
+
|
|
304
|
+
hidden_states = self.input_layernorm(hidden_states)
|
|
305
|
+
|
|
306
|
+
# Self Attention
|
|
307
|
+
hidden_states, _ = self.self_attn(
|
|
308
|
+
hidden_states=hidden_states,
|
|
309
|
+
position_embeddings=position_embeddings,
|
|
310
|
+
attention_mask=attention_mask,
|
|
311
|
+
position_ids=position_ids,
|
|
312
|
+
past_key_values=past_key_values,
|
|
313
|
+
use_cache=use_cache,
|
|
314
|
+
cache_position=cache_position,
|
|
315
|
+
**kwargs,
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
hidden_states = self.post_self_attn_layernorm(hidden_states)
|
|
319
|
+
hidden_states = residual + hidden_states
|
|
320
|
+
|
|
321
|
+
# Fully Connected
|
|
322
|
+
residual = hidden_states
|
|
323
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
324
|
+
hidden_states = self.mlp(hidden_states)
|
|
325
|
+
hidden_states = self.post_mlp_layernorm(hidden_states)
|
|
326
|
+
hidden_states = residual + hidden_states
|
|
327
|
+
|
|
328
|
+
return hidden_states
|
|
329
|
+
|
|
330
|
+
|
|
331
|
+
@auto_docstring
|
|
332
|
+
class GlmOcrPreTrainedModel(PreTrainedModel):
|
|
333
|
+
config: GlmOcrConfig
|
|
334
|
+
base_model_prefix = "model"
|
|
335
|
+
input_modalities = ("image", "video", "text")
|
|
336
|
+
supports_gradient_checkpointing = True
|
|
337
|
+
_no_split_modules = ["GlmOcrTextDecoderLayer", "GlmOcrVisionBlock"]
|
|
338
|
+
_skip_keys_device_placement = "past_key_values"
|
|
339
|
+
_supports_flash_attn = True
|
|
340
|
+
_supports_sdpa = True
|
|
341
|
+
|
|
342
|
+
_can_compile_fullgraph = True
|
|
343
|
+
_supports_attention_backend = True
|
|
344
|
+
_can_record_outputs = {
|
|
345
|
+
"hidden_states": GlmOcrTextDecoderLayer,
|
|
346
|
+
"attentions": GlmOcrTextAttention,
|
|
347
|
+
}
|
|
348
|
+
_keys_to_ignore_on_load_unexpected = [r"model\.language_model\.layers\.16.*"]
|
|
349
|
+
|
|
350
|
+
def _init_weights(self, module):
|
|
351
|
+
super()._init_weights(module)
|
|
352
|
+
if isinstance(module, GlmOcrVisionRotaryEmbedding):
|
|
353
|
+
inv_freq = 1.0 / (module.theta ** (torch.arange(0, module.dim, 2, dtype=torch.float) / module.dim))
|
|
354
|
+
init.copy_(module.inv_freq, inv_freq)
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
@dataclass
|
|
358
|
+
@auto_docstring(
|
|
359
|
+
custom_intro="""
|
|
360
|
+
Base class for Llava outputs, with hidden states and attentions.
|
|
361
|
+
"""
|
|
362
|
+
)
|
|
363
|
+
class GlmOcrModelOutputWithPast(ModelOutput):
|
|
364
|
+
r"""
|
|
365
|
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
366
|
+
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
|
367
|
+
|
|
368
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
369
|
+
`past_key_values` input) to speed up sequential decoding.
|
|
370
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
371
|
+
The rope index difference between sequence length and multimodal rope.
|
|
372
|
+
"""
|
|
373
|
+
|
|
374
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
375
|
+
past_key_values: Cache | None = None
|
|
376
|
+
hidden_states: tuple[torch.FloatTensor] | None = None
|
|
377
|
+
attentions: tuple[torch.FloatTensor] | None = None
|
|
378
|
+
rope_deltas: torch.LongTensor | None = None
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
def rotate_half(x):
|
|
382
|
+
"""Rotates half the hidden dims of the input."""
|
|
383
|
+
x1 = x[..., : x.shape[-1] // 2]
|
|
384
|
+
x2 = x[..., x.shape[-1] // 2 :]
|
|
385
|
+
return torch.cat((-x2, x1), dim=-1)
|
|
386
|
+
|
|
387
|
+
|
|
388
|
+
def apply_rotary_pos_emb_vision(
|
|
389
|
+
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
|
390
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
391
|
+
orig_q_dtype = q.dtype
|
|
392
|
+
orig_k_dtype = k.dtype
|
|
393
|
+
q, k = q.float(), k.float()
|
|
394
|
+
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
|
|
395
|
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
396
|
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
397
|
+
q_embed = q_embed.to(orig_q_dtype)
|
|
398
|
+
k_embed = k_embed.to(orig_k_dtype)
|
|
399
|
+
return q_embed, k_embed
|
|
400
|
+
|
|
401
|
+
|
|
402
|
+
class GlmOcrVisionAttention(nn.Module):
|
|
403
|
+
def __init__(self, config: GlmOcrVisionConfig) -> None:
|
|
404
|
+
super().__init__()
|
|
405
|
+
self.dim = config.hidden_size
|
|
406
|
+
self.num_heads = config.num_heads
|
|
407
|
+
self.head_dim = self.dim // self.num_heads
|
|
408
|
+
self.num_key_value_groups = 1 # needed for eager attention
|
|
409
|
+
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.attention_bias)
|
|
410
|
+
self.proj = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
|
|
411
|
+
self.scaling = self.head_dim**-0.5
|
|
412
|
+
self.config = config
|
|
413
|
+
self.attention_dropout = config.attention_dropout
|
|
414
|
+
self.is_causal = False
|
|
415
|
+
self.q_norm = GlmOcrRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
416
|
+
self.k_norm = GlmOcrRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
417
|
+
|
|
418
|
+
def forward(
|
|
419
|
+
self,
|
|
420
|
+
hidden_states: torch.Tensor,
|
|
421
|
+
cu_seqlens: torch.Tensor,
|
|
422
|
+
rotary_pos_emb: torch.Tensor | None = None,
|
|
423
|
+
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None,
|
|
424
|
+
**kwargs,
|
|
425
|
+
) -> torch.Tensor:
|
|
426
|
+
seq_length = hidden_states.shape[0]
|
|
427
|
+
query_states, key_states, value_states = (
|
|
428
|
+
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
429
|
+
)
|
|
430
|
+
|
|
431
|
+
query_states = self.q_norm(query_states)
|
|
432
|
+
key_states = self.k_norm(key_states)
|
|
433
|
+
|
|
434
|
+
cos, sin = position_embeddings
|
|
435
|
+
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
|
|
436
|
+
query_states = query_states.transpose(0, 1).unsqueeze(0)
|
|
437
|
+
key_states = key_states.transpose(0, 1).unsqueeze(0)
|
|
438
|
+
value_states = value_states.transpose(0, 1).unsqueeze(0)
|
|
439
|
+
|
|
440
|
+
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get_interface(
|
|
441
|
+
self.config._attn_implementation, eager_attention_forward
|
|
442
|
+
)
|
|
443
|
+
|
|
444
|
+
if is_flash_attention_requested(self.config):
|
|
445
|
+
# Flash Attention: Use cu_seqlens for variable length attention
|
|
446
|
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
|
|
447
|
+
attn_output, _ = attention_interface(
|
|
448
|
+
self,
|
|
449
|
+
query_states,
|
|
450
|
+
key_states,
|
|
451
|
+
value_states,
|
|
452
|
+
attention_mask=None,
|
|
453
|
+
scaling=self.scaling,
|
|
454
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
455
|
+
cu_seq_lens_q=cu_seqlens,
|
|
456
|
+
cu_seq_lens_k=cu_seqlens,
|
|
457
|
+
max_length_q=max_seqlen,
|
|
458
|
+
max_length_k=max_seqlen,
|
|
459
|
+
is_causal=False,
|
|
460
|
+
**kwargs,
|
|
461
|
+
)
|
|
462
|
+
else:
|
|
463
|
+
# Other implementations: Process each chunk separately
|
|
464
|
+
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
|
|
465
|
+
splits = [
|
|
466
|
+
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
|
|
467
|
+
]
|
|
468
|
+
|
|
469
|
+
attn_outputs = [
|
|
470
|
+
attention_interface(
|
|
471
|
+
self,
|
|
472
|
+
q,
|
|
473
|
+
k,
|
|
474
|
+
v,
|
|
475
|
+
attention_mask=None,
|
|
476
|
+
scaling=self.scaling,
|
|
477
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
478
|
+
is_causal=False,
|
|
479
|
+
**kwargs,
|
|
480
|
+
)[0]
|
|
481
|
+
for q, k, v in zip(*splits)
|
|
482
|
+
]
|
|
483
|
+
attn_output = torch.cat(attn_outputs, dim=1)
|
|
484
|
+
|
|
485
|
+
attn_output = attn_output.reshape(seq_length, -1).contiguous()
|
|
486
|
+
attn_output = self.proj(attn_output)
|
|
487
|
+
return attn_output
|
|
488
|
+
|
|
489
|
+
|
|
490
|
+
class GlmOcrVisionBlock(GradientCheckpointingLayer):
|
|
491
|
+
def __init__(self, config) -> None:
|
|
492
|
+
super().__init__()
|
|
493
|
+
self.norm1 = GlmOcrRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
494
|
+
self.norm2 = GlmOcrRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
495
|
+
self.attn = GlmOcrVisionAttention(config)
|
|
496
|
+
self.mlp = GlmOcrVisionMlp(config, bias=config.attention_bias)
|
|
497
|
+
|
|
498
|
+
def forward(
|
|
499
|
+
self,
|
|
500
|
+
hidden_states: torch.Tensor,
|
|
501
|
+
cu_seqlens: torch.Tensor,
|
|
502
|
+
rotary_pos_emb: torch.Tensor | None = None,
|
|
503
|
+
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None,
|
|
504
|
+
**kwargs,
|
|
505
|
+
) -> torch.Tensor:
|
|
506
|
+
hidden_states = hidden_states + self.attn(
|
|
507
|
+
self.norm1(hidden_states),
|
|
508
|
+
cu_seqlens=cu_seqlens,
|
|
509
|
+
rotary_pos_emb=rotary_pos_emb,
|
|
510
|
+
position_embeddings=position_embeddings,
|
|
511
|
+
**kwargs,
|
|
512
|
+
)
|
|
513
|
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
|
514
|
+
return hidden_states
|
|
515
|
+
|
|
516
|
+
|
|
517
|
+
class GlmOcrVisionPatchMerger(nn.Module):
|
|
518
|
+
def __init__(self, dim: int, context_dim: int, hidden_act: str, bias: bool = False) -> None:
|
|
519
|
+
super().__init__()
|
|
520
|
+
self.proj = nn.Linear(dim, dim, bias=bias)
|
|
521
|
+
self.post_projection_norm = LayerNorm(dim)
|
|
522
|
+
self.gate_proj = nn.Linear(dim, context_dim, bias=bias)
|
|
523
|
+
self.up_proj = nn.Linear(dim, context_dim, bias=bias)
|
|
524
|
+
self.down_proj = nn.Linear(context_dim, dim, bias=bias)
|
|
525
|
+
self.act1 = nn.GELU()
|
|
526
|
+
self.act_fn = ACT2FN[hidden_act]
|
|
527
|
+
|
|
528
|
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
|
529
|
+
hidden_state = self.proj(hidden_state)
|
|
530
|
+
hidden_state = self.act1(self.post_projection_norm(hidden_state))
|
|
531
|
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
|
532
|
+
|
|
533
|
+
|
|
534
|
+
class GlmOcrVisionPatchEmbed(nn.Module):
|
|
535
|
+
def __init__(self, config: GlmOcrVisionConfig) -> None:
|
|
536
|
+
super().__init__()
|
|
537
|
+
self.patch_size = config.patch_size
|
|
538
|
+
self.temporal_patch_size = config.temporal_patch_size
|
|
539
|
+
self.in_channels = config.in_channels
|
|
540
|
+
self.embed_dim = config.hidden_size
|
|
541
|
+
|
|
542
|
+
kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
|
|
543
|
+
self.proj = nn.Conv3d(self.in_channels, self.embed_dim, kernel_size=kernel_size, stride=kernel_size)
|
|
544
|
+
|
|
545
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
546
|
+
target_dtype = self.proj.weight.dtype
|
|
547
|
+
hidden_states = hidden_states.view(
|
|
548
|
+
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
|
|
549
|
+
)
|
|
550
|
+
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
|
551
|
+
return hidden_states
|
|
552
|
+
|
|
553
|
+
|
|
554
|
+
class GlmOcrVisionModel(GlmOcrPreTrainedModel):
|
|
555
|
+
config: GlmOcrVisionConfig
|
|
556
|
+
input_modalities = ("image", "video")
|
|
557
|
+
_no_split_modules = ["GlmOcrVisionBlock"]
|
|
558
|
+
_can_record_outputs = {
|
|
559
|
+
"hidden_states": GlmOcrVisionBlock,
|
|
560
|
+
"attentions": GlmOcrVisionAttention,
|
|
561
|
+
}
|
|
562
|
+
|
|
563
|
+
def __init__(self, config) -> None:
|
|
564
|
+
super().__init__(config)
|
|
565
|
+
self.spatial_merge_size = config.spatial_merge_size
|
|
566
|
+
self.patch_size = config.patch_size
|
|
567
|
+
self.patch_embed = GlmOcrVisionPatchEmbed(config)
|
|
568
|
+
|
|
569
|
+
head_dim = config.hidden_size // config.num_heads
|
|
570
|
+
self.rotary_pos_emb = GlmOcrVisionRotaryEmbedding(head_dim // 2)
|
|
571
|
+
|
|
572
|
+
self.blocks = nn.ModuleList([GlmOcrVisionBlock(config) for _ in range(config.depth)])
|
|
573
|
+
self.merger = GlmOcrVisionPatchMerger(
|
|
574
|
+
dim=config.out_hidden_size,
|
|
575
|
+
context_dim=config.out_hidden_size * config.in_channels,
|
|
576
|
+
hidden_act=config.hidden_act,
|
|
577
|
+
)
|
|
578
|
+
self.downsample = nn.Conv2d(
|
|
579
|
+
in_channels=config.hidden_size,
|
|
580
|
+
out_channels=config.out_hidden_size,
|
|
581
|
+
kernel_size=config.spatial_merge_size,
|
|
582
|
+
stride=config.spatial_merge_size,
|
|
583
|
+
)
|
|
584
|
+
self.post_layernorm = GlmOcrRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
585
|
+
|
|
586
|
+
self.gradient_checkpointing = False
|
|
587
|
+
self.post_init()
|
|
588
|
+
|
|
589
|
+
def rot_pos_emb(self, grid_thw):
|
|
590
|
+
pos_ids = []
|
|
591
|
+
for t, h, w in grid_thw:
|
|
592
|
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
|
593
|
+
hpos_ids = hpos_ids.reshape(
|
|
594
|
+
h // self.spatial_merge_size,
|
|
595
|
+
self.spatial_merge_size,
|
|
596
|
+
w // self.spatial_merge_size,
|
|
597
|
+
self.spatial_merge_size,
|
|
598
|
+
)
|
|
599
|
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
|
600
|
+
hpos_ids = hpos_ids.flatten()
|
|
601
|
+
|
|
602
|
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
|
603
|
+
wpos_ids = wpos_ids.reshape(
|
|
604
|
+
h // self.spatial_merge_size,
|
|
605
|
+
self.spatial_merge_size,
|
|
606
|
+
w // self.spatial_merge_size,
|
|
607
|
+
self.spatial_merge_size,
|
|
608
|
+
)
|
|
609
|
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
|
610
|
+
wpos_ids = wpos_ids.flatten()
|
|
611
|
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
|
612
|
+
pos_ids = torch.cat(pos_ids, dim=0)
|
|
613
|
+
max_grid_size = grid_thw[:, 1:].max()
|
|
614
|
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
|
615
|
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
|
616
|
+
return rotary_pos_emb, pos_ids
|
|
617
|
+
|
|
618
|
+
@check_model_inputs
|
|
619
|
+
@auto_docstring
|
|
620
|
+
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
621
|
+
r"""
|
|
622
|
+
hidden_states (`torch.Tensor` of shape `(seq_len, hidden_size)`):
|
|
623
|
+
The final hidden states of the model.
|
|
624
|
+
grid_thw (`torch.Tensor` of shape `(num_images_or_videos, 3)`):
|
|
625
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
626
|
+
|
|
627
|
+
Returns:
|
|
628
|
+
`torch.Tensor`: hidden_states.
|
|
629
|
+
"""
|
|
630
|
+
hidden_states = self.patch_embed(hidden_states)
|
|
631
|
+
rotary_pos_emb, image_type_ids = self.rot_pos_emb(grid_thw)
|
|
632
|
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
|
633
|
+
position_embeddings = (emb.cos(), emb.sin())
|
|
634
|
+
|
|
635
|
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
|
636
|
+
dim=0,
|
|
637
|
+
# Select dtype based on the following factors:
|
|
638
|
+
# - FA2 requires that cu_seqlens_q must have dtype int32
|
|
639
|
+
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
|
|
640
|
+
# See https://github.com/huggingface/transformers/pull/34852 for more information
|
|
641
|
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
|
642
|
+
)
|
|
643
|
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
|
644
|
+
|
|
645
|
+
for blk in self.blocks:
|
|
646
|
+
hidden_states = blk(
|
|
647
|
+
hidden_states,
|
|
648
|
+
cu_seqlens=cu_seqlens,
|
|
649
|
+
position_embeddings=position_embeddings,
|
|
650
|
+
)
|
|
651
|
+
|
|
652
|
+
hidden_states = self.post_layernorm(hidden_states)
|
|
653
|
+
|
|
654
|
+
hidden_states = hidden_states.view(
|
|
655
|
+
-1, self.spatial_merge_size, self.spatial_merge_size, hidden_states.shape[-1]
|
|
656
|
+
)
|
|
657
|
+
hidden_states = hidden_states.permute(0, 3, 1, 2)
|
|
658
|
+
hidden_states = self.downsample(hidden_states).view(-1, self.config.out_hidden_size)
|
|
659
|
+
|
|
660
|
+
merged_hidden_states = self.merger(hidden_states)
|
|
661
|
+
return BaseModelOutputWithPooling(
|
|
662
|
+
last_hidden_state=hidden_states,
|
|
663
|
+
pooler_output=merged_hidden_states,
|
|
664
|
+
)
|
|
665
|
+
|
|
666
|
+
|
|
667
|
+
class GlmOcrTextRotaryEmbedding(nn.Module):
|
|
668
|
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
|
669
|
+
|
|
670
|
+
def __init__(self, config: GlmOcrTextConfig, device=None):
|
|
671
|
+
super().__init__()
|
|
672
|
+
self.max_seq_len_cached = config.max_position_embeddings
|
|
673
|
+
self.original_max_seq_len = config.max_position_embeddings
|
|
674
|
+
|
|
675
|
+
self.config = config
|
|
676
|
+
|
|
677
|
+
self.rope_type = self.config.rope_parameters["rope_type"]
|
|
678
|
+
rope_init_fn: Callable = self.compute_default_rope_parameters
|
|
679
|
+
if self.rope_type != "default":
|
|
680
|
+
rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
|
681
|
+
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
682
|
+
|
|
683
|
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
684
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
685
|
+
self.mrope_section = config.rope_parameters.get("mrope_section", [8, 12, 12])
|
|
686
|
+
|
|
687
|
+
@staticmethod
|
|
688
|
+
def compute_default_rope_parameters(
|
|
689
|
+
config: GlmOcrTextConfig | None = None,
|
|
690
|
+
device: Optional["torch.device"] = None,
|
|
691
|
+
seq_len: int | None = None,
|
|
692
|
+
) -> tuple["torch.Tensor", float]:
|
|
693
|
+
"""
|
|
694
|
+
Computes the inverse frequencies according to the original RoPE implementation
|
|
695
|
+
Args:
|
|
696
|
+
config ([`~transformers.PreTrainedConfig`]):
|
|
697
|
+
The model configuration.
|
|
698
|
+
device (`torch.device`):
|
|
699
|
+
The device to use for initialization of the inverse frequencies.
|
|
700
|
+
seq_len (`int`, *optional*):
|
|
701
|
+
The current sequence length. Unused for this type of RoPE.
|
|
702
|
+
Returns:
|
|
703
|
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
|
704
|
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
|
705
|
+
"""
|
|
706
|
+
base = config.rope_parameters["rope_theta"]
|
|
707
|
+
partial_rotary_factor = config.rope_parameters.get("partial_rotary_factor", 1.0)
|
|
708
|
+
head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
|
|
709
|
+
dim = int(head_dim * partial_rotary_factor)
|
|
710
|
+
|
|
711
|
+
attention_factor = 1.0 # Unused in this type of RoPE
|
|
712
|
+
|
|
713
|
+
# Compute the inverse frequencies
|
|
714
|
+
inv_freq = 1.0 / (
|
|
715
|
+
base ** (torch.arange(0, dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / dim)
|
|
716
|
+
)
|
|
717
|
+
return inv_freq, attention_factor
|
|
718
|
+
|
|
719
|
+
@torch.no_grad()
|
|
720
|
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
|
721
|
+
def forward(self, x, position_ids):
|
|
722
|
+
# In contrast to other models, GLM-V has different position ids for the grids
|
|
723
|
+
# So we expand the inv_freq to shape (3, ...)
|
|
724
|
+
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
|
725
|
+
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
|
726
|
+
|
|
727
|
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
728
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
729
|
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
|
730
|
+
freqs = self.apply_mrope(freqs, self.mrope_section)
|
|
731
|
+
emb = torch.cat((freqs, freqs), dim=-1)
|
|
732
|
+
cos = emb.cos() * self.attention_scaling
|
|
733
|
+
sin = emb.sin() * self.attention_scaling
|
|
734
|
+
|
|
735
|
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
736
|
+
|
|
737
|
+
def apply_mrope(self, freqs, mrope_section):
|
|
738
|
+
section = mrope_section
|
|
739
|
+
chunks = freqs.split(section, dim=-1)
|
|
740
|
+
result = torch.cat([chunk[i % 3] for i, chunk in enumerate(chunks)], dim=-1)
|
|
741
|
+
return result
|
|
742
|
+
|
|
743
|
+
|
|
744
|
+
@auto_docstring
|
|
745
|
+
class GlmOcrTextModel(GlmOcrPreTrainedModel):
|
|
746
|
+
config: GlmOcrTextConfig
|
|
747
|
+
input_modalities = ("text",)
|
|
748
|
+
|
|
749
|
+
def __init__(self, config: GlmOcrTextConfig):
|
|
750
|
+
super().__init__(config)
|
|
751
|
+
self.padding_idx = config.pad_token_id
|
|
752
|
+
self.vocab_size = config.vocab_size
|
|
753
|
+
|
|
754
|
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
755
|
+
self.layers = nn.ModuleList(
|
|
756
|
+
[GlmOcrTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
757
|
+
)
|
|
758
|
+
self.norm = GlmOcrRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
759
|
+
self.rotary_emb = GlmOcrTextRotaryEmbedding(config=config)
|
|
760
|
+
|
|
761
|
+
self.gradient_checkpointing = False
|
|
762
|
+
# Initialize weights and apply final processing
|
|
763
|
+
self.post_init()
|
|
764
|
+
|
|
765
|
+
@auto_docstring
|
|
766
|
+
@check_model_inputs
|
|
767
|
+
def forward(
|
|
768
|
+
self,
|
|
769
|
+
input_ids: torch.LongTensor | None = None,
|
|
770
|
+
attention_mask: torch.Tensor | None = None,
|
|
771
|
+
position_ids: torch.LongTensor | None = None,
|
|
772
|
+
past_key_values: Cache | None = None,
|
|
773
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
774
|
+
use_cache: bool | None = None,
|
|
775
|
+
cache_position: torch.LongTensor | None = None,
|
|
776
|
+
**kwargs: Unpack[FlashAttentionKwargs],
|
|
777
|
+
) -> tuple | BaseModelOutputWithPast:
|
|
778
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
779
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
780
|
+
|
|
781
|
+
# torch.jit.trace() doesn't support cache objects in the output
|
|
782
|
+
if use_cache and past_key_values is None and not torch.jit.is_tracing():
|
|
783
|
+
past_key_values = DynamicCache(config=self.config)
|
|
784
|
+
|
|
785
|
+
if inputs_embeds is None:
|
|
786
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
787
|
+
|
|
788
|
+
if cache_position is None:
|
|
789
|
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
790
|
+
cache_position = torch.arange(
|
|
791
|
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
792
|
+
)
|
|
793
|
+
|
|
794
|
+
# the hard coded `3` is for temporal, height and width.
|
|
795
|
+
if position_ids is None:
|
|
796
|
+
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
|
797
|
+
elif position_ids.ndim == 2:
|
|
798
|
+
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
|
799
|
+
|
|
800
|
+
# NOTE: we need to pass text position ids for packing. Qwen2-VL uses 3D positions
|
|
801
|
+
# where each dim indicates visual spatial positions for temporal/height/width grids.
|
|
802
|
+
# There are two scenarios when FA2-like packed masking might be activated.
|
|
803
|
+
# 1. User specifically passed packed `position_ids` and no attention mask.
|
|
804
|
+
# In this case we expect the useer to create correct position ids for all 3 grids
|
|
805
|
+
# and prepend text-only position ids to it. The final tensor will be [4, bs, seq-len]
|
|
806
|
+
# 2. User runs forward with no attention mask and no position ids. In this case, position ids
|
|
807
|
+
# are prepared by the model (`get_rope_index`) as `[4, bs, seq-len]` tensor. Text-only positions are
|
|
808
|
+
# prepended by us when creating positions so that the mask is constructed correctly. NOTE: failing to pass
|
|
809
|
+
# text-only positions will cause incorrect mask construction, do not change `prepare_input_for_generation`
|
|
810
|
+
if position_ids.ndim == 3 and position_ids.shape[0] == 4:
|
|
811
|
+
text_position_ids = position_ids[0]
|
|
812
|
+
position_ids = position_ids[1:]
|
|
813
|
+
else:
|
|
814
|
+
# If inputs are not packed (usual 3D positions), do not prepare mask from position_ids
|
|
815
|
+
text_position_ids = None
|
|
816
|
+
|
|
817
|
+
mask_kwargs = {
|
|
818
|
+
"config": self.config,
|
|
819
|
+
"input_embeds": inputs_embeds,
|
|
820
|
+
"attention_mask": attention_mask,
|
|
821
|
+
"cache_position": cache_position,
|
|
822
|
+
"past_key_values": past_key_values,
|
|
823
|
+
"position_ids": text_position_ids,
|
|
824
|
+
}
|
|
825
|
+
# Create the masks
|
|
826
|
+
causal_mask = create_causal_mask(**mask_kwargs)
|
|
827
|
+
|
|
828
|
+
hidden_states = inputs_embeds
|
|
829
|
+
position_embeddings = self.rotary_emb(hidden_states, position_ids=position_ids)
|
|
830
|
+
|
|
831
|
+
for decoder_layer in self.layers:
|
|
832
|
+
layer_outputs = decoder_layer(
|
|
833
|
+
hidden_states,
|
|
834
|
+
attention_mask=causal_mask,
|
|
835
|
+
position_ids=text_position_ids,
|
|
836
|
+
past_key_values=past_key_values,
|
|
837
|
+
cache_position=cache_position,
|
|
838
|
+
position_embeddings=position_embeddings,
|
|
839
|
+
**kwargs,
|
|
840
|
+
)
|
|
841
|
+
hidden_states = layer_outputs
|
|
842
|
+
|
|
843
|
+
hidden_states = self.norm(hidden_states)
|
|
844
|
+
|
|
845
|
+
return BaseModelOutputWithPast(
|
|
846
|
+
last_hidden_state=hidden_states,
|
|
847
|
+
past_key_values=past_key_values,
|
|
848
|
+
)
|
|
849
|
+
|
|
850
|
+
|
|
851
|
+
@auto_docstring
|
|
852
|
+
class GlmOcrModel(GlmOcrPreTrainedModel):
|
|
853
|
+
base_model_prefix = "model"
|
|
854
|
+
_checkpoint_conversion_mapping = {}
|
|
855
|
+
# Reference: fix gemma3 grad acc #37208
|
|
856
|
+
accepts_loss_kwargs = False
|
|
857
|
+
config: GlmOcrConfig
|
|
858
|
+
_no_split_modules = ["GlmOcrTextDecoderLayer", "GlmOcrVisionBlock"]
|
|
859
|
+
|
|
860
|
+
def __init__(self, config):
|
|
861
|
+
super().__init__(config)
|
|
862
|
+
self.visual = GlmOcrVisionModel._from_config(config.vision_config)
|
|
863
|
+
self.language_model = GlmOcrTextModel._from_config(config.text_config)
|
|
864
|
+
self.rope_deltas = None # cache rope_deltas here
|
|
865
|
+
|
|
866
|
+
# Initialize weights and apply final processing
|
|
867
|
+
self.post_init()
|
|
868
|
+
|
|
869
|
+
def get_input_embeddings(self):
|
|
870
|
+
return self.language_model.get_input_embeddings()
|
|
871
|
+
|
|
872
|
+
def set_input_embeddings(self, value):
|
|
873
|
+
self.language_model.set_input_embeddings(value)
|
|
874
|
+
|
|
875
|
+
def get_rope_index(
|
|
876
|
+
self,
|
|
877
|
+
input_ids: torch.LongTensor | None = None,
|
|
878
|
+
image_grid_thw: torch.LongTensor | None = None,
|
|
879
|
+
video_grid_thw: torch.LongTensor | None = None,
|
|
880
|
+
attention_mask: torch.Tensor | None = None,
|
|
881
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
882
|
+
"""
|
|
883
|
+
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
|
|
884
|
+
|
|
885
|
+
Explanation:
|
|
886
|
+
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
|
|
887
|
+
|
|
888
|
+
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
|
|
889
|
+
Examples:
|
|
890
|
+
input_ids: [T T T T T], here T is for text.
|
|
891
|
+
temporal position_ids: [0, 1, 2, 3, 4]
|
|
892
|
+
height position_ids: [0, 1, 2, 3, 4]
|
|
893
|
+
width position_ids: [0, 1, 2, 3, 4]
|
|
894
|
+
|
|
895
|
+
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
|
896
|
+
and 1D rotary position embedding for text part.
|
|
897
|
+
Examples:
|
|
898
|
+
Temporal (Time): 3 patches, representing different segments of the video in time.
|
|
899
|
+
Height: 2 patches, dividing each frame vertically.
|
|
900
|
+
Width: 2 patches, dividing each frame horizontally.
|
|
901
|
+
We also have some important parameters:
|
|
902
|
+
fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
|
|
903
|
+
tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
|
|
904
|
+
temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
|
|
905
|
+
interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
|
|
906
|
+
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
|
|
907
|
+
vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
|
|
908
|
+
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
|
|
909
|
+
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
|
|
910
|
+
text temporal position_ids: [101, 102, 103, 104, 105]
|
|
911
|
+
text height position_ids: [101, 102, 103, 104, 105]
|
|
912
|
+
text width position_ids: [101, 102, 103, 104, 105]
|
|
913
|
+
Here we calculate the text start position_ids as the max vision position_ids plus 1.
|
|
914
|
+
|
|
915
|
+
Args:
|
|
916
|
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
917
|
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
918
|
+
it.
|
|
919
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
920
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
921
|
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
922
|
+
The temporal, height and width of feature shape of each video in LLM.
|
|
923
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
924
|
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
925
|
+
|
|
926
|
+
- 1 for tokens that are **not masked**,
|
|
927
|
+
- 0 for tokens that are **masked**.
|
|
928
|
+
|
|
929
|
+
Returns:
|
|
930
|
+
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
|
|
931
|
+
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
|
|
932
|
+
"""
|
|
933
|
+
|
|
934
|
+
spatial_merge_size = self.config.vision_config.spatial_merge_size
|
|
935
|
+
image_token_id = self.config.image_token_id
|
|
936
|
+
video_start_token_id = self.config.video_start_token_id
|
|
937
|
+
video_end_token_id = self.config.video_end_token_id
|
|
938
|
+
|
|
939
|
+
mrope_position_deltas = []
|
|
940
|
+
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
|
|
941
|
+
total_input_ids = input_ids
|
|
942
|
+
if attention_mask is None:
|
|
943
|
+
attention_mask = torch.ones_like(total_input_ids)
|
|
944
|
+
position_ids = torch.ones(
|
|
945
|
+
3,
|
|
946
|
+
input_ids.shape[0],
|
|
947
|
+
input_ids.shape[1],
|
|
948
|
+
dtype=input_ids.dtype,
|
|
949
|
+
device=input_ids.device,
|
|
950
|
+
)
|
|
951
|
+
image_index, video_index = 0, 0
|
|
952
|
+
video_group_index = 0
|
|
953
|
+
attention_mask = attention_mask.to(total_input_ids.device)
|
|
954
|
+
for i, input_ids in enumerate(total_input_ids):
|
|
955
|
+
input_ids = input_ids[attention_mask[i] == 1]
|
|
956
|
+
input_tokens = input_ids.tolist()
|
|
957
|
+
|
|
958
|
+
input_token_type = []
|
|
959
|
+
video_check_flg = False
|
|
960
|
+
for token in input_tokens:
|
|
961
|
+
if token == video_start_token_id:
|
|
962
|
+
video_check_flg = True
|
|
963
|
+
elif token == video_end_token_id:
|
|
964
|
+
video_check_flg = False
|
|
965
|
+
|
|
966
|
+
if token == image_token_id and not video_check_flg:
|
|
967
|
+
input_token_type.append("image")
|
|
968
|
+
elif token == image_token_id and video_check_flg:
|
|
969
|
+
input_token_type.append("video")
|
|
970
|
+
else:
|
|
971
|
+
input_token_type.append("text")
|
|
972
|
+
|
|
973
|
+
input_type_group = []
|
|
974
|
+
for key, group in itertools.groupby(enumerate(input_token_type), lambda x: x[1]):
|
|
975
|
+
group = list(group)
|
|
976
|
+
start_index = group[0][0]
|
|
977
|
+
end_index = group[-1][0] + 1
|
|
978
|
+
input_type_group.append((key, start_index, end_index))
|
|
979
|
+
|
|
980
|
+
llm_pos_ids_list = []
|
|
981
|
+
video_frame_num = 1
|
|
982
|
+
for modality_type, start_idx, end_idx in input_type_group:
|
|
983
|
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
|
984
|
+
|
|
985
|
+
if modality_type == "image":
|
|
986
|
+
t, h, w = (
|
|
987
|
+
image_grid_thw[image_index][0],
|
|
988
|
+
image_grid_thw[image_index][1],
|
|
989
|
+
image_grid_thw[image_index][2],
|
|
990
|
+
)
|
|
991
|
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
|
992
|
+
t.item(),
|
|
993
|
+
h.item() // spatial_merge_size,
|
|
994
|
+
w.item() // spatial_merge_size,
|
|
995
|
+
)
|
|
996
|
+
|
|
997
|
+
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
|
|
998
|
+
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
|
|
999
|
+
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
|
|
1000
|
+
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + st_idx)
|
|
1001
|
+
|
|
1002
|
+
image_index += 1
|
|
1003
|
+
video_frame_num = 1
|
|
1004
|
+
|
|
1005
|
+
elif modality_type == "video":
|
|
1006
|
+
t, h, w = (
|
|
1007
|
+
video_frame_num,
|
|
1008
|
+
video_grid_thw[video_index][1],
|
|
1009
|
+
video_grid_thw[video_index][2],
|
|
1010
|
+
)
|
|
1011
|
+
|
|
1012
|
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
|
1013
|
+
t,
|
|
1014
|
+
h.item() // spatial_merge_size,
|
|
1015
|
+
w.item() // spatial_merge_size,
|
|
1016
|
+
)
|
|
1017
|
+
|
|
1018
|
+
for t_idx in range(llm_grid_t):
|
|
1019
|
+
t_index = torch.tensor(t_idx).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
|
|
1020
|
+
|
|
1021
|
+
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(1, -1, llm_grid_w).flatten()
|
|
1022
|
+
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(1, llm_grid_h, -1).flatten()
|
|
1023
|
+
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + st_idx)
|
|
1024
|
+
|
|
1025
|
+
video_group_index += 1
|
|
1026
|
+
|
|
1027
|
+
if video_group_index >= video_grid_thw[video_index][0]:
|
|
1028
|
+
video_index += 1
|
|
1029
|
+
video_group_index = 0
|
|
1030
|
+
|
|
1031
|
+
video_frame_num += 1
|
|
1032
|
+
|
|
1033
|
+
else:
|
|
1034
|
+
text_len = end_idx - start_idx
|
|
1035
|
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
|
1036
|
+
|
|
1037
|
+
video_frame_num = 1
|
|
1038
|
+
|
|
1039
|
+
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
|
1040
|
+
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
|
|
1041
|
+
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
|
|
1042
|
+
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
|
|
1043
|
+
return position_ids, mrope_position_deltas
|
|
1044
|
+
else:
|
|
1045
|
+
if attention_mask is not None:
|
|
1046
|
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
|
1047
|
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
|
1048
|
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
|
|
1049
|
+
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
|
|
1050
|
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
|
1051
|
+
else:
|
|
1052
|
+
position_ids = (
|
|
1053
|
+
torch.arange(input_ids.shape[1], device=input_ids.device)
|
|
1054
|
+
.view(1, 1, -1)
|
|
1055
|
+
.expand(3, input_ids.shape[0], -1)
|
|
1056
|
+
)
|
|
1057
|
+
mrope_position_deltas = torch.zeros(
|
|
1058
|
+
[input_ids.shape[0], 1],
|
|
1059
|
+
device=input_ids.device,
|
|
1060
|
+
dtype=input_ids.dtype,
|
|
1061
|
+
)
|
|
1062
|
+
|
|
1063
|
+
return position_ids, mrope_position_deltas
|
|
1064
|
+
|
|
1065
|
+
@can_return_tuple
|
|
1066
|
+
@auto_docstring
|
|
1067
|
+
def get_video_features(
|
|
1068
|
+
self,
|
|
1069
|
+
pixel_values_videos: torch.FloatTensor,
|
|
1070
|
+
video_grid_thw: torch.LongTensor | None = None,
|
|
1071
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1072
|
+
) -> tuple | BaseModelOutputWithPooling:
|
|
1073
|
+
r"""
|
|
1074
|
+
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
|
1075
|
+
The tensors corresponding to the input videos.
|
|
1076
|
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
1077
|
+
The temporal, height and width of feature shape of each video in LLM.
|
|
1078
|
+
"""
|
|
1079
|
+
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
|
|
1080
|
+
# reshape video_grid_thw -> [b, 3] -> [1, h, w] * frames
|
|
1081
|
+
temp_frames_hw = []
|
|
1082
|
+
for t, h, w in video_grid_thw:
|
|
1083
|
+
repeated_row = torch.tensor([1, h.item(), w.item()]).unsqueeze(0).repeat(t, 1)
|
|
1084
|
+
temp_frames_hw.append(repeated_row)
|
|
1085
|
+
flattened_video_grid_thw = torch.cat(temp_frames_hw, dim=0)
|
|
1086
|
+
vision_outputs = self.visual(
|
|
1087
|
+
pixel_values_videos, grid_thw=flattened_video_grid_thw, return_dict=True, **kwargs
|
|
1088
|
+
)
|
|
1089
|
+
split_sizes = (video_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist()
|
|
1090
|
+
video_embeds = torch.split(vision_outputs.pooler_output, split_sizes)
|
|
1091
|
+
vision_outputs.pooler_output = video_embeds
|
|
1092
|
+
|
|
1093
|
+
return vision_outputs
|
|
1094
|
+
|
|
1095
|
+
@can_return_tuple
|
|
1096
|
+
@auto_docstring
|
|
1097
|
+
def get_image_features(
|
|
1098
|
+
self,
|
|
1099
|
+
pixel_values: torch.FloatTensor,
|
|
1100
|
+
image_grid_thw: torch.LongTensor | None = None,
|
|
1101
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1102
|
+
) -> tuple | BaseModelOutputWithPooling:
|
|
1103
|
+
r"""
|
|
1104
|
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
|
1105
|
+
The tensors corresponding to the input images.
|
|
1106
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1107
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
1108
|
+
"""
|
|
1109
|
+
pixel_values = pixel_values.type(self.visual.dtype)
|
|
1110
|
+
vision_outputs = self.visual(pixel_values, grid_thw=image_grid_thw, return_dict=True, **kwargs)
|
|
1111
|
+
split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist()
|
|
1112
|
+
image_embeds = torch.split(vision_outputs.pooler_output, split_sizes)
|
|
1113
|
+
vision_outputs.pooler_output = image_embeds
|
|
1114
|
+
|
|
1115
|
+
return vision_outputs
|
|
1116
|
+
|
|
1117
|
+
def get_placeholder_mask(
|
|
1118
|
+
self,
|
|
1119
|
+
input_ids: torch.LongTensor,
|
|
1120
|
+
inputs_embeds: torch.FloatTensor,
|
|
1121
|
+
image_features: torch.FloatTensor | None = None,
|
|
1122
|
+
video_features: torch.FloatTensor | None = None,
|
|
1123
|
+
):
|
|
1124
|
+
"""
|
|
1125
|
+
Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
|
|
1126
|
+
equal to the length of multimodal features. If the lengths are different, an error is raised.
|
|
1127
|
+
"""
|
|
1128
|
+
if input_ids is None:
|
|
1129
|
+
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
|
1130
|
+
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
|
1131
|
+
)
|
|
1132
|
+
special_image_mask = special_image_mask.all(-1)
|
|
1133
|
+
special_video_mask = inputs_embeds == self.get_input_embeddings()(
|
|
1134
|
+
torch.tensor(self.config.video_token_id, dtype=torch.long, device=inputs_embeds.device)
|
|
1135
|
+
)
|
|
1136
|
+
special_video_mask = special_video_mask.all(-1)
|
|
1137
|
+
else:
|
|
1138
|
+
# GLM-4.1V and GLM-4.5V special_video_mask is special_image_mask
|
|
1139
|
+
special_image_mask = input_ids == self.config.image_token_id
|
|
1140
|
+
special_video_mask = input_ids == self.config.image_token_id
|
|
1141
|
+
|
|
1142
|
+
n_image_tokens = special_image_mask.sum()
|
|
1143
|
+
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
|
1144
|
+
if image_features is not None:
|
|
1145
|
+
torch_compilable_check(
|
|
1146
|
+
inputs_embeds[special_image_mask].numel() == image_features.numel(),
|
|
1147
|
+
f"Image features and image tokens do not match, tokens: {n_image_tokens}, features: {image_features.shape[0]}",
|
|
1148
|
+
)
|
|
1149
|
+
|
|
1150
|
+
n_video_tokens = special_video_mask.sum()
|
|
1151
|
+
special_video_mask = special_video_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
|
1152
|
+
if video_features is not None:
|
|
1153
|
+
torch_compilable_check(
|
|
1154
|
+
inputs_embeds[special_video_mask].numel() == video_features.numel(),
|
|
1155
|
+
f"Video features and video tokens do not match, tokens: {n_video_tokens}, features: {video_features.shape[0]}",
|
|
1156
|
+
)
|
|
1157
|
+
return special_image_mask, special_video_mask
|
|
1158
|
+
|
|
1159
|
+
@auto_docstring
|
|
1160
|
+
@can_return_tuple
|
|
1161
|
+
def forward(
|
|
1162
|
+
self,
|
|
1163
|
+
input_ids: torch.LongTensor | None = None,
|
|
1164
|
+
attention_mask: torch.Tensor | None = None,
|
|
1165
|
+
position_ids: torch.LongTensor | None = None,
|
|
1166
|
+
past_key_values: Cache | None = None,
|
|
1167
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
1168
|
+
pixel_values: torch.Tensor | None = None,
|
|
1169
|
+
pixel_values_videos: torch.FloatTensor | None = None,
|
|
1170
|
+
image_grid_thw: torch.LongTensor | None = None,
|
|
1171
|
+
video_grid_thw: torch.LongTensor | None = None,
|
|
1172
|
+
rope_deltas: torch.LongTensor | None = None,
|
|
1173
|
+
cache_position: torch.LongTensor | None = None,
|
|
1174
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1175
|
+
) -> tuple | GlmOcrModelOutputWithPast:
|
|
1176
|
+
r"""
|
|
1177
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1178
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
1179
|
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
1180
|
+
The temporal, height and width of feature shape of each video in LLM.
|
|
1181
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
1182
|
+
The rope index difference between sequence length and multimodal rope.
|
|
1183
|
+
"""
|
|
1184
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
1185
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
1186
|
+
|
|
1187
|
+
if inputs_embeds is None:
|
|
1188
|
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
1189
|
+
|
|
1190
|
+
if pixel_values is not None:
|
|
1191
|
+
image_embeds = self.get_image_features(pixel_values, image_grid_thw, return_dict=True).pooler_output
|
|
1192
|
+
image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
|
|
1193
|
+
image_mask, _ = self.get_placeholder_mask(input_ids, inputs_embeds, image_features=image_embeds)
|
|
1194
|
+
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
|
1195
|
+
|
|
1196
|
+
if pixel_values_videos is not None:
|
|
1197
|
+
video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw, return_dict=True).pooler_output
|
|
1198
|
+
video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
|
|
1199
|
+
_, video_mask = self.get_placeholder_mask(input_ids, inputs_embeds, video_features=video_embeds)
|
|
1200
|
+
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
|
1201
|
+
|
|
1202
|
+
if position_ids is None:
|
|
1203
|
+
attention_mask_tensor = (
|
|
1204
|
+
attention_mask if not isinstance(attention_mask, dict) else attention_mask["full_attention"]
|
|
1205
|
+
)
|
|
1206
|
+
if attention_mask_tensor is not None and attention_mask_tensor.ndim == 4:
|
|
1207
|
+
attention_mask_tensor = torch.diagonal(attention_mask_tensor[:, 0], dim1=1, dim2=2)
|
|
1208
|
+
# Only apply conversion for floating point tensors (inverted masks)
|
|
1209
|
+
if attention_mask_tensor.dtype.is_floating_point:
|
|
1210
|
+
attention_mask_tensor = attention_mask_tensor / torch.finfo(attention_mask_tensor.dtype).min
|
|
1211
|
+
attention_mask_tensor = (1.0 - attention_mask_tensor).int()
|
|
1212
|
+
|
|
1213
|
+
# Calculate RoPE index once per generation in the pre-fill stage only.
|
|
1214
|
+
# When compiling, we can't check tensor values thus we check only input length
|
|
1215
|
+
# It is safe to assume that `length!=1` means we're in pre-fill because compiled
|
|
1216
|
+
# models currently cannot do asssisted decoding
|
|
1217
|
+
prefill_compiled_stage = is_torchdynamo_compiling() and (
|
|
1218
|
+
(input_ids is not None and input_ids.shape[1] != 1)
|
|
1219
|
+
or (inputs_embeds is not None and inputs_embeds.shape[1] != 1)
|
|
1220
|
+
)
|
|
1221
|
+
prefill_noncompiled_stage = not is_torchdynamo_compiling() and (
|
|
1222
|
+
(cache_position is not None and cache_position[0] == 0)
|
|
1223
|
+
or (past_key_values is None or past_key_values.get_seq_length() == 0)
|
|
1224
|
+
)
|
|
1225
|
+
if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None:
|
|
1226
|
+
position_ids, rope_deltas = self.get_rope_index(
|
|
1227
|
+
input_ids,
|
|
1228
|
+
image_grid_thw,
|
|
1229
|
+
video_grid_thw,
|
|
1230
|
+
attention_mask=attention_mask_tensor,
|
|
1231
|
+
)
|
|
1232
|
+
self.rope_deltas = rope_deltas
|
|
1233
|
+
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
|
1234
|
+
else:
|
|
1235
|
+
batch_size, seq_length, _ = inputs_embeds.shape
|
|
1236
|
+
delta = (
|
|
1237
|
+
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
|
|
1238
|
+
if cache_position is not None
|
|
1239
|
+
else 0
|
|
1240
|
+
)
|
|
1241
|
+
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
|
|
1242
|
+
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
|
|
1243
|
+
if cache_position is not None: # otherwise `deltas` is an int `0`
|
|
1244
|
+
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
|
|
1245
|
+
position_ids = position_ids.add(delta)
|
|
1246
|
+
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
|
1247
|
+
|
|
1248
|
+
outputs = self.language_model(
|
|
1249
|
+
input_ids=None,
|
|
1250
|
+
position_ids=position_ids,
|
|
1251
|
+
attention_mask=attention_mask,
|
|
1252
|
+
past_key_values=past_key_values,
|
|
1253
|
+
inputs_embeds=inputs_embeds,
|
|
1254
|
+
cache_position=cache_position,
|
|
1255
|
+
**kwargs,
|
|
1256
|
+
)
|
|
1257
|
+
|
|
1258
|
+
return GlmOcrModelOutputWithPast(
|
|
1259
|
+
last_hidden_state=outputs.last_hidden_state,
|
|
1260
|
+
past_key_values=outputs.past_key_values,
|
|
1261
|
+
hidden_states=outputs.hidden_states,
|
|
1262
|
+
attentions=outputs.attentions,
|
|
1263
|
+
rope_deltas=self.rope_deltas,
|
|
1264
|
+
)
|
|
1265
|
+
|
|
1266
|
+
|
|
1267
|
+
@dataclass
|
|
1268
|
+
@auto_docstring(
|
|
1269
|
+
custom_intro="""
|
|
1270
|
+
Base class for GlmOcr causal language model (or autoregressive) outputs.
|
|
1271
|
+
"""
|
|
1272
|
+
)
|
|
1273
|
+
class GlmOcrCausalLMOutputWithPast(ModelOutput):
|
|
1274
|
+
r"""
|
|
1275
|
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
1276
|
+
Language modeling loss (for next-token prediction).
|
|
1277
|
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
|
1278
|
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
1279
|
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
1280
|
+
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
|
1281
|
+
|
|
1282
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
1283
|
+
`past_key_values` input) to speed up sequential decoding.
|
|
1284
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
1285
|
+
The rope index difference between sequence length and multimodal rope.
|
|
1286
|
+
"""
|
|
1287
|
+
|
|
1288
|
+
loss: torch.FloatTensor | None = None
|
|
1289
|
+
logits: torch.FloatTensor | None = None
|
|
1290
|
+
past_key_values: Cache | None = None
|
|
1291
|
+
hidden_states: tuple[torch.FloatTensor] | None = None
|
|
1292
|
+
attentions: tuple[torch.FloatTensor] | None = None
|
|
1293
|
+
rope_deltas: torch.LongTensor | None = None
|
|
1294
|
+
|
|
1295
|
+
|
|
1296
|
+
class GlmOcrForConditionalGeneration(GlmOcrPreTrainedModel, GenerationMixin):
|
|
1297
|
+
_checkpoint_conversion_mapping = {}
|
|
1298
|
+
_tied_weights_keys = {"lm_head.weight": "model.language_model.embed_tokens.weight"}
|
|
1299
|
+
# Reference: fix gemma3 grad acc #37208
|
|
1300
|
+
accepts_loss_kwargs = False
|
|
1301
|
+
|
|
1302
|
+
def __init__(self, config):
|
|
1303
|
+
super().__init__(config)
|
|
1304
|
+
self.model = GlmOcrModel(config)
|
|
1305
|
+
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
|
|
1306
|
+
|
|
1307
|
+
self.post_init()
|
|
1308
|
+
|
|
1309
|
+
def get_input_embeddings(self):
|
|
1310
|
+
return self.model.get_input_embeddings()
|
|
1311
|
+
|
|
1312
|
+
def set_input_embeddings(self, value):
|
|
1313
|
+
self.model.set_input_embeddings(value)
|
|
1314
|
+
|
|
1315
|
+
@auto_docstring
|
|
1316
|
+
def get_video_features(
|
|
1317
|
+
self,
|
|
1318
|
+
pixel_values_videos: torch.FloatTensor,
|
|
1319
|
+
video_grid_thw: torch.LongTensor | None = None,
|
|
1320
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1321
|
+
) -> tuple | BaseModelOutputWithPooling:
|
|
1322
|
+
r"""
|
|
1323
|
+
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
|
1324
|
+
The tensors corresponding to the input videos.
|
|
1325
|
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
1326
|
+
The temporal, height and width of feature shape of each video in LLM.
|
|
1327
|
+
"""
|
|
1328
|
+
return self.model.get_video_features(
|
|
1329
|
+
pixel_values_videos=pixel_values_videos, video_grid_thw=video_grid_thw, **kwargs
|
|
1330
|
+
)
|
|
1331
|
+
|
|
1332
|
+
@auto_docstring
|
|
1333
|
+
def get_image_features(
|
|
1334
|
+
self,
|
|
1335
|
+
pixel_values: torch.FloatTensor,
|
|
1336
|
+
image_grid_thw: torch.LongTensor | None = None,
|
|
1337
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1338
|
+
) -> tuple | BaseModelOutputWithPooling:
|
|
1339
|
+
r"""
|
|
1340
|
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
|
1341
|
+
The tensors corresponding to the input images.
|
|
1342
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1343
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
1344
|
+
"""
|
|
1345
|
+
return self.model.get_image_features(pixel_values=pixel_values, image_grid_thw=image_grid_thw, **kwargs)
|
|
1346
|
+
|
|
1347
|
+
@can_return_tuple
|
|
1348
|
+
@auto_docstring
|
|
1349
|
+
def forward(
|
|
1350
|
+
self,
|
|
1351
|
+
input_ids: torch.LongTensor | None = None,
|
|
1352
|
+
attention_mask: torch.Tensor | None = None,
|
|
1353
|
+
position_ids: torch.LongTensor | None = None,
|
|
1354
|
+
past_key_values: Cache | None = None,
|
|
1355
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
1356
|
+
labels: torch.LongTensor | None = None,
|
|
1357
|
+
pixel_values: torch.Tensor | None = None,
|
|
1358
|
+
pixel_values_videos: torch.FloatTensor | None = None,
|
|
1359
|
+
image_grid_thw: torch.LongTensor | None = None,
|
|
1360
|
+
video_grid_thw: torch.LongTensor | None = None,
|
|
1361
|
+
cache_position: torch.LongTensor | None = None,
|
|
1362
|
+
logits_to_keep: int | torch.Tensor = 0,
|
|
1363
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1364
|
+
) -> tuple | GlmOcrCausalLMOutputWithPast:
|
|
1365
|
+
r"""
|
|
1366
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1367
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
1368
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
1369
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
1370
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1371
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
1372
|
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
|
1373
|
+
The temporal, height and width of feature shape of each video in LLM.
|
|
1374
|
+
|
|
1375
|
+
Example:
|
|
1376
|
+
|
|
1377
|
+
```python
|
|
1378
|
+
>>> from PIL import Image
|
|
1379
|
+
>>> import httpx
|
|
1380
|
+
>>> from io import BytesIO
|
|
1381
|
+
>>> from transformers import AutoProcessor, GlmOcrForConditionalGeneration
|
|
1382
|
+
|
|
1383
|
+
>>> model = GlmOcrForConditionalGeneration.from_pretrained("zai-org/GLM-4.1V-9B-Thinking")
|
|
1384
|
+
>>> processor = AutoProcessor.from_pretrained("zai-org/GLM-4.1V-9B-Thinking")
|
|
1385
|
+
|
|
1386
|
+
>>> messages = [
|
|
1387
|
+
{
|
|
1388
|
+
"role": "user",
|
|
1389
|
+
"content": [
|
|
1390
|
+
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"},
|
|
1391
|
+
{"type": "text", "text": "What is shown in this image?"},
|
|
1392
|
+
],
|
|
1393
|
+
},
|
|
1394
|
+
]
|
|
1395
|
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
1396
|
+
>>> with httpx.stream("GET", url) as response:
|
|
1397
|
+
... image = Image.open(BytesIO(response.read()))
|
|
1398
|
+
|
|
1399
|
+
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
1400
|
+
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
|
1401
|
+
|
|
1402
|
+
>>> # Generate
|
|
1403
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
1404
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
1405
|
+
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
|
1406
|
+
```"""
|
|
1407
|
+
outputs = self.model(
|
|
1408
|
+
input_ids=input_ids,
|
|
1409
|
+
pixel_values=pixel_values,
|
|
1410
|
+
pixel_values_videos=pixel_values_videos,
|
|
1411
|
+
image_grid_thw=image_grid_thw,
|
|
1412
|
+
video_grid_thw=video_grid_thw,
|
|
1413
|
+
position_ids=position_ids,
|
|
1414
|
+
attention_mask=attention_mask,
|
|
1415
|
+
past_key_values=past_key_values,
|
|
1416
|
+
inputs_embeds=inputs_embeds,
|
|
1417
|
+
cache_position=cache_position,
|
|
1418
|
+
**kwargs,
|
|
1419
|
+
)
|
|
1420
|
+
|
|
1421
|
+
hidden_states = outputs[0]
|
|
1422
|
+
|
|
1423
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
1424
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
1425
|
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
1426
|
+
|
|
1427
|
+
loss = None
|
|
1428
|
+
if labels is not None:
|
|
1429
|
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
|
|
1430
|
+
|
|
1431
|
+
return GlmOcrCausalLMOutputWithPast(
|
|
1432
|
+
loss=loss,
|
|
1433
|
+
logits=logits,
|
|
1434
|
+
past_key_values=outputs.past_key_values,
|
|
1435
|
+
hidden_states=outputs.hidden_states,
|
|
1436
|
+
attentions=outputs.attentions,
|
|
1437
|
+
rope_deltas=outputs.rope_deltas,
|
|
1438
|
+
)
|
|
1439
|
+
|
|
1440
|
+
def prepare_inputs_for_generation(
|
|
1441
|
+
self,
|
|
1442
|
+
input_ids,
|
|
1443
|
+
past_key_values=None,
|
|
1444
|
+
attention_mask=None,
|
|
1445
|
+
inputs_embeds=None,
|
|
1446
|
+
cache_position=None,
|
|
1447
|
+
position_ids=None,
|
|
1448
|
+
use_cache=True,
|
|
1449
|
+
pixel_values=None,
|
|
1450
|
+
pixel_values_videos=None,
|
|
1451
|
+
image_grid_thw=None,
|
|
1452
|
+
video_grid_thw=None,
|
|
1453
|
+
is_first_iteration=False,
|
|
1454
|
+
**kwargs,
|
|
1455
|
+
):
|
|
1456
|
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
|
1457
|
+
|
|
1458
|
+
model_inputs = super().prepare_inputs_for_generation(
|
|
1459
|
+
input_ids,
|
|
1460
|
+
past_key_values=past_key_values,
|
|
1461
|
+
attention_mask=attention_mask,
|
|
1462
|
+
inputs_embeds=inputs_embeds,
|
|
1463
|
+
cache_position=cache_position,
|
|
1464
|
+
position_ids=position_ids,
|
|
1465
|
+
pixel_values=pixel_values,
|
|
1466
|
+
pixel_values_videos=pixel_values_videos,
|
|
1467
|
+
image_grid_thw=image_grid_thw,
|
|
1468
|
+
video_grid_thw=video_grid_thw,
|
|
1469
|
+
use_cache=use_cache,
|
|
1470
|
+
is_first_iteration=is_first_iteration,
|
|
1471
|
+
**kwargs,
|
|
1472
|
+
)
|
|
1473
|
+
|
|
1474
|
+
# GLM-V position_ids are prepared with rope_deltas in forward
|
|
1475
|
+
model_inputs["position_ids"] = None
|
|
1476
|
+
|
|
1477
|
+
if not is_first_iteration and use_cache:
|
|
1478
|
+
model_inputs["pixel_values"] = None
|
|
1479
|
+
model_inputs["pixel_values_videos"] = None
|
|
1480
|
+
|
|
1481
|
+
return model_inputs
|
|
1482
|
+
|
|
1483
|
+
def _get_image_nums_and_video_nums(
|
|
1484
|
+
self,
|
|
1485
|
+
input_ids: torch.LongTensor | None,
|
|
1486
|
+
inputs_embeds: torch.Tensor | None = None,
|
|
1487
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
1488
|
+
"""
|
|
1489
|
+
Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
|
|
1490
|
+
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.
|
|
1491
|
+
|
|
1492
|
+
Args:
|
|
1493
|
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
1494
|
+
Indices of input sequence tokens in the vocabulary.
|
|
1495
|
+
|
|
1496
|
+
Returns:
|
|
1497
|
+
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
|
|
1498
|
+
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
|
|
1499
|
+
"""
|
|
1500
|
+
|
|
1501
|
+
if inputs_embeds is not None:
|
|
1502
|
+
is_image = (
|
|
1503
|
+
inputs_embeds
|
|
1504
|
+
== self.get_input_embeddings()(
|
|
1505
|
+
torch.tensor(self.config.image_start_token_id, dtype=torch.long, device=inputs_embeds.device)
|
|
1506
|
+
)
|
|
1507
|
+
)[..., 0]
|
|
1508
|
+
is_video_start = (
|
|
1509
|
+
inputs_embeds
|
|
1510
|
+
== self.get_input_embeddings()(
|
|
1511
|
+
torch.tensor(self.config.video_start_token_id, dtype=torch.long, device=inputs_embeds.device)
|
|
1512
|
+
)
|
|
1513
|
+
)[..., 0]
|
|
1514
|
+
is_video_end = (
|
|
1515
|
+
inputs_embeds
|
|
1516
|
+
== self.get_input_embeddings()(
|
|
1517
|
+
torch.tensor(self.config.video_end_token_id, dtype=torch.long, device=inputs_embeds.device)
|
|
1518
|
+
)
|
|
1519
|
+
)[..., 0]
|
|
1520
|
+
else:
|
|
1521
|
+
is_image = input_ids == self.config.image_start_token_id
|
|
1522
|
+
is_video_start = input_ids == self.config.video_start_token_id
|
|
1523
|
+
is_video_end = input_ids == self.config.video_end_token_id
|
|
1524
|
+
|
|
1525
|
+
# Cumulative sum to track if we're inside a video span
|
|
1526
|
+
# We'll assume well-formed video tags (i.e. matching starts and ends)
|
|
1527
|
+
video_level = torch.cumsum(is_video_start.int() - is_video_end.int(), dim=1)
|
|
1528
|
+
inside_video = video_level > 0 # shape (batch_size, seq_length)
|
|
1529
|
+
|
|
1530
|
+
# Mask out image tokens that are inside video spans
|
|
1531
|
+
standalone_images = is_image & (~inside_video)
|
|
1532
|
+
|
|
1533
|
+
# Count per batch
|
|
1534
|
+
image_counts = standalone_images.sum(dim=1)
|
|
1535
|
+
video_counts = is_video_start.sum(dim=1)
|
|
1536
|
+
|
|
1537
|
+
return image_counts, video_counts
|
|
1538
|
+
|
|
1539
|
+
def _expand_inputs_for_generation(
|
|
1540
|
+
self,
|
|
1541
|
+
expand_size: int = 1,
|
|
1542
|
+
is_encoder_decoder: bool = False,
|
|
1543
|
+
input_ids: torch.LongTensor | None = None,
|
|
1544
|
+
**model_kwargs,
|
|
1545
|
+
) -> tuple[torch.LongTensor, dict[str, Any]]:
|
|
1546
|
+
# Overwritten -- Support for expanding tensors without a batch size dimension
|
|
1547
|
+
# e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
|
|
1548
|
+
# pixel_values.shape[0] is sum(seqlen_images for samples)
|
|
1549
|
+
# image_grid_thw.shape[0] is sum(num_images for samples)
|
|
1550
|
+
|
|
1551
|
+
if expand_size == 1:
|
|
1552
|
+
return input_ids, model_kwargs
|
|
1553
|
+
|
|
1554
|
+
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]
|
|
1555
|
+
|
|
1556
|
+
def _expand_dict_for_generation_visual(dict_to_expand):
|
|
1557
|
+
image_grid_thw = model_kwargs.get("image_grid_thw", None)
|
|
1558
|
+
video_grid_thw = model_kwargs.get("video_grid_thw", None)
|
|
1559
|
+
image_nums, video_nums = self._get_image_nums_and_video_nums(
|
|
1560
|
+
input_ids, inputs_embeds=model_kwargs.get("inputs_embeds", None)
|
|
1561
|
+
)
|
|
1562
|
+
|
|
1563
|
+
def _repeat_interleave_samples(x, lengths, repeat_times):
|
|
1564
|
+
samples = torch.split(x, lengths)
|
|
1565
|
+
repeat_args = [repeat_times] + [1] * (x.dim() - 1)
|
|
1566
|
+
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
|
|
1567
|
+
return result
|
|
1568
|
+
|
|
1569
|
+
for key in dict_to_expand:
|
|
1570
|
+
if key == "pixel_values":
|
|
1571
|
+
# split images into samples
|
|
1572
|
+
samples = torch.split(image_grid_thw, list(image_nums))
|
|
1573
|
+
# compute the sequence length of images for each sample
|
|
1574
|
+
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
|
|
1575
|
+
dict_to_expand[key] = _repeat_interleave_samples(
|
|
1576
|
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
|
1577
|
+
)
|
|
1578
|
+
elif key == "image_grid_thw":
|
|
1579
|
+
# get the num of images for each sample
|
|
1580
|
+
lengths = list(image_nums)
|
|
1581
|
+
dict_to_expand[key] = _repeat_interleave_samples(
|
|
1582
|
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
|
1583
|
+
)
|
|
1584
|
+
elif key == "pixel_values_videos":
|
|
1585
|
+
samples = torch.split(video_grid_thw, list(video_nums))
|
|
1586
|
+
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
|
|
1587
|
+
dict_to_expand[key] = _repeat_interleave_samples(
|
|
1588
|
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
|
1589
|
+
)
|
|
1590
|
+
elif key == "video_grid_thw":
|
|
1591
|
+
lengths = list(video_nums)
|
|
1592
|
+
dict_to_expand[key] = _repeat_interleave_samples(
|
|
1593
|
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
|
1594
|
+
)
|
|
1595
|
+
elif key == "second_per_grid_ts":
|
|
1596
|
+
dict_to_expand[key] = _repeat_interleave_samples(
|
|
1597
|
+
dict_to_expand[key], lengths=list(video_nums), repeat_times=expand_size
|
|
1598
|
+
)
|
|
1599
|
+
return dict_to_expand
|
|
1600
|
+
|
|
1601
|
+
def _expand_dict_for_generation(dict_to_expand):
|
|
1602
|
+
for key in dict_to_expand:
|
|
1603
|
+
if (
|
|
1604
|
+
key != "cache_position"
|
|
1605
|
+
and dict_to_expand[key] is not None
|
|
1606
|
+
and isinstance(dict_to_expand[key], torch.Tensor)
|
|
1607
|
+
and key not in visual_keys
|
|
1608
|
+
):
|
|
1609
|
+
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
|
|
1610
|
+
return dict_to_expand
|
|
1611
|
+
|
|
1612
|
+
model_kwargs = _expand_dict_for_generation_visual(model_kwargs)
|
|
1613
|
+
|
|
1614
|
+
if input_ids is not None:
|
|
1615
|
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
|
1616
|
+
|
|
1617
|
+
model_kwargs = _expand_dict_for_generation(model_kwargs)
|
|
1618
|
+
|
|
1619
|
+
if is_encoder_decoder:
|
|
1620
|
+
if model_kwargs.get("encoder_outputs") is None:
|
|
1621
|
+
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
|
|
1622
|
+
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
|
|
1623
|
+
|
|
1624
|
+
return input_ids, model_kwargs
|
|
1625
|
+
|
|
1626
|
+
|
|
1627
|
+
__all__ = [
|
|
1628
|
+
"GlmOcrTextModel",
|
|
1629
|
+
"GlmOcrVisionModel",
|
|
1630
|
+
"GlmOcrModel",
|
|
1631
|
+
"GlmOcrPreTrainedModel",
|
|
1632
|
+
"GlmOcrForConditionalGeneration",
|
|
1633
|
+
]
|