transformers 5.0.0rc3__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +4 -11
- transformers/activations.py +2 -2
- transformers/backbone_utils.py +326 -0
- transformers/cache_utils.py +11 -2
- transformers/cli/serve.py +11 -8
- transformers/configuration_utils.py +1 -69
- transformers/conversion_mapping.py +146 -26
- transformers/convert_slow_tokenizer.py +6 -4
- transformers/core_model_loading.py +207 -118
- transformers/dependency_versions_check.py +0 -1
- transformers/dependency_versions_table.py +7 -8
- transformers/file_utils.py +0 -2
- transformers/generation/candidate_generator.py +1 -2
- transformers/generation/continuous_batching/cache.py +40 -38
- transformers/generation/continuous_batching/cache_manager.py +3 -16
- transformers/generation/continuous_batching/continuous_api.py +94 -406
- transformers/generation/continuous_batching/input_ouputs.py +464 -0
- transformers/generation/continuous_batching/requests.py +54 -17
- transformers/generation/continuous_batching/scheduler.py +77 -95
- transformers/generation/logits_process.py +10 -5
- transformers/generation/stopping_criteria.py +1 -2
- transformers/generation/utils.py +75 -95
- transformers/image_processing_utils.py +0 -3
- transformers/image_processing_utils_fast.py +17 -18
- transformers/image_transforms.py +44 -13
- transformers/image_utils.py +0 -5
- transformers/initialization.py +57 -0
- transformers/integrations/__init__.py +10 -24
- transformers/integrations/accelerate.py +47 -11
- transformers/integrations/deepspeed.py +145 -3
- transformers/integrations/executorch.py +2 -6
- transformers/integrations/finegrained_fp8.py +142 -7
- transformers/integrations/flash_attention.py +2 -7
- transformers/integrations/hub_kernels.py +18 -7
- transformers/integrations/moe.py +226 -106
- transformers/integrations/mxfp4.py +47 -34
- transformers/integrations/peft.py +488 -176
- transformers/integrations/tensor_parallel.py +641 -581
- transformers/masking_utils.py +153 -9
- transformers/modeling_flash_attention_utils.py +1 -2
- transformers/modeling_utils.py +359 -358
- transformers/models/__init__.py +6 -0
- transformers/models/afmoe/configuration_afmoe.py +14 -4
- transformers/models/afmoe/modeling_afmoe.py +8 -8
- transformers/models/afmoe/modular_afmoe.py +7 -7
- transformers/models/aimv2/configuration_aimv2.py +2 -7
- transformers/models/aimv2/modeling_aimv2.py +26 -24
- transformers/models/aimv2/modular_aimv2.py +8 -12
- transformers/models/albert/configuration_albert.py +8 -1
- transformers/models/albert/modeling_albert.py +3 -3
- transformers/models/align/configuration_align.py +8 -5
- transformers/models/align/modeling_align.py +22 -24
- transformers/models/altclip/configuration_altclip.py +4 -6
- transformers/models/altclip/modeling_altclip.py +30 -26
- transformers/models/apertus/configuration_apertus.py +5 -7
- transformers/models/apertus/modeling_apertus.py +4 -4
- transformers/models/apertus/modular_apertus.py +8 -10
- transformers/models/arcee/configuration_arcee.py +5 -7
- transformers/models/arcee/modeling_arcee.py +4 -4
- transformers/models/aria/configuration_aria.py +11 -21
- transformers/models/aria/modeling_aria.py +39 -36
- transformers/models/aria/modular_aria.py +33 -39
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +3 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +39 -30
- transformers/models/audioflamingo3/modular_audioflamingo3.py +41 -27
- transformers/models/auto/auto_factory.py +8 -6
- transformers/models/auto/configuration_auto.py +22 -0
- transformers/models/auto/image_processing_auto.py +17 -13
- transformers/models/auto/modeling_auto.py +15 -0
- transformers/models/auto/processing_auto.py +9 -18
- transformers/models/auto/tokenization_auto.py +17 -15
- transformers/models/autoformer/modeling_autoformer.py +2 -1
- transformers/models/aya_vision/configuration_aya_vision.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +29 -62
- transformers/models/aya_vision/modular_aya_vision.py +20 -45
- transformers/models/bamba/configuration_bamba.py +17 -7
- transformers/models/bamba/modeling_bamba.py +23 -55
- transformers/models/bamba/modular_bamba.py +19 -54
- transformers/models/bark/configuration_bark.py +2 -1
- transformers/models/bark/modeling_bark.py +24 -10
- transformers/models/bart/configuration_bart.py +9 -4
- transformers/models/bart/modeling_bart.py +9 -12
- transformers/models/beit/configuration_beit.py +2 -4
- transformers/models/beit/image_processing_beit_fast.py +3 -3
- transformers/models/beit/modeling_beit.py +14 -9
- transformers/models/bert/configuration_bert.py +12 -1
- transformers/models/bert/modeling_bert.py +6 -30
- transformers/models/bert_generation/configuration_bert_generation.py +17 -1
- transformers/models/bert_generation/modeling_bert_generation.py +6 -6
- transformers/models/big_bird/configuration_big_bird.py +12 -8
- transformers/models/big_bird/modeling_big_bird.py +0 -15
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -8
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +9 -7
- transformers/models/biogpt/configuration_biogpt.py +8 -1
- transformers/models/biogpt/modeling_biogpt.py +4 -8
- transformers/models/biogpt/modular_biogpt.py +1 -5
- transformers/models/bit/configuration_bit.py +2 -4
- transformers/models/bit/modeling_bit.py +6 -5
- transformers/models/bitnet/configuration_bitnet.py +5 -7
- transformers/models/bitnet/modeling_bitnet.py +3 -4
- transformers/models/bitnet/modular_bitnet.py +3 -4
- transformers/models/blenderbot/configuration_blenderbot.py +8 -4
- transformers/models/blenderbot/modeling_blenderbot.py +4 -4
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -4
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +4 -4
- transformers/models/blip/configuration_blip.py +9 -9
- transformers/models/blip/modeling_blip.py +55 -37
- transformers/models/blip_2/configuration_blip_2.py +2 -1
- transformers/models/blip_2/modeling_blip_2.py +81 -56
- transformers/models/bloom/configuration_bloom.py +5 -1
- transformers/models/bloom/modeling_bloom.py +2 -1
- transformers/models/blt/configuration_blt.py +23 -12
- transformers/models/blt/modeling_blt.py +20 -14
- transformers/models/blt/modular_blt.py +70 -10
- transformers/models/bridgetower/configuration_bridgetower.py +7 -1
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +6 -6
- transformers/models/bridgetower/modeling_bridgetower.py +29 -15
- transformers/models/bros/configuration_bros.py +24 -17
- transformers/models/camembert/configuration_camembert.py +8 -1
- transformers/models/camembert/modeling_camembert.py +6 -6
- transformers/models/canine/configuration_canine.py +4 -1
- transformers/models/chameleon/configuration_chameleon.py +5 -7
- transformers/models/chameleon/image_processing_chameleon_fast.py +5 -5
- transformers/models/chameleon/modeling_chameleon.py +82 -36
- transformers/models/chinese_clip/configuration_chinese_clip.py +10 -7
- transformers/models/chinese_clip/modeling_chinese_clip.py +28 -29
- transformers/models/clap/configuration_clap.py +4 -8
- transformers/models/clap/modeling_clap.py +21 -22
- transformers/models/clip/configuration_clip.py +4 -1
- transformers/models/clip/image_processing_clip_fast.py +9 -0
- transformers/models/clip/modeling_clip.py +25 -22
- transformers/models/clipseg/configuration_clipseg.py +4 -1
- transformers/models/clipseg/modeling_clipseg.py +27 -25
- transformers/models/clipseg/processing_clipseg.py +11 -3
- transformers/models/clvp/configuration_clvp.py +14 -2
- transformers/models/clvp/modeling_clvp.py +19 -30
- transformers/models/codegen/configuration_codegen.py +4 -3
- transformers/models/codegen/modeling_codegen.py +2 -1
- transformers/models/cohere/configuration_cohere.py +5 -7
- transformers/models/cohere/modeling_cohere.py +4 -4
- transformers/models/cohere/modular_cohere.py +3 -3
- transformers/models/cohere2/configuration_cohere2.py +6 -8
- transformers/models/cohere2/modeling_cohere2.py +4 -4
- transformers/models/cohere2/modular_cohere2.py +9 -11
- transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +3 -3
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +24 -25
- transformers/models/cohere2_vision/modular_cohere2_vision.py +20 -20
- transformers/models/colqwen2/modeling_colqwen2.py +7 -6
- transformers/models/colqwen2/modular_colqwen2.py +7 -6
- transformers/models/conditional_detr/configuration_conditional_detr.py +19 -46
- transformers/models/conditional_detr/image_processing_conditional_detr.py +3 -4
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +28 -14
- transformers/models/conditional_detr/modeling_conditional_detr.py +794 -942
- transformers/models/conditional_detr/modular_conditional_detr.py +901 -3
- transformers/models/convbert/configuration_convbert.py +11 -7
- transformers/models/convnext/configuration_convnext.py +2 -4
- transformers/models/convnext/image_processing_convnext_fast.py +2 -2
- transformers/models/convnext/modeling_convnext.py +7 -6
- transformers/models/convnextv2/configuration_convnextv2.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +7 -6
- transformers/models/cpmant/configuration_cpmant.py +4 -0
- transformers/models/csm/configuration_csm.py +9 -15
- transformers/models/csm/modeling_csm.py +3 -3
- transformers/models/ctrl/configuration_ctrl.py +16 -0
- transformers/models/ctrl/modeling_ctrl.py +13 -25
- transformers/models/cwm/configuration_cwm.py +5 -7
- transformers/models/cwm/modeling_cwm.py +4 -4
- transformers/models/d_fine/configuration_d_fine.py +10 -56
- transformers/models/d_fine/modeling_d_fine.py +728 -868
- transformers/models/d_fine/modular_d_fine.py +335 -412
- transformers/models/dab_detr/configuration_dab_detr.py +22 -48
- transformers/models/dab_detr/modeling_dab_detr.py +11 -7
- transformers/models/dac/modeling_dac.py +1 -1
- transformers/models/data2vec/configuration_data2vec_audio.py +4 -1
- transformers/models/data2vec/configuration_data2vec_text.py +11 -2
- transformers/models/data2vec/modeling_data2vec_audio.py +3 -3
- transformers/models/data2vec/modeling_data2vec_text.py +6 -6
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -2
- transformers/models/dbrx/configuration_dbrx.py +11 -3
- transformers/models/dbrx/modeling_dbrx.py +6 -6
- transformers/models/dbrx/modular_dbrx.py +6 -6
- transformers/models/deberta/configuration_deberta.py +6 -0
- transformers/models/deberta_v2/configuration_deberta_v2.py +6 -0
- transformers/models/decision_transformer/configuration_decision_transformer.py +3 -1
- transformers/models/decision_transformer/modeling_decision_transformer.py +3 -3
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +7 -10
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -8
- transformers/models/deepseek_v2/modular_deepseek_v2.py +8 -10
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +7 -10
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +7 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -5
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +4 -0
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +2 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +5 -5
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +17 -12
- transformers/models/deepseek_vl/modular_deepseek_vl.py +4 -0
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +4 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +2 -2
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +6 -6
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +68 -24
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +70 -19
- transformers/models/deformable_detr/configuration_deformable_detr.py +22 -45
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +25 -11
- transformers/models/deformable_detr/modeling_deformable_detr.py +410 -607
- transformers/models/deformable_detr/modular_deformable_detr.py +1385 -3
- transformers/models/deit/modeling_deit.py +11 -7
- transformers/models/depth_anything/configuration_depth_anything.py +12 -42
- transformers/models/depth_anything/modeling_depth_anything.py +5 -3
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +2 -2
- transformers/models/depth_pro/modeling_depth_pro.py +8 -4
- transformers/models/detr/configuration_detr.py +18 -49
- transformers/models/detr/image_processing_detr_fast.py +11 -11
- transformers/models/detr/modeling_detr.py +695 -734
- transformers/models/dia/configuration_dia.py +4 -7
- transformers/models/dia/generation_dia.py +8 -17
- transformers/models/dia/modeling_dia.py +7 -7
- transformers/models/dia/modular_dia.py +4 -4
- transformers/models/diffllama/configuration_diffllama.py +5 -7
- transformers/models/diffllama/modeling_diffllama.py +3 -8
- transformers/models/diffllama/modular_diffllama.py +2 -7
- transformers/models/dinat/configuration_dinat.py +2 -4
- transformers/models/dinat/modeling_dinat.py +7 -6
- transformers/models/dinov2/configuration_dinov2.py +2 -4
- transformers/models/dinov2/modeling_dinov2.py +9 -8
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +2 -4
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +9 -8
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +6 -7
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +2 -4
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +2 -3
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +2 -4
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +2 -2
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -6
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -6
- transformers/models/distilbert/configuration_distilbert.py +8 -1
- transformers/models/distilbert/modeling_distilbert.py +3 -3
- transformers/models/doge/configuration_doge.py +17 -7
- transformers/models/doge/modeling_doge.py +4 -4
- transformers/models/doge/modular_doge.py +20 -10
- transformers/models/donut/image_processing_donut_fast.py +4 -4
- transformers/models/dots1/configuration_dots1.py +16 -7
- transformers/models/dots1/modeling_dots1.py +4 -4
- transformers/models/dpr/configuration_dpr.py +19 -1
- transformers/models/dpt/configuration_dpt.py +23 -65
- transformers/models/dpt/image_processing_dpt_fast.py +5 -5
- transformers/models/dpt/modeling_dpt.py +19 -15
- transformers/models/dpt/modular_dpt.py +4 -4
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +53 -53
- transformers/models/edgetam/modular_edgetam.py +5 -7
- transformers/models/edgetam_video/modeling_edgetam_video.py +55 -56
- transformers/models/edgetam_video/modular_edgetam_video.py +9 -9
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +4 -3
- transformers/models/efficientloftr/modeling_efficientloftr.py +19 -9
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +2 -2
- transformers/models/electra/configuration_electra.py +13 -2
- transformers/models/electra/modeling_electra.py +6 -6
- transformers/models/emu3/configuration_emu3.py +12 -10
- transformers/models/emu3/modeling_emu3.py +84 -47
- transformers/models/emu3/modular_emu3.py +77 -39
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -1
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +20 -24
- transformers/models/eomt/configuration_eomt.py +12 -13
- transformers/models/eomt/image_processing_eomt_fast.py +3 -3
- transformers/models/eomt/modeling_eomt.py +3 -3
- transformers/models/eomt/modular_eomt.py +17 -17
- transformers/models/eomt_dinov3/__init__.py +28 -0
- transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
- transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
- transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
- transformers/models/ernie/configuration_ernie.py +24 -2
- transformers/models/ernie/modeling_ernie.py +6 -30
- transformers/models/ernie4_5/configuration_ernie4_5.py +5 -7
- transformers/models/ernie4_5/modeling_ernie4_5.py +4 -4
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +7 -10
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +4 -4
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -6
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +229 -188
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +79 -55
- transformers/models/esm/configuration_esm.py +9 -11
- transformers/models/esm/modeling_esm.py +3 -3
- transformers/models/esm/modeling_esmfold.py +1 -6
- transformers/models/esm/openfold_utils/protein.py +2 -3
- transformers/models/evolla/configuration_evolla.py +21 -8
- transformers/models/evolla/modeling_evolla.py +11 -7
- transformers/models/evolla/modular_evolla.py +5 -1
- transformers/models/exaone4/configuration_exaone4.py +8 -5
- transformers/models/exaone4/modeling_exaone4.py +4 -4
- transformers/models/exaone4/modular_exaone4.py +11 -8
- transformers/models/exaone_moe/__init__.py +27 -0
- transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
- transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
- transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
- transformers/models/falcon/configuration_falcon.py +9 -1
- transformers/models/falcon/modeling_falcon.py +3 -8
- transformers/models/falcon_h1/configuration_falcon_h1.py +17 -8
- transformers/models/falcon_h1/modeling_falcon_h1.py +22 -54
- transformers/models/falcon_h1/modular_falcon_h1.py +21 -52
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -1
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +18 -26
- transformers/models/falcon_mamba/modular_falcon_mamba.py +4 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +10 -1
- transformers/models/fast_vlm/modeling_fast_vlm.py +37 -64
- transformers/models/fast_vlm/modular_fast_vlm.py +146 -35
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +0 -1
- transformers/models/flaubert/configuration_flaubert.py +10 -4
- transformers/models/flaubert/modeling_flaubert.py +1 -1
- transformers/models/flava/configuration_flava.py +4 -3
- transformers/models/flava/image_processing_flava_fast.py +4 -4
- transformers/models/flava/modeling_flava.py +36 -28
- transformers/models/flex_olmo/configuration_flex_olmo.py +11 -14
- transformers/models/flex_olmo/modeling_flex_olmo.py +4 -4
- transformers/models/flex_olmo/modular_flex_olmo.py +11 -14
- transformers/models/florence2/configuration_florence2.py +4 -0
- transformers/models/florence2/modeling_florence2.py +57 -32
- transformers/models/florence2/modular_florence2.py +48 -26
- transformers/models/fnet/configuration_fnet.py +6 -1
- transformers/models/focalnet/configuration_focalnet.py +2 -4
- transformers/models/focalnet/modeling_focalnet.py +10 -7
- transformers/models/fsmt/configuration_fsmt.py +12 -16
- transformers/models/funnel/configuration_funnel.py +8 -0
- transformers/models/fuyu/configuration_fuyu.py +5 -8
- transformers/models/fuyu/image_processing_fuyu_fast.py +5 -4
- transformers/models/fuyu/modeling_fuyu.py +24 -23
- transformers/models/gemma/configuration_gemma.py +5 -7
- transformers/models/gemma/modeling_gemma.py +4 -4
- transformers/models/gemma/modular_gemma.py +5 -7
- transformers/models/gemma2/configuration_gemma2.py +5 -7
- transformers/models/gemma2/modeling_gemma2.py +4 -4
- transformers/models/gemma2/modular_gemma2.py +8 -10
- transformers/models/gemma3/configuration_gemma3.py +28 -22
- transformers/models/gemma3/image_processing_gemma3_fast.py +2 -2
- transformers/models/gemma3/modeling_gemma3.py +37 -33
- transformers/models/gemma3/modular_gemma3.py +46 -42
- transformers/models/gemma3n/configuration_gemma3n.py +35 -22
- transformers/models/gemma3n/modeling_gemma3n.py +86 -58
- transformers/models/gemma3n/modular_gemma3n.py +112 -75
- transformers/models/git/configuration_git.py +5 -7
- transformers/models/git/modeling_git.py +31 -41
- transformers/models/glm/configuration_glm.py +7 -9
- transformers/models/glm/modeling_glm.py +4 -4
- transformers/models/glm4/configuration_glm4.py +7 -9
- transformers/models/glm4/modeling_glm4.py +4 -4
- transformers/models/glm46v/configuration_glm46v.py +4 -0
- transformers/models/glm46v/image_processing_glm46v.py +5 -2
- transformers/models/glm46v/image_processing_glm46v_fast.py +2 -2
- transformers/models/glm46v/modeling_glm46v.py +91 -46
- transformers/models/glm46v/modular_glm46v.py +4 -0
- transformers/models/glm4_moe/configuration_glm4_moe.py +17 -7
- transformers/models/glm4_moe/modeling_glm4_moe.py +4 -4
- transformers/models/glm4_moe/modular_glm4_moe.py +17 -7
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +8 -10
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +7 -7
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +8 -10
- transformers/models/glm4v/configuration_glm4v.py +12 -8
- transformers/models/glm4v/image_processing_glm4v.py +5 -2
- transformers/models/glm4v/image_processing_glm4v_fast.py +2 -2
- transformers/models/glm4v/modeling_glm4v.py +120 -63
- transformers/models/glm4v/modular_glm4v.py +82 -50
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +18 -6
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +115 -63
- transformers/models/glm4v_moe/modular_glm4v_moe.py +23 -12
- transformers/models/glm_image/configuration_glm_image.py +26 -20
- transformers/models/glm_image/image_processing_glm_image.py +1 -1
- transformers/models/glm_image/image_processing_glm_image_fast.py +5 -7
- transformers/models/glm_image/modeling_glm_image.py +337 -236
- transformers/models/glm_image/modular_glm_image.py +415 -255
- transformers/models/glm_image/processing_glm_image.py +65 -17
- transformers/{pipelines/deprecated → models/glm_ocr}/__init__.py +15 -2
- transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
- transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
- transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
- transformers/models/glmasr/modeling_glmasr.py +34 -28
- transformers/models/glmasr/modular_glmasr.py +23 -11
- transformers/models/glpn/image_processing_glpn_fast.py +3 -3
- transformers/models/glpn/modeling_glpn.py +4 -2
- transformers/models/got_ocr2/configuration_got_ocr2.py +6 -6
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +3 -3
- transformers/models/got_ocr2/modeling_got_ocr2.py +31 -37
- transformers/models/got_ocr2/modular_got_ocr2.py +30 -19
- transformers/models/gpt2/configuration_gpt2.py +13 -1
- transformers/models/gpt2/modeling_gpt2.py +5 -5
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -1
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +5 -4
- transformers/models/gpt_neo/configuration_gpt_neo.py +9 -1
- transformers/models/gpt_neo/modeling_gpt_neo.py +3 -7
- transformers/models/gpt_neox/configuration_gpt_neox.py +8 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +4 -4
- transformers/models/gpt_neox/modular_gpt_neox.py +4 -4
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +9 -1
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +2 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +10 -6
- transformers/models/gpt_oss/modeling_gpt_oss.py +46 -79
- transformers/models/gpt_oss/modular_gpt_oss.py +45 -78
- transformers/models/gptj/configuration_gptj.py +4 -4
- transformers/models/gptj/modeling_gptj.py +3 -7
- transformers/models/granite/configuration_granite.py +5 -7
- transformers/models/granite/modeling_granite.py +4 -4
- transformers/models/granite_speech/modeling_granite_speech.py +63 -37
- transformers/models/granitemoe/configuration_granitemoe.py +5 -7
- transformers/models/granitemoe/modeling_granitemoe.py +4 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +17 -7
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +22 -54
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +39 -45
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +6 -7
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +4 -4
- transformers/models/grounding_dino/configuration_grounding_dino.py +10 -45
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +11 -11
- transformers/models/grounding_dino/modeling_grounding_dino.py +68 -86
- transformers/models/groupvit/configuration_groupvit.py +4 -1
- transformers/models/groupvit/modeling_groupvit.py +29 -22
- transformers/models/helium/configuration_helium.py +5 -7
- transformers/models/helium/modeling_helium.py +4 -4
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -4
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +6 -5
- transformers/models/hgnet_v2/modular_hgnet_v2.py +7 -8
- transformers/models/hiera/configuration_hiera.py +2 -4
- transformers/models/hiera/modeling_hiera.py +11 -8
- transformers/models/hubert/configuration_hubert.py +4 -1
- transformers/models/hubert/modeling_hubert.py +7 -4
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +5 -7
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +28 -4
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +28 -6
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +6 -8
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +22 -9
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +22 -8
- transformers/models/ibert/configuration_ibert.py +4 -1
- transformers/models/idefics/configuration_idefics.py +5 -7
- transformers/models/idefics/modeling_idefics.py +3 -4
- transformers/models/idefics/vision.py +5 -4
- transformers/models/idefics2/configuration_idefics2.py +1 -2
- transformers/models/idefics2/image_processing_idefics2_fast.py +1 -0
- transformers/models/idefics2/modeling_idefics2.py +72 -50
- transformers/models/idefics3/configuration_idefics3.py +1 -3
- transformers/models/idefics3/image_processing_idefics3_fast.py +29 -3
- transformers/models/idefics3/modeling_idefics3.py +63 -40
- transformers/models/ijepa/modeling_ijepa.py +3 -3
- transformers/models/imagegpt/configuration_imagegpt.py +9 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +2 -2
- transformers/models/imagegpt/modeling_imagegpt.py +8 -4
- transformers/models/informer/modeling_informer.py +3 -3
- transformers/models/instructblip/configuration_instructblip.py +2 -1
- transformers/models/instructblip/modeling_instructblip.py +65 -39
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -1
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +60 -57
- transformers/models/instructblipvideo/modular_instructblipvideo.py +43 -32
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +2 -2
- transformers/models/internvl/configuration_internvl.py +5 -0
- transformers/models/internvl/modeling_internvl.py +35 -55
- transformers/models/internvl/modular_internvl.py +26 -38
- transformers/models/internvl/video_processing_internvl.py +2 -2
- transformers/models/jais2/configuration_jais2.py +5 -7
- transformers/models/jais2/modeling_jais2.py +4 -4
- transformers/models/jamba/configuration_jamba.py +5 -7
- transformers/models/jamba/modeling_jamba.py +4 -4
- transformers/models/jamba/modular_jamba.py +3 -3
- transformers/models/janus/image_processing_janus.py +2 -2
- transformers/models/janus/image_processing_janus_fast.py +8 -8
- transformers/models/janus/modeling_janus.py +63 -146
- transformers/models/janus/modular_janus.py +62 -20
- transformers/models/jetmoe/configuration_jetmoe.py +6 -4
- transformers/models/jetmoe/modeling_jetmoe.py +3 -3
- transformers/models/jetmoe/modular_jetmoe.py +3 -3
- transformers/models/kosmos2/configuration_kosmos2.py +10 -8
- transformers/models/kosmos2/modeling_kosmos2.py +56 -34
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -8
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +54 -63
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +8 -3
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +44 -40
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +1 -1
- transformers/models/lasr/configuration_lasr.py +2 -4
- transformers/models/lasr/modeling_lasr.py +3 -3
- transformers/models/lasr/modular_lasr.py +3 -3
- transformers/models/layoutlm/configuration_layoutlm.py +14 -1
- transformers/models/layoutlm/modeling_layoutlm.py +3 -3
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -16
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +2 -2
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -18
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +2 -2
- transformers/models/layoutxlm/configuration_layoutxlm.py +14 -16
- transformers/models/led/configuration_led.py +7 -8
- transformers/models/levit/image_processing_levit_fast.py +4 -4
- transformers/models/lfm2/configuration_lfm2.py +5 -7
- transformers/models/lfm2/modeling_lfm2.py +4 -4
- transformers/models/lfm2/modular_lfm2.py +3 -3
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +5 -7
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +4 -4
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +9 -15
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +42 -28
- transformers/models/lfm2_vl/modular_lfm2_vl.py +42 -27
- transformers/models/lightglue/image_processing_lightglue_fast.py +4 -3
- transformers/models/lightglue/modeling_lightglue.py +3 -3
- transformers/models/lightglue/modular_lightglue.py +3 -3
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +31 -28
- transformers/models/lighton_ocr/modular_lighton_ocr.py +19 -18
- transformers/models/lilt/configuration_lilt.py +6 -1
- transformers/models/llama/configuration_llama.py +5 -7
- transformers/models/llama/modeling_llama.py +4 -4
- transformers/models/llama4/configuration_llama4.py +67 -47
- transformers/models/llama4/image_processing_llama4_fast.py +3 -3
- transformers/models/llama4/modeling_llama4.py +46 -44
- transformers/models/llava/configuration_llava.py +10 -0
- transformers/models/llava/image_processing_llava_fast.py +3 -3
- transformers/models/llava/modeling_llava.py +38 -65
- transformers/models/llava_next/configuration_llava_next.py +2 -1
- transformers/models/llava_next/image_processing_llava_next_fast.py +6 -6
- transformers/models/llava_next/modeling_llava_next.py +61 -60
- transformers/models/llava_next_video/configuration_llava_next_video.py +10 -6
- transformers/models/llava_next_video/modeling_llava_next_video.py +115 -100
- transformers/models/llava_next_video/modular_llava_next_video.py +110 -101
- transformers/models/llava_onevision/configuration_llava_onevision.py +10 -6
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +8 -7
- transformers/models/llava_onevision/modeling_llava_onevision.py +111 -105
- transformers/models/llava_onevision/modular_llava_onevision.py +106 -101
- transformers/models/longcat_flash/configuration_longcat_flash.py +7 -10
- transformers/models/longcat_flash/modeling_longcat_flash.py +7 -7
- transformers/models/longcat_flash/modular_longcat_flash.py +6 -5
- transformers/models/longformer/configuration_longformer.py +4 -1
- transformers/models/longt5/configuration_longt5.py +9 -6
- transformers/models/longt5/modeling_longt5.py +2 -1
- transformers/models/luke/configuration_luke.py +8 -1
- transformers/models/lw_detr/configuration_lw_detr.py +19 -31
- transformers/models/lw_detr/modeling_lw_detr.py +43 -44
- transformers/models/lw_detr/modular_lw_detr.py +36 -38
- transformers/models/lxmert/configuration_lxmert.py +16 -0
- transformers/models/m2m_100/configuration_m2m_100.py +7 -8
- transformers/models/m2m_100/modeling_m2m_100.py +3 -3
- transformers/models/mamba/configuration_mamba.py +5 -2
- transformers/models/mamba/modeling_mamba.py +18 -26
- transformers/models/mamba2/configuration_mamba2.py +5 -7
- transformers/models/mamba2/modeling_mamba2.py +22 -33
- transformers/models/marian/configuration_marian.py +10 -4
- transformers/models/marian/modeling_marian.py +4 -4
- transformers/models/markuplm/configuration_markuplm.py +4 -6
- transformers/models/markuplm/modeling_markuplm.py +3 -3
- transformers/models/mask2former/configuration_mask2former.py +12 -47
- transformers/models/mask2former/image_processing_mask2former_fast.py +8 -8
- transformers/models/mask2former/modeling_mask2former.py +18 -12
- transformers/models/maskformer/configuration_maskformer.py +14 -45
- transformers/models/maskformer/configuration_maskformer_swin.py +2 -4
- transformers/models/maskformer/image_processing_maskformer_fast.py +8 -8
- transformers/models/maskformer/modeling_maskformer.py +15 -9
- transformers/models/maskformer/modeling_maskformer_swin.py +2 -3
- transformers/models/mbart/configuration_mbart.py +9 -4
- transformers/models/mbart/modeling_mbart.py +9 -6
- transformers/models/megatron_bert/configuration_megatron_bert.py +13 -2
- transformers/models/megatron_bert/modeling_megatron_bert.py +0 -15
- transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
- transformers/models/metaclip_2/modeling_metaclip_2.py +49 -42
- transformers/models/metaclip_2/modular_metaclip_2.py +41 -25
- transformers/models/mgp_str/modeling_mgp_str.py +4 -2
- transformers/models/mimi/configuration_mimi.py +4 -0
- transformers/models/mimi/modeling_mimi.py +40 -36
- transformers/models/minimax/configuration_minimax.py +8 -11
- transformers/models/minimax/modeling_minimax.py +5 -5
- transformers/models/minimax/modular_minimax.py +9 -12
- transformers/models/minimax_m2/configuration_minimax_m2.py +8 -31
- transformers/models/minimax_m2/modeling_minimax_m2.py +4 -4
- transformers/models/minimax_m2/modular_minimax_m2.py +8 -31
- transformers/models/ministral/configuration_ministral.py +5 -7
- transformers/models/ministral/modeling_ministral.py +4 -4
- transformers/models/ministral/modular_ministral.py +5 -8
- transformers/models/ministral3/configuration_ministral3.py +4 -4
- transformers/models/ministral3/modeling_ministral3.py +4 -4
- transformers/models/ministral3/modular_ministral3.py +3 -3
- transformers/models/mistral/configuration_mistral.py +5 -7
- transformers/models/mistral/modeling_mistral.py +4 -4
- transformers/models/mistral/modular_mistral.py +3 -3
- transformers/models/mistral3/configuration_mistral3.py +4 -0
- transformers/models/mistral3/modeling_mistral3.py +36 -40
- transformers/models/mistral3/modular_mistral3.py +31 -32
- transformers/models/mixtral/configuration_mixtral.py +8 -11
- transformers/models/mixtral/modeling_mixtral.py +4 -4
- transformers/models/mlcd/modeling_mlcd.py +7 -5
- transformers/models/mlcd/modular_mlcd.py +7 -5
- transformers/models/mllama/configuration_mllama.py +5 -7
- transformers/models/mllama/image_processing_mllama_fast.py +6 -5
- transformers/models/mllama/modeling_mllama.py +19 -19
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -45
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +66 -84
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -45
- transformers/models/mobilebert/configuration_mobilebert.py +4 -1
- transformers/models/mobilebert/modeling_mobilebert.py +3 -3
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +4 -4
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +4 -2
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +4 -4
- transformers/models/mobilevit/modeling_mobilevit.py +4 -2
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -2
- transformers/models/modernbert/configuration_modernbert.py +46 -21
- transformers/models/modernbert/modeling_modernbert.py +146 -899
- transformers/models/modernbert/modular_modernbert.py +185 -908
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +21 -13
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -17
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +24 -23
- transformers/models/moonshine/configuration_moonshine.py +12 -7
- transformers/models/moonshine/modeling_moonshine.py +7 -7
- transformers/models/moonshine/modular_moonshine.py +19 -13
- transformers/models/moshi/configuration_moshi.py +28 -2
- transformers/models/moshi/modeling_moshi.py +4 -9
- transformers/models/mpnet/configuration_mpnet.py +6 -1
- transformers/models/mpt/configuration_mpt.py +16 -0
- transformers/models/mra/configuration_mra.py +8 -1
- transformers/models/mt5/configuration_mt5.py +9 -5
- transformers/models/mt5/modeling_mt5.py +5 -8
- transformers/models/musicgen/configuration_musicgen.py +12 -7
- transformers/models/musicgen/modeling_musicgen.py +6 -5
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -7
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -17
- transformers/models/mvp/configuration_mvp.py +8 -4
- transformers/models/mvp/modeling_mvp.py +6 -4
- transformers/models/nanochat/configuration_nanochat.py +5 -7
- transformers/models/nanochat/modeling_nanochat.py +4 -4
- transformers/models/nanochat/modular_nanochat.py +4 -4
- transformers/models/nemotron/configuration_nemotron.py +5 -7
- transformers/models/nemotron/modeling_nemotron.py +4 -14
- transformers/models/nllb/tokenization_nllb.py +7 -5
- transformers/models/nllb_moe/configuration_nllb_moe.py +7 -9
- transformers/models/nllb_moe/modeling_nllb_moe.py +3 -3
- transformers/models/nougat/image_processing_nougat_fast.py +8 -8
- transformers/models/nystromformer/configuration_nystromformer.py +8 -1
- transformers/models/olmo/configuration_olmo.py +5 -7
- transformers/models/olmo/modeling_olmo.py +4 -4
- transformers/models/olmo/modular_olmo.py +3 -3
- transformers/models/olmo2/configuration_olmo2.py +9 -11
- transformers/models/olmo2/modeling_olmo2.py +4 -4
- transformers/models/olmo2/modular_olmo2.py +7 -7
- transformers/models/olmo3/configuration_olmo3.py +10 -11
- transformers/models/olmo3/modeling_olmo3.py +4 -4
- transformers/models/olmo3/modular_olmo3.py +13 -14
- transformers/models/olmoe/configuration_olmoe.py +5 -7
- transformers/models/olmoe/modeling_olmoe.py +4 -4
- transformers/models/olmoe/modular_olmoe.py +3 -3
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -49
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +22 -18
- transformers/models/oneformer/configuration_oneformer.py +9 -46
- transformers/models/oneformer/image_processing_oneformer_fast.py +8 -8
- transformers/models/oneformer/modeling_oneformer.py +14 -9
- transformers/models/openai/configuration_openai.py +16 -0
- transformers/models/opt/configuration_opt.py +6 -6
- transformers/models/opt/modeling_opt.py +5 -5
- transformers/models/ovis2/configuration_ovis2.py +4 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +3 -3
- transformers/models/ovis2/modeling_ovis2.py +58 -99
- transformers/models/ovis2/modular_ovis2.py +52 -13
- transformers/models/owlv2/configuration_owlv2.py +4 -1
- transformers/models/owlv2/image_processing_owlv2_fast.py +5 -5
- transformers/models/owlv2/modeling_owlv2.py +40 -27
- transformers/models/owlv2/modular_owlv2.py +5 -5
- transformers/models/owlvit/configuration_owlvit.py +4 -1
- transformers/models/owlvit/modeling_owlvit.py +40 -27
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +9 -10
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +88 -87
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +82 -53
- transformers/models/paligemma/configuration_paligemma.py +4 -0
- transformers/models/paligemma/modeling_paligemma.py +30 -26
- transformers/models/parakeet/configuration_parakeet.py +2 -4
- transformers/models/parakeet/modeling_parakeet.py +3 -3
- transformers/models/parakeet/modular_parakeet.py +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +3 -3
- transformers/models/patchtst/modeling_patchtst.py +3 -3
- transformers/models/pe_audio/modeling_pe_audio.py +4 -4
- transformers/models/pe_audio/modular_pe_audio.py +1 -1
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +4 -4
- transformers/models/pe_audio_video/modular_pe_audio_video.py +4 -4
- transformers/models/pe_video/modeling_pe_video.py +36 -24
- transformers/models/pe_video/modular_pe_video.py +36 -23
- transformers/models/pegasus/configuration_pegasus.py +8 -5
- transformers/models/pegasus/modeling_pegasus.py +4 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +5 -3
- transformers/models/pegasus_x/modeling_pegasus_x.py +3 -3
- transformers/models/perceiver/image_processing_perceiver_fast.py +2 -2
- transformers/models/perceiver/modeling_perceiver.py +17 -9
- transformers/models/perception_lm/modeling_perception_lm.py +26 -27
- transformers/models/perception_lm/modular_perception_lm.py +27 -25
- transformers/models/persimmon/configuration_persimmon.py +5 -7
- transformers/models/persimmon/modeling_persimmon.py +5 -5
- transformers/models/phi/configuration_phi.py +8 -6
- transformers/models/phi/modeling_phi.py +4 -4
- transformers/models/phi/modular_phi.py +3 -3
- transformers/models/phi3/configuration_phi3.py +9 -11
- transformers/models/phi3/modeling_phi3.py +4 -4
- transformers/models/phi3/modular_phi3.py +3 -3
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +11 -13
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +4 -4
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +46 -61
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +44 -30
- transformers/models/phimoe/configuration_phimoe.py +5 -7
- transformers/models/phimoe/modeling_phimoe.py +15 -39
- transformers/models/phimoe/modular_phimoe.py +12 -7
- transformers/models/pix2struct/configuration_pix2struct.py +12 -9
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +5 -5
- transformers/models/pix2struct/modeling_pix2struct.py +14 -7
- transformers/models/pixio/configuration_pixio.py +2 -4
- transformers/models/pixio/modeling_pixio.py +9 -8
- transformers/models/pixio/modular_pixio.py +4 -2
- transformers/models/pixtral/image_processing_pixtral_fast.py +5 -5
- transformers/models/pixtral/modeling_pixtral.py +9 -12
- transformers/models/plbart/configuration_plbart.py +8 -5
- transformers/models/plbart/modeling_plbart.py +9 -7
- transformers/models/plbart/modular_plbart.py +1 -1
- transformers/models/poolformer/image_processing_poolformer_fast.py +7 -7
- transformers/models/pop2piano/configuration_pop2piano.py +7 -6
- transformers/models/pop2piano/modeling_pop2piano.py +2 -1
- transformers/models/pp_doclayout_v3/__init__.py +30 -0
- transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
- transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
- transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
- transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +12 -46
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +6 -6
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +8 -6
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +12 -10
- transformers/models/prophetnet/configuration_prophetnet.py +11 -10
- transformers/models/prophetnet/modeling_prophetnet.py +12 -23
- transformers/models/pvt/image_processing_pvt.py +7 -7
- transformers/models/pvt/image_processing_pvt_fast.py +1 -1
- transformers/models/pvt_v2/configuration_pvt_v2.py +2 -4
- transformers/models/pvt_v2/modeling_pvt_v2.py +6 -5
- transformers/models/qwen2/configuration_qwen2.py +14 -4
- transformers/models/qwen2/modeling_qwen2.py +4 -4
- transformers/models/qwen2/modular_qwen2.py +3 -3
- transformers/models/qwen2/tokenization_qwen2.py +0 -4
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +17 -5
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +108 -88
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +115 -87
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +7 -10
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +98 -53
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +18 -6
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +12 -12
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +14 -4
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +4 -4
- transformers/models/qwen2_moe/modular_qwen2_moe.py +3 -3
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +7 -10
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +4 -6
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +97 -53
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +4 -6
- transformers/models/qwen3/configuration_qwen3.py +15 -5
- transformers/models/qwen3/modeling_qwen3.py +4 -4
- transformers/models/qwen3/modular_qwen3.py +3 -3
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +20 -7
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +4 -4
- transformers/models/qwen3_next/configuration_qwen3_next.py +16 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +5 -5
- transformers/models/qwen3_next/modular_qwen3_next.py +4 -4
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +55 -19
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +161 -98
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +107 -34
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +7 -6
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +115 -49
- transformers/models/qwen3_vl/modular_qwen3_vl.py +88 -37
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +7 -6
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +173 -99
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +23 -7
- transformers/models/rag/configuration_rag.py +6 -6
- transformers/models/rag/modeling_rag.py +3 -3
- transformers/models/rag/retrieval_rag.py +1 -1
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +8 -6
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +4 -5
- transformers/models/reformer/configuration_reformer.py +7 -7
- transformers/models/rembert/configuration_rembert.py +8 -1
- transformers/models/rembert/modeling_rembert.py +0 -22
- transformers/models/resnet/configuration_resnet.py +2 -4
- transformers/models/resnet/modeling_resnet.py +6 -5
- transformers/models/roberta/configuration_roberta.py +11 -2
- transformers/models/roberta/modeling_roberta.py +6 -6
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -2
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +6 -6
- transformers/models/roc_bert/configuration_roc_bert.py +8 -1
- transformers/models/roc_bert/modeling_roc_bert.py +6 -41
- transformers/models/roformer/configuration_roformer.py +13 -2
- transformers/models/roformer/modeling_roformer.py +0 -14
- transformers/models/rt_detr/configuration_rt_detr.py +8 -49
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -4
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +24 -11
- transformers/models/rt_detr/modeling_rt_detr.py +578 -737
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +2 -3
- transformers/models/rt_detr/modular_rt_detr.py +1508 -6
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -57
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +318 -453
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +25 -66
- transformers/models/rwkv/configuration_rwkv.py +2 -3
- transformers/models/rwkv/modeling_rwkv.py +0 -23
- transformers/models/sam/configuration_sam.py +2 -0
- transformers/models/sam/image_processing_sam_fast.py +4 -4
- transformers/models/sam/modeling_sam.py +13 -8
- transformers/models/sam/processing_sam.py +3 -3
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +56 -52
- transformers/models/sam2/modular_sam2.py +47 -55
- transformers/models/sam2_video/modeling_sam2_video.py +50 -51
- transformers/models/sam2_video/modular_sam2_video.py +12 -10
- transformers/models/sam3/modeling_sam3.py +43 -47
- transformers/models/sam3/processing_sam3.py +8 -4
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -2
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +50 -49
- transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -1
- transformers/models/sam3_tracker/processing_sam3_tracker.py +0 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +50 -49
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -22
- transformers/models/sam3_video/modeling_sam3_video.py +27 -14
- transformers/models/sam_hq/configuration_sam_hq.py +2 -0
- transformers/models/sam_hq/modeling_sam_hq.py +13 -9
- transformers/models/sam_hq/modular_sam_hq.py +6 -6
- transformers/models/sam_hq/processing_sam_hq.py +7 -6
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -9
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -9
- transformers/models/seed_oss/configuration_seed_oss.py +7 -9
- transformers/models/seed_oss/modeling_seed_oss.py +4 -4
- transformers/models/seed_oss/modular_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +4 -4
- transformers/models/segformer/modeling_segformer.py +4 -2
- transformers/models/segformer/modular_segformer.py +3 -3
- transformers/models/seggpt/modeling_seggpt.py +20 -8
- transformers/models/sew/configuration_sew.py +4 -1
- transformers/models/sew/modeling_sew.py +9 -5
- transformers/models/sew/modular_sew.py +2 -1
- transformers/models/sew_d/configuration_sew_d.py +4 -1
- transformers/models/sew_d/modeling_sew_d.py +4 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +4 -4
- transformers/models/siglip/configuration_siglip.py +4 -1
- transformers/models/siglip/modeling_siglip.py +27 -71
- transformers/models/siglip2/__init__.py +1 -0
- transformers/models/siglip2/configuration_siglip2.py +4 -2
- transformers/models/siglip2/image_processing_siglip2_fast.py +2 -2
- transformers/models/siglip2/modeling_siglip2.py +37 -78
- transformers/models/siglip2/modular_siglip2.py +74 -25
- transformers/models/siglip2/tokenization_siglip2.py +95 -0
- transformers/models/smollm3/configuration_smollm3.py +6 -6
- transformers/models/smollm3/modeling_smollm3.py +4 -4
- transformers/models/smollm3/modular_smollm3.py +9 -9
- transformers/models/smolvlm/configuration_smolvlm.py +1 -3
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +29 -3
- transformers/models/smolvlm/modeling_smolvlm.py +75 -46
- transformers/models/smolvlm/modular_smolvlm.py +36 -23
- transformers/models/smolvlm/video_processing_smolvlm.py +9 -9
- transformers/models/solar_open/__init__.py +27 -0
- transformers/models/solar_open/configuration_solar_open.py +184 -0
- transformers/models/solar_open/modeling_solar_open.py +642 -0
- transformers/models/solar_open/modular_solar_open.py +224 -0
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +6 -4
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -8
- transformers/models/speech_to_text/modeling_speech_to_text.py +3 -3
- transformers/models/speecht5/configuration_speecht5.py +7 -8
- transformers/models/splinter/configuration_splinter.py +6 -6
- transformers/models/splinter/modeling_splinter.py +8 -3
- transformers/models/squeezebert/configuration_squeezebert.py +14 -1
- transformers/models/stablelm/configuration_stablelm.py +8 -6
- transformers/models/stablelm/modeling_stablelm.py +5 -5
- transformers/models/starcoder2/configuration_starcoder2.py +11 -5
- transformers/models/starcoder2/modeling_starcoder2.py +5 -5
- transformers/models/starcoder2/modular_starcoder2.py +4 -4
- transformers/models/superglue/configuration_superglue.py +4 -0
- transformers/models/superglue/image_processing_superglue_fast.py +4 -3
- transformers/models/superglue/modeling_superglue.py +9 -4
- transformers/models/superpoint/image_processing_superpoint_fast.py +3 -4
- transformers/models/superpoint/modeling_superpoint.py +4 -2
- transformers/models/swin/configuration_swin.py +2 -4
- transformers/models/swin/modeling_swin.py +11 -8
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +2 -2
- transformers/models/swin2sr/modeling_swin2sr.py +4 -2
- transformers/models/swinv2/configuration_swinv2.py +2 -4
- transformers/models/swinv2/modeling_swinv2.py +10 -7
- transformers/models/switch_transformers/configuration_switch_transformers.py +11 -6
- transformers/models/switch_transformers/modeling_switch_transformers.py +3 -3
- transformers/models/switch_transformers/modular_switch_transformers.py +3 -3
- transformers/models/t5/configuration_t5.py +9 -8
- transformers/models/t5/modeling_t5.py +5 -8
- transformers/models/t5gemma/configuration_t5gemma.py +10 -25
- transformers/models/t5gemma/modeling_t5gemma.py +9 -9
- transformers/models/t5gemma/modular_t5gemma.py +11 -24
- transformers/models/t5gemma2/configuration_t5gemma2.py +35 -48
- transformers/models/t5gemma2/modeling_t5gemma2.py +143 -100
- transformers/models/t5gemma2/modular_t5gemma2.py +152 -136
- transformers/models/table_transformer/configuration_table_transformer.py +18 -49
- transformers/models/table_transformer/modeling_table_transformer.py +27 -53
- transformers/models/tapas/configuration_tapas.py +12 -1
- transformers/models/tapas/modeling_tapas.py +1 -1
- transformers/models/tapas/tokenization_tapas.py +1 -0
- transformers/models/textnet/configuration_textnet.py +4 -6
- transformers/models/textnet/image_processing_textnet_fast.py +3 -3
- transformers/models/textnet/modeling_textnet.py +15 -14
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +3 -3
- transformers/models/timesfm/modeling_timesfm.py +5 -6
- transformers/models/timesfm/modular_timesfm.py +5 -6
- transformers/models/timm_backbone/configuration_timm_backbone.py +33 -7
- transformers/models/timm_backbone/modeling_timm_backbone.py +21 -24
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +9 -4
- transformers/models/trocr/configuration_trocr.py +11 -7
- transformers/models/trocr/modeling_trocr.py +4 -2
- transformers/models/tvp/configuration_tvp.py +10 -35
- transformers/models/tvp/image_processing_tvp_fast.py +6 -5
- transformers/models/tvp/modeling_tvp.py +1 -1
- transformers/models/udop/configuration_udop.py +16 -7
- transformers/models/udop/modeling_udop.py +10 -6
- transformers/models/umt5/configuration_umt5.py +8 -6
- transformers/models/umt5/modeling_umt5.py +7 -3
- transformers/models/unispeech/configuration_unispeech.py +4 -1
- transformers/models/unispeech/modeling_unispeech.py +7 -4
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -1
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +7 -4
- transformers/models/upernet/configuration_upernet.py +8 -35
- transformers/models/upernet/modeling_upernet.py +1 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +5 -7
- transformers/models/vaultgemma/modeling_vaultgemma.py +4 -4
- transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +4 -6
- transformers/models/video_llama_3/modeling_video_llama_3.py +85 -48
- transformers/models/video_llama_3/modular_video_llama_3.py +56 -43
- transformers/models/video_llama_3/video_processing_video_llama_3.py +29 -8
- transformers/models/video_llava/configuration_video_llava.py +4 -0
- transformers/models/video_llava/modeling_video_llava.py +87 -89
- transformers/models/videomae/modeling_videomae.py +4 -5
- transformers/models/vilt/configuration_vilt.py +4 -1
- transformers/models/vilt/image_processing_vilt_fast.py +6 -6
- transformers/models/vilt/modeling_vilt.py +27 -12
- transformers/models/vipllava/configuration_vipllava.py +4 -0
- transformers/models/vipllava/modeling_vipllava.py +57 -31
- transformers/models/vipllava/modular_vipllava.py +50 -24
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +10 -6
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +27 -20
- transformers/models/visual_bert/configuration_visual_bert.py +6 -1
- transformers/models/vit/configuration_vit.py +2 -2
- transformers/models/vit/modeling_vit.py +7 -5
- transformers/models/vit_mae/modeling_vit_mae.py +11 -7
- transformers/models/vit_msn/modeling_vit_msn.py +11 -7
- transformers/models/vitdet/configuration_vitdet.py +2 -4
- transformers/models/vitdet/modeling_vitdet.py +2 -3
- transformers/models/vitmatte/configuration_vitmatte.py +6 -35
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +2 -2
- transformers/models/vitmatte/modeling_vitmatte.py +1 -1
- transformers/models/vitpose/configuration_vitpose.py +6 -43
- transformers/models/vitpose/modeling_vitpose.py +5 -3
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -4
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +5 -6
- transformers/models/vits/configuration_vits.py +4 -0
- transformers/models/vits/modeling_vits.py +9 -7
- transformers/models/vivit/modeling_vivit.py +4 -4
- transformers/models/vjepa2/modeling_vjepa2.py +9 -9
- transformers/models/voxtral/configuration_voxtral.py +0 -1
- transformers/models/voxtral/modeling_voxtral.py +25 -24
- transformers/models/voxtral/modular_voxtral.py +26 -20
- transformers/models/wav2vec2/configuration_wav2vec2.py +4 -1
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -4
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -1
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -1
- transformers/models/wavlm/configuration_wavlm.py +4 -1
- transformers/models/wavlm/modeling_wavlm.py +4 -1
- transformers/models/whisper/configuration_whisper.py +6 -4
- transformers/models/whisper/generation_whisper.py +0 -1
- transformers/models/whisper/modeling_whisper.py +3 -3
- transformers/models/x_clip/configuration_x_clip.py +4 -1
- transformers/models/x_clip/modeling_x_clip.py +26 -27
- transformers/models/xglm/configuration_xglm.py +9 -7
- transformers/models/xlm/configuration_xlm.py +10 -7
- transformers/models/xlm/modeling_xlm.py +1 -1
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -2
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +6 -6
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -1
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +6 -6
- transformers/models/xlnet/configuration_xlnet.py +3 -1
- transformers/models/xlstm/configuration_xlstm.py +5 -7
- transformers/models/xlstm/modeling_xlstm.py +0 -32
- transformers/models/xmod/configuration_xmod.py +11 -2
- transformers/models/xmod/modeling_xmod.py +13 -16
- transformers/models/yolos/image_processing_yolos_fast.py +25 -28
- transformers/models/yolos/modeling_yolos.py +7 -7
- transformers/models/yolos/modular_yolos.py +16 -16
- transformers/models/yoso/configuration_yoso.py +8 -1
- transformers/models/youtu/__init__.py +27 -0
- transformers/models/youtu/configuration_youtu.py +194 -0
- transformers/models/youtu/modeling_youtu.py +619 -0
- transformers/models/youtu/modular_youtu.py +254 -0
- transformers/models/zamba/configuration_zamba.py +5 -7
- transformers/models/zamba/modeling_zamba.py +25 -56
- transformers/models/zamba2/configuration_zamba2.py +8 -13
- transformers/models/zamba2/modeling_zamba2.py +53 -78
- transformers/models/zamba2/modular_zamba2.py +36 -29
- transformers/models/zoedepth/configuration_zoedepth.py +17 -40
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +9 -9
- transformers/models/zoedepth/modeling_zoedepth.py +5 -3
- transformers/pipelines/__init__.py +1 -61
- transformers/pipelines/any_to_any.py +1 -1
- transformers/pipelines/automatic_speech_recognition.py +0 -2
- transformers/pipelines/base.py +1 -1
- transformers/pipelines/image_text_to_text.py +1 -1
- transformers/pipelines/text_to_audio.py +5 -1
- transformers/processing_utils.py +35 -44
- transformers/pytorch_utils.py +2 -26
- transformers/quantizers/quantizer_compressed_tensors.py +7 -5
- transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
- transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
- transformers/quantizers/quantizer_mxfp4.py +1 -1
- transformers/quantizers/quantizer_torchao.py +0 -16
- transformers/safetensors_conversion.py +11 -4
- transformers/testing_utils.py +3 -28
- transformers/tokenization_mistral_common.py +9 -0
- transformers/tokenization_python.py +6 -4
- transformers/tokenization_utils_base.py +119 -219
- transformers/tokenization_utils_tokenizers.py +31 -2
- transformers/trainer.py +25 -33
- transformers/trainer_seq2seq.py +1 -1
- transformers/training_args.py +411 -417
- transformers/utils/__init__.py +1 -4
- transformers/utils/auto_docstring.py +15 -18
- transformers/utils/backbone_utils.py +13 -373
- transformers/utils/doc.py +4 -36
- transformers/utils/generic.py +69 -33
- transformers/utils/import_utils.py +72 -75
- transformers/utils/loading_report.py +133 -105
- transformers/utils/quantization_config.py +0 -21
- transformers/video_processing_utils.py +5 -5
- transformers/video_utils.py +3 -1
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/METADATA +118 -237
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/RECORD +1019 -994
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
- transformers/pipelines/deprecated/text2text_generation.py +0 -408
- transformers/pipelines/image_to_text.py +0 -189
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
|
@@ -1,12 +1,58 @@
|
|
|
1
|
-
|
|
1
|
+
# Copyright 2022 SenseTime and The HuggingFace Inc. team. All rights reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
import math
|
|
15
|
+
import warnings
|
|
16
|
+
from dataclasses import dataclass
|
|
2
17
|
|
|
3
|
-
|
|
18
|
+
import torch
|
|
19
|
+
import torch.nn as nn
|
|
20
|
+
import torch.nn.functional as F
|
|
21
|
+
from torch import Tensor
|
|
4
22
|
|
|
23
|
+
from ... import initialization as init
|
|
24
|
+
from ...backbone_utils import load_backbone
|
|
5
25
|
from ...image_transforms import center_to_corners_format
|
|
26
|
+
from ...integrations import use_kernel_forward_from_hub
|
|
27
|
+
from ...modeling_outputs import BaseModelOutput
|
|
28
|
+
from ...modeling_utils import PreTrainedModel
|
|
29
|
+
from ...processing_utils import Unpack
|
|
30
|
+
from ...pytorch_utils import meshgrid
|
|
6
31
|
from ...utils import (
|
|
32
|
+
ModelOutput,
|
|
7
33
|
TensorType,
|
|
34
|
+
TransformersKwargs,
|
|
35
|
+
auto_docstring,
|
|
8
36
|
logging,
|
|
37
|
+
torch_compilable_check,
|
|
38
|
+
)
|
|
39
|
+
from ...utils.generic import OutputRecorder, can_return_tuple, check_model_inputs
|
|
40
|
+
from ..detr.image_processing_detr_fast import DetrImageProcessorFast
|
|
41
|
+
from ..detr.modeling_detr import (
|
|
42
|
+
DetrConvEncoder,
|
|
43
|
+
DetrDecoderLayer,
|
|
44
|
+
DetrDecoderOutput,
|
|
45
|
+
DetrEncoder,
|
|
46
|
+
DetrEncoderLayer,
|
|
47
|
+
DetrLearnedPositionEmbedding,
|
|
48
|
+
DetrMLP,
|
|
49
|
+
DetrMLPPredictionHead,
|
|
50
|
+
DetrObjectDetectionOutput,
|
|
51
|
+
DetrSelfAttention,
|
|
52
|
+
DetrSinePositionEmbedding,
|
|
53
|
+
replace_batch_norm,
|
|
9
54
|
)
|
|
55
|
+
from .configuration_deformable_detr import DeformableDetrConfig
|
|
10
56
|
|
|
11
57
|
|
|
12
58
|
logger = logging.get_logger(__name__)
|
|
@@ -82,4 +128,1340 @@ class DeformableDetrImageProcessorFast(DetrImageProcessorFast):
|
|
|
82
128
|
raise NotImplementedError("Panoptic segmentation post-processing is not implemented for Deformable DETR yet.")
|
|
83
129
|
|
|
84
130
|
|
|
85
|
-
|
|
131
|
+
class DeformableDetrDecoderOutput(DetrDecoderOutput):
|
|
132
|
+
r"""
|
|
133
|
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
|
134
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
135
|
+
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
|
136
|
+
used to compute the weighted average in the cross-attention heads.
|
|
137
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
|
|
138
|
+
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
|
|
139
|
+
layernorm.
|
|
140
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
|
|
141
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
142
|
+
"""
|
|
143
|
+
|
|
144
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
@dataclass
|
|
148
|
+
@auto_docstring(
|
|
149
|
+
custom_intro="""
|
|
150
|
+
Base class for outputs of the Deformable DETR encoder-decoder model.
|
|
151
|
+
"""
|
|
152
|
+
)
|
|
153
|
+
class DeformableDetrModelOutput(ModelOutput):
|
|
154
|
+
r"""
|
|
155
|
+
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
156
|
+
Initial reference points sent through the Transformer decoder.
|
|
157
|
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
158
|
+
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
|
159
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
|
160
|
+
Stacked intermediate hidden states (output of each layer of the decoder).
|
|
161
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
162
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
163
|
+
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
164
|
+
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
|
165
|
+
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
|
|
166
|
+
foreground and background).
|
|
167
|
+
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
168
|
+
Logits of predicted bounding boxes coordinates in the first stage.
|
|
169
|
+
"""
|
|
170
|
+
|
|
171
|
+
init_reference_points: torch.FloatTensor | None = None
|
|
172
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
173
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
174
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
175
|
+
decoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
176
|
+
decoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
177
|
+
cross_attentions: tuple[torch.FloatTensor] | None = None
|
|
178
|
+
encoder_last_hidden_state: torch.FloatTensor | None = None
|
|
179
|
+
encoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
180
|
+
encoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
181
|
+
enc_outputs_class: torch.FloatTensor | None = None
|
|
182
|
+
enc_outputs_coord_logits: torch.FloatTensor | None = None
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
class DeformableDetrObjectDetectionOutput(DetrObjectDetectionOutput):
|
|
186
|
+
r"""
|
|
187
|
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
|
|
188
|
+
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
|
|
189
|
+
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
|
|
190
|
+
scale-invariant IoU loss.
|
|
191
|
+
loss_dict (`Dict`, *optional*):
|
|
192
|
+
A dictionary containing the individual losses. Useful for logging.
|
|
193
|
+
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
|
|
194
|
+
Classification logits (including no-object) for all queries.
|
|
195
|
+
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
196
|
+
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
|
|
197
|
+
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
|
|
198
|
+
possible padding). You can use [`~DeformableDetrProcessor.post_process_object_detection`] to retrieve the
|
|
199
|
+
unnormalized bounding boxes.
|
|
200
|
+
auxiliary_outputs (`list[Dict]`, *optional*):
|
|
201
|
+
Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
|
|
202
|
+
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
|
|
203
|
+
`pred_boxes`) for each decoder layer.
|
|
204
|
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
205
|
+
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
|
206
|
+
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
207
|
+
Initial reference points sent through the Transformer decoder.
|
|
208
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
|
209
|
+
Stacked intermediate hidden states (output of each layer of the decoder).
|
|
210
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
211
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
212
|
+
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
213
|
+
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
|
214
|
+
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
|
|
215
|
+
foreground and background).
|
|
216
|
+
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
217
|
+
Logits of predicted bounding boxes coordinates in the first stage.
|
|
218
|
+
"""
|
|
219
|
+
|
|
220
|
+
init_reference_points: torch.FloatTensor | None = None
|
|
221
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
222
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
223
|
+
enc_outputs_class: torch.FloatTensor | None = None
|
|
224
|
+
enc_outputs_coord_logits: torch.FloatTensor | None = None
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
def inverse_sigmoid(x, eps=1e-5):
|
|
228
|
+
x = x.clamp(min=0, max=1)
|
|
229
|
+
x1 = x.clamp(min=eps)
|
|
230
|
+
x2 = (1 - x).clamp(min=eps)
|
|
231
|
+
return torch.log(x1 / x2)
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
@use_kernel_forward_from_hub("MultiScaleDeformableAttention")
|
|
235
|
+
class MultiScaleDeformableAttention(nn.Module):
|
|
236
|
+
def forward(
|
|
237
|
+
self,
|
|
238
|
+
value: Tensor,
|
|
239
|
+
value_spatial_shapes: Tensor,
|
|
240
|
+
value_spatial_shapes_list: list[tuple],
|
|
241
|
+
level_start_index: Tensor,
|
|
242
|
+
sampling_locations: Tensor,
|
|
243
|
+
attention_weights: Tensor,
|
|
244
|
+
im2col_step: int,
|
|
245
|
+
):
|
|
246
|
+
batch_size, _, num_heads, hidden_dim = value.shape
|
|
247
|
+
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
|
248
|
+
value_list = value.split([height * width for height, width in value_spatial_shapes_list], dim=1)
|
|
249
|
+
sampling_grids = 2 * sampling_locations - 1
|
|
250
|
+
sampling_value_list = []
|
|
251
|
+
for level_id, (height, width) in enumerate(value_spatial_shapes_list):
|
|
252
|
+
# batch_size, height*width, num_heads, hidden_dim
|
|
253
|
+
# -> batch_size, height*width, num_heads*hidden_dim
|
|
254
|
+
# -> batch_size, num_heads*hidden_dim, height*width
|
|
255
|
+
# -> batch_size*num_heads, hidden_dim, height, width
|
|
256
|
+
value_l_ = (
|
|
257
|
+
value_list[level_id]
|
|
258
|
+
.flatten(2)
|
|
259
|
+
.transpose(1, 2)
|
|
260
|
+
.reshape(batch_size * num_heads, hidden_dim, height, width)
|
|
261
|
+
)
|
|
262
|
+
# batch_size, num_queries, num_heads, num_points, 2
|
|
263
|
+
# -> batch_size, num_heads, num_queries, num_points, 2
|
|
264
|
+
# -> batch_size*num_heads, num_queries, num_points, 2
|
|
265
|
+
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
|
|
266
|
+
# batch_size*num_heads, hidden_dim, num_queries, num_points
|
|
267
|
+
sampling_value_l_ = nn.functional.grid_sample(
|
|
268
|
+
value_l_,
|
|
269
|
+
sampling_grid_l_,
|
|
270
|
+
mode="bilinear",
|
|
271
|
+
padding_mode="zeros",
|
|
272
|
+
align_corners=False,
|
|
273
|
+
)
|
|
274
|
+
sampling_value_list.append(sampling_value_l_)
|
|
275
|
+
# (batch_size, num_queries, num_heads, num_levels, num_points)
|
|
276
|
+
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
|
|
277
|
+
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
|
|
278
|
+
attention_weights = attention_weights.transpose(1, 2).reshape(
|
|
279
|
+
batch_size * num_heads, 1, num_queries, num_levels * num_points
|
|
280
|
+
)
|
|
281
|
+
output = (
|
|
282
|
+
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
|
283
|
+
.sum(-1)
|
|
284
|
+
.view(batch_size, num_heads * hidden_dim, num_queries)
|
|
285
|
+
)
|
|
286
|
+
return output.transpose(1, 2).contiguous()
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
class DeformableDetrConvEncoder(DetrConvEncoder):
|
|
290
|
+
def __init__(self, config):
|
|
291
|
+
nn.Module.__init__()
|
|
292
|
+
|
|
293
|
+
self.config = config
|
|
294
|
+
|
|
295
|
+
backbone = load_backbone(config)
|
|
296
|
+
self.intermediate_channel_sizes = backbone.channels
|
|
297
|
+
|
|
298
|
+
# replace batch norm by frozen batch norm
|
|
299
|
+
with torch.no_grad():
|
|
300
|
+
replace_batch_norm(backbone)
|
|
301
|
+
|
|
302
|
+
# We used to load with timm library directly instead of the AutoBackbone API
|
|
303
|
+
# so we need to unwrap the `backbone._backbone` module to load weights without mismatch
|
|
304
|
+
is_timm_model = False
|
|
305
|
+
if hasattr(backbone, "_backbone"):
|
|
306
|
+
backbone = backbone._backbone
|
|
307
|
+
is_timm_model = True
|
|
308
|
+
self.model = backbone
|
|
309
|
+
|
|
310
|
+
backbone_model_type = config.backbone_config.model_type
|
|
311
|
+
if "resnet" in backbone_model_type:
|
|
312
|
+
for name, parameter in self.model.named_parameters():
|
|
313
|
+
if is_timm_model:
|
|
314
|
+
if "layer2" not in name and "layer3" not in name and "layer4" not in name:
|
|
315
|
+
parameter.requires_grad_(False)
|
|
316
|
+
else:
|
|
317
|
+
if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
|
|
318
|
+
parameter.requires_grad_(False)
|
|
319
|
+
|
|
320
|
+
|
|
321
|
+
class DeformableDetrSinePositionEmbedding(DetrSinePositionEmbedding):
|
|
322
|
+
def forward(
|
|
323
|
+
self,
|
|
324
|
+
shape: torch.Size,
|
|
325
|
+
device: torch.device | str,
|
|
326
|
+
dtype: torch.dtype,
|
|
327
|
+
mask: torch.Tensor | None = None,
|
|
328
|
+
) -> torch.Tensor:
|
|
329
|
+
if mask is None:
|
|
330
|
+
mask = torch.zeros((shape[0], shape[2], shape[3]), device=device, dtype=torch.bool)
|
|
331
|
+
y_embed = mask.cumsum(1, dtype=dtype)
|
|
332
|
+
x_embed = mask.cumsum(2, dtype=dtype)
|
|
333
|
+
if self.normalize:
|
|
334
|
+
eps = 1e-6
|
|
335
|
+
y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
|
|
336
|
+
x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
|
|
337
|
+
|
|
338
|
+
dim_t = torch.arange(self.num_position_features, dtype=torch.int64, device=device).to(dtype)
|
|
339
|
+
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_position_features)
|
|
340
|
+
|
|
341
|
+
pos_x = x_embed[:, :, :, None] / dim_t
|
|
342
|
+
pos_y = y_embed[:, :, :, None] / dim_t
|
|
343
|
+
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
|
344
|
+
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
|
|
345
|
+
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
|
346
|
+
# Flatten spatial dimensions and permute to (batch_size, sequence_length, hidden_size) format
|
|
347
|
+
# expected by the encoder
|
|
348
|
+
pos = pos.flatten(2).permute(0, 2, 1)
|
|
349
|
+
return pos
|
|
350
|
+
|
|
351
|
+
|
|
352
|
+
class DeformableDetrLearnedPositionEmbedding(DetrLearnedPositionEmbedding):
|
|
353
|
+
pass
|
|
354
|
+
|
|
355
|
+
|
|
356
|
+
class DeformableDetrSelfAttention(DetrSelfAttention):
|
|
357
|
+
pass
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
class DeformableDetrMultiscaleDeformableAttention(nn.Module):
|
|
361
|
+
"""
|
|
362
|
+
Multiscale deformable attention as proposed in Deformable DETR.
|
|
363
|
+
"""
|
|
364
|
+
|
|
365
|
+
def __init__(self, config: DeformableDetrConfig, num_heads: int, n_points: int):
|
|
366
|
+
super().__init__()
|
|
367
|
+
|
|
368
|
+
self.attn = MultiScaleDeformableAttention()
|
|
369
|
+
|
|
370
|
+
if config.d_model % num_heads != 0:
|
|
371
|
+
raise ValueError(
|
|
372
|
+
f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
|
|
373
|
+
)
|
|
374
|
+
dim_per_head = config.d_model // num_heads
|
|
375
|
+
# check if dim_per_head is power of 2
|
|
376
|
+
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
|
|
377
|
+
warnings.warn(
|
|
378
|
+
"You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the"
|
|
379
|
+
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
|
|
380
|
+
" implementation."
|
|
381
|
+
)
|
|
382
|
+
|
|
383
|
+
self.im2col_step = 64
|
|
384
|
+
|
|
385
|
+
self.d_model = config.d_model
|
|
386
|
+
self.n_levels = config.num_feature_levels
|
|
387
|
+
self.n_heads = num_heads
|
|
388
|
+
self.n_points = n_points
|
|
389
|
+
|
|
390
|
+
self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
|
|
391
|
+
self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
|
|
392
|
+
self.value_proj = nn.Linear(config.d_model, config.d_model)
|
|
393
|
+
self.output_proj = nn.Linear(config.d_model, config.d_model)
|
|
394
|
+
|
|
395
|
+
self.disable_custom_kernels = config.disable_custom_kernels
|
|
396
|
+
|
|
397
|
+
def forward(
|
|
398
|
+
self,
|
|
399
|
+
hidden_states: torch.Tensor,
|
|
400
|
+
attention_mask: torch.Tensor | None = None,
|
|
401
|
+
encoder_hidden_states=None,
|
|
402
|
+
encoder_attention_mask=None,
|
|
403
|
+
position_embeddings: torch.Tensor | None = None,
|
|
404
|
+
reference_points=None,
|
|
405
|
+
spatial_shapes=None,
|
|
406
|
+
spatial_shapes_list=None,
|
|
407
|
+
level_start_index=None,
|
|
408
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
409
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
410
|
+
# add position embeddings to the hidden states before projecting to queries and keys
|
|
411
|
+
if position_embeddings is not None:
|
|
412
|
+
hidden_states = hidden_states + position_embeddings
|
|
413
|
+
|
|
414
|
+
batch_size, num_queries, _ = hidden_states.shape
|
|
415
|
+
batch_size, sequence_length, _ = encoder_hidden_states.shape
|
|
416
|
+
total_elements = sum(height * width for height, width in spatial_shapes_list)
|
|
417
|
+
torch_compilable_check(
|
|
418
|
+
total_elements == sequence_length,
|
|
419
|
+
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states",
|
|
420
|
+
)
|
|
421
|
+
|
|
422
|
+
value = self.value_proj(encoder_hidden_states)
|
|
423
|
+
if attention_mask is not None:
|
|
424
|
+
# we invert the attention_mask
|
|
425
|
+
value = value.masked_fill(~attention_mask[..., None], float(0))
|
|
426
|
+
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
|
|
427
|
+
sampling_offsets = self.sampling_offsets(hidden_states).view(
|
|
428
|
+
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
|
|
429
|
+
)
|
|
430
|
+
attention_weights = self.attention_weights(hidden_states).view(
|
|
431
|
+
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
|
|
432
|
+
)
|
|
433
|
+
attention_weights = F.softmax(attention_weights, -1).view(
|
|
434
|
+
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
|
|
435
|
+
)
|
|
436
|
+
# batch_size, num_queries, n_heads, n_levels, n_points, 2
|
|
437
|
+
num_coordinates = reference_points.shape[-1]
|
|
438
|
+
if num_coordinates == 2:
|
|
439
|
+
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
|
440
|
+
sampling_locations = (
|
|
441
|
+
reference_points[:, :, None, :, None, :]
|
|
442
|
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
|
443
|
+
)
|
|
444
|
+
elif num_coordinates == 4:
|
|
445
|
+
sampling_locations = (
|
|
446
|
+
reference_points[:, :, None, :, None, :2]
|
|
447
|
+
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
|
|
448
|
+
)
|
|
449
|
+
else:
|
|
450
|
+
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
|
|
451
|
+
|
|
452
|
+
output = self.attn(
|
|
453
|
+
value,
|
|
454
|
+
spatial_shapes,
|
|
455
|
+
spatial_shapes_list,
|
|
456
|
+
level_start_index,
|
|
457
|
+
sampling_locations,
|
|
458
|
+
attention_weights,
|
|
459
|
+
self.im2col_step,
|
|
460
|
+
)
|
|
461
|
+
|
|
462
|
+
output = self.output_proj(output)
|
|
463
|
+
|
|
464
|
+
return output, attention_weights
|
|
465
|
+
|
|
466
|
+
|
|
467
|
+
class DeformableDetrMLP(DetrMLP):
|
|
468
|
+
pass
|
|
469
|
+
|
|
470
|
+
|
|
471
|
+
class DeformableDetrEncoderLayer(DetrEncoderLayer):
|
|
472
|
+
def __init__(self, config: DeformableDetrConfig):
|
|
473
|
+
super().__init__()
|
|
474
|
+
self.self_attn = DeformableDetrMultiscaleDeformableAttention(
|
|
475
|
+
config,
|
|
476
|
+
num_heads=config.encoder_attention_heads,
|
|
477
|
+
n_points=config.encoder_n_points,
|
|
478
|
+
)
|
|
479
|
+
|
|
480
|
+
def forward(
|
|
481
|
+
self,
|
|
482
|
+
hidden_states: torch.Tensor,
|
|
483
|
+
attention_mask: torch.Tensor,
|
|
484
|
+
spatial_position_embeddings: torch.Tensor | None = None,
|
|
485
|
+
reference_points=None,
|
|
486
|
+
spatial_shapes=None,
|
|
487
|
+
spatial_shapes_list=None,
|
|
488
|
+
level_start_index=None,
|
|
489
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
490
|
+
) -> torch.Tensor:
|
|
491
|
+
"""
|
|
492
|
+
Args:
|
|
493
|
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
494
|
+
Input to the layer.
|
|
495
|
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
|
496
|
+
Attention mask.
|
|
497
|
+
position_embeddings (`torch.FloatTensor`, *optional*):
|
|
498
|
+
Position embeddings, to be added to `hidden_states`.
|
|
499
|
+
reference_points (`torch.FloatTensor`, *optional*):
|
|
500
|
+
Reference points.
|
|
501
|
+
spatial_shapes (`torch.LongTensor`, *optional*):
|
|
502
|
+
Spatial shapes of the backbone feature maps.
|
|
503
|
+
level_start_index (`torch.LongTensor`, *optional*):
|
|
504
|
+
Level start index.
|
|
505
|
+
"""
|
|
506
|
+
super().forward(
|
|
507
|
+
hidden_states=hidden_states,
|
|
508
|
+
attention_mask=attention_mask,
|
|
509
|
+
spatial_position_embeddings=spatial_position_embeddings,
|
|
510
|
+
**kwargs,
|
|
511
|
+
)
|
|
512
|
+
hidden_states, _ = self.self_attn(
|
|
513
|
+
hidden_states=hidden_states,
|
|
514
|
+
attention_mask=attention_mask,
|
|
515
|
+
encoder_hidden_states=hidden_states,
|
|
516
|
+
encoder_attention_mask=attention_mask,
|
|
517
|
+
position_embeddings=spatial_position_embeddings,
|
|
518
|
+
reference_points=reference_points,
|
|
519
|
+
spatial_shapes=spatial_shapes,
|
|
520
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
521
|
+
level_start_index=level_start_index,
|
|
522
|
+
)
|
|
523
|
+
|
|
524
|
+
|
|
525
|
+
class DeformableDetrDecoderLayer(DetrDecoderLayer):
|
|
526
|
+
def __init__(self, config: DeformableDetrConfig):
|
|
527
|
+
super().__init__()
|
|
528
|
+
self.encoder_attn = DeformableDetrMultiscaleDeformableAttention(
|
|
529
|
+
config,
|
|
530
|
+
num_heads=config.decoder_attention_heads,
|
|
531
|
+
n_points=config.decoder_n_points,
|
|
532
|
+
)
|
|
533
|
+
|
|
534
|
+
def forward(
|
|
535
|
+
self,
|
|
536
|
+
hidden_states: torch.Tensor,
|
|
537
|
+
object_queries_position_embeddings: torch.Tensor | None = None,
|
|
538
|
+
reference_points=None,
|
|
539
|
+
spatial_shapes=None,
|
|
540
|
+
spatial_shapes_list=None,
|
|
541
|
+
level_start_index=None,
|
|
542
|
+
encoder_hidden_states: torch.Tensor | None = None,
|
|
543
|
+
encoder_attention_mask: torch.Tensor | None = None,
|
|
544
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
545
|
+
) -> torch.Tensor:
|
|
546
|
+
"""
|
|
547
|
+
Args:
|
|
548
|
+
hidden_states (`torch.FloatTensor`):
|
|
549
|
+
Input to the layer of shape `(seq_len, batch, embed_dim)`.
|
|
550
|
+
position_embeddings (`torch.FloatTensor`, *optional*):
|
|
551
|
+
Position embeddings that are added to the queries and keys in the self-attention layer.
|
|
552
|
+
reference_points (`torch.FloatTensor`, *optional*):
|
|
553
|
+
Reference points.
|
|
554
|
+
spatial_shapes (`torch.LongTensor`, *optional*):
|
|
555
|
+
Spatial shapes.
|
|
556
|
+
level_start_index (`torch.LongTensor`, *optional*):
|
|
557
|
+
Level start index.
|
|
558
|
+
encoder_hidden_states (`torch.FloatTensor`):
|
|
559
|
+
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
|
|
560
|
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
|
561
|
+
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
|
562
|
+
values.
|
|
563
|
+
"""
|
|
564
|
+
residual = hidden_states
|
|
565
|
+
|
|
566
|
+
# Self Attention
|
|
567
|
+
hidden_states, _ = self.self_attn(
|
|
568
|
+
hidden_states=hidden_states,
|
|
569
|
+
position_embeddings=object_queries_position_embeddings,
|
|
570
|
+
**kwargs,
|
|
571
|
+
)
|
|
572
|
+
|
|
573
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
574
|
+
hidden_states = residual + hidden_states
|
|
575
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
576
|
+
|
|
577
|
+
residual = hidden_states
|
|
578
|
+
|
|
579
|
+
# Cross-Attention
|
|
580
|
+
hidden_states, _ = self.encoder_attn(
|
|
581
|
+
hidden_states=hidden_states,
|
|
582
|
+
attention_mask=encoder_attention_mask,
|
|
583
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
584
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
585
|
+
position_embeddings=object_queries_position_embeddings,
|
|
586
|
+
reference_points=reference_points,
|
|
587
|
+
spatial_shapes=spatial_shapes,
|
|
588
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
589
|
+
level_start_index=level_start_index,
|
|
590
|
+
)
|
|
591
|
+
|
|
592
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
593
|
+
hidden_states = residual + hidden_states
|
|
594
|
+
|
|
595
|
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
|
596
|
+
|
|
597
|
+
# Fully Connected
|
|
598
|
+
residual = hidden_states
|
|
599
|
+
hidden_states = self.mlp(hidden_states)
|
|
600
|
+
hidden_states = residual + hidden_states
|
|
601
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
602
|
+
|
|
603
|
+
return hidden_states
|
|
604
|
+
|
|
605
|
+
|
|
606
|
+
@auto_docstring
|
|
607
|
+
class DeformableDetrPreTrainedModel(PreTrainedModel):
|
|
608
|
+
config: DeformableDetrConfig
|
|
609
|
+
base_model_prefix = "model"
|
|
610
|
+
main_input_name = "pixel_values"
|
|
611
|
+
input_modalities = ("image",)
|
|
612
|
+
supports_gradient_checkpointing = True
|
|
613
|
+
_no_split_modules = [
|
|
614
|
+
r"DeformableDetrConvEncoder",
|
|
615
|
+
r"DeformableDetrEncoderLayer",
|
|
616
|
+
r"DeformableDetrDecoderLayer",
|
|
617
|
+
]
|
|
618
|
+
_supports_sdpa = True
|
|
619
|
+
_supports_flash_attn = True
|
|
620
|
+
_supports_attention_backend = True
|
|
621
|
+
_supports_flex_attn = True
|
|
622
|
+
_keys_to_ignore_on_load_unexpected = [
|
|
623
|
+
r"detr\.model\.backbone\.model\.layer\d+\.0\.downsample\.1\.num_batches_tracked"
|
|
624
|
+
]
|
|
625
|
+
|
|
626
|
+
@torch.no_grad()
|
|
627
|
+
def _init_weights(self, module):
|
|
628
|
+
std = self.config.init_std
|
|
629
|
+
|
|
630
|
+
if isinstance(module, DeformableDetrLearnedPositionEmbedding):
|
|
631
|
+
init.uniform_(module.row_embeddings.weight)
|
|
632
|
+
init.uniform_(module.column_embeddings.weight)
|
|
633
|
+
elif isinstance(module, DeformableDetrMultiscaleDeformableAttention):
|
|
634
|
+
init.constant_(module.sampling_offsets.weight, 0.0)
|
|
635
|
+
default_dtype = torch.get_default_dtype()
|
|
636
|
+
thetas = torch.arange(module.n_heads, dtype=torch.int64).to(default_dtype) * (
|
|
637
|
+
2.0 * math.pi / module.n_heads
|
|
638
|
+
)
|
|
639
|
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
|
640
|
+
grid_init = (
|
|
641
|
+
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
|
642
|
+
.view(module.n_heads, 1, 1, 2)
|
|
643
|
+
.repeat(1, module.n_levels, module.n_points, 1)
|
|
644
|
+
)
|
|
645
|
+
for i in range(module.n_points):
|
|
646
|
+
grid_init[:, :, i, :] *= i + 1
|
|
647
|
+
|
|
648
|
+
init.copy_(module.sampling_offsets.bias, grid_init.view(-1))
|
|
649
|
+
init.constant_(module.attention_weights.weight, 0.0)
|
|
650
|
+
init.constant_(module.attention_weights.bias, 0.0)
|
|
651
|
+
init.xavier_uniform_(module.value_proj.weight)
|
|
652
|
+
init.constant_(module.value_proj.bias, 0.0)
|
|
653
|
+
init.xavier_uniform_(module.output_proj.weight)
|
|
654
|
+
init.constant_(module.output_proj.bias, 0.0)
|
|
655
|
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
|
656
|
+
init.normal_(module.weight, mean=0.0, std=std)
|
|
657
|
+
if module.bias is not None:
|
|
658
|
+
init.zeros_(module.bias)
|
|
659
|
+
elif isinstance(module, nn.Embedding):
|
|
660
|
+
init.normal_(module.weight, mean=0.0, std=std)
|
|
661
|
+
# Here we need the check explicitly, as we slice the weight in the `zeros_` call, so it looses the flag
|
|
662
|
+
if module.padding_idx is not None and not getattr(module.weight, "_is_hf_initialized", False):
|
|
663
|
+
init.zeros_(module.weight[module.padding_idx])
|
|
664
|
+
if hasattr(module, "reference_points") and not self.config.two_stage:
|
|
665
|
+
init.xavier_uniform_(module.reference_points.weight, gain=1.0)
|
|
666
|
+
init.constant_(module.reference_points.bias, 0.0)
|
|
667
|
+
if hasattr(module, "level_embed"):
|
|
668
|
+
init.normal_(module.level_embed)
|
|
669
|
+
|
|
670
|
+
|
|
671
|
+
class DeformableDetrEncoder(DetrEncoder):
|
|
672
|
+
"""
|
|
673
|
+
Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a
|
|
674
|
+
[`DeformableDetrEncoderLayer`].
|
|
675
|
+
|
|
676
|
+
The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers.
|
|
677
|
+
|
|
678
|
+
Args:
|
|
679
|
+
config: DeformableDetrConfig
|
|
680
|
+
"""
|
|
681
|
+
|
|
682
|
+
_can_record_outputs = {
|
|
683
|
+
"hidden_states": DeformableDetrEncoderLayer,
|
|
684
|
+
"attentions": OutputRecorder(DeformableDetrMultiscaleDeformableAttention, layer_name="self_attn", index=1),
|
|
685
|
+
}
|
|
686
|
+
|
|
687
|
+
@check_model_inputs()
|
|
688
|
+
def forward(
|
|
689
|
+
self,
|
|
690
|
+
inputs_embeds=None,
|
|
691
|
+
attention_mask=None,
|
|
692
|
+
spatial_position_embeddings=None,
|
|
693
|
+
spatial_shapes=None,
|
|
694
|
+
spatial_shapes_list=None,
|
|
695
|
+
level_start_index=None,
|
|
696
|
+
valid_ratios=None,
|
|
697
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
698
|
+
):
|
|
699
|
+
r"""
|
|
700
|
+
Args:
|
|
701
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
702
|
+
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
|
|
703
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
704
|
+
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
|
|
705
|
+
- 1 for pixel features that are real (i.e. **not masked**),
|
|
706
|
+
- 0 for pixel features that are padding (i.e. **masked**).
|
|
707
|
+
[What are attention masks?](../glossary#attention-mask)
|
|
708
|
+
spatial_position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
709
|
+
Spatial position embeddings (2D positional encodings) that are added to the queries and keys in each self-attention layer.
|
|
710
|
+
spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`):
|
|
711
|
+
Spatial shapes of each feature map.
|
|
712
|
+
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`):
|
|
713
|
+
Starting index of each feature map.
|
|
714
|
+
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
|
|
715
|
+
Ratio of valid area in each feature level.
|
|
716
|
+
"""
|
|
717
|
+
hidden_states = inputs_embeds
|
|
718
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
719
|
+
|
|
720
|
+
spatial_shapes_tuple = tuple(spatial_shapes_list)
|
|
721
|
+
reference_points = self.get_reference_points(spatial_shapes_tuple, valid_ratios, device=inputs_embeds.device)
|
|
722
|
+
|
|
723
|
+
for encoder_layer in self.layers:
|
|
724
|
+
hidden_states = encoder_layer(
|
|
725
|
+
hidden_states,
|
|
726
|
+
attention_mask,
|
|
727
|
+
spatial_position_embeddings=spatial_position_embeddings,
|
|
728
|
+
reference_points=reference_points,
|
|
729
|
+
spatial_shapes=spatial_shapes,
|
|
730
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
731
|
+
level_start_index=level_start_index,
|
|
732
|
+
**kwargs,
|
|
733
|
+
)
|
|
734
|
+
|
|
735
|
+
return BaseModelOutput(last_hidden_state=hidden_states)
|
|
736
|
+
|
|
737
|
+
@staticmethod
|
|
738
|
+
def get_reference_points(spatial_shapes_list, valid_ratios, device):
|
|
739
|
+
"""
|
|
740
|
+
Get reference points for each feature map. Used in decoder.
|
|
741
|
+
|
|
742
|
+
Args:
|
|
743
|
+
spatial_shapes_list (`list[tuple[int, int]]`):
|
|
744
|
+
Spatial shapes of each feature map.
|
|
745
|
+
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`):
|
|
746
|
+
Valid ratios of each feature map.
|
|
747
|
+
device (`torch.device`):
|
|
748
|
+
Device on which to create the tensors.
|
|
749
|
+
Returns:
|
|
750
|
+
`torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)`
|
|
751
|
+
"""
|
|
752
|
+
reference_points_list = []
|
|
753
|
+
for level, (height, width) in enumerate(spatial_shapes_list):
|
|
754
|
+
ref_y, ref_x = meshgrid(
|
|
755
|
+
torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device),
|
|
756
|
+
torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device),
|
|
757
|
+
indexing="ij",
|
|
758
|
+
)
|
|
759
|
+
# TODO: valid_ratios could be useless here. check https://github.com/fundamentalvision/Deformable-DETR/issues/36
|
|
760
|
+
ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, level, 1] * height)
|
|
761
|
+
ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, level, 0] * width)
|
|
762
|
+
ref = torch.stack((ref_x, ref_y), -1)
|
|
763
|
+
reference_points_list.append(ref)
|
|
764
|
+
reference_points = torch.cat(reference_points_list, 1)
|
|
765
|
+
reference_points = reference_points[:, :, None] * valid_ratios[:, None]
|
|
766
|
+
return reference_points
|
|
767
|
+
|
|
768
|
+
|
|
769
|
+
class DeformableDetrDecoder(DeformableDetrPreTrainedModel):
|
|
770
|
+
"""
|
|
771
|
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DeformableDetrDecoderLayer`].
|
|
772
|
+
|
|
773
|
+
The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
|
|
774
|
+
|
|
775
|
+
Some tweaks for Deformable DETR:
|
|
776
|
+
|
|
777
|
+
- `position_embeddings`, `reference_points`, `spatial_shapes` and `valid_ratios` are added to the forward pass.
|
|
778
|
+
- it also returns a stack of intermediate outputs and reference points from all decoding layers.
|
|
779
|
+
|
|
780
|
+
Args:
|
|
781
|
+
config: DeformableDetrConfig
|
|
782
|
+
"""
|
|
783
|
+
|
|
784
|
+
_can_record_outputs = {
|
|
785
|
+
"hidden_states": DeformableDetrDecoderLayer,
|
|
786
|
+
"attentions": OutputRecorder(DeformableDetrSelfAttention, layer_name="self_attn", index=1),
|
|
787
|
+
"cross_attentions": OutputRecorder(
|
|
788
|
+
DeformableDetrMultiscaleDeformableAttention, layer_name="encoder_attn", index=1
|
|
789
|
+
),
|
|
790
|
+
}
|
|
791
|
+
|
|
792
|
+
def __init__(self, config: DeformableDetrConfig):
|
|
793
|
+
super().__init__(config)
|
|
794
|
+
|
|
795
|
+
self.dropout = config.dropout
|
|
796
|
+
self.layers = nn.ModuleList([DeformableDetrDecoderLayer(config) for _ in range(config.decoder_layers)])
|
|
797
|
+
|
|
798
|
+
# hack implementation for iterative bounding box refinement and two-stage Deformable DETR
|
|
799
|
+
self.bbox_embed = None
|
|
800
|
+
self.class_embed = None
|
|
801
|
+
|
|
802
|
+
# Initialize weights and apply final processing
|
|
803
|
+
self.post_init()
|
|
804
|
+
|
|
805
|
+
@check_model_inputs()
|
|
806
|
+
def forward(
|
|
807
|
+
self,
|
|
808
|
+
inputs_embeds=None,
|
|
809
|
+
encoder_hidden_states=None,
|
|
810
|
+
encoder_attention_mask=None,
|
|
811
|
+
object_queries_position_embeddings=None,
|
|
812
|
+
reference_points=None,
|
|
813
|
+
spatial_shapes=None,
|
|
814
|
+
spatial_shapes_list=None,
|
|
815
|
+
level_start_index=None,
|
|
816
|
+
valid_ratios=None,
|
|
817
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
818
|
+
):
|
|
819
|
+
r"""
|
|
820
|
+
Args:
|
|
821
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
822
|
+
The query embeddings that are passed into the decoder.
|
|
823
|
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
824
|
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
|
825
|
+
of the decoder.
|
|
826
|
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
827
|
+
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
|
|
828
|
+
in `[0, 1]`:
|
|
829
|
+
- 1 for pixels that are real (i.e. **not masked**),
|
|
830
|
+
- 0 for pixels that are padding (i.e. **masked**).
|
|
831
|
+
object_queries_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
832
|
+
Position embeddings for the object query slots that are added to the queries and keys in each self-attention layer.
|
|
833
|
+
reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
|
|
834
|
+
Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
|
|
835
|
+
spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
|
|
836
|
+
Spatial shapes of the feature maps.
|
|
837
|
+
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
|
|
838
|
+
Indexes for the start of each feature level. In range `[0, sequence_length]`.
|
|
839
|
+
valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*):
|
|
840
|
+
Ratio of valid area in each feature level.
|
|
841
|
+
|
|
842
|
+
"""
|
|
843
|
+
if inputs_embeds is not None:
|
|
844
|
+
hidden_states = inputs_embeds
|
|
845
|
+
|
|
846
|
+
# decoder layers
|
|
847
|
+
intermediate = ()
|
|
848
|
+
intermediate_reference_points = ()
|
|
849
|
+
|
|
850
|
+
for idx, decoder_layer in enumerate(self.layers):
|
|
851
|
+
num_coordinates = reference_points.shape[-1]
|
|
852
|
+
if num_coordinates == 4:
|
|
853
|
+
reference_points_input = (
|
|
854
|
+
reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None]
|
|
855
|
+
)
|
|
856
|
+
elif reference_points.shape[-1] == 2:
|
|
857
|
+
reference_points_input = reference_points[:, :, None] * valid_ratios[:, None]
|
|
858
|
+
else:
|
|
859
|
+
raise ValueError("Reference points' last dimension must be of size 2")
|
|
860
|
+
|
|
861
|
+
hidden_states = decoder_layer(
|
|
862
|
+
hidden_states,
|
|
863
|
+
object_queries_position_embeddings,
|
|
864
|
+
reference_points_input,
|
|
865
|
+
spatial_shapes,
|
|
866
|
+
spatial_shapes_list,
|
|
867
|
+
level_start_index,
|
|
868
|
+
encoder_hidden_states, # as a positional argument for gradient checkpointing
|
|
869
|
+
encoder_attention_mask,
|
|
870
|
+
**kwargs,
|
|
871
|
+
)
|
|
872
|
+
|
|
873
|
+
# hack implementation for iterative bounding box refinement
|
|
874
|
+
if self.bbox_embed is not None:
|
|
875
|
+
tmp = self.bbox_embed[idx](hidden_states)
|
|
876
|
+
num_coordinates = reference_points.shape[-1]
|
|
877
|
+
if num_coordinates == 4:
|
|
878
|
+
new_reference_points = tmp + inverse_sigmoid(reference_points)
|
|
879
|
+
new_reference_points = new_reference_points.sigmoid()
|
|
880
|
+
elif num_coordinates == 2:
|
|
881
|
+
new_reference_points = tmp
|
|
882
|
+
new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points)
|
|
883
|
+
new_reference_points = new_reference_points.sigmoid()
|
|
884
|
+
else:
|
|
885
|
+
raise ValueError(
|
|
886
|
+
f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}"
|
|
887
|
+
)
|
|
888
|
+
reference_points = new_reference_points.detach()
|
|
889
|
+
|
|
890
|
+
intermediate += (hidden_states,)
|
|
891
|
+
intermediate_reference_points += (reference_points,)
|
|
892
|
+
|
|
893
|
+
# Keep batch_size as first dimension
|
|
894
|
+
intermediate = torch.stack(intermediate, dim=1)
|
|
895
|
+
intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)
|
|
896
|
+
|
|
897
|
+
return DeformableDetrDecoderOutput(
|
|
898
|
+
last_hidden_state=hidden_states,
|
|
899
|
+
intermediate_hidden_states=intermediate,
|
|
900
|
+
intermediate_reference_points=intermediate_reference_points,
|
|
901
|
+
)
|
|
902
|
+
|
|
903
|
+
|
|
904
|
+
@auto_docstring(
|
|
905
|
+
custom_intro="""
|
|
906
|
+
The bare Deformable DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw
|
|
907
|
+
hidden-states without any specific head on top.
|
|
908
|
+
"""
|
|
909
|
+
)
|
|
910
|
+
class DeformableDetrModel(DeformableDetrPreTrainedModel):
|
|
911
|
+
def __init__(self, config: DeformableDetrConfig):
|
|
912
|
+
super().__init__(config)
|
|
913
|
+
|
|
914
|
+
# Create backbone
|
|
915
|
+
self.backbone = DeformableDetrConvEncoder(config)
|
|
916
|
+
|
|
917
|
+
# Create positional encoding
|
|
918
|
+
if config.position_embedding_type == "sine":
|
|
919
|
+
self.position_embedding = DeformableDetrSinePositionEmbedding(config.d_model // 2, normalize=True)
|
|
920
|
+
elif config.position_embedding_type == "learned":
|
|
921
|
+
self.position_embedding = DeformableDetrLearnedPositionEmbedding(config.d_model // 2)
|
|
922
|
+
else:
|
|
923
|
+
raise ValueError(f"Not supported {config.position_embedding_type}")
|
|
924
|
+
|
|
925
|
+
# Create input projection layers
|
|
926
|
+
if config.num_feature_levels > 1:
|
|
927
|
+
num_backbone_outs = len(self.backbone.intermediate_channel_sizes)
|
|
928
|
+
input_proj_list = []
|
|
929
|
+
for _ in range(num_backbone_outs):
|
|
930
|
+
in_channels = self.backbone.intermediate_channel_sizes[_]
|
|
931
|
+
input_proj_list.append(
|
|
932
|
+
nn.Sequential(
|
|
933
|
+
nn.Conv2d(in_channels, config.d_model, kernel_size=1),
|
|
934
|
+
nn.GroupNorm(32, config.d_model),
|
|
935
|
+
)
|
|
936
|
+
)
|
|
937
|
+
for _ in range(config.num_feature_levels - num_backbone_outs):
|
|
938
|
+
input_proj_list.append(
|
|
939
|
+
nn.Sequential(
|
|
940
|
+
nn.Conv2d(
|
|
941
|
+
in_channels,
|
|
942
|
+
config.d_model,
|
|
943
|
+
kernel_size=3,
|
|
944
|
+
stride=2,
|
|
945
|
+
padding=1,
|
|
946
|
+
),
|
|
947
|
+
nn.GroupNorm(32, config.d_model),
|
|
948
|
+
)
|
|
949
|
+
)
|
|
950
|
+
in_channels = config.d_model
|
|
951
|
+
self.input_proj = nn.ModuleList(input_proj_list)
|
|
952
|
+
else:
|
|
953
|
+
self.input_proj = nn.ModuleList(
|
|
954
|
+
[
|
|
955
|
+
nn.Sequential(
|
|
956
|
+
nn.Conv2d(
|
|
957
|
+
self.backbone.intermediate_channel_sizes[-1],
|
|
958
|
+
config.d_model,
|
|
959
|
+
kernel_size=1,
|
|
960
|
+
),
|
|
961
|
+
nn.GroupNorm(32, config.d_model),
|
|
962
|
+
)
|
|
963
|
+
]
|
|
964
|
+
)
|
|
965
|
+
|
|
966
|
+
if not config.two_stage:
|
|
967
|
+
self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model * 2)
|
|
968
|
+
|
|
969
|
+
self.encoder = DeformableDetrEncoder(config)
|
|
970
|
+
self.decoder = DeformableDetrDecoder(config)
|
|
971
|
+
|
|
972
|
+
self.level_embed = nn.Parameter(torch.Tensor(config.num_feature_levels, config.d_model))
|
|
973
|
+
|
|
974
|
+
if config.two_stage:
|
|
975
|
+
self.enc_output = nn.Linear(config.d_model, config.d_model)
|
|
976
|
+
self.enc_output_norm = nn.LayerNorm(config.d_model)
|
|
977
|
+
self.pos_trans = nn.Linear(config.d_model * 2, config.d_model * 2)
|
|
978
|
+
self.pos_trans_norm = nn.LayerNorm(config.d_model * 2)
|
|
979
|
+
else:
|
|
980
|
+
self.reference_points = nn.Linear(config.d_model, 2)
|
|
981
|
+
|
|
982
|
+
self.post_init()
|
|
983
|
+
|
|
984
|
+
def freeze_backbone(self):
|
|
985
|
+
for name, param in self.backbone.model.named_parameters():
|
|
986
|
+
param.requires_grad_(False)
|
|
987
|
+
|
|
988
|
+
def unfreeze_backbone(self):
|
|
989
|
+
for name, param in self.backbone.model.named_parameters():
|
|
990
|
+
param.requires_grad_(True)
|
|
991
|
+
|
|
992
|
+
def get_valid_ratio(self, mask, dtype=torch.float32):
|
|
993
|
+
"""Get the valid ratio of all feature maps."""
|
|
994
|
+
|
|
995
|
+
_, height, width = mask.shape
|
|
996
|
+
valid_height = torch.sum(mask[:, :, 0], 1)
|
|
997
|
+
valid_width = torch.sum(mask[:, 0, :], 1)
|
|
998
|
+
valid_ratio_height = valid_height.to(dtype) / height
|
|
999
|
+
valid_ratio_width = valid_width.to(dtype) / width
|
|
1000
|
+
valid_ratio = torch.stack([valid_ratio_width, valid_ratio_height], -1)
|
|
1001
|
+
return valid_ratio
|
|
1002
|
+
|
|
1003
|
+
def get_proposal_pos_embed(self, proposals):
|
|
1004
|
+
"""Get the position embedding of the proposals."""
|
|
1005
|
+
|
|
1006
|
+
num_pos_feats = self.config.d_model // 2
|
|
1007
|
+
temperature = 10000
|
|
1008
|
+
scale = 2 * math.pi
|
|
1009
|
+
|
|
1010
|
+
# Compute position embeddings in float32 to avoid overflow with large temperature values in fp16
|
|
1011
|
+
proposals_dtype = proposals.dtype
|
|
1012
|
+
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device)
|
|
1013
|
+
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
|
|
1014
|
+
# batch_size, num_queries, 4
|
|
1015
|
+
proposals = proposals.sigmoid().to(torch.float32) * scale
|
|
1016
|
+
# batch_size, num_queries, 4, 128
|
|
1017
|
+
pos = proposals[:, :, :, None] / dim_t
|
|
1018
|
+
# batch_size, num_queries, 4, 64, 2 -> batch_size, num_queries, 512
|
|
1019
|
+
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
|
|
1020
|
+
# Convert back to target dtype after all computations are done
|
|
1021
|
+
return pos.to(proposals_dtype)
|
|
1022
|
+
|
|
1023
|
+
def gen_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes):
|
|
1024
|
+
"""Generate the encoder output proposals from encoded enc_output.
|
|
1025
|
+
|
|
1026
|
+
Args:
|
|
1027
|
+
enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder.
|
|
1028
|
+
padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`.
|
|
1029
|
+
spatial_shapes (list[tuple[int, int]]): Spatial shapes of the feature maps.
|
|
1030
|
+
|
|
1031
|
+
Returns:
|
|
1032
|
+
`tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
|
|
1033
|
+
- object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to
|
|
1034
|
+
directly predict a bounding box. (without the need of a decoder)
|
|
1035
|
+
- output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse
|
|
1036
|
+
sigmoid.
|
|
1037
|
+
"""
|
|
1038
|
+
batch_size = enc_output.shape[0]
|
|
1039
|
+
proposals = []
|
|
1040
|
+
_cur = 0
|
|
1041
|
+
for level, (height, width) in enumerate(spatial_shapes):
|
|
1042
|
+
mask_flatten_ = padding_mask[:, _cur : (_cur + height * width)].view(batch_size, height, width, 1)
|
|
1043
|
+
valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
|
|
1044
|
+
valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
|
|
1045
|
+
|
|
1046
|
+
grid_y, grid_x = meshgrid(
|
|
1047
|
+
torch.linspace(
|
|
1048
|
+
0,
|
|
1049
|
+
height - 1,
|
|
1050
|
+
height,
|
|
1051
|
+
dtype=enc_output.dtype,
|
|
1052
|
+
device=enc_output.device,
|
|
1053
|
+
),
|
|
1054
|
+
torch.linspace(
|
|
1055
|
+
0,
|
|
1056
|
+
width - 1,
|
|
1057
|
+
width,
|
|
1058
|
+
dtype=enc_output.dtype,
|
|
1059
|
+
device=enc_output.device,
|
|
1060
|
+
),
|
|
1061
|
+
indexing="ij",
|
|
1062
|
+
)
|
|
1063
|
+
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
|
|
1064
|
+
|
|
1065
|
+
scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2)
|
|
1066
|
+
grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale
|
|
1067
|
+
width_height = torch.ones_like(grid) * 0.05 * (2.0**level)
|
|
1068
|
+
proposal = torch.cat((grid, width_height), -1).view(batch_size, -1, 4)
|
|
1069
|
+
proposals.append(proposal)
|
|
1070
|
+
_cur += height * width
|
|
1071
|
+
output_proposals = torch.cat(proposals, 1)
|
|
1072
|
+
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
|
|
1073
|
+
output_proposals = torch.log(output_proposals / (1 - output_proposals)) # inverse sigmoid
|
|
1074
|
+
output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf"))
|
|
1075
|
+
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
|
|
1076
|
+
|
|
1077
|
+
# assign each pixel as an object query
|
|
1078
|
+
object_query = enc_output
|
|
1079
|
+
object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0))
|
|
1080
|
+
object_query = object_query.masked_fill(~output_proposals_valid, float(0))
|
|
1081
|
+
object_query = self.enc_output_norm(self.enc_output(object_query))
|
|
1082
|
+
return object_query, output_proposals
|
|
1083
|
+
|
|
1084
|
+
@auto_docstring
|
|
1085
|
+
@can_return_tuple
|
|
1086
|
+
def forward(
|
|
1087
|
+
self,
|
|
1088
|
+
pixel_values: torch.FloatTensor,
|
|
1089
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
1090
|
+
decoder_attention_mask: torch.FloatTensor | None = None,
|
|
1091
|
+
encoder_outputs: torch.FloatTensor | None = None,
|
|
1092
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
1093
|
+
decoder_inputs_embeds: torch.FloatTensor | None = None,
|
|
1094
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1095
|
+
) -> tuple[torch.FloatTensor] | DeformableDetrModelOutput:
|
|
1096
|
+
r"""
|
|
1097
|
+
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
|
1098
|
+
Not used by default. Can be used to mask object queries.
|
|
1099
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
1100
|
+
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
|
1101
|
+
can choose to directly pass a flattened representation of an image.
|
|
1102
|
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
1103
|
+
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
|
1104
|
+
embedded representation.
|
|
1105
|
+
|
|
1106
|
+
Examples:
|
|
1107
|
+
|
|
1108
|
+
```python
|
|
1109
|
+
>>> from transformers import AutoImageProcessor, DeformableDetrModel
|
|
1110
|
+
>>> from PIL import Image
|
|
1111
|
+
>>> import requests
|
|
1112
|
+
|
|
1113
|
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
1114
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
1115
|
+
|
|
1116
|
+
>>> image_processor = AutoImageProcessor.from_pretrained("SenseTime/deformable-detr")
|
|
1117
|
+
>>> model = DeformableDetrModel.from_pretrained("SenseTime/deformable-detr")
|
|
1118
|
+
|
|
1119
|
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
|
1120
|
+
|
|
1121
|
+
>>> outputs = model(**inputs)
|
|
1122
|
+
|
|
1123
|
+
>>> last_hidden_states = outputs.last_hidden_state
|
|
1124
|
+
>>> list(last_hidden_states.shape)
|
|
1125
|
+
[1, 300, 256]
|
|
1126
|
+
```"""
|
|
1127
|
+
batch_size, num_channels, height, width = pixel_values.shape
|
|
1128
|
+
device = pixel_values.device
|
|
1129
|
+
|
|
1130
|
+
if pixel_mask is None:
|
|
1131
|
+
pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device)
|
|
1132
|
+
|
|
1133
|
+
# Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper)
|
|
1134
|
+
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
|
|
1135
|
+
# which is a list of tuples
|
|
1136
|
+
features = self.backbone(pixel_values, pixel_mask)
|
|
1137
|
+
|
|
1138
|
+
# Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
|
|
1139
|
+
sources = []
|
|
1140
|
+
masks = []
|
|
1141
|
+
position_embeddings_list = []
|
|
1142
|
+
for level, (source, mask) in enumerate(features):
|
|
1143
|
+
sources.append(self.input_proj[level](source))
|
|
1144
|
+
masks.append(mask)
|
|
1145
|
+
if mask is None:
|
|
1146
|
+
raise ValueError("No attention mask was provided")
|
|
1147
|
+
# Generate position embeddings for this feature level
|
|
1148
|
+
pos = self.position_embedding(shape=source.shape, device=device, dtype=pixel_values.dtype, mask=mask).to(
|
|
1149
|
+
source.dtype
|
|
1150
|
+
)
|
|
1151
|
+
position_embeddings_list.append(pos)
|
|
1152
|
+
|
|
1153
|
+
# Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
|
|
1154
|
+
if self.config.num_feature_levels > len(sources):
|
|
1155
|
+
_len_sources = len(sources)
|
|
1156
|
+
for level in range(_len_sources, self.config.num_feature_levels):
|
|
1157
|
+
if level == _len_sources:
|
|
1158
|
+
source = self.input_proj[level](features[-1][0])
|
|
1159
|
+
else:
|
|
1160
|
+
source = self.input_proj[level](sources[-1])
|
|
1161
|
+
mask = nn.functional.interpolate(pixel_mask[None].to(pixel_values.dtype), size=source.shape[-2:]).to(
|
|
1162
|
+
torch.bool
|
|
1163
|
+
)[0]
|
|
1164
|
+
pos_l = self.position_embedding(
|
|
1165
|
+
shape=source.shape, device=device, dtype=pixel_values.dtype, mask=mask
|
|
1166
|
+
).to(source.dtype)
|
|
1167
|
+
sources.append(source)
|
|
1168
|
+
masks.append(mask)
|
|
1169
|
+
position_embeddings_list.append(pos_l)
|
|
1170
|
+
|
|
1171
|
+
# Create queries
|
|
1172
|
+
query_embeds = None
|
|
1173
|
+
if not self.config.two_stage:
|
|
1174
|
+
query_embeds = self.query_position_embeddings.weight
|
|
1175
|
+
|
|
1176
|
+
# Prepare encoder inputs (by flattening)
|
|
1177
|
+
source_flatten = []
|
|
1178
|
+
mask_flatten = []
|
|
1179
|
+
lvl_pos_embed_flatten = []
|
|
1180
|
+
spatial_shapes_list = []
|
|
1181
|
+
for level, (source, mask, pos_embed) in enumerate(zip(sources, masks, position_embeddings_list)):
|
|
1182
|
+
batch_size, num_channels, height, width = source.shape
|
|
1183
|
+
spatial_shape = (height, width)
|
|
1184
|
+
spatial_shapes_list.append(spatial_shape)
|
|
1185
|
+
source = source.flatten(2).transpose(1, 2)
|
|
1186
|
+
mask = mask.flatten(1)
|
|
1187
|
+
lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1)
|
|
1188
|
+
lvl_pos_embed_flatten.append(lvl_pos_embed)
|
|
1189
|
+
source_flatten.append(source)
|
|
1190
|
+
mask_flatten.append(mask)
|
|
1191
|
+
source_flatten = torch.cat(source_flatten, 1)
|
|
1192
|
+
mask_flatten = torch.cat(mask_flatten, 1)
|
|
1193
|
+
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
|
|
1194
|
+
spatial_shapes = torch.as_tensor(spatial_shapes_list, dtype=torch.long, device=source_flatten.device)
|
|
1195
|
+
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
|
|
1196
|
+
valid_ratios = torch.stack([self.get_valid_ratio(m, dtype=source_flatten.dtype) for m in masks], 1)
|
|
1197
|
+
|
|
1198
|
+
# Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder
|
|
1199
|
+
# Also provide spatial_shapes, level_start_index and valid_ratios
|
|
1200
|
+
if encoder_outputs is None:
|
|
1201
|
+
encoder_outputs = self.encoder(
|
|
1202
|
+
inputs_embeds=source_flatten,
|
|
1203
|
+
attention_mask=mask_flatten,
|
|
1204
|
+
spatial_position_embeddings=lvl_pos_embed_flatten,
|
|
1205
|
+
spatial_shapes=spatial_shapes,
|
|
1206
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
1207
|
+
level_start_index=level_start_index,
|
|
1208
|
+
valid_ratios=valid_ratios,
|
|
1209
|
+
**kwargs,
|
|
1210
|
+
)
|
|
1211
|
+
|
|
1212
|
+
# Fifth, prepare decoder inputs
|
|
1213
|
+
batch_size, _, num_channels = encoder_outputs[0].shape
|
|
1214
|
+
enc_outputs_class = None
|
|
1215
|
+
enc_outputs_coord_logits = None
|
|
1216
|
+
if self.config.two_stage:
|
|
1217
|
+
object_query_embedding, output_proposals = self.gen_encoder_output_proposals(
|
|
1218
|
+
encoder_outputs[0], ~mask_flatten, spatial_shapes_list
|
|
1219
|
+
)
|
|
1220
|
+
|
|
1221
|
+
# hack implementation for two-stage Deformable DETR
|
|
1222
|
+
# apply a detection head to each pixel (A.4 in paper)
|
|
1223
|
+
# linear projection for bounding box binary classification (i.e. foreground and background)
|
|
1224
|
+
enc_outputs_class = self.decoder.class_embed[-1](object_query_embedding)
|
|
1225
|
+
# 3-layer FFN to predict bounding boxes coordinates (bbox regression branch)
|
|
1226
|
+
delta_bbox = self.decoder.bbox_embed[-1](object_query_embedding)
|
|
1227
|
+
enc_outputs_coord_logits = delta_bbox + output_proposals
|
|
1228
|
+
|
|
1229
|
+
# only keep top scoring `config.two_stage_num_proposals` proposals
|
|
1230
|
+
topk = self.config.two_stage_num_proposals
|
|
1231
|
+
topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]
|
|
1232
|
+
topk_coords_logits = torch.gather(
|
|
1233
|
+
enc_outputs_coord_logits,
|
|
1234
|
+
1,
|
|
1235
|
+
topk_proposals.unsqueeze(-1).repeat(1, 1, 4),
|
|
1236
|
+
)
|
|
1237
|
+
|
|
1238
|
+
topk_coords_logits = topk_coords_logits.detach()
|
|
1239
|
+
reference_points = topk_coords_logits.sigmoid()
|
|
1240
|
+
init_reference_points = reference_points
|
|
1241
|
+
pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_logits)))
|
|
1242
|
+
query_embed, target = torch.split(pos_trans_out, num_channels, dim=2)
|
|
1243
|
+
else:
|
|
1244
|
+
query_embed, target = torch.split(query_embeds, num_channels, dim=1)
|
|
1245
|
+
query_embed = query_embed.unsqueeze(0).expand(batch_size, -1, -1)
|
|
1246
|
+
target = target.unsqueeze(0).expand(batch_size, -1, -1)
|
|
1247
|
+
reference_points = self.reference_points(query_embed).sigmoid()
|
|
1248
|
+
init_reference_points = reference_points
|
|
1249
|
+
|
|
1250
|
+
decoder_outputs = self.decoder(
|
|
1251
|
+
inputs_embeds=target,
|
|
1252
|
+
object_queries_position_embeddings=query_embed,
|
|
1253
|
+
encoder_hidden_states=encoder_outputs[0],
|
|
1254
|
+
encoder_attention_mask=mask_flatten,
|
|
1255
|
+
reference_points=reference_points,
|
|
1256
|
+
spatial_shapes=spatial_shapes,
|
|
1257
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
1258
|
+
level_start_index=level_start_index,
|
|
1259
|
+
valid_ratios=valid_ratios,
|
|
1260
|
+
**kwargs,
|
|
1261
|
+
)
|
|
1262
|
+
|
|
1263
|
+
return DeformableDetrModelOutput(
|
|
1264
|
+
init_reference_points=init_reference_points,
|
|
1265
|
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
|
1266
|
+
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
|
|
1267
|
+
intermediate_reference_points=decoder_outputs.intermediate_reference_points,
|
|
1268
|
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
|
1269
|
+
decoder_attentions=decoder_outputs.attentions,
|
|
1270
|
+
cross_attentions=decoder_outputs.cross_attentions,
|
|
1271
|
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
|
1272
|
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
|
1273
|
+
encoder_attentions=encoder_outputs.attentions,
|
|
1274
|
+
enc_outputs_class=enc_outputs_class,
|
|
1275
|
+
enc_outputs_coord_logits=enc_outputs_coord_logits,
|
|
1276
|
+
)
|
|
1277
|
+
|
|
1278
|
+
|
|
1279
|
+
class DeformableDetrMLPPredictionHead(DetrMLPPredictionHead):
|
|
1280
|
+
pass
|
|
1281
|
+
|
|
1282
|
+
|
|
1283
|
+
@auto_docstring(
|
|
1284
|
+
custom_intro="""
|
|
1285
|
+
Deformable DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on
|
|
1286
|
+
top, for tasks such as COCO detection.
|
|
1287
|
+
"""
|
|
1288
|
+
)
|
|
1289
|
+
class DeformableDetrForObjectDetection(DeformableDetrPreTrainedModel):
|
|
1290
|
+
# When using clones, all layers > 0 will be clones, but layer 0 *is* required
|
|
1291
|
+
# We can't initialize the model on meta device as some weights are modified during the initialization
|
|
1292
|
+
_no_split_modules = None
|
|
1293
|
+
_tied_weights_keys = {
|
|
1294
|
+
r"bbox_embed.(?![0])\d+": "bbox_embed.0",
|
|
1295
|
+
r"class_embed.(?![0])\d+": "class_embed.0",
|
|
1296
|
+
}
|
|
1297
|
+
|
|
1298
|
+
def __init__(self, config: DeformableDetrConfig):
|
|
1299
|
+
super().__init__(config)
|
|
1300
|
+
# Deformable DETR encoder-decoder model
|
|
1301
|
+
self.model = DeformableDetrModel(config)
|
|
1302
|
+
# Detection heads on top
|
|
1303
|
+
# if two-stage, the last class_embed and bbox_embed is for region proposal generation
|
|
1304
|
+
num_pred = (config.decoder_layers + 1) if config.two_stage else config.decoder_layers
|
|
1305
|
+
self.class_embed = nn.ModuleList([nn.Linear(config.d_model, config.num_labels) for _ in range(num_pred)])
|
|
1306
|
+
self.bbox_embed = nn.ModuleList(
|
|
1307
|
+
[
|
|
1308
|
+
DeformableDetrMLPPredictionHead(
|
|
1309
|
+
input_dim=config.d_model,
|
|
1310
|
+
hidden_dim=config.d_model,
|
|
1311
|
+
output_dim=4,
|
|
1312
|
+
num_layers=3,
|
|
1313
|
+
)
|
|
1314
|
+
for _ in range(num_pred)
|
|
1315
|
+
]
|
|
1316
|
+
)
|
|
1317
|
+
# Convert to instance attribute before modifying
|
|
1318
|
+
self._tied_weights_keys = self._tied_weights_keys.copy()
|
|
1319
|
+
if config.with_box_refine:
|
|
1320
|
+
self.model.decoder.bbox_embed = self.bbox_embed
|
|
1321
|
+
self._tied_weights_keys["bbox_embed"] = "model.decoder.bbox_embed"
|
|
1322
|
+
if config.two_stage:
|
|
1323
|
+
self.model.decoder.class_embed = self.class_embed
|
|
1324
|
+
self._tied_weights_keys["class_embed"] = "model.decoder.class_embed"
|
|
1325
|
+
self.post_init()
|
|
1326
|
+
|
|
1327
|
+
@auto_docstring
|
|
1328
|
+
@can_return_tuple
|
|
1329
|
+
def forward(
|
|
1330
|
+
self,
|
|
1331
|
+
pixel_values: torch.FloatTensor,
|
|
1332
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
1333
|
+
decoder_attention_mask: torch.FloatTensor | None = None,
|
|
1334
|
+
encoder_outputs: torch.FloatTensor | None = None,
|
|
1335
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
1336
|
+
decoder_inputs_embeds: torch.FloatTensor | None = None,
|
|
1337
|
+
labels: list[dict] | None = None,
|
|
1338
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1339
|
+
) -> tuple[torch.FloatTensor] | DeformableDetrObjectDetectionOutput:
|
|
1340
|
+
r"""
|
|
1341
|
+
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
|
1342
|
+
Not used by default. Can be used to mask object queries.
|
|
1343
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
1344
|
+
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
|
1345
|
+
can choose to directly pass a flattened representation of an image.
|
|
1346
|
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
1347
|
+
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
|
1348
|
+
embedded representation.
|
|
1349
|
+
labels (`list[Dict]` of len `(batch_size,)`, *optional*):
|
|
1350
|
+
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
|
|
1351
|
+
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
|
|
1352
|
+
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
|
|
1353
|
+
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
|
|
1354
|
+
|
|
1355
|
+
Examples:
|
|
1356
|
+
|
|
1357
|
+
```python
|
|
1358
|
+
>>> from transformers import AutoImageProcessor, DeformableDetrForObjectDetection
|
|
1359
|
+
>>> from PIL import Image
|
|
1360
|
+
>>> import requests
|
|
1361
|
+
|
|
1362
|
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
1363
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
1364
|
+
|
|
1365
|
+
>>> image_processor = AutoImageProcessor.from_pretrained("SenseTime/deformable-detr")
|
|
1366
|
+
>>> model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr")
|
|
1367
|
+
|
|
1368
|
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
|
1369
|
+
>>> outputs = model(**inputs)
|
|
1370
|
+
|
|
1371
|
+
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
|
|
1372
|
+
>>> target_sizes = torch.tensor([image.size[::-1]])
|
|
1373
|
+
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[
|
|
1374
|
+
... 0
|
|
1375
|
+
... ]
|
|
1376
|
+
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
|
1377
|
+
... box = [round(i, 2) for i in box.tolist()]
|
|
1378
|
+
... print(
|
|
1379
|
+
... f"Detected {model.config.id2label[label.item()]} with confidence "
|
|
1380
|
+
... f"{round(score.item(), 3)} at location {box}"
|
|
1381
|
+
... )
|
|
1382
|
+
Detected cat with confidence 0.8 at location [16.5, 52.84, 318.25, 470.78]
|
|
1383
|
+
Detected cat with confidence 0.789 at location [342.19, 24.3, 640.02, 372.25]
|
|
1384
|
+
Detected remote with confidence 0.633 at location [40.79, 72.78, 176.76, 117.25]
|
|
1385
|
+
```"""
|
|
1386
|
+
# First, sent images through DETR base model to obtain encoder + decoder outputs
|
|
1387
|
+
outputs = self.model(
|
|
1388
|
+
pixel_values,
|
|
1389
|
+
pixel_mask=pixel_mask,
|
|
1390
|
+
decoder_attention_mask=decoder_attention_mask,
|
|
1391
|
+
encoder_outputs=encoder_outputs,
|
|
1392
|
+
inputs_embeds=inputs_embeds,
|
|
1393
|
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
|
1394
|
+
**kwargs,
|
|
1395
|
+
)
|
|
1396
|
+
|
|
1397
|
+
hidden_states = outputs.intermediate_hidden_states
|
|
1398
|
+
init_reference = outputs.init_reference_points
|
|
1399
|
+
inter_references = outputs.intermediate_reference_points
|
|
1400
|
+
|
|
1401
|
+
# class logits + predicted bounding boxes
|
|
1402
|
+
outputs_classes = []
|
|
1403
|
+
outputs_coords = []
|
|
1404
|
+
|
|
1405
|
+
for level in range(hidden_states.shape[1]):
|
|
1406
|
+
if level == 0:
|
|
1407
|
+
reference = init_reference
|
|
1408
|
+
else:
|
|
1409
|
+
reference = inter_references[:, level - 1]
|
|
1410
|
+
reference = inverse_sigmoid(reference)
|
|
1411
|
+
outputs_class = self.class_embed[level](hidden_states[:, level])
|
|
1412
|
+
delta_bbox = self.bbox_embed[level](hidden_states[:, level])
|
|
1413
|
+
if reference.shape[-1] == 4:
|
|
1414
|
+
outputs_coord_logits = delta_bbox + reference
|
|
1415
|
+
elif reference.shape[-1] == 2:
|
|
1416
|
+
delta_bbox[..., :2] += reference
|
|
1417
|
+
outputs_coord_logits = delta_bbox
|
|
1418
|
+
else:
|
|
1419
|
+
raise ValueError(f"reference.shape[-1] should be 4 or 2, but got {reference.shape[-1]}")
|
|
1420
|
+
outputs_coord = outputs_coord_logits.sigmoid()
|
|
1421
|
+
outputs_classes.append(outputs_class)
|
|
1422
|
+
outputs_coords.append(outputs_coord)
|
|
1423
|
+
outputs_class = torch.stack(outputs_classes)
|
|
1424
|
+
outputs_coord = torch.stack(outputs_coords)
|
|
1425
|
+
|
|
1426
|
+
logits = outputs_class[-1]
|
|
1427
|
+
pred_boxes = outputs_coord[-1]
|
|
1428
|
+
|
|
1429
|
+
loss, loss_dict, auxiliary_outputs = None, None, None
|
|
1430
|
+
if labels is not None:
|
|
1431
|
+
loss, loss_dict, auxiliary_outputs = self.loss_function(
|
|
1432
|
+
logits,
|
|
1433
|
+
labels,
|
|
1434
|
+
self.device,
|
|
1435
|
+
pred_boxes,
|
|
1436
|
+
self.config,
|
|
1437
|
+
outputs_class,
|
|
1438
|
+
outputs_coord,
|
|
1439
|
+
)
|
|
1440
|
+
|
|
1441
|
+
return DeformableDetrObjectDetectionOutput(
|
|
1442
|
+
loss=loss,
|
|
1443
|
+
loss_dict=loss_dict,
|
|
1444
|
+
logits=logits,
|
|
1445
|
+
pred_boxes=pred_boxes,
|
|
1446
|
+
auxiliary_outputs=auxiliary_outputs,
|
|
1447
|
+
last_hidden_state=outputs.last_hidden_state,
|
|
1448
|
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
1449
|
+
decoder_attentions=outputs.decoder_attentions,
|
|
1450
|
+
cross_attentions=outputs.cross_attentions,
|
|
1451
|
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
|
1452
|
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
|
1453
|
+
encoder_attentions=outputs.encoder_attentions,
|
|
1454
|
+
intermediate_hidden_states=outputs.intermediate_hidden_states,
|
|
1455
|
+
intermediate_reference_points=outputs.intermediate_reference_points,
|
|
1456
|
+
init_reference_points=outputs.init_reference_points,
|
|
1457
|
+
enc_outputs_class=outputs.enc_outputs_class,
|
|
1458
|
+
enc_outputs_coord_logits=outputs.enc_outputs_coord_logits,
|
|
1459
|
+
)
|
|
1460
|
+
|
|
1461
|
+
|
|
1462
|
+
__all__ = [
|
|
1463
|
+
"DeformableDetrImageProcessorFast",
|
|
1464
|
+
"DeformableDetrForObjectDetection",
|
|
1465
|
+
"DeformableDetrModel",
|
|
1466
|
+
"DeformableDetrPreTrainedModel",
|
|
1467
|
+
]
|