transformers 5.0.0rc3__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +4 -11
- transformers/activations.py +2 -2
- transformers/backbone_utils.py +326 -0
- transformers/cache_utils.py +11 -2
- transformers/cli/serve.py +11 -8
- transformers/configuration_utils.py +1 -69
- transformers/conversion_mapping.py +146 -26
- transformers/convert_slow_tokenizer.py +6 -4
- transformers/core_model_loading.py +207 -118
- transformers/dependency_versions_check.py +0 -1
- transformers/dependency_versions_table.py +7 -8
- transformers/file_utils.py +0 -2
- transformers/generation/candidate_generator.py +1 -2
- transformers/generation/continuous_batching/cache.py +40 -38
- transformers/generation/continuous_batching/cache_manager.py +3 -16
- transformers/generation/continuous_batching/continuous_api.py +94 -406
- transformers/generation/continuous_batching/input_ouputs.py +464 -0
- transformers/generation/continuous_batching/requests.py +54 -17
- transformers/generation/continuous_batching/scheduler.py +77 -95
- transformers/generation/logits_process.py +10 -5
- transformers/generation/stopping_criteria.py +1 -2
- transformers/generation/utils.py +75 -95
- transformers/image_processing_utils.py +0 -3
- transformers/image_processing_utils_fast.py +17 -18
- transformers/image_transforms.py +44 -13
- transformers/image_utils.py +0 -5
- transformers/initialization.py +57 -0
- transformers/integrations/__init__.py +10 -24
- transformers/integrations/accelerate.py +47 -11
- transformers/integrations/deepspeed.py +145 -3
- transformers/integrations/executorch.py +2 -6
- transformers/integrations/finegrained_fp8.py +142 -7
- transformers/integrations/flash_attention.py +2 -7
- transformers/integrations/hub_kernels.py +18 -7
- transformers/integrations/moe.py +226 -106
- transformers/integrations/mxfp4.py +47 -34
- transformers/integrations/peft.py +488 -176
- transformers/integrations/tensor_parallel.py +641 -581
- transformers/masking_utils.py +153 -9
- transformers/modeling_flash_attention_utils.py +1 -2
- transformers/modeling_utils.py +359 -358
- transformers/models/__init__.py +6 -0
- transformers/models/afmoe/configuration_afmoe.py +14 -4
- transformers/models/afmoe/modeling_afmoe.py +8 -8
- transformers/models/afmoe/modular_afmoe.py +7 -7
- transformers/models/aimv2/configuration_aimv2.py +2 -7
- transformers/models/aimv2/modeling_aimv2.py +26 -24
- transformers/models/aimv2/modular_aimv2.py +8 -12
- transformers/models/albert/configuration_albert.py +8 -1
- transformers/models/albert/modeling_albert.py +3 -3
- transformers/models/align/configuration_align.py +8 -5
- transformers/models/align/modeling_align.py +22 -24
- transformers/models/altclip/configuration_altclip.py +4 -6
- transformers/models/altclip/modeling_altclip.py +30 -26
- transformers/models/apertus/configuration_apertus.py +5 -7
- transformers/models/apertus/modeling_apertus.py +4 -4
- transformers/models/apertus/modular_apertus.py +8 -10
- transformers/models/arcee/configuration_arcee.py +5 -7
- transformers/models/arcee/modeling_arcee.py +4 -4
- transformers/models/aria/configuration_aria.py +11 -21
- transformers/models/aria/modeling_aria.py +39 -36
- transformers/models/aria/modular_aria.py +33 -39
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +3 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +39 -30
- transformers/models/audioflamingo3/modular_audioflamingo3.py +41 -27
- transformers/models/auto/auto_factory.py +8 -6
- transformers/models/auto/configuration_auto.py +22 -0
- transformers/models/auto/image_processing_auto.py +17 -13
- transformers/models/auto/modeling_auto.py +15 -0
- transformers/models/auto/processing_auto.py +9 -18
- transformers/models/auto/tokenization_auto.py +17 -15
- transformers/models/autoformer/modeling_autoformer.py +2 -1
- transformers/models/aya_vision/configuration_aya_vision.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +29 -62
- transformers/models/aya_vision/modular_aya_vision.py +20 -45
- transformers/models/bamba/configuration_bamba.py +17 -7
- transformers/models/bamba/modeling_bamba.py +23 -55
- transformers/models/bamba/modular_bamba.py +19 -54
- transformers/models/bark/configuration_bark.py +2 -1
- transformers/models/bark/modeling_bark.py +24 -10
- transformers/models/bart/configuration_bart.py +9 -4
- transformers/models/bart/modeling_bart.py +9 -12
- transformers/models/beit/configuration_beit.py +2 -4
- transformers/models/beit/image_processing_beit_fast.py +3 -3
- transformers/models/beit/modeling_beit.py +14 -9
- transformers/models/bert/configuration_bert.py +12 -1
- transformers/models/bert/modeling_bert.py +6 -30
- transformers/models/bert_generation/configuration_bert_generation.py +17 -1
- transformers/models/bert_generation/modeling_bert_generation.py +6 -6
- transformers/models/big_bird/configuration_big_bird.py +12 -8
- transformers/models/big_bird/modeling_big_bird.py +0 -15
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -8
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +9 -7
- transformers/models/biogpt/configuration_biogpt.py +8 -1
- transformers/models/biogpt/modeling_biogpt.py +4 -8
- transformers/models/biogpt/modular_biogpt.py +1 -5
- transformers/models/bit/configuration_bit.py +2 -4
- transformers/models/bit/modeling_bit.py +6 -5
- transformers/models/bitnet/configuration_bitnet.py +5 -7
- transformers/models/bitnet/modeling_bitnet.py +3 -4
- transformers/models/bitnet/modular_bitnet.py +3 -4
- transformers/models/blenderbot/configuration_blenderbot.py +8 -4
- transformers/models/blenderbot/modeling_blenderbot.py +4 -4
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -4
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +4 -4
- transformers/models/blip/configuration_blip.py +9 -9
- transformers/models/blip/modeling_blip.py +55 -37
- transformers/models/blip_2/configuration_blip_2.py +2 -1
- transformers/models/blip_2/modeling_blip_2.py +81 -56
- transformers/models/bloom/configuration_bloom.py +5 -1
- transformers/models/bloom/modeling_bloom.py +2 -1
- transformers/models/blt/configuration_blt.py +23 -12
- transformers/models/blt/modeling_blt.py +20 -14
- transformers/models/blt/modular_blt.py +70 -10
- transformers/models/bridgetower/configuration_bridgetower.py +7 -1
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +6 -6
- transformers/models/bridgetower/modeling_bridgetower.py +29 -15
- transformers/models/bros/configuration_bros.py +24 -17
- transformers/models/camembert/configuration_camembert.py +8 -1
- transformers/models/camembert/modeling_camembert.py +6 -6
- transformers/models/canine/configuration_canine.py +4 -1
- transformers/models/chameleon/configuration_chameleon.py +5 -7
- transformers/models/chameleon/image_processing_chameleon_fast.py +5 -5
- transformers/models/chameleon/modeling_chameleon.py +82 -36
- transformers/models/chinese_clip/configuration_chinese_clip.py +10 -7
- transformers/models/chinese_clip/modeling_chinese_clip.py +28 -29
- transformers/models/clap/configuration_clap.py +4 -8
- transformers/models/clap/modeling_clap.py +21 -22
- transformers/models/clip/configuration_clip.py +4 -1
- transformers/models/clip/image_processing_clip_fast.py +9 -0
- transformers/models/clip/modeling_clip.py +25 -22
- transformers/models/clipseg/configuration_clipseg.py +4 -1
- transformers/models/clipseg/modeling_clipseg.py +27 -25
- transformers/models/clipseg/processing_clipseg.py +11 -3
- transformers/models/clvp/configuration_clvp.py +14 -2
- transformers/models/clvp/modeling_clvp.py +19 -30
- transformers/models/codegen/configuration_codegen.py +4 -3
- transformers/models/codegen/modeling_codegen.py +2 -1
- transformers/models/cohere/configuration_cohere.py +5 -7
- transformers/models/cohere/modeling_cohere.py +4 -4
- transformers/models/cohere/modular_cohere.py +3 -3
- transformers/models/cohere2/configuration_cohere2.py +6 -8
- transformers/models/cohere2/modeling_cohere2.py +4 -4
- transformers/models/cohere2/modular_cohere2.py +9 -11
- transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +3 -3
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +24 -25
- transformers/models/cohere2_vision/modular_cohere2_vision.py +20 -20
- transformers/models/colqwen2/modeling_colqwen2.py +7 -6
- transformers/models/colqwen2/modular_colqwen2.py +7 -6
- transformers/models/conditional_detr/configuration_conditional_detr.py +19 -46
- transformers/models/conditional_detr/image_processing_conditional_detr.py +3 -4
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +28 -14
- transformers/models/conditional_detr/modeling_conditional_detr.py +794 -942
- transformers/models/conditional_detr/modular_conditional_detr.py +901 -3
- transformers/models/convbert/configuration_convbert.py +11 -7
- transformers/models/convnext/configuration_convnext.py +2 -4
- transformers/models/convnext/image_processing_convnext_fast.py +2 -2
- transformers/models/convnext/modeling_convnext.py +7 -6
- transformers/models/convnextv2/configuration_convnextv2.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +7 -6
- transformers/models/cpmant/configuration_cpmant.py +4 -0
- transformers/models/csm/configuration_csm.py +9 -15
- transformers/models/csm/modeling_csm.py +3 -3
- transformers/models/ctrl/configuration_ctrl.py +16 -0
- transformers/models/ctrl/modeling_ctrl.py +13 -25
- transformers/models/cwm/configuration_cwm.py +5 -7
- transformers/models/cwm/modeling_cwm.py +4 -4
- transformers/models/d_fine/configuration_d_fine.py +10 -56
- transformers/models/d_fine/modeling_d_fine.py +728 -868
- transformers/models/d_fine/modular_d_fine.py +335 -412
- transformers/models/dab_detr/configuration_dab_detr.py +22 -48
- transformers/models/dab_detr/modeling_dab_detr.py +11 -7
- transformers/models/dac/modeling_dac.py +1 -1
- transformers/models/data2vec/configuration_data2vec_audio.py +4 -1
- transformers/models/data2vec/configuration_data2vec_text.py +11 -2
- transformers/models/data2vec/modeling_data2vec_audio.py +3 -3
- transformers/models/data2vec/modeling_data2vec_text.py +6 -6
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -2
- transformers/models/dbrx/configuration_dbrx.py +11 -3
- transformers/models/dbrx/modeling_dbrx.py +6 -6
- transformers/models/dbrx/modular_dbrx.py +6 -6
- transformers/models/deberta/configuration_deberta.py +6 -0
- transformers/models/deberta_v2/configuration_deberta_v2.py +6 -0
- transformers/models/decision_transformer/configuration_decision_transformer.py +3 -1
- transformers/models/decision_transformer/modeling_decision_transformer.py +3 -3
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +7 -10
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -8
- transformers/models/deepseek_v2/modular_deepseek_v2.py +8 -10
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +7 -10
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +7 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -5
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +4 -0
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +2 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +5 -5
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +17 -12
- transformers/models/deepseek_vl/modular_deepseek_vl.py +4 -0
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +4 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +2 -2
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +6 -6
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +68 -24
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +70 -19
- transformers/models/deformable_detr/configuration_deformable_detr.py +22 -45
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +25 -11
- transformers/models/deformable_detr/modeling_deformable_detr.py +410 -607
- transformers/models/deformable_detr/modular_deformable_detr.py +1385 -3
- transformers/models/deit/modeling_deit.py +11 -7
- transformers/models/depth_anything/configuration_depth_anything.py +12 -42
- transformers/models/depth_anything/modeling_depth_anything.py +5 -3
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +2 -2
- transformers/models/depth_pro/modeling_depth_pro.py +8 -4
- transformers/models/detr/configuration_detr.py +18 -49
- transformers/models/detr/image_processing_detr_fast.py +11 -11
- transformers/models/detr/modeling_detr.py +695 -734
- transformers/models/dia/configuration_dia.py +4 -7
- transformers/models/dia/generation_dia.py +8 -17
- transformers/models/dia/modeling_dia.py +7 -7
- transformers/models/dia/modular_dia.py +4 -4
- transformers/models/diffllama/configuration_diffllama.py +5 -7
- transformers/models/diffllama/modeling_diffllama.py +3 -8
- transformers/models/diffllama/modular_diffllama.py +2 -7
- transformers/models/dinat/configuration_dinat.py +2 -4
- transformers/models/dinat/modeling_dinat.py +7 -6
- transformers/models/dinov2/configuration_dinov2.py +2 -4
- transformers/models/dinov2/modeling_dinov2.py +9 -8
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +2 -4
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +9 -8
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +6 -7
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +2 -4
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +2 -3
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +2 -4
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +2 -2
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -6
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -6
- transformers/models/distilbert/configuration_distilbert.py +8 -1
- transformers/models/distilbert/modeling_distilbert.py +3 -3
- transformers/models/doge/configuration_doge.py +17 -7
- transformers/models/doge/modeling_doge.py +4 -4
- transformers/models/doge/modular_doge.py +20 -10
- transformers/models/donut/image_processing_donut_fast.py +4 -4
- transformers/models/dots1/configuration_dots1.py +16 -7
- transformers/models/dots1/modeling_dots1.py +4 -4
- transformers/models/dpr/configuration_dpr.py +19 -1
- transformers/models/dpt/configuration_dpt.py +23 -65
- transformers/models/dpt/image_processing_dpt_fast.py +5 -5
- transformers/models/dpt/modeling_dpt.py +19 -15
- transformers/models/dpt/modular_dpt.py +4 -4
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +53 -53
- transformers/models/edgetam/modular_edgetam.py +5 -7
- transformers/models/edgetam_video/modeling_edgetam_video.py +55 -56
- transformers/models/edgetam_video/modular_edgetam_video.py +9 -9
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +4 -3
- transformers/models/efficientloftr/modeling_efficientloftr.py +19 -9
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +2 -2
- transformers/models/electra/configuration_electra.py +13 -2
- transformers/models/electra/modeling_electra.py +6 -6
- transformers/models/emu3/configuration_emu3.py +12 -10
- transformers/models/emu3/modeling_emu3.py +84 -47
- transformers/models/emu3/modular_emu3.py +77 -39
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -1
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +20 -24
- transformers/models/eomt/configuration_eomt.py +12 -13
- transformers/models/eomt/image_processing_eomt_fast.py +3 -3
- transformers/models/eomt/modeling_eomt.py +3 -3
- transformers/models/eomt/modular_eomt.py +17 -17
- transformers/models/eomt_dinov3/__init__.py +28 -0
- transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
- transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
- transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
- transformers/models/ernie/configuration_ernie.py +24 -2
- transformers/models/ernie/modeling_ernie.py +6 -30
- transformers/models/ernie4_5/configuration_ernie4_5.py +5 -7
- transformers/models/ernie4_5/modeling_ernie4_5.py +4 -4
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +7 -10
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +4 -4
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -6
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +229 -188
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +79 -55
- transformers/models/esm/configuration_esm.py +9 -11
- transformers/models/esm/modeling_esm.py +3 -3
- transformers/models/esm/modeling_esmfold.py +1 -6
- transformers/models/esm/openfold_utils/protein.py +2 -3
- transformers/models/evolla/configuration_evolla.py +21 -8
- transformers/models/evolla/modeling_evolla.py +11 -7
- transformers/models/evolla/modular_evolla.py +5 -1
- transformers/models/exaone4/configuration_exaone4.py +8 -5
- transformers/models/exaone4/modeling_exaone4.py +4 -4
- transformers/models/exaone4/modular_exaone4.py +11 -8
- transformers/models/exaone_moe/__init__.py +27 -0
- transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
- transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
- transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
- transformers/models/falcon/configuration_falcon.py +9 -1
- transformers/models/falcon/modeling_falcon.py +3 -8
- transformers/models/falcon_h1/configuration_falcon_h1.py +17 -8
- transformers/models/falcon_h1/modeling_falcon_h1.py +22 -54
- transformers/models/falcon_h1/modular_falcon_h1.py +21 -52
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -1
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +18 -26
- transformers/models/falcon_mamba/modular_falcon_mamba.py +4 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +10 -1
- transformers/models/fast_vlm/modeling_fast_vlm.py +37 -64
- transformers/models/fast_vlm/modular_fast_vlm.py +146 -35
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +0 -1
- transformers/models/flaubert/configuration_flaubert.py +10 -4
- transformers/models/flaubert/modeling_flaubert.py +1 -1
- transformers/models/flava/configuration_flava.py +4 -3
- transformers/models/flava/image_processing_flava_fast.py +4 -4
- transformers/models/flava/modeling_flava.py +36 -28
- transformers/models/flex_olmo/configuration_flex_olmo.py +11 -14
- transformers/models/flex_olmo/modeling_flex_olmo.py +4 -4
- transformers/models/flex_olmo/modular_flex_olmo.py +11 -14
- transformers/models/florence2/configuration_florence2.py +4 -0
- transformers/models/florence2/modeling_florence2.py +57 -32
- transformers/models/florence2/modular_florence2.py +48 -26
- transformers/models/fnet/configuration_fnet.py +6 -1
- transformers/models/focalnet/configuration_focalnet.py +2 -4
- transformers/models/focalnet/modeling_focalnet.py +10 -7
- transformers/models/fsmt/configuration_fsmt.py +12 -16
- transformers/models/funnel/configuration_funnel.py +8 -0
- transformers/models/fuyu/configuration_fuyu.py +5 -8
- transformers/models/fuyu/image_processing_fuyu_fast.py +5 -4
- transformers/models/fuyu/modeling_fuyu.py +24 -23
- transformers/models/gemma/configuration_gemma.py +5 -7
- transformers/models/gemma/modeling_gemma.py +4 -4
- transformers/models/gemma/modular_gemma.py +5 -7
- transformers/models/gemma2/configuration_gemma2.py +5 -7
- transformers/models/gemma2/modeling_gemma2.py +4 -4
- transformers/models/gemma2/modular_gemma2.py +8 -10
- transformers/models/gemma3/configuration_gemma3.py +28 -22
- transformers/models/gemma3/image_processing_gemma3_fast.py +2 -2
- transformers/models/gemma3/modeling_gemma3.py +37 -33
- transformers/models/gemma3/modular_gemma3.py +46 -42
- transformers/models/gemma3n/configuration_gemma3n.py +35 -22
- transformers/models/gemma3n/modeling_gemma3n.py +86 -58
- transformers/models/gemma3n/modular_gemma3n.py +112 -75
- transformers/models/git/configuration_git.py +5 -7
- transformers/models/git/modeling_git.py +31 -41
- transformers/models/glm/configuration_glm.py +7 -9
- transformers/models/glm/modeling_glm.py +4 -4
- transformers/models/glm4/configuration_glm4.py +7 -9
- transformers/models/glm4/modeling_glm4.py +4 -4
- transformers/models/glm46v/configuration_glm46v.py +4 -0
- transformers/models/glm46v/image_processing_glm46v.py +5 -2
- transformers/models/glm46v/image_processing_glm46v_fast.py +2 -2
- transformers/models/glm46v/modeling_glm46v.py +91 -46
- transformers/models/glm46v/modular_glm46v.py +4 -0
- transformers/models/glm4_moe/configuration_glm4_moe.py +17 -7
- transformers/models/glm4_moe/modeling_glm4_moe.py +4 -4
- transformers/models/glm4_moe/modular_glm4_moe.py +17 -7
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +8 -10
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +7 -7
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +8 -10
- transformers/models/glm4v/configuration_glm4v.py +12 -8
- transformers/models/glm4v/image_processing_glm4v.py +5 -2
- transformers/models/glm4v/image_processing_glm4v_fast.py +2 -2
- transformers/models/glm4v/modeling_glm4v.py +120 -63
- transformers/models/glm4v/modular_glm4v.py +82 -50
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +18 -6
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +115 -63
- transformers/models/glm4v_moe/modular_glm4v_moe.py +23 -12
- transformers/models/glm_image/configuration_glm_image.py +26 -20
- transformers/models/glm_image/image_processing_glm_image.py +1 -1
- transformers/models/glm_image/image_processing_glm_image_fast.py +5 -7
- transformers/models/glm_image/modeling_glm_image.py +337 -236
- transformers/models/glm_image/modular_glm_image.py +415 -255
- transformers/models/glm_image/processing_glm_image.py +65 -17
- transformers/{pipelines/deprecated → models/glm_ocr}/__init__.py +15 -2
- transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
- transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
- transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
- transformers/models/glmasr/modeling_glmasr.py +34 -28
- transformers/models/glmasr/modular_glmasr.py +23 -11
- transformers/models/glpn/image_processing_glpn_fast.py +3 -3
- transformers/models/glpn/modeling_glpn.py +4 -2
- transformers/models/got_ocr2/configuration_got_ocr2.py +6 -6
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +3 -3
- transformers/models/got_ocr2/modeling_got_ocr2.py +31 -37
- transformers/models/got_ocr2/modular_got_ocr2.py +30 -19
- transformers/models/gpt2/configuration_gpt2.py +13 -1
- transformers/models/gpt2/modeling_gpt2.py +5 -5
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -1
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +5 -4
- transformers/models/gpt_neo/configuration_gpt_neo.py +9 -1
- transformers/models/gpt_neo/modeling_gpt_neo.py +3 -7
- transformers/models/gpt_neox/configuration_gpt_neox.py +8 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +4 -4
- transformers/models/gpt_neox/modular_gpt_neox.py +4 -4
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +9 -1
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +2 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +10 -6
- transformers/models/gpt_oss/modeling_gpt_oss.py +46 -79
- transformers/models/gpt_oss/modular_gpt_oss.py +45 -78
- transformers/models/gptj/configuration_gptj.py +4 -4
- transformers/models/gptj/modeling_gptj.py +3 -7
- transformers/models/granite/configuration_granite.py +5 -7
- transformers/models/granite/modeling_granite.py +4 -4
- transformers/models/granite_speech/modeling_granite_speech.py +63 -37
- transformers/models/granitemoe/configuration_granitemoe.py +5 -7
- transformers/models/granitemoe/modeling_granitemoe.py +4 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +17 -7
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +22 -54
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +39 -45
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +6 -7
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +4 -4
- transformers/models/grounding_dino/configuration_grounding_dino.py +10 -45
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +11 -11
- transformers/models/grounding_dino/modeling_grounding_dino.py +68 -86
- transformers/models/groupvit/configuration_groupvit.py +4 -1
- transformers/models/groupvit/modeling_groupvit.py +29 -22
- transformers/models/helium/configuration_helium.py +5 -7
- transformers/models/helium/modeling_helium.py +4 -4
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -4
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +6 -5
- transformers/models/hgnet_v2/modular_hgnet_v2.py +7 -8
- transformers/models/hiera/configuration_hiera.py +2 -4
- transformers/models/hiera/modeling_hiera.py +11 -8
- transformers/models/hubert/configuration_hubert.py +4 -1
- transformers/models/hubert/modeling_hubert.py +7 -4
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +5 -7
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +28 -4
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +28 -6
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +6 -8
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +22 -9
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +22 -8
- transformers/models/ibert/configuration_ibert.py +4 -1
- transformers/models/idefics/configuration_idefics.py +5 -7
- transformers/models/idefics/modeling_idefics.py +3 -4
- transformers/models/idefics/vision.py +5 -4
- transformers/models/idefics2/configuration_idefics2.py +1 -2
- transformers/models/idefics2/image_processing_idefics2_fast.py +1 -0
- transformers/models/idefics2/modeling_idefics2.py +72 -50
- transformers/models/idefics3/configuration_idefics3.py +1 -3
- transformers/models/idefics3/image_processing_idefics3_fast.py +29 -3
- transformers/models/idefics3/modeling_idefics3.py +63 -40
- transformers/models/ijepa/modeling_ijepa.py +3 -3
- transformers/models/imagegpt/configuration_imagegpt.py +9 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +2 -2
- transformers/models/imagegpt/modeling_imagegpt.py +8 -4
- transformers/models/informer/modeling_informer.py +3 -3
- transformers/models/instructblip/configuration_instructblip.py +2 -1
- transformers/models/instructblip/modeling_instructblip.py +65 -39
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -1
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +60 -57
- transformers/models/instructblipvideo/modular_instructblipvideo.py +43 -32
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +2 -2
- transformers/models/internvl/configuration_internvl.py +5 -0
- transformers/models/internvl/modeling_internvl.py +35 -55
- transformers/models/internvl/modular_internvl.py +26 -38
- transformers/models/internvl/video_processing_internvl.py +2 -2
- transformers/models/jais2/configuration_jais2.py +5 -7
- transformers/models/jais2/modeling_jais2.py +4 -4
- transformers/models/jamba/configuration_jamba.py +5 -7
- transformers/models/jamba/modeling_jamba.py +4 -4
- transformers/models/jamba/modular_jamba.py +3 -3
- transformers/models/janus/image_processing_janus.py +2 -2
- transformers/models/janus/image_processing_janus_fast.py +8 -8
- transformers/models/janus/modeling_janus.py +63 -146
- transformers/models/janus/modular_janus.py +62 -20
- transformers/models/jetmoe/configuration_jetmoe.py +6 -4
- transformers/models/jetmoe/modeling_jetmoe.py +3 -3
- transformers/models/jetmoe/modular_jetmoe.py +3 -3
- transformers/models/kosmos2/configuration_kosmos2.py +10 -8
- transformers/models/kosmos2/modeling_kosmos2.py +56 -34
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -8
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +54 -63
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +8 -3
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +44 -40
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +1 -1
- transformers/models/lasr/configuration_lasr.py +2 -4
- transformers/models/lasr/modeling_lasr.py +3 -3
- transformers/models/lasr/modular_lasr.py +3 -3
- transformers/models/layoutlm/configuration_layoutlm.py +14 -1
- transformers/models/layoutlm/modeling_layoutlm.py +3 -3
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -16
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +2 -2
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -18
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +2 -2
- transformers/models/layoutxlm/configuration_layoutxlm.py +14 -16
- transformers/models/led/configuration_led.py +7 -8
- transformers/models/levit/image_processing_levit_fast.py +4 -4
- transformers/models/lfm2/configuration_lfm2.py +5 -7
- transformers/models/lfm2/modeling_lfm2.py +4 -4
- transformers/models/lfm2/modular_lfm2.py +3 -3
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +5 -7
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +4 -4
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +9 -15
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +42 -28
- transformers/models/lfm2_vl/modular_lfm2_vl.py +42 -27
- transformers/models/lightglue/image_processing_lightglue_fast.py +4 -3
- transformers/models/lightglue/modeling_lightglue.py +3 -3
- transformers/models/lightglue/modular_lightglue.py +3 -3
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +31 -28
- transformers/models/lighton_ocr/modular_lighton_ocr.py +19 -18
- transformers/models/lilt/configuration_lilt.py +6 -1
- transformers/models/llama/configuration_llama.py +5 -7
- transformers/models/llama/modeling_llama.py +4 -4
- transformers/models/llama4/configuration_llama4.py +67 -47
- transformers/models/llama4/image_processing_llama4_fast.py +3 -3
- transformers/models/llama4/modeling_llama4.py +46 -44
- transformers/models/llava/configuration_llava.py +10 -0
- transformers/models/llava/image_processing_llava_fast.py +3 -3
- transformers/models/llava/modeling_llava.py +38 -65
- transformers/models/llava_next/configuration_llava_next.py +2 -1
- transformers/models/llava_next/image_processing_llava_next_fast.py +6 -6
- transformers/models/llava_next/modeling_llava_next.py +61 -60
- transformers/models/llava_next_video/configuration_llava_next_video.py +10 -6
- transformers/models/llava_next_video/modeling_llava_next_video.py +115 -100
- transformers/models/llava_next_video/modular_llava_next_video.py +110 -101
- transformers/models/llava_onevision/configuration_llava_onevision.py +10 -6
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +8 -7
- transformers/models/llava_onevision/modeling_llava_onevision.py +111 -105
- transformers/models/llava_onevision/modular_llava_onevision.py +106 -101
- transformers/models/longcat_flash/configuration_longcat_flash.py +7 -10
- transformers/models/longcat_flash/modeling_longcat_flash.py +7 -7
- transformers/models/longcat_flash/modular_longcat_flash.py +6 -5
- transformers/models/longformer/configuration_longformer.py +4 -1
- transformers/models/longt5/configuration_longt5.py +9 -6
- transformers/models/longt5/modeling_longt5.py +2 -1
- transformers/models/luke/configuration_luke.py +8 -1
- transformers/models/lw_detr/configuration_lw_detr.py +19 -31
- transformers/models/lw_detr/modeling_lw_detr.py +43 -44
- transformers/models/lw_detr/modular_lw_detr.py +36 -38
- transformers/models/lxmert/configuration_lxmert.py +16 -0
- transformers/models/m2m_100/configuration_m2m_100.py +7 -8
- transformers/models/m2m_100/modeling_m2m_100.py +3 -3
- transformers/models/mamba/configuration_mamba.py +5 -2
- transformers/models/mamba/modeling_mamba.py +18 -26
- transformers/models/mamba2/configuration_mamba2.py +5 -7
- transformers/models/mamba2/modeling_mamba2.py +22 -33
- transformers/models/marian/configuration_marian.py +10 -4
- transformers/models/marian/modeling_marian.py +4 -4
- transformers/models/markuplm/configuration_markuplm.py +4 -6
- transformers/models/markuplm/modeling_markuplm.py +3 -3
- transformers/models/mask2former/configuration_mask2former.py +12 -47
- transformers/models/mask2former/image_processing_mask2former_fast.py +8 -8
- transformers/models/mask2former/modeling_mask2former.py +18 -12
- transformers/models/maskformer/configuration_maskformer.py +14 -45
- transformers/models/maskformer/configuration_maskformer_swin.py +2 -4
- transformers/models/maskformer/image_processing_maskformer_fast.py +8 -8
- transformers/models/maskformer/modeling_maskformer.py +15 -9
- transformers/models/maskformer/modeling_maskformer_swin.py +2 -3
- transformers/models/mbart/configuration_mbart.py +9 -4
- transformers/models/mbart/modeling_mbart.py +9 -6
- transformers/models/megatron_bert/configuration_megatron_bert.py +13 -2
- transformers/models/megatron_bert/modeling_megatron_bert.py +0 -15
- transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
- transformers/models/metaclip_2/modeling_metaclip_2.py +49 -42
- transformers/models/metaclip_2/modular_metaclip_2.py +41 -25
- transformers/models/mgp_str/modeling_mgp_str.py +4 -2
- transformers/models/mimi/configuration_mimi.py +4 -0
- transformers/models/mimi/modeling_mimi.py +40 -36
- transformers/models/minimax/configuration_minimax.py +8 -11
- transformers/models/minimax/modeling_minimax.py +5 -5
- transformers/models/minimax/modular_minimax.py +9 -12
- transformers/models/minimax_m2/configuration_minimax_m2.py +8 -31
- transformers/models/minimax_m2/modeling_minimax_m2.py +4 -4
- transformers/models/minimax_m2/modular_minimax_m2.py +8 -31
- transformers/models/ministral/configuration_ministral.py +5 -7
- transformers/models/ministral/modeling_ministral.py +4 -4
- transformers/models/ministral/modular_ministral.py +5 -8
- transformers/models/ministral3/configuration_ministral3.py +4 -4
- transformers/models/ministral3/modeling_ministral3.py +4 -4
- transformers/models/ministral3/modular_ministral3.py +3 -3
- transformers/models/mistral/configuration_mistral.py +5 -7
- transformers/models/mistral/modeling_mistral.py +4 -4
- transformers/models/mistral/modular_mistral.py +3 -3
- transformers/models/mistral3/configuration_mistral3.py +4 -0
- transformers/models/mistral3/modeling_mistral3.py +36 -40
- transformers/models/mistral3/modular_mistral3.py +31 -32
- transformers/models/mixtral/configuration_mixtral.py +8 -11
- transformers/models/mixtral/modeling_mixtral.py +4 -4
- transformers/models/mlcd/modeling_mlcd.py +7 -5
- transformers/models/mlcd/modular_mlcd.py +7 -5
- transformers/models/mllama/configuration_mllama.py +5 -7
- transformers/models/mllama/image_processing_mllama_fast.py +6 -5
- transformers/models/mllama/modeling_mllama.py +19 -19
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -45
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +66 -84
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -45
- transformers/models/mobilebert/configuration_mobilebert.py +4 -1
- transformers/models/mobilebert/modeling_mobilebert.py +3 -3
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +4 -4
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +4 -2
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +4 -4
- transformers/models/mobilevit/modeling_mobilevit.py +4 -2
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -2
- transformers/models/modernbert/configuration_modernbert.py +46 -21
- transformers/models/modernbert/modeling_modernbert.py +146 -899
- transformers/models/modernbert/modular_modernbert.py +185 -908
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +21 -13
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -17
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +24 -23
- transformers/models/moonshine/configuration_moonshine.py +12 -7
- transformers/models/moonshine/modeling_moonshine.py +7 -7
- transformers/models/moonshine/modular_moonshine.py +19 -13
- transformers/models/moshi/configuration_moshi.py +28 -2
- transformers/models/moshi/modeling_moshi.py +4 -9
- transformers/models/mpnet/configuration_mpnet.py +6 -1
- transformers/models/mpt/configuration_mpt.py +16 -0
- transformers/models/mra/configuration_mra.py +8 -1
- transformers/models/mt5/configuration_mt5.py +9 -5
- transformers/models/mt5/modeling_mt5.py +5 -8
- transformers/models/musicgen/configuration_musicgen.py +12 -7
- transformers/models/musicgen/modeling_musicgen.py +6 -5
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -7
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -17
- transformers/models/mvp/configuration_mvp.py +8 -4
- transformers/models/mvp/modeling_mvp.py +6 -4
- transformers/models/nanochat/configuration_nanochat.py +5 -7
- transformers/models/nanochat/modeling_nanochat.py +4 -4
- transformers/models/nanochat/modular_nanochat.py +4 -4
- transformers/models/nemotron/configuration_nemotron.py +5 -7
- transformers/models/nemotron/modeling_nemotron.py +4 -14
- transformers/models/nllb/tokenization_nllb.py +7 -5
- transformers/models/nllb_moe/configuration_nllb_moe.py +7 -9
- transformers/models/nllb_moe/modeling_nllb_moe.py +3 -3
- transformers/models/nougat/image_processing_nougat_fast.py +8 -8
- transformers/models/nystromformer/configuration_nystromformer.py +8 -1
- transformers/models/olmo/configuration_olmo.py +5 -7
- transformers/models/olmo/modeling_olmo.py +4 -4
- transformers/models/olmo/modular_olmo.py +3 -3
- transformers/models/olmo2/configuration_olmo2.py +9 -11
- transformers/models/olmo2/modeling_olmo2.py +4 -4
- transformers/models/olmo2/modular_olmo2.py +7 -7
- transformers/models/olmo3/configuration_olmo3.py +10 -11
- transformers/models/olmo3/modeling_olmo3.py +4 -4
- transformers/models/olmo3/modular_olmo3.py +13 -14
- transformers/models/olmoe/configuration_olmoe.py +5 -7
- transformers/models/olmoe/modeling_olmoe.py +4 -4
- transformers/models/olmoe/modular_olmoe.py +3 -3
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -49
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +22 -18
- transformers/models/oneformer/configuration_oneformer.py +9 -46
- transformers/models/oneformer/image_processing_oneformer_fast.py +8 -8
- transformers/models/oneformer/modeling_oneformer.py +14 -9
- transformers/models/openai/configuration_openai.py +16 -0
- transformers/models/opt/configuration_opt.py +6 -6
- transformers/models/opt/modeling_opt.py +5 -5
- transformers/models/ovis2/configuration_ovis2.py +4 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +3 -3
- transformers/models/ovis2/modeling_ovis2.py +58 -99
- transformers/models/ovis2/modular_ovis2.py +52 -13
- transformers/models/owlv2/configuration_owlv2.py +4 -1
- transformers/models/owlv2/image_processing_owlv2_fast.py +5 -5
- transformers/models/owlv2/modeling_owlv2.py +40 -27
- transformers/models/owlv2/modular_owlv2.py +5 -5
- transformers/models/owlvit/configuration_owlvit.py +4 -1
- transformers/models/owlvit/modeling_owlvit.py +40 -27
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +9 -10
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +88 -87
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +82 -53
- transformers/models/paligemma/configuration_paligemma.py +4 -0
- transformers/models/paligemma/modeling_paligemma.py +30 -26
- transformers/models/parakeet/configuration_parakeet.py +2 -4
- transformers/models/parakeet/modeling_parakeet.py +3 -3
- transformers/models/parakeet/modular_parakeet.py +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +3 -3
- transformers/models/patchtst/modeling_patchtst.py +3 -3
- transformers/models/pe_audio/modeling_pe_audio.py +4 -4
- transformers/models/pe_audio/modular_pe_audio.py +1 -1
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +4 -4
- transformers/models/pe_audio_video/modular_pe_audio_video.py +4 -4
- transformers/models/pe_video/modeling_pe_video.py +36 -24
- transformers/models/pe_video/modular_pe_video.py +36 -23
- transformers/models/pegasus/configuration_pegasus.py +8 -5
- transformers/models/pegasus/modeling_pegasus.py +4 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +5 -3
- transformers/models/pegasus_x/modeling_pegasus_x.py +3 -3
- transformers/models/perceiver/image_processing_perceiver_fast.py +2 -2
- transformers/models/perceiver/modeling_perceiver.py +17 -9
- transformers/models/perception_lm/modeling_perception_lm.py +26 -27
- transformers/models/perception_lm/modular_perception_lm.py +27 -25
- transformers/models/persimmon/configuration_persimmon.py +5 -7
- transformers/models/persimmon/modeling_persimmon.py +5 -5
- transformers/models/phi/configuration_phi.py +8 -6
- transformers/models/phi/modeling_phi.py +4 -4
- transformers/models/phi/modular_phi.py +3 -3
- transformers/models/phi3/configuration_phi3.py +9 -11
- transformers/models/phi3/modeling_phi3.py +4 -4
- transformers/models/phi3/modular_phi3.py +3 -3
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +11 -13
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +4 -4
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +46 -61
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +44 -30
- transformers/models/phimoe/configuration_phimoe.py +5 -7
- transformers/models/phimoe/modeling_phimoe.py +15 -39
- transformers/models/phimoe/modular_phimoe.py +12 -7
- transformers/models/pix2struct/configuration_pix2struct.py +12 -9
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +5 -5
- transformers/models/pix2struct/modeling_pix2struct.py +14 -7
- transformers/models/pixio/configuration_pixio.py +2 -4
- transformers/models/pixio/modeling_pixio.py +9 -8
- transformers/models/pixio/modular_pixio.py +4 -2
- transformers/models/pixtral/image_processing_pixtral_fast.py +5 -5
- transformers/models/pixtral/modeling_pixtral.py +9 -12
- transformers/models/plbart/configuration_plbart.py +8 -5
- transformers/models/plbart/modeling_plbart.py +9 -7
- transformers/models/plbart/modular_plbart.py +1 -1
- transformers/models/poolformer/image_processing_poolformer_fast.py +7 -7
- transformers/models/pop2piano/configuration_pop2piano.py +7 -6
- transformers/models/pop2piano/modeling_pop2piano.py +2 -1
- transformers/models/pp_doclayout_v3/__init__.py +30 -0
- transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
- transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
- transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
- transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +12 -46
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +6 -6
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +8 -6
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +12 -10
- transformers/models/prophetnet/configuration_prophetnet.py +11 -10
- transformers/models/prophetnet/modeling_prophetnet.py +12 -23
- transformers/models/pvt/image_processing_pvt.py +7 -7
- transformers/models/pvt/image_processing_pvt_fast.py +1 -1
- transformers/models/pvt_v2/configuration_pvt_v2.py +2 -4
- transformers/models/pvt_v2/modeling_pvt_v2.py +6 -5
- transformers/models/qwen2/configuration_qwen2.py +14 -4
- transformers/models/qwen2/modeling_qwen2.py +4 -4
- transformers/models/qwen2/modular_qwen2.py +3 -3
- transformers/models/qwen2/tokenization_qwen2.py +0 -4
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +17 -5
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +108 -88
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +115 -87
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +7 -10
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +98 -53
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +18 -6
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +12 -12
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +14 -4
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +4 -4
- transformers/models/qwen2_moe/modular_qwen2_moe.py +3 -3
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +7 -10
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +4 -6
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +97 -53
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +4 -6
- transformers/models/qwen3/configuration_qwen3.py +15 -5
- transformers/models/qwen3/modeling_qwen3.py +4 -4
- transformers/models/qwen3/modular_qwen3.py +3 -3
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +20 -7
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +4 -4
- transformers/models/qwen3_next/configuration_qwen3_next.py +16 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +5 -5
- transformers/models/qwen3_next/modular_qwen3_next.py +4 -4
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +55 -19
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +161 -98
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +107 -34
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +7 -6
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +115 -49
- transformers/models/qwen3_vl/modular_qwen3_vl.py +88 -37
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +7 -6
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +173 -99
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +23 -7
- transformers/models/rag/configuration_rag.py +6 -6
- transformers/models/rag/modeling_rag.py +3 -3
- transformers/models/rag/retrieval_rag.py +1 -1
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +8 -6
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +4 -5
- transformers/models/reformer/configuration_reformer.py +7 -7
- transformers/models/rembert/configuration_rembert.py +8 -1
- transformers/models/rembert/modeling_rembert.py +0 -22
- transformers/models/resnet/configuration_resnet.py +2 -4
- transformers/models/resnet/modeling_resnet.py +6 -5
- transformers/models/roberta/configuration_roberta.py +11 -2
- transformers/models/roberta/modeling_roberta.py +6 -6
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -2
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +6 -6
- transformers/models/roc_bert/configuration_roc_bert.py +8 -1
- transformers/models/roc_bert/modeling_roc_bert.py +6 -41
- transformers/models/roformer/configuration_roformer.py +13 -2
- transformers/models/roformer/modeling_roformer.py +0 -14
- transformers/models/rt_detr/configuration_rt_detr.py +8 -49
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -4
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +24 -11
- transformers/models/rt_detr/modeling_rt_detr.py +578 -737
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +2 -3
- transformers/models/rt_detr/modular_rt_detr.py +1508 -6
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -57
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +318 -453
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +25 -66
- transformers/models/rwkv/configuration_rwkv.py +2 -3
- transformers/models/rwkv/modeling_rwkv.py +0 -23
- transformers/models/sam/configuration_sam.py +2 -0
- transformers/models/sam/image_processing_sam_fast.py +4 -4
- transformers/models/sam/modeling_sam.py +13 -8
- transformers/models/sam/processing_sam.py +3 -3
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +56 -52
- transformers/models/sam2/modular_sam2.py +47 -55
- transformers/models/sam2_video/modeling_sam2_video.py +50 -51
- transformers/models/sam2_video/modular_sam2_video.py +12 -10
- transformers/models/sam3/modeling_sam3.py +43 -47
- transformers/models/sam3/processing_sam3.py +8 -4
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -2
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +50 -49
- transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -1
- transformers/models/sam3_tracker/processing_sam3_tracker.py +0 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +50 -49
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -22
- transformers/models/sam3_video/modeling_sam3_video.py +27 -14
- transformers/models/sam_hq/configuration_sam_hq.py +2 -0
- transformers/models/sam_hq/modeling_sam_hq.py +13 -9
- transformers/models/sam_hq/modular_sam_hq.py +6 -6
- transformers/models/sam_hq/processing_sam_hq.py +7 -6
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -9
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -9
- transformers/models/seed_oss/configuration_seed_oss.py +7 -9
- transformers/models/seed_oss/modeling_seed_oss.py +4 -4
- transformers/models/seed_oss/modular_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +4 -4
- transformers/models/segformer/modeling_segformer.py +4 -2
- transformers/models/segformer/modular_segformer.py +3 -3
- transformers/models/seggpt/modeling_seggpt.py +20 -8
- transformers/models/sew/configuration_sew.py +4 -1
- transformers/models/sew/modeling_sew.py +9 -5
- transformers/models/sew/modular_sew.py +2 -1
- transformers/models/sew_d/configuration_sew_d.py +4 -1
- transformers/models/sew_d/modeling_sew_d.py +4 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +4 -4
- transformers/models/siglip/configuration_siglip.py +4 -1
- transformers/models/siglip/modeling_siglip.py +27 -71
- transformers/models/siglip2/__init__.py +1 -0
- transformers/models/siglip2/configuration_siglip2.py +4 -2
- transformers/models/siglip2/image_processing_siglip2_fast.py +2 -2
- transformers/models/siglip2/modeling_siglip2.py +37 -78
- transformers/models/siglip2/modular_siglip2.py +74 -25
- transformers/models/siglip2/tokenization_siglip2.py +95 -0
- transformers/models/smollm3/configuration_smollm3.py +6 -6
- transformers/models/smollm3/modeling_smollm3.py +4 -4
- transformers/models/smollm3/modular_smollm3.py +9 -9
- transformers/models/smolvlm/configuration_smolvlm.py +1 -3
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +29 -3
- transformers/models/smolvlm/modeling_smolvlm.py +75 -46
- transformers/models/smolvlm/modular_smolvlm.py +36 -23
- transformers/models/smolvlm/video_processing_smolvlm.py +9 -9
- transformers/models/solar_open/__init__.py +27 -0
- transformers/models/solar_open/configuration_solar_open.py +184 -0
- transformers/models/solar_open/modeling_solar_open.py +642 -0
- transformers/models/solar_open/modular_solar_open.py +224 -0
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +6 -4
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -8
- transformers/models/speech_to_text/modeling_speech_to_text.py +3 -3
- transformers/models/speecht5/configuration_speecht5.py +7 -8
- transformers/models/splinter/configuration_splinter.py +6 -6
- transformers/models/splinter/modeling_splinter.py +8 -3
- transformers/models/squeezebert/configuration_squeezebert.py +14 -1
- transformers/models/stablelm/configuration_stablelm.py +8 -6
- transformers/models/stablelm/modeling_stablelm.py +5 -5
- transformers/models/starcoder2/configuration_starcoder2.py +11 -5
- transformers/models/starcoder2/modeling_starcoder2.py +5 -5
- transformers/models/starcoder2/modular_starcoder2.py +4 -4
- transformers/models/superglue/configuration_superglue.py +4 -0
- transformers/models/superglue/image_processing_superglue_fast.py +4 -3
- transformers/models/superglue/modeling_superglue.py +9 -4
- transformers/models/superpoint/image_processing_superpoint_fast.py +3 -4
- transformers/models/superpoint/modeling_superpoint.py +4 -2
- transformers/models/swin/configuration_swin.py +2 -4
- transformers/models/swin/modeling_swin.py +11 -8
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +2 -2
- transformers/models/swin2sr/modeling_swin2sr.py +4 -2
- transformers/models/swinv2/configuration_swinv2.py +2 -4
- transformers/models/swinv2/modeling_swinv2.py +10 -7
- transformers/models/switch_transformers/configuration_switch_transformers.py +11 -6
- transformers/models/switch_transformers/modeling_switch_transformers.py +3 -3
- transformers/models/switch_transformers/modular_switch_transformers.py +3 -3
- transformers/models/t5/configuration_t5.py +9 -8
- transformers/models/t5/modeling_t5.py +5 -8
- transformers/models/t5gemma/configuration_t5gemma.py +10 -25
- transformers/models/t5gemma/modeling_t5gemma.py +9 -9
- transformers/models/t5gemma/modular_t5gemma.py +11 -24
- transformers/models/t5gemma2/configuration_t5gemma2.py +35 -48
- transformers/models/t5gemma2/modeling_t5gemma2.py +143 -100
- transformers/models/t5gemma2/modular_t5gemma2.py +152 -136
- transformers/models/table_transformer/configuration_table_transformer.py +18 -49
- transformers/models/table_transformer/modeling_table_transformer.py +27 -53
- transformers/models/tapas/configuration_tapas.py +12 -1
- transformers/models/tapas/modeling_tapas.py +1 -1
- transformers/models/tapas/tokenization_tapas.py +1 -0
- transformers/models/textnet/configuration_textnet.py +4 -6
- transformers/models/textnet/image_processing_textnet_fast.py +3 -3
- transformers/models/textnet/modeling_textnet.py +15 -14
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +3 -3
- transformers/models/timesfm/modeling_timesfm.py +5 -6
- transformers/models/timesfm/modular_timesfm.py +5 -6
- transformers/models/timm_backbone/configuration_timm_backbone.py +33 -7
- transformers/models/timm_backbone/modeling_timm_backbone.py +21 -24
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +9 -4
- transformers/models/trocr/configuration_trocr.py +11 -7
- transformers/models/trocr/modeling_trocr.py +4 -2
- transformers/models/tvp/configuration_tvp.py +10 -35
- transformers/models/tvp/image_processing_tvp_fast.py +6 -5
- transformers/models/tvp/modeling_tvp.py +1 -1
- transformers/models/udop/configuration_udop.py +16 -7
- transformers/models/udop/modeling_udop.py +10 -6
- transformers/models/umt5/configuration_umt5.py +8 -6
- transformers/models/umt5/modeling_umt5.py +7 -3
- transformers/models/unispeech/configuration_unispeech.py +4 -1
- transformers/models/unispeech/modeling_unispeech.py +7 -4
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -1
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +7 -4
- transformers/models/upernet/configuration_upernet.py +8 -35
- transformers/models/upernet/modeling_upernet.py +1 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +5 -7
- transformers/models/vaultgemma/modeling_vaultgemma.py +4 -4
- transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +4 -6
- transformers/models/video_llama_3/modeling_video_llama_3.py +85 -48
- transformers/models/video_llama_3/modular_video_llama_3.py +56 -43
- transformers/models/video_llama_3/video_processing_video_llama_3.py +29 -8
- transformers/models/video_llava/configuration_video_llava.py +4 -0
- transformers/models/video_llava/modeling_video_llava.py +87 -89
- transformers/models/videomae/modeling_videomae.py +4 -5
- transformers/models/vilt/configuration_vilt.py +4 -1
- transformers/models/vilt/image_processing_vilt_fast.py +6 -6
- transformers/models/vilt/modeling_vilt.py +27 -12
- transformers/models/vipllava/configuration_vipllava.py +4 -0
- transformers/models/vipllava/modeling_vipllava.py +57 -31
- transformers/models/vipllava/modular_vipllava.py +50 -24
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +10 -6
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +27 -20
- transformers/models/visual_bert/configuration_visual_bert.py +6 -1
- transformers/models/vit/configuration_vit.py +2 -2
- transformers/models/vit/modeling_vit.py +7 -5
- transformers/models/vit_mae/modeling_vit_mae.py +11 -7
- transformers/models/vit_msn/modeling_vit_msn.py +11 -7
- transformers/models/vitdet/configuration_vitdet.py +2 -4
- transformers/models/vitdet/modeling_vitdet.py +2 -3
- transformers/models/vitmatte/configuration_vitmatte.py +6 -35
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +2 -2
- transformers/models/vitmatte/modeling_vitmatte.py +1 -1
- transformers/models/vitpose/configuration_vitpose.py +6 -43
- transformers/models/vitpose/modeling_vitpose.py +5 -3
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -4
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +5 -6
- transformers/models/vits/configuration_vits.py +4 -0
- transformers/models/vits/modeling_vits.py +9 -7
- transformers/models/vivit/modeling_vivit.py +4 -4
- transformers/models/vjepa2/modeling_vjepa2.py +9 -9
- transformers/models/voxtral/configuration_voxtral.py +0 -1
- transformers/models/voxtral/modeling_voxtral.py +25 -24
- transformers/models/voxtral/modular_voxtral.py +26 -20
- transformers/models/wav2vec2/configuration_wav2vec2.py +4 -1
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -4
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -1
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -1
- transformers/models/wavlm/configuration_wavlm.py +4 -1
- transformers/models/wavlm/modeling_wavlm.py +4 -1
- transformers/models/whisper/configuration_whisper.py +6 -4
- transformers/models/whisper/generation_whisper.py +0 -1
- transformers/models/whisper/modeling_whisper.py +3 -3
- transformers/models/x_clip/configuration_x_clip.py +4 -1
- transformers/models/x_clip/modeling_x_clip.py +26 -27
- transformers/models/xglm/configuration_xglm.py +9 -7
- transformers/models/xlm/configuration_xlm.py +10 -7
- transformers/models/xlm/modeling_xlm.py +1 -1
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -2
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +6 -6
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -1
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +6 -6
- transformers/models/xlnet/configuration_xlnet.py +3 -1
- transformers/models/xlstm/configuration_xlstm.py +5 -7
- transformers/models/xlstm/modeling_xlstm.py +0 -32
- transformers/models/xmod/configuration_xmod.py +11 -2
- transformers/models/xmod/modeling_xmod.py +13 -16
- transformers/models/yolos/image_processing_yolos_fast.py +25 -28
- transformers/models/yolos/modeling_yolos.py +7 -7
- transformers/models/yolos/modular_yolos.py +16 -16
- transformers/models/yoso/configuration_yoso.py +8 -1
- transformers/models/youtu/__init__.py +27 -0
- transformers/models/youtu/configuration_youtu.py +194 -0
- transformers/models/youtu/modeling_youtu.py +619 -0
- transformers/models/youtu/modular_youtu.py +254 -0
- transformers/models/zamba/configuration_zamba.py +5 -7
- transformers/models/zamba/modeling_zamba.py +25 -56
- transformers/models/zamba2/configuration_zamba2.py +8 -13
- transformers/models/zamba2/modeling_zamba2.py +53 -78
- transformers/models/zamba2/modular_zamba2.py +36 -29
- transformers/models/zoedepth/configuration_zoedepth.py +17 -40
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +9 -9
- transformers/models/zoedepth/modeling_zoedepth.py +5 -3
- transformers/pipelines/__init__.py +1 -61
- transformers/pipelines/any_to_any.py +1 -1
- transformers/pipelines/automatic_speech_recognition.py +0 -2
- transformers/pipelines/base.py +1 -1
- transformers/pipelines/image_text_to_text.py +1 -1
- transformers/pipelines/text_to_audio.py +5 -1
- transformers/processing_utils.py +35 -44
- transformers/pytorch_utils.py +2 -26
- transformers/quantizers/quantizer_compressed_tensors.py +7 -5
- transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
- transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
- transformers/quantizers/quantizer_mxfp4.py +1 -1
- transformers/quantizers/quantizer_torchao.py +0 -16
- transformers/safetensors_conversion.py +11 -4
- transformers/testing_utils.py +3 -28
- transformers/tokenization_mistral_common.py +9 -0
- transformers/tokenization_python.py +6 -4
- transformers/tokenization_utils_base.py +119 -219
- transformers/tokenization_utils_tokenizers.py +31 -2
- transformers/trainer.py +25 -33
- transformers/trainer_seq2seq.py +1 -1
- transformers/training_args.py +411 -417
- transformers/utils/__init__.py +1 -4
- transformers/utils/auto_docstring.py +15 -18
- transformers/utils/backbone_utils.py +13 -373
- transformers/utils/doc.py +4 -36
- transformers/utils/generic.py +69 -33
- transformers/utils/import_utils.py +72 -75
- transformers/utils/loading_report.py +133 -105
- transformers/utils/quantization_config.py +0 -21
- transformers/video_processing_utils.py +5 -5
- transformers/video_utils.py +3 -1
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/METADATA +118 -237
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/RECORD +1019 -994
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
- transformers/pipelines/deprecated/text2text_generation.py +0 -408
- transformers/pipelines/image_to_text.py +0 -189
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
|
@@ -1,14 +1,61 @@
|
|
|
1
|
-
|
|
1
|
+
# Copyright 2022 Microsoft Research Asia and The HuggingFace Inc. team. All rights reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
import math
|
|
15
|
+
from collections.abc import Callable
|
|
2
16
|
|
|
3
|
-
|
|
17
|
+
import torch
|
|
18
|
+
from torch import nn
|
|
4
19
|
|
|
5
20
|
from ...image_transforms import (
|
|
6
21
|
center_to_corners_format,
|
|
7
22
|
)
|
|
23
|
+
from ...masking_utils import create_bidirectional_mask
|
|
24
|
+
from ...modeling_outputs import (
|
|
25
|
+
BaseModelOutput,
|
|
26
|
+
)
|
|
27
|
+
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
|
|
28
|
+
from ...processing_utils import Unpack
|
|
8
29
|
from ...utils import (
|
|
9
30
|
TensorType,
|
|
31
|
+
TransformersKwargs,
|
|
32
|
+
auto_docstring,
|
|
10
33
|
logging,
|
|
11
34
|
)
|
|
35
|
+
from ...utils.generic import OutputRecorder, can_return_tuple, check_model_inputs
|
|
36
|
+
from ..deformable_detr.modeling_deformable_detr import inverse_sigmoid
|
|
37
|
+
from ..detr.image_processing_detr_fast import DetrImageProcessorFast
|
|
38
|
+
from ..detr.modeling_detr import (
|
|
39
|
+
DetrConvEncoder,
|
|
40
|
+
DetrDecoderLayer,
|
|
41
|
+
DetrDecoderOutput,
|
|
42
|
+
DetrEncoder,
|
|
43
|
+
DetrEncoderLayer,
|
|
44
|
+
DetrForObjectDetection,
|
|
45
|
+
DetrForSegmentation,
|
|
46
|
+
DetrLearnedPositionEmbedding,
|
|
47
|
+
DetrMLP,
|
|
48
|
+
DetrMLPPredictionHead,
|
|
49
|
+
DetrModel,
|
|
50
|
+
DetrModelOutput,
|
|
51
|
+
DetrObjectDetectionOutput,
|
|
52
|
+
DetrPreTrainedModel,
|
|
53
|
+
DetrSegmentationOutput,
|
|
54
|
+
DetrSelfAttention,
|
|
55
|
+
DetrSinePositionEmbedding,
|
|
56
|
+
eager_attention_forward,
|
|
57
|
+
)
|
|
58
|
+
from .configuration_conditional_detr import ConditionalDetrConfig
|
|
12
59
|
|
|
13
60
|
|
|
14
61
|
logger = logging.get_logger(__name__)
|
|
@@ -74,5 +121,856 @@ class ConditionalDetrImageProcessorFast(DetrImageProcessorFast):
|
|
|
74
121
|
|
|
75
122
|
return results
|
|
76
123
|
|
|
124
|
+
def post_process_semantic_segmentation(self, outputs, target_sizes: list[tuple[int, int]] | None = None):
|
|
125
|
+
"""
|
|
126
|
+
Converts the output of [`ConditionalDetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.
|
|
127
|
+
|
|
128
|
+
Args:
|
|
129
|
+
outputs ([`ConditionalDetrForSegmentation`]):
|
|
130
|
+
Raw outputs of the model.
|
|
131
|
+
target_sizes (`list[tuple[int, int]]`, *optional*):
|
|
132
|
+
A list of tuples (`tuple[int, int]`) containing the target size (height, width) of each image in the
|
|
133
|
+
batch. If unset, predictions will not be resized.
|
|
134
|
+
Returns:
|
|
135
|
+
`list[torch.Tensor]`:
|
|
136
|
+
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
|
|
137
|
+
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
|
|
138
|
+
`torch.Tensor` correspond to a semantic class id.
|
|
139
|
+
"""
|
|
140
|
+
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes]
|
|
141
|
+
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
|
|
142
|
+
|
|
143
|
+
# Conditional DETR does not have a null class, so we use all classes
|
|
144
|
+
masks_classes = class_queries_logits.softmax(dim=-1)
|
|
145
|
+
masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
|
|
146
|
+
|
|
147
|
+
# Semantic segmentation logits of shape (batch_size, num_classes, height, width)
|
|
148
|
+
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
|
|
149
|
+
batch_size = class_queries_logits.shape[0]
|
|
150
|
+
|
|
151
|
+
# Resize logits and compute semantic segmentation maps
|
|
152
|
+
if target_sizes is not None:
|
|
153
|
+
if batch_size != len(target_sizes):
|
|
154
|
+
raise ValueError(
|
|
155
|
+
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
semantic_segmentation = []
|
|
159
|
+
for idx in range(batch_size):
|
|
160
|
+
resized_logits = nn.functional.interpolate(
|
|
161
|
+
segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
|
|
162
|
+
)
|
|
163
|
+
semantic_map = resized_logits[0].argmax(dim=0)
|
|
164
|
+
semantic_segmentation.append(semantic_map)
|
|
165
|
+
else:
|
|
166
|
+
semantic_segmentation = segmentation.argmax(dim=1)
|
|
167
|
+
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
|
|
168
|
+
|
|
169
|
+
return semantic_segmentation
|
|
170
|
+
|
|
171
|
+
|
|
172
|
+
class ConditionalDetrDecoderOutput(DetrDecoderOutput):
|
|
173
|
+
r"""
|
|
174
|
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
|
175
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
176
|
+
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
|
177
|
+
used to compute the weighted average in the cross-attention heads.
|
|
178
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
|
|
179
|
+
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
|
|
180
|
+
layernorm.
|
|
181
|
+
reference_points (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, 2 (anchor points))`):
|
|
182
|
+
Reference points (reference points of each layer of the decoder).
|
|
183
|
+
"""
|
|
184
|
+
|
|
185
|
+
reference_points: tuple[torch.FloatTensor] | None = None
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
class ConditionalDetrModelOutput(DetrModelOutput):
|
|
189
|
+
r"""
|
|
190
|
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
191
|
+
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
|
192
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
|
|
193
|
+
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
|
|
194
|
+
layernorm.
|
|
195
|
+
reference_points (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, 2 (anchor points))`):
|
|
196
|
+
Reference points (reference points of each layer of the decoder).
|
|
197
|
+
"""
|
|
198
|
+
|
|
199
|
+
reference_points: tuple[torch.FloatTensor] | None = None
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
# function to generate sine positional embedding for 2d coordinates
|
|
203
|
+
def gen_sine_position_embeddings(pos_tensor, d_model):
|
|
204
|
+
scale = 2 * math.pi
|
|
205
|
+
dim = d_model // 2
|
|
206
|
+
dim_t = torch.arange(dim, dtype=torch.float32, device=pos_tensor.device)
|
|
207
|
+
dim_t = 10000 ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / dim)
|
|
208
|
+
x_embed = pos_tensor[:, :, 0] * scale
|
|
209
|
+
y_embed = pos_tensor[:, :, 1] * scale
|
|
210
|
+
pos_x = x_embed[:, :, None] / dim_t
|
|
211
|
+
pos_y = y_embed[:, :, None] / dim_t
|
|
212
|
+
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
|
|
213
|
+
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
|
|
214
|
+
pos = torch.cat((pos_y, pos_x), dim=2)
|
|
215
|
+
return pos.to(pos_tensor.dtype)
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
class ConditionalDetrObjectDetectionOutput(DetrObjectDetectionOutput):
|
|
219
|
+
pass
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
class ConditionalDetrSegmentationOutput(DetrSegmentationOutput):
|
|
223
|
+
pass
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
class ConditionalDetrConvEncoder(DetrConvEncoder):
|
|
227
|
+
pass
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
class ConditionalDetrSinePositionEmbedding(DetrSinePositionEmbedding):
|
|
231
|
+
pass
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
class ConditionalDetrLearnedPositionEmbedding(DetrLearnedPositionEmbedding):
|
|
235
|
+
pass
|
|
236
|
+
|
|
237
|
+
|
|
238
|
+
class ConditionalDetrSelfAttention(DetrSelfAttention):
|
|
239
|
+
pass
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
class ConditionalDetrDecoderSelfAttention(nn.Module):
|
|
243
|
+
"""
|
|
244
|
+
Multi-headed self-attention for Conditional DETR decoder layers.
|
|
245
|
+
|
|
246
|
+
This attention module handles separate content and position projections, which are then combined
|
|
247
|
+
before applying standard self-attention. Position embeddings are added to both queries and keys.
|
|
248
|
+
"""
|
|
249
|
+
|
|
250
|
+
def __init__(
|
|
251
|
+
self,
|
|
252
|
+
config: ConditionalDetrConfig,
|
|
253
|
+
hidden_size: int,
|
|
254
|
+
num_attention_heads: int,
|
|
255
|
+
dropout: float = 0.0,
|
|
256
|
+
):
|
|
257
|
+
super().__init__()
|
|
258
|
+
self.config = config
|
|
259
|
+
self.hidden_size = hidden_size
|
|
260
|
+
self.head_dim = hidden_size // num_attention_heads
|
|
261
|
+
self.scaling = self.head_dim**-0.5
|
|
262
|
+
self.attention_dropout = dropout
|
|
263
|
+
self.is_causal = False
|
|
264
|
+
|
|
265
|
+
# Content and position projections
|
|
266
|
+
self.q_content_proj = nn.Linear(hidden_size, hidden_size)
|
|
267
|
+
self.q_pos_proj = nn.Linear(hidden_size, hidden_size)
|
|
268
|
+
self.k_content_proj = nn.Linear(hidden_size, hidden_size)
|
|
269
|
+
self.k_pos_proj = nn.Linear(hidden_size, hidden_size)
|
|
270
|
+
self.v_proj = nn.Linear(hidden_size, hidden_size)
|
|
271
|
+
self.o_proj = nn.Linear(hidden_size, hidden_size)
|
|
272
|
+
|
|
273
|
+
def forward(
|
|
274
|
+
self,
|
|
275
|
+
hidden_states: torch.Tensor,
|
|
276
|
+
query_position_embeddings: torch.Tensor,
|
|
277
|
+
attention_mask: torch.Tensor | None = None,
|
|
278
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
279
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
280
|
+
"""
|
|
281
|
+
Args:
|
|
282
|
+
hidden_states (`torch.Tensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
283
|
+
Input hidden states from the decoder layer.
|
|
284
|
+
query_position_embeddings (`torch.Tensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
285
|
+
Position embeddings for queries and keys. Required (unlike standard attention). Processed through
|
|
286
|
+
separate position projections (`q_pos_proj`, `k_pos_proj`) and added to content projections.
|
|
287
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, 1, num_queries, num_queries)`, *optional*):
|
|
288
|
+
Attention mask to avoid attending to padding tokens.
|
|
289
|
+
"""
|
|
290
|
+
input_shape = hidden_states.shape[:-1]
|
|
291
|
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
292
|
+
|
|
293
|
+
query_states = (
|
|
294
|
+
(self.q_content_proj(hidden_states) + self.q_pos_proj(query_position_embeddings))
|
|
295
|
+
.view(hidden_shape)
|
|
296
|
+
.transpose(1, 2)
|
|
297
|
+
)
|
|
298
|
+
key_states = (
|
|
299
|
+
(self.k_content_proj(hidden_states) + self.k_pos_proj(query_position_embeddings))
|
|
300
|
+
.view(hidden_shape)
|
|
301
|
+
.transpose(1, 2)
|
|
302
|
+
)
|
|
303
|
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
304
|
+
|
|
305
|
+
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get_interface(
|
|
306
|
+
self.config._attn_implementation, eager_attention_forward
|
|
307
|
+
)
|
|
308
|
+
|
|
309
|
+
attn_output, attn_weights = attention_interface(
|
|
310
|
+
self,
|
|
311
|
+
query_states,
|
|
312
|
+
key_states,
|
|
313
|
+
value_states,
|
|
314
|
+
attention_mask,
|
|
315
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
316
|
+
scaling=self.scaling,
|
|
317
|
+
**kwargs,
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
321
|
+
attn_output = self.o_proj(attn_output)
|
|
322
|
+
return attn_output, attn_weights
|
|
323
|
+
|
|
324
|
+
|
|
325
|
+
class ConditionalDetrDecoderCrossAttention(nn.Module):
|
|
326
|
+
"""
|
|
327
|
+
Multi-headed cross-attention for Conditional DETR decoder layers.
|
|
328
|
+
|
|
329
|
+
This attention module handles the special cross-attention logic in Conditional DETR:
|
|
330
|
+
- Separate content and position projections for queries and keys
|
|
331
|
+
- Concatenation of query sine embeddings with queries (doubling query dimension)
|
|
332
|
+
- Concatenation of key position embeddings with keys (doubling key dimension)
|
|
333
|
+
- Output dimension remains hidden_size despite doubled input dimensions
|
|
334
|
+
"""
|
|
335
|
+
|
|
336
|
+
def __init__(
|
|
337
|
+
self,
|
|
338
|
+
config: ConditionalDetrConfig,
|
|
339
|
+
hidden_size: int,
|
|
340
|
+
num_attention_heads: int,
|
|
341
|
+
dropout: float = 0.0,
|
|
342
|
+
):
|
|
343
|
+
super().__init__()
|
|
344
|
+
self.config = config
|
|
345
|
+
self.hidden_size = hidden_size
|
|
346
|
+
self.num_attention_heads = num_attention_heads
|
|
347
|
+
self.head_dim = hidden_size // num_attention_heads
|
|
348
|
+
self.attention_dropout = dropout
|
|
349
|
+
self.is_causal = False
|
|
350
|
+
|
|
351
|
+
# Content and position projections
|
|
352
|
+
self.q_content_proj = nn.Linear(hidden_size, hidden_size)
|
|
353
|
+
self.q_pos_proj = nn.Linear(hidden_size, hidden_size)
|
|
354
|
+
self.k_content_proj = nn.Linear(hidden_size, hidden_size)
|
|
355
|
+
self.k_pos_proj = nn.Linear(hidden_size, hidden_size)
|
|
356
|
+
self.v_proj = nn.Linear(hidden_size, hidden_size)
|
|
357
|
+
self.q_pos_sine_proj = nn.Linear(hidden_size, hidden_size)
|
|
358
|
+
|
|
359
|
+
# Output projection: input is hidden_size * 2 (from concatenated q/k), output is hidden_size
|
|
360
|
+
self.o_proj = nn.Linear(hidden_size, hidden_size)
|
|
361
|
+
|
|
362
|
+
# Compute scaling for expanded head_dim (q and k have doubled dimensions after concatenation)
|
|
363
|
+
# This matches the original Conditional DETR implementation where embed_dim * 2 is used
|
|
364
|
+
expanded_head_dim = (hidden_size * 2) // num_attention_heads
|
|
365
|
+
self.scaling = expanded_head_dim**-0.5
|
|
366
|
+
|
|
367
|
+
def forward(
|
|
368
|
+
self,
|
|
369
|
+
hidden_states: torch.Tensor,
|
|
370
|
+
encoder_hidden_states: torch.Tensor,
|
|
371
|
+
query_sine_embed: torch.Tensor,
|
|
372
|
+
encoder_position_embeddings: torch.Tensor,
|
|
373
|
+
query_position_embeddings: torch.Tensor | None = None,
|
|
374
|
+
attention_mask: torch.Tensor | None = None,
|
|
375
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
376
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
377
|
+
"""
|
|
378
|
+
Args:
|
|
379
|
+
hidden_states (`torch.Tensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
380
|
+
Decoder hidden states (queries).
|
|
381
|
+
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, encoder_seq_len, hidden_size)`):
|
|
382
|
+
Encoder output hidden states (keys and values).
|
|
383
|
+
query_sine_embed (`torch.Tensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
384
|
+
Sine position embeddings for queries. **Concatenated** (not added) with query content,
|
|
385
|
+
doubling the query dimension.
|
|
386
|
+
encoder_position_embeddings (`torch.Tensor` of shape `(batch_size, encoder_seq_len, hidden_size)`):
|
|
387
|
+
Position embeddings for keys. **Concatenated** (not added) with key content, doubling the key dimension.
|
|
388
|
+
query_position_embeddings (`torch.Tensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
389
|
+
Additional position embeddings. When provided (first layer only), **added** to query content
|
|
390
|
+
before concatenation with `query_sine_embed`. Also causes `encoder_position_embeddings` to be
|
|
391
|
+
added to key content before concatenation.
|
|
392
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, 1, num_queries, encoder_seq_len)`, *optional*):
|
|
393
|
+
Attention mask to avoid attending to padding tokens.
|
|
394
|
+
"""
|
|
395
|
+
query_input_shape = hidden_states.shape[:-1]
|
|
396
|
+
kv_input_shape = encoder_hidden_states.shape[:-1]
|
|
397
|
+
query_hidden_shape = (*query_input_shape, self.num_attention_heads, self.head_dim)
|
|
398
|
+
kv_hidden_shape = (*kv_input_shape, self.num_attention_heads, self.head_dim)
|
|
399
|
+
|
|
400
|
+
# Apply content and position projections
|
|
401
|
+
query_input = self.q_content_proj(hidden_states)
|
|
402
|
+
key_input = self.k_content_proj(encoder_hidden_states)
|
|
403
|
+
value_states = self.v_proj(encoder_hidden_states)
|
|
404
|
+
key_pos = self.k_pos_proj(encoder_position_embeddings)
|
|
405
|
+
|
|
406
|
+
# Combine content and position embeddings
|
|
407
|
+
if query_position_embeddings is not None:
|
|
408
|
+
query_input = query_input + self.q_pos_proj(query_position_embeddings)
|
|
409
|
+
key_input = key_input + key_pos
|
|
410
|
+
|
|
411
|
+
# Reshape and concatenate position embeddings (doubling head_dim)
|
|
412
|
+
query_input = query_input.view(query_hidden_shape)
|
|
413
|
+
key_input = key_input.view(kv_hidden_shape)
|
|
414
|
+
query_sine_embed = self.q_pos_sine_proj(query_sine_embed).view(query_hidden_shape)
|
|
415
|
+
key_pos = key_pos.view(kv_hidden_shape)
|
|
416
|
+
|
|
417
|
+
query_states = torch.cat([query_input, query_sine_embed], dim=-1).view(*query_input_shape, -1)
|
|
418
|
+
key_states = torch.cat([key_input, key_pos], dim=-1).view(*kv_input_shape, -1)
|
|
419
|
+
|
|
420
|
+
# Reshape for attention computation
|
|
421
|
+
expanded_head_dim = query_states.shape[-1] // self.num_attention_heads
|
|
422
|
+
query_states = query_states.view(*query_input_shape, self.num_attention_heads, expanded_head_dim).transpose(
|
|
423
|
+
1, 2
|
|
424
|
+
)
|
|
425
|
+
key_states = key_states.view(*kv_input_shape, self.num_attention_heads, expanded_head_dim).transpose(1, 2)
|
|
426
|
+
value_states = value_states.view(kv_hidden_shape).transpose(1, 2)
|
|
427
|
+
|
|
428
|
+
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get_interface(
|
|
429
|
+
self.config._attn_implementation, eager_attention_forward
|
|
430
|
+
)
|
|
431
|
+
|
|
432
|
+
attn_output, attn_weights = attention_interface(
|
|
433
|
+
self,
|
|
434
|
+
query_states,
|
|
435
|
+
key_states,
|
|
436
|
+
value_states,
|
|
437
|
+
attention_mask,
|
|
438
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
439
|
+
scaling=self.scaling,
|
|
440
|
+
**kwargs,
|
|
441
|
+
)
|
|
442
|
+
|
|
443
|
+
attn_output = attn_output.reshape(*query_input_shape, -1).contiguous()
|
|
444
|
+
attn_output = self.o_proj(attn_output)
|
|
445
|
+
return attn_output, attn_weights
|
|
446
|
+
|
|
447
|
+
|
|
448
|
+
class ConditionalDetrMLP(DetrMLP):
|
|
449
|
+
pass
|
|
450
|
+
|
|
451
|
+
|
|
452
|
+
class ConditionalDetrEncoderLayer(DetrEncoderLayer):
|
|
453
|
+
pass
|
|
454
|
+
|
|
455
|
+
|
|
456
|
+
class ConditionalDetrDecoderLayer(DetrDecoderLayer):
|
|
457
|
+
def __init__(self, config: ConditionalDetrConfig):
|
|
458
|
+
super().__init__()
|
|
459
|
+
self.self_attn = ConditionalDetrDecoderSelfAttention(
|
|
460
|
+
config=config,
|
|
461
|
+
hidden_size=self.hidden_size,
|
|
462
|
+
num_attention_heads=config.decoder_attention_heads,
|
|
463
|
+
dropout=config.attention_dropout,
|
|
464
|
+
)
|
|
465
|
+
self.encoder_attn = ConditionalDetrDecoderCrossAttention(
|
|
466
|
+
config=config,
|
|
467
|
+
hidden_size=self.hidden_size,
|
|
468
|
+
num_attention_heads=config.decoder_attention_heads,
|
|
469
|
+
dropout=config.attention_dropout,
|
|
470
|
+
)
|
|
471
|
+
|
|
472
|
+
def forward(
|
|
473
|
+
self,
|
|
474
|
+
hidden_states: torch.Tensor,
|
|
475
|
+
attention_mask: torch.Tensor | None = None,
|
|
476
|
+
spatial_position_embeddings: torch.Tensor | None = None,
|
|
477
|
+
query_position_embeddings: torch.Tensor | None = None,
|
|
478
|
+
query_sine_embed: torch.Tensor | None = None,
|
|
479
|
+
encoder_hidden_states: torch.Tensor | None = None,
|
|
480
|
+
encoder_attention_mask: torch.Tensor | None = None,
|
|
481
|
+
is_first: bool | None = False,
|
|
482
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
483
|
+
) -> torch.Tensor:
|
|
484
|
+
"""
|
|
485
|
+
Args:
|
|
486
|
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
|
|
487
|
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
|
488
|
+
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
|
489
|
+
values.
|
|
490
|
+
spatial_position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
491
|
+
Spatial position embeddings (2D positional encodings) that are added to the queries and keys in each self-attention layer.
|
|
492
|
+
query_position_embeddings (`torch.FloatTensor`, *optional*):
|
|
493
|
+
object_queries that are added to the queries and keys
|
|
494
|
+
in the self-attention layer.
|
|
495
|
+
encoder_hidden_states (`torch.FloatTensor`):
|
|
496
|
+
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
|
|
497
|
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
|
498
|
+
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
|
499
|
+
values.
|
|
500
|
+
output_attentions (`bool`, *optional*):
|
|
501
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
|
502
|
+
returned tensors for more detail.
|
|
503
|
+
"""
|
|
504
|
+
residual = hidden_states
|
|
505
|
+
|
|
506
|
+
hidden_states, _ = self.self_attn(
|
|
507
|
+
hidden_states=hidden_states,
|
|
508
|
+
query_position_embeddings=query_position_embeddings,
|
|
509
|
+
attention_mask=attention_mask,
|
|
510
|
+
**kwargs,
|
|
511
|
+
)
|
|
512
|
+
|
|
513
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
514
|
+
hidden_states = residual + hidden_states
|
|
515
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
516
|
+
|
|
517
|
+
if encoder_hidden_states is not None:
|
|
518
|
+
residual = hidden_states
|
|
519
|
+
|
|
520
|
+
hidden_states, _ = self.encoder_attn(
|
|
521
|
+
hidden_states=hidden_states,
|
|
522
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
523
|
+
attention_mask=encoder_attention_mask,
|
|
524
|
+
query_sine_embed=query_sine_embed,
|
|
525
|
+
encoder_position_embeddings=spatial_position_embeddings,
|
|
526
|
+
# Only pass query_position_embeddings for the first layer
|
|
527
|
+
query_position_embeddings=query_position_embeddings if is_first else None,
|
|
528
|
+
**kwargs,
|
|
529
|
+
)
|
|
530
|
+
|
|
531
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
532
|
+
hidden_states = residual + hidden_states
|
|
533
|
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
|
534
|
+
|
|
535
|
+
# Fully Connected
|
|
536
|
+
residual = hidden_states
|
|
537
|
+
hidden_states = self.mlp(hidden_states)
|
|
538
|
+
hidden_states = residual + hidden_states
|
|
539
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
540
|
+
|
|
541
|
+
return hidden_states
|
|
542
|
+
|
|
543
|
+
|
|
544
|
+
class ConditionalDetrMLPPredictionHead(DetrMLPPredictionHead):
|
|
545
|
+
pass
|
|
546
|
+
|
|
547
|
+
|
|
548
|
+
class ConditionalDetrPreTrainedModel(DetrPreTrainedModel):
|
|
549
|
+
_keys_to_ignore_on_load_unexpected = [
|
|
550
|
+
r"detr\.model\.backbone\.model\.layer\d+\.0\.downsample\.1\.num_batches_tracked"
|
|
551
|
+
]
|
|
552
|
+
|
|
553
|
+
|
|
554
|
+
class ConditionalDetrEncoder(DetrEncoder):
|
|
555
|
+
pass
|
|
556
|
+
|
|
557
|
+
|
|
558
|
+
class ConditionalDetrDecoder(ConditionalDetrPreTrainedModel):
|
|
559
|
+
"""
|
|
560
|
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`ConditionalDetrDecoderLayer`].
|
|
561
|
+
|
|
562
|
+
The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
|
|
563
|
+
|
|
564
|
+
Some small tweaks for Conditional DETR:
|
|
565
|
+
|
|
566
|
+
- object_queries and query_position_embeddings are added to the forward pass.
|
|
567
|
+
- if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers.
|
|
568
|
+
|
|
569
|
+
Args:
|
|
570
|
+
config: ConditionalDetrConfig
|
|
571
|
+
"""
|
|
572
|
+
|
|
573
|
+
_can_record_outputs = {
|
|
574
|
+
"hidden_states": ConditionalDetrDecoderLayer,
|
|
575
|
+
"attentions": OutputRecorder(ConditionalDetrDecoderSelfAttention, layer_name="self_attn", index=1),
|
|
576
|
+
"cross_attentions": OutputRecorder(ConditionalDetrDecoderCrossAttention, layer_name="encoder_attn", index=1),
|
|
577
|
+
}
|
|
578
|
+
|
|
579
|
+
def __init__(self, config: ConditionalDetrConfig):
|
|
580
|
+
super().__init__(config)
|
|
581
|
+
self.hidden_size = config.d_model
|
|
582
|
+
|
|
583
|
+
self.dropout = config.dropout
|
|
584
|
+
self.layerdrop = config.decoder_layerdrop
|
|
585
|
+
|
|
586
|
+
self.layers = nn.ModuleList([ConditionalDetrDecoderLayer(config) for _ in range(config.decoder_layers)])
|
|
587
|
+
# in Conditional DETR, the decoder uses layernorm after the last decoder layer output
|
|
588
|
+
self.layernorm = nn.LayerNorm(config.d_model)
|
|
589
|
+
|
|
590
|
+
# query_scale is the FFN applied on f to generate transformation T
|
|
591
|
+
self.query_scale = ConditionalDetrMLPPredictionHead(self.hidden_size, self.hidden_size, self.hidden_size, 2)
|
|
592
|
+
self.ref_point_head = ConditionalDetrMLPPredictionHead(self.hidden_size, self.hidden_size, 2, 2)
|
|
593
|
+
for layer_id in range(config.decoder_layers - 1):
|
|
594
|
+
# Set q_pos_proj to None for layers after the first (only first layer uses query position embeddings)
|
|
595
|
+
self.layers[layer_id + 1].encoder_attn.q_pos_proj = None
|
|
596
|
+
|
|
597
|
+
# Initialize weights and apply final processing
|
|
598
|
+
self.post_init()
|
|
599
|
+
|
|
600
|
+
@check_model_inputs()
|
|
601
|
+
def forward(
|
|
602
|
+
self,
|
|
603
|
+
inputs_embeds=None,
|
|
604
|
+
attention_mask=None,
|
|
605
|
+
encoder_hidden_states=None,
|
|
606
|
+
encoder_attention_mask=None,
|
|
607
|
+
spatial_position_embeddings=None,
|
|
608
|
+
object_queries_position_embeddings=None,
|
|
609
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
610
|
+
) -> ConditionalDetrDecoderOutput:
|
|
611
|
+
r"""
|
|
612
|
+
Args:
|
|
613
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
614
|
+
The query embeddings that are passed into the decoder.
|
|
615
|
+
|
|
616
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
617
|
+
Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`:
|
|
618
|
+
|
|
619
|
+
- 1 for queries that are **not masked**,
|
|
620
|
+
- 0 for queries that are **masked**.
|
|
621
|
+
|
|
622
|
+
[What are attention masks?](../glossary#attention-mask)
|
|
623
|
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
|
624
|
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
|
625
|
+
of the decoder.
|
|
626
|
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
|
627
|
+
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
|
|
628
|
+
in `[0, 1]`:
|
|
629
|
+
|
|
630
|
+
- 1 for pixels that are real (i.e. **not masked**),
|
|
631
|
+
- 0 for pixels that are padding (i.e. **masked**).
|
|
632
|
+
|
|
633
|
+
spatial_position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
634
|
+
Spatial position embeddings that are added to the queries and keys in each cross-attention layer.
|
|
635
|
+
object_queries_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
636
|
+
, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
|
|
637
|
+
"""
|
|
638
|
+
if inputs_embeds is not None:
|
|
639
|
+
hidden_states = inputs_embeds
|
|
640
|
+
|
|
641
|
+
# expand encoder attention mask
|
|
642
|
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
|
643
|
+
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
|
|
644
|
+
encoder_attention_mask = create_bidirectional_mask(
|
|
645
|
+
self.config,
|
|
646
|
+
inputs_embeds,
|
|
647
|
+
encoder_attention_mask,
|
|
648
|
+
)
|
|
649
|
+
|
|
650
|
+
# optional intermediate hidden states
|
|
651
|
+
intermediate = () if self.config.auxiliary_loss else None
|
|
652
|
+
|
|
653
|
+
reference_points_before_sigmoid = self.ref_point_head(
|
|
654
|
+
object_queries_position_embeddings
|
|
655
|
+
) # [num_queries, batch_size, 2]
|
|
656
|
+
reference_points = reference_points_before_sigmoid.sigmoid().transpose(0, 1)
|
|
657
|
+
obj_center = reference_points[..., :2].transpose(0, 1)
|
|
658
|
+
# get sine embedding for the query vector
|
|
659
|
+
query_sine_embed_before_transformation = gen_sine_position_embeddings(obj_center, self.config.d_model)
|
|
660
|
+
|
|
661
|
+
for idx, decoder_layer in enumerate(self.layers):
|
|
662
|
+
if self.training:
|
|
663
|
+
dropout_probability = torch.rand([])
|
|
664
|
+
if dropout_probability < self.layerdrop:
|
|
665
|
+
continue
|
|
666
|
+
if idx == 0:
|
|
667
|
+
pos_transformation = 1
|
|
668
|
+
else:
|
|
669
|
+
pos_transformation = self.query_scale(hidden_states)
|
|
670
|
+
# apply transformation
|
|
671
|
+
query_sine_embed = query_sine_embed_before_transformation * pos_transformation
|
|
672
|
+
|
|
673
|
+
hidden_states = decoder_layer(
|
|
674
|
+
hidden_states,
|
|
675
|
+
None,
|
|
676
|
+
spatial_position_embeddings,
|
|
677
|
+
object_queries_position_embeddings,
|
|
678
|
+
query_sine_embed,
|
|
679
|
+
encoder_hidden_states, # as a positional argument for gradient checkpointing
|
|
680
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
681
|
+
is_first=(idx == 0),
|
|
682
|
+
**kwargs,
|
|
683
|
+
)
|
|
684
|
+
|
|
685
|
+
if self.config.auxiliary_loss:
|
|
686
|
+
hidden_states = self.layernorm(hidden_states)
|
|
687
|
+
intermediate += (hidden_states,)
|
|
688
|
+
|
|
689
|
+
# finally, apply layernorm
|
|
690
|
+
hidden_states = self.layernorm(hidden_states)
|
|
691
|
+
|
|
692
|
+
# stack intermediate decoder activations
|
|
693
|
+
if self.config.auxiliary_loss:
|
|
694
|
+
intermediate = torch.stack(intermediate)
|
|
695
|
+
|
|
696
|
+
return ConditionalDetrDecoderOutput(
|
|
697
|
+
last_hidden_state=hidden_states,
|
|
698
|
+
intermediate_hidden_states=intermediate,
|
|
699
|
+
reference_points=reference_points,
|
|
700
|
+
)
|
|
701
|
+
|
|
702
|
+
|
|
703
|
+
class ConditionalDetrModel(DetrModel):
|
|
704
|
+
def __init__(self, config: ConditionalDetrConfig):
|
|
705
|
+
super().__init__(config)
|
|
706
|
+
self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model)
|
|
707
|
+
|
|
708
|
+
# Initialize weights and apply final processing
|
|
709
|
+
self.post_init()
|
|
710
|
+
|
|
711
|
+
@auto_docstring
|
|
712
|
+
@can_return_tuple
|
|
713
|
+
def forward(
|
|
714
|
+
self,
|
|
715
|
+
pixel_values: torch.FloatTensor,
|
|
716
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
717
|
+
decoder_attention_mask: torch.LongTensor | None = None,
|
|
718
|
+
encoder_outputs: torch.FloatTensor | None = None,
|
|
719
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
720
|
+
decoder_inputs_embeds: torch.FloatTensor | None = None,
|
|
721
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
722
|
+
) -> ConditionalDetrModelOutput:
|
|
723
|
+
r"""
|
|
724
|
+
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
|
725
|
+
Not used by default. Can be used to mask object queries.
|
|
726
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
727
|
+
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
|
728
|
+
can choose to directly pass a flattened representation of an image.
|
|
729
|
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
730
|
+
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
|
731
|
+
embedded representation.
|
|
732
|
+
|
|
733
|
+
Examples:
|
|
734
|
+
|
|
735
|
+
```python
|
|
736
|
+
>>> from transformers import AutoImageProcessor, AutoModel
|
|
737
|
+
>>> from PIL import Image
|
|
738
|
+
>>> import requests
|
|
739
|
+
|
|
740
|
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
741
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
742
|
+
|
|
743
|
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50")
|
|
744
|
+
>>> model = AutoModel.from_pretrained("microsoft/conditional-detr-resnet-50")
|
|
745
|
+
|
|
746
|
+
>>> # prepare image for the model
|
|
747
|
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
|
748
|
+
|
|
749
|
+
>>> # forward pass
|
|
750
|
+
>>> outputs = model(**inputs)
|
|
751
|
+
|
|
752
|
+
>>> # the last hidden states are the final query embeddings of the Transformer decoder
|
|
753
|
+
>>> # these are of shape (batch_size, num_queries, hidden_size)
|
|
754
|
+
>>> last_hidden_states = outputs.last_hidden_state
|
|
755
|
+
>>> list(last_hidden_states.shape)
|
|
756
|
+
[1, 300, 256]
|
|
757
|
+
```"""
|
|
758
|
+
batch_size, num_channels, height, width = pixel_values.shape
|
|
759
|
+
device = pixel_values.device
|
|
760
|
+
|
|
761
|
+
if pixel_mask is None:
|
|
762
|
+
pixel_mask = torch.ones(((batch_size, height, width)), device=device)
|
|
763
|
+
|
|
764
|
+
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
|
|
765
|
+
# pixel_values should be of shape (batch_size, num_channels, height, width)
|
|
766
|
+
# pixel_mask should be of shape (batch_size, height, width)
|
|
767
|
+
features = self.backbone(pixel_values, pixel_mask)
|
|
768
|
+
|
|
769
|
+
# get final feature map and downsampled mask
|
|
770
|
+
feature_map, mask = features[-1]
|
|
771
|
+
|
|
772
|
+
if mask is None:
|
|
773
|
+
raise ValueError("Backbone does not return downsampled pixel mask")
|
|
774
|
+
|
|
775
|
+
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
|
|
776
|
+
projected_feature_map = self.input_projection(feature_map)
|
|
777
|
+
|
|
778
|
+
# Generate position embeddings
|
|
779
|
+
spatial_position_embeddings = self.position_embedding(
|
|
780
|
+
shape=feature_map.shape, device=device, dtype=pixel_values.dtype, mask=mask
|
|
781
|
+
)
|
|
782
|
+
|
|
783
|
+
# Third, flatten the feature map of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
|
|
784
|
+
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
|
|
785
|
+
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
|
|
786
|
+
|
|
787
|
+
flattened_mask = mask.flatten(1)
|
|
788
|
+
|
|
789
|
+
# Fourth, sent flattened_features + flattened_mask + spatial_position_embeddings through encoder
|
|
790
|
+
# flattened_features is a Tensor of shape (batch_size, height*width, hidden_size)
|
|
791
|
+
# flattened_mask is a Tensor of shape (batch_size, height*width)
|
|
792
|
+
if encoder_outputs is None:
|
|
793
|
+
encoder_outputs = self.encoder(
|
|
794
|
+
inputs_embeds=flattened_features,
|
|
795
|
+
attention_mask=flattened_mask,
|
|
796
|
+
spatial_position_embeddings=spatial_position_embeddings,
|
|
797
|
+
**kwargs,
|
|
798
|
+
)
|
|
799
|
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput
|
|
800
|
+
elif not isinstance(encoder_outputs, BaseModelOutput):
|
|
801
|
+
encoder_outputs = BaseModelOutput(
|
|
802
|
+
last_hidden_state=encoder_outputs[0],
|
|
803
|
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
|
804
|
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
|
805
|
+
)
|
|
806
|
+
|
|
807
|
+
# Fifth, sent query embeddings through the decoder (which is conditioned on the encoder output)
|
|
808
|
+
object_queries_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(
|
|
809
|
+
batch_size, 1, 1
|
|
810
|
+
)
|
|
811
|
+
queries = torch.zeros_like(object_queries_position_embeddings)
|
|
812
|
+
|
|
813
|
+
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
|
|
814
|
+
decoder_outputs = self.decoder(
|
|
815
|
+
inputs_embeds=queries,
|
|
816
|
+
attention_mask=None,
|
|
817
|
+
spatial_position_embeddings=spatial_position_embeddings,
|
|
818
|
+
object_queries_position_embeddings=object_queries_position_embeddings,
|
|
819
|
+
encoder_hidden_states=encoder_outputs.last_hidden_state,
|
|
820
|
+
encoder_attention_mask=flattened_mask,
|
|
821
|
+
**kwargs,
|
|
822
|
+
)
|
|
823
|
+
|
|
824
|
+
return ConditionalDetrModelOutput(
|
|
825
|
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
|
826
|
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
|
827
|
+
decoder_attentions=decoder_outputs.attentions,
|
|
828
|
+
cross_attentions=decoder_outputs.cross_attentions,
|
|
829
|
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
|
830
|
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
|
831
|
+
encoder_attentions=encoder_outputs.attentions,
|
|
832
|
+
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
|
|
833
|
+
reference_points=decoder_outputs.reference_points,
|
|
834
|
+
)
|
|
835
|
+
|
|
836
|
+
|
|
837
|
+
class ConditionalDetrForObjectDetection(DetrForObjectDetection):
|
|
838
|
+
def __init__(self, config: ConditionalDetrConfig):
|
|
839
|
+
super().__init__(config)
|
|
840
|
+
self.class_labels_classifier = nn.Linear(config.d_model, config.num_labels)
|
|
841
|
+
|
|
842
|
+
# taken from https://github.com/Atten4Vis/conditionalDETR/blob/master/models/conditional_detr.py
|
|
843
|
+
def _set_aux_loss(self, outputs_class, outputs_coord):
|
|
844
|
+
return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
|
|
845
|
+
|
|
846
|
+
@auto_docstring
|
|
847
|
+
@can_return_tuple
|
|
848
|
+
def forward(
|
|
849
|
+
self,
|
|
850
|
+
pixel_values: torch.FloatTensor,
|
|
851
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
852
|
+
decoder_attention_mask: torch.LongTensor | None = None,
|
|
853
|
+
encoder_outputs: torch.FloatTensor | None = None,
|
|
854
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
855
|
+
decoder_inputs_embeds: torch.FloatTensor | None = None,
|
|
856
|
+
labels: list[dict] | None = None,
|
|
857
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
858
|
+
) -> ConditionalDetrObjectDetectionOutput:
|
|
859
|
+
r"""
|
|
860
|
+
decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*):
|
|
861
|
+
Not used by default. Can be used to mask object queries.
|
|
862
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
863
|
+
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
|
864
|
+
can choose to directly pass a flattened representation of an image.
|
|
865
|
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
866
|
+
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
|
867
|
+
embedded representation.
|
|
868
|
+
labels (`list[Dict]` of len `(batch_size,)`, *optional*):
|
|
869
|
+
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
|
|
870
|
+
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
|
|
871
|
+
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
|
|
872
|
+
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
|
|
873
|
+
|
|
874
|
+
Examples:
|
|
875
|
+
|
|
876
|
+
```python
|
|
877
|
+
>>> from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
|
878
|
+
>>> from PIL import Image
|
|
879
|
+
>>> import requests
|
|
880
|
+
|
|
881
|
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
882
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
883
|
+
|
|
884
|
+
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50")
|
|
885
|
+
>>> model = AutoModelForObjectDetection.from_pretrained("microsoft/conditional-detr-resnet-50")
|
|
886
|
+
|
|
887
|
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
|
888
|
+
|
|
889
|
+
>>> outputs = model(**inputs)
|
|
890
|
+
|
|
891
|
+
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
|
|
892
|
+
>>> target_sizes = torch.tensor([image.size[::-1]])
|
|
893
|
+
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[
|
|
894
|
+
... 0
|
|
895
|
+
... ]
|
|
896
|
+
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
|
897
|
+
... box = [round(i, 2) for i in box.tolist()]
|
|
898
|
+
... print(
|
|
899
|
+
... f"Detected {model.config.id2label[label.item()]} with confidence "
|
|
900
|
+
... f"{round(score.item(), 3)} at location {box}"
|
|
901
|
+
... )
|
|
902
|
+
Detected remote with confidence 0.833 at location [38.31, 72.1, 177.63, 118.45]
|
|
903
|
+
Detected cat with confidence 0.831 at location [9.2, 51.38, 321.13, 469.0]
|
|
904
|
+
Detected cat with confidence 0.804 at location [340.3, 16.85, 642.93, 370.95]
|
|
905
|
+
Detected remote with confidence 0.683 at location [334.48, 73.49, 366.37, 190.01]
|
|
906
|
+
Detected couch with confidence 0.535 at location [0.52, 1.19, 640.35, 475.1]
|
|
907
|
+
```"""
|
|
908
|
+
# First, sent images through CONDITIONAL_DETR base model to obtain encoder + decoder outputs
|
|
909
|
+
outputs = self.model(
|
|
910
|
+
pixel_values,
|
|
911
|
+
pixel_mask=pixel_mask,
|
|
912
|
+
decoder_attention_mask=decoder_attention_mask,
|
|
913
|
+
encoder_outputs=encoder_outputs,
|
|
914
|
+
inputs_embeds=inputs_embeds,
|
|
915
|
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
|
916
|
+
**kwargs,
|
|
917
|
+
)
|
|
918
|
+
|
|
919
|
+
sequence_output = outputs[0]
|
|
920
|
+
|
|
921
|
+
# class logits + predicted bounding boxes
|
|
922
|
+
logits = self.class_labels_classifier(sequence_output)
|
|
923
|
+
|
|
924
|
+
reference = outputs.reference_points
|
|
925
|
+
reference_before_sigmoid = inverse_sigmoid(reference).transpose(0, 1)
|
|
926
|
+
|
|
927
|
+
hs = sequence_output
|
|
928
|
+
tmp = self.bbox_predictor(hs)
|
|
929
|
+
tmp[..., :2] += reference_before_sigmoid
|
|
930
|
+
pred_boxes = tmp.sigmoid()
|
|
931
|
+
# pred_boxes = self.bbox_predictor(sequence_output).sigmoid()
|
|
932
|
+
|
|
933
|
+
loss, loss_dict, auxiliary_outputs = None, None, None
|
|
934
|
+
if labels is not None:
|
|
935
|
+
outputs_class, outputs_coord = None, None
|
|
936
|
+
if self.config.auxiliary_loss:
|
|
937
|
+
outputs_coords = []
|
|
938
|
+
intermediate = outputs.intermediate_hidden_states
|
|
939
|
+
outputs_class = self.class_labels_classifier(intermediate)
|
|
940
|
+
for lvl in range(intermediate.shape[0]):
|
|
941
|
+
tmp = self.bbox_predictor(intermediate[lvl])
|
|
942
|
+
tmp[..., :2] += reference_before_sigmoid
|
|
943
|
+
outputs_coord = tmp.sigmoid()
|
|
944
|
+
outputs_coords.append(outputs_coord)
|
|
945
|
+
outputs_coord = torch.stack(outputs_coords)
|
|
946
|
+
loss, loss_dict, auxiliary_outputs = self.loss_function(
|
|
947
|
+
logits, labels, self.device, pred_boxes, self.config, outputs_class, outputs_coord
|
|
948
|
+
)
|
|
949
|
+
|
|
950
|
+
return ConditionalDetrObjectDetectionOutput(
|
|
951
|
+
loss=loss,
|
|
952
|
+
loss_dict=loss_dict,
|
|
953
|
+
logits=logits,
|
|
954
|
+
pred_boxes=pred_boxes,
|
|
955
|
+
auxiliary_outputs=auxiliary_outputs,
|
|
956
|
+
last_hidden_state=outputs.last_hidden_state,
|
|
957
|
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
958
|
+
decoder_attentions=outputs.decoder_attentions,
|
|
959
|
+
cross_attentions=outputs.cross_attentions,
|
|
960
|
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
|
961
|
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
|
962
|
+
encoder_attentions=outputs.encoder_attentions,
|
|
963
|
+
)
|
|
964
|
+
|
|
965
|
+
|
|
966
|
+
class ConditionalDetrForSegmentation(DetrForSegmentation):
|
|
967
|
+
pass
|
|
968
|
+
|
|
77
969
|
|
|
78
|
-
__all__ = [
|
|
970
|
+
__all__ = [
|
|
971
|
+
"ConditionalDetrImageProcessorFast",
|
|
972
|
+
"ConditionalDetrForObjectDetection",
|
|
973
|
+
"ConditionalDetrForSegmentation",
|
|
974
|
+
"ConditionalDetrModel",
|
|
975
|
+
"ConditionalDetrPreTrainedModel",
|
|
976
|
+
]
|