transformers 5.0.0rc3__py3-none-any.whl → 5.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +4 -11
- transformers/activations.py +2 -2
- transformers/backbone_utils.py +326 -0
- transformers/cache_utils.py +11 -2
- transformers/cli/serve.py +11 -8
- transformers/configuration_utils.py +1 -69
- transformers/conversion_mapping.py +146 -26
- transformers/convert_slow_tokenizer.py +6 -4
- transformers/core_model_loading.py +207 -118
- transformers/dependency_versions_check.py +0 -1
- transformers/dependency_versions_table.py +7 -8
- transformers/file_utils.py +0 -2
- transformers/generation/candidate_generator.py +1 -2
- transformers/generation/continuous_batching/cache.py +40 -38
- transformers/generation/continuous_batching/cache_manager.py +3 -16
- transformers/generation/continuous_batching/continuous_api.py +94 -406
- transformers/generation/continuous_batching/input_ouputs.py +464 -0
- transformers/generation/continuous_batching/requests.py +54 -17
- transformers/generation/continuous_batching/scheduler.py +77 -95
- transformers/generation/logits_process.py +10 -5
- transformers/generation/stopping_criteria.py +1 -2
- transformers/generation/utils.py +75 -95
- transformers/image_processing_utils.py +0 -3
- transformers/image_processing_utils_fast.py +17 -18
- transformers/image_transforms.py +44 -13
- transformers/image_utils.py +0 -5
- transformers/initialization.py +57 -0
- transformers/integrations/__init__.py +10 -24
- transformers/integrations/accelerate.py +47 -11
- transformers/integrations/deepspeed.py +145 -3
- transformers/integrations/executorch.py +2 -6
- transformers/integrations/finegrained_fp8.py +142 -7
- transformers/integrations/flash_attention.py +2 -7
- transformers/integrations/hub_kernels.py +18 -7
- transformers/integrations/moe.py +226 -106
- transformers/integrations/mxfp4.py +47 -34
- transformers/integrations/peft.py +488 -176
- transformers/integrations/tensor_parallel.py +641 -581
- transformers/masking_utils.py +153 -9
- transformers/modeling_flash_attention_utils.py +1 -2
- transformers/modeling_utils.py +359 -358
- transformers/models/__init__.py +6 -0
- transformers/models/afmoe/configuration_afmoe.py +14 -4
- transformers/models/afmoe/modeling_afmoe.py +8 -8
- transformers/models/afmoe/modular_afmoe.py +7 -7
- transformers/models/aimv2/configuration_aimv2.py +2 -7
- transformers/models/aimv2/modeling_aimv2.py +26 -24
- transformers/models/aimv2/modular_aimv2.py +8 -12
- transformers/models/albert/configuration_albert.py +8 -1
- transformers/models/albert/modeling_albert.py +3 -3
- transformers/models/align/configuration_align.py +8 -5
- transformers/models/align/modeling_align.py +22 -24
- transformers/models/altclip/configuration_altclip.py +4 -6
- transformers/models/altclip/modeling_altclip.py +30 -26
- transformers/models/apertus/configuration_apertus.py +5 -7
- transformers/models/apertus/modeling_apertus.py +4 -4
- transformers/models/apertus/modular_apertus.py +8 -10
- transformers/models/arcee/configuration_arcee.py +5 -7
- transformers/models/arcee/modeling_arcee.py +4 -4
- transformers/models/aria/configuration_aria.py +11 -21
- transformers/models/aria/modeling_aria.py +39 -36
- transformers/models/aria/modular_aria.py +33 -39
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +3 -3
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +39 -30
- transformers/models/audioflamingo3/modular_audioflamingo3.py +41 -27
- transformers/models/auto/auto_factory.py +8 -6
- transformers/models/auto/configuration_auto.py +22 -0
- transformers/models/auto/image_processing_auto.py +17 -13
- transformers/models/auto/modeling_auto.py +15 -0
- transformers/models/auto/processing_auto.py +9 -18
- transformers/models/auto/tokenization_auto.py +17 -15
- transformers/models/autoformer/modeling_autoformer.py +2 -1
- transformers/models/aya_vision/configuration_aya_vision.py +4 -0
- transformers/models/aya_vision/modeling_aya_vision.py +29 -62
- transformers/models/aya_vision/modular_aya_vision.py +20 -45
- transformers/models/bamba/configuration_bamba.py +17 -7
- transformers/models/bamba/modeling_bamba.py +23 -55
- transformers/models/bamba/modular_bamba.py +19 -54
- transformers/models/bark/configuration_bark.py +2 -1
- transformers/models/bark/modeling_bark.py +24 -10
- transformers/models/bart/configuration_bart.py +9 -4
- transformers/models/bart/modeling_bart.py +9 -12
- transformers/models/beit/configuration_beit.py +2 -4
- transformers/models/beit/image_processing_beit_fast.py +3 -3
- transformers/models/beit/modeling_beit.py +14 -9
- transformers/models/bert/configuration_bert.py +12 -1
- transformers/models/bert/modeling_bert.py +6 -30
- transformers/models/bert_generation/configuration_bert_generation.py +17 -1
- transformers/models/bert_generation/modeling_bert_generation.py +6 -6
- transformers/models/big_bird/configuration_big_bird.py +12 -8
- transformers/models/big_bird/modeling_big_bird.py +0 -15
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -8
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +9 -7
- transformers/models/biogpt/configuration_biogpt.py +8 -1
- transformers/models/biogpt/modeling_biogpt.py +4 -8
- transformers/models/biogpt/modular_biogpt.py +1 -5
- transformers/models/bit/configuration_bit.py +2 -4
- transformers/models/bit/modeling_bit.py +6 -5
- transformers/models/bitnet/configuration_bitnet.py +5 -7
- transformers/models/bitnet/modeling_bitnet.py +3 -4
- transformers/models/bitnet/modular_bitnet.py +3 -4
- transformers/models/blenderbot/configuration_blenderbot.py +8 -4
- transformers/models/blenderbot/modeling_blenderbot.py +4 -4
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +8 -4
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +4 -4
- transformers/models/blip/configuration_blip.py +9 -9
- transformers/models/blip/modeling_blip.py +55 -37
- transformers/models/blip_2/configuration_blip_2.py +2 -1
- transformers/models/blip_2/modeling_blip_2.py +81 -56
- transformers/models/bloom/configuration_bloom.py +5 -1
- transformers/models/bloom/modeling_bloom.py +2 -1
- transformers/models/blt/configuration_blt.py +23 -12
- transformers/models/blt/modeling_blt.py +20 -14
- transformers/models/blt/modular_blt.py +70 -10
- transformers/models/bridgetower/configuration_bridgetower.py +7 -1
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +6 -6
- transformers/models/bridgetower/modeling_bridgetower.py +29 -15
- transformers/models/bros/configuration_bros.py +24 -17
- transformers/models/camembert/configuration_camembert.py +8 -1
- transformers/models/camembert/modeling_camembert.py +6 -6
- transformers/models/canine/configuration_canine.py +4 -1
- transformers/models/chameleon/configuration_chameleon.py +5 -7
- transformers/models/chameleon/image_processing_chameleon_fast.py +5 -5
- transformers/models/chameleon/modeling_chameleon.py +82 -36
- transformers/models/chinese_clip/configuration_chinese_clip.py +10 -7
- transformers/models/chinese_clip/modeling_chinese_clip.py +28 -29
- transformers/models/clap/configuration_clap.py +4 -8
- transformers/models/clap/modeling_clap.py +21 -22
- transformers/models/clip/configuration_clip.py +4 -1
- transformers/models/clip/image_processing_clip_fast.py +9 -0
- transformers/models/clip/modeling_clip.py +25 -22
- transformers/models/clipseg/configuration_clipseg.py +4 -1
- transformers/models/clipseg/modeling_clipseg.py +27 -25
- transformers/models/clipseg/processing_clipseg.py +11 -3
- transformers/models/clvp/configuration_clvp.py +14 -2
- transformers/models/clvp/modeling_clvp.py +19 -30
- transformers/models/codegen/configuration_codegen.py +4 -3
- transformers/models/codegen/modeling_codegen.py +2 -1
- transformers/models/cohere/configuration_cohere.py +5 -7
- transformers/models/cohere/modeling_cohere.py +4 -4
- transformers/models/cohere/modular_cohere.py +3 -3
- transformers/models/cohere2/configuration_cohere2.py +6 -8
- transformers/models/cohere2/modeling_cohere2.py +4 -4
- transformers/models/cohere2/modular_cohere2.py +9 -11
- transformers/models/cohere2_vision/configuration_cohere2_vision.py +5 -1
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +3 -3
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +24 -25
- transformers/models/cohere2_vision/modular_cohere2_vision.py +20 -20
- transformers/models/colqwen2/modeling_colqwen2.py +7 -6
- transformers/models/colqwen2/modular_colqwen2.py +7 -6
- transformers/models/conditional_detr/configuration_conditional_detr.py +19 -46
- transformers/models/conditional_detr/image_processing_conditional_detr.py +3 -4
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +28 -14
- transformers/models/conditional_detr/modeling_conditional_detr.py +794 -942
- transformers/models/conditional_detr/modular_conditional_detr.py +901 -3
- transformers/models/convbert/configuration_convbert.py +11 -7
- transformers/models/convnext/configuration_convnext.py +2 -4
- transformers/models/convnext/image_processing_convnext_fast.py +2 -2
- transformers/models/convnext/modeling_convnext.py +7 -6
- transformers/models/convnextv2/configuration_convnextv2.py +2 -4
- transformers/models/convnextv2/modeling_convnextv2.py +7 -6
- transformers/models/cpmant/configuration_cpmant.py +4 -0
- transformers/models/csm/configuration_csm.py +9 -15
- transformers/models/csm/modeling_csm.py +3 -3
- transformers/models/ctrl/configuration_ctrl.py +16 -0
- transformers/models/ctrl/modeling_ctrl.py +13 -25
- transformers/models/cwm/configuration_cwm.py +5 -7
- transformers/models/cwm/modeling_cwm.py +4 -4
- transformers/models/d_fine/configuration_d_fine.py +10 -56
- transformers/models/d_fine/modeling_d_fine.py +728 -868
- transformers/models/d_fine/modular_d_fine.py +335 -412
- transformers/models/dab_detr/configuration_dab_detr.py +22 -48
- transformers/models/dab_detr/modeling_dab_detr.py +11 -7
- transformers/models/dac/modeling_dac.py +1 -1
- transformers/models/data2vec/configuration_data2vec_audio.py +4 -1
- transformers/models/data2vec/configuration_data2vec_text.py +11 -2
- transformers/models/data2vec/modeling_data2vec_audio.py +3 -3
- transformers/models/data2vec/modeling_data2vec_text.py +6 -6
- transformers/models/data2vec/modeling_data2vec_vision.py +4 -2
- transformers/models/dbrx/configuration_dbrx.py +11 -3
- transformers/models/dbrx/modeling_dbrx.py +6 -6
- transformers/models/dbrx/modular_dbrx.py +6 -6
- transformers/models/deberta/configuration_deberta.py +6 -0
- transformers/models/deberta_v2/configuration_deberta_v2.py +6 -0
- transformers/models/decision_transformer/configuration_decision_transformer.py +3 -1
- transformers/models/decision_transformer/modeling_decision_transformer.py +3 -3
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +7 -10
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +7 -8
- transformers/models/deepseek_v2/modular_deepseek_v2.py +8 -10
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +7 -10
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +7 -7
- transformers/models/deepseek_v3/modular_deepseek_v3.py +6 -5
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +4 -0
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +2 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +5 -5
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +17 -12
- transformers/models/deepseek_vl/modular_deepseek_vl.py +4 -0
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +4 -0
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +2 -2
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +6 -6
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +68 -24
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +70 -19
- transformers/models/deformable_detr/configuration_deformable_detr.py +22 -45
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +25 -11
- transformers/models/deformable_detr/modeling_deformable_detr.py +410 -607
- transformers/models/deformable_detr/modular_deformable_detr.py +1385 -3
- transformers/models/deit/modeling_deit.py +11 -7
- transformers/models/depth_anything/configuration_depth_anything.py +12 -42
- transformers/models/depth_anything/modeling_depth_anything.py +5 -3
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +2 -2
- transformers/models/depth_pro/modeling_depth_pro.py +8 -4
- transformers/models/detr/configuration_detr.py +18 -49
- transformers/models/detr/image_processing_detr_fast.py +11 -11
- transformers/models/detr/modeling_detr.py +695 -734
- transformers/models/dia/configuration_dia.py +4 -7
- transformers/models/dia/generation_dia.py +8 -17
- transformers/models/dia/modeling_dia.py +7 -7
- transformers/models/dia/modular_dia.py +4 -4
- transformers/models/diffllama/configuration_diffllama.py +5 -7
- transformers/models/diffllama/modeling_diffllama.py +3 -8
- transformers/models/diffllama/modular_diffllama.py +2 -7
- transformers/models/dinat/configuration_dinat.py +2 -4
- transformers/models/dinat/modeling_dinat.py +7 -6
- transformers/models/dinov2/configuration_dinov2.py +2 -4
- transformers/models/dinov2/modeling_dinov2.py +9 -8
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +2 -4
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +9 -8
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +6 -7
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +2 -4
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +2 -3
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +2 -4
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +2 -2
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +5 -6
- transformers/models/dinov3_vit/modular_dinov3_vit.py +5 -6
- transformers/models/distilbert/configuration_distilbert.py +8 -1
- transformers/models/distilbert/modeling_distilbert.py +3 -3
- transformers/models/doge/configuration_doge.py +17 -7
- transformers/models/doge/modeling_doge.py +4 -4
- transformers/models/doge/modular_doge.py +20 -10
- transformers/models/donut/image_processing_donut_fast.py +4 -4
- transformers/models/dots1/configuration_dots1.py +16 -7
- transformers/models/dots1/modeling_dots1.py +4 -4
- transformers/models/dpr/configuration_dpr.py +19 -1
- transformers/models/dpt/configuration_dpt.py +23 -65
- transformers/models/dpt/image_processing_dpt_fast.py +5 -5
- transformers/models/dpt/modeling_dpt.py +19 -15
- transformers/models/dpt/modular_dpt.py +4 -4
- transformers/models/edgetam/configuration_edgetam.py +1 -1
- transformers/models/edgetam/modeling_edgetam.py +53 -53
- transformers/models/edgetam/modular_edgetam.py +5 -7
- transformers/models/edgetam_video/modeling_edgetam_video.py +55 -56
- transformers/models/edgetam_video/modular_edgetam_video.py +9 -9
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +4 -3
- transformers/models/efficientloftr/modeling_efficientloftr.py +19 -9
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +2 -2
- transformers/models/electra/configuration_electra.py +13 -2
- transformers/models/electra/modeling_electra.py +6 -6
- transformers/models/emu3/configuration_emu3.py +12 -10
- transformers/models/emu3/modeling_emu3.py +84 -47
- transformers/models/emu3/modular_emu3.py +77 -39
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +12 -1
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +20 -24
- transformers/models/eomt/configuration_eomt.py +12 -13
- transformers/models/eomt/image_processing_eomt_fast.py +3 -3
- transformers/models/eomt/modeling_eomt.py +3 -3
- transformers/models/eomt/modular_eomt.py +17 -17
- transformers/models/eomt_dinov3/__init__.py +28 -0
- transformers/models/eomt_dinov3/configuration_eomt_dinov3.py +204 -0
- transformers/models/eomt_dinov3/modeling_eomt_dinov3.py +1376 -0
- transformers/models/eomt_dinov3/modular_eomt_dinov3.py +454 -0
- transformers/models/ernie/configuration_ernie.py +24 -2
- transformers/models/ernie/modeling_ernie.py +6 -30
- transformers/models/ernie4_5/configuration_ernie4_5.py +5 -7
- transformers/models/ernie4_5/modeling_ernie4_5.py +4 -4
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +7 -10
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +4 -4
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +17 -6
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +229 -188
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +79 -55
- transformers/models/esm/configuration_esm.py +9 -11
- transformers/models/esm/modeling_esm.py +3 -3
- transformers/models/esm/modeling_esmfold.py +1 -6
- transformers/models/esm/openfold_utils/protein.py +2 -3
- transformers/models/evolla/configuration_evolla.py +21 -8
- transformers/models/evolla/modeling_evolla.py +11 -7
- transformers/models/evolla/modular_evolla.py +5 -1
- transformers/models/exaone4/configuration_exaone4.py +8 -5
- transformers/models/exaone4/modeling_exaone4.py +4 -4
- transformers/models/exaone4/modular_exaone4.py +11 -8
- transformers/models/exaone_moe/__init__.py +27 -0
- transformers/models/exaone_moe/configuration_exaone_moe.py +235 -0
- transformers/models/exaone_moe/modeling_exaone_moe.py +665 -0
- transformers/models/exaone_moe/modular_exaone_moe.py +373 -0
- transformers/models/falcon/configuration_falcon.py +9 -1
- transformers/models/falcon/modeling_falcon.py +3 -8
- transformers/models/falcon_h1/configuration_falcon_h1.py +17 -8
- transformers/models/falcon_h1/modeling_falcon_h1.py +22 -54
- transformers/models/falcon_h1/modular_falcon_h1.py +21 -52
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +5 -1
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +18 -26
- transformers/models/falcon_mamba/modular_falcon_mamba.py +4 -0
- transformers/models/fast_vlm/configuration_fast_vlm.py +10 -1
- transformers/models/fast_vlm/modeling_fast_vlm.py +37 -64
- transformers/models/fast_vlm/modular_fast_vlm.py +146 -35
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +0 -1
- transformers/models/flaubert/configuration_flaubert.py +10 -4
- transformers/models/flaubert/modeling_flaubert.py +1 -1
- transformers/models/flava/configuration_flava.py +4 -3
- transformers/models/flava/image_processing_flava_fast.py +4 -4
- transformers/models/flava/modeling_flava.py +36 -28
- transformers/models/flex_olmo/configuration_flex_olmo.py +11 -14
- transformers/models/flex_olmo/modeling_flex_olmo.py +4 -4
- transformers/models/flex_olmo/modular_flex_olmo.py +11 -14
- transformers/models/florence2/configuration_florence2.py +4 -0
- transformers/models/florence2/modeling_florence2.py +57 -32
- transformers/models/florence2/modular_florence2.py +48 -26
- transformers/models/fnet/configuration_fnet.py +6 -1
- transformers/models/focalnet/configuration_focalnet.py +2 -4
- transformers/models/focalnet/modeling_focalnet.py +10 -7
- transformers/models/fsmt/configuration_fsmt.py +12 -16
- transformers/models/funnel/configuration_funnel.py +8 -0
- transformers/models/fuyu/configuration_fuyu.py +5 -8
- transformers/models/fuyu/image_processing_fuyu_fast.py +5 -4
- transformers/models/fuyu/modeling_fuyu.py +24 -23
- transformers/models/gemma/configuration_gemma.py +5 -7
- transformers/models/gemma/modeling_gemma.py +4 -4
- transformers/models/gemma/modular_gemma.py +5 -7
- transformers/models/gemma2/configuration_gemma2.py +5 -7
- transformers/models/gemma2/modeling_gemma2.py +4 -4
- transformers/models/gemma2/modular_gemma2.py +8 -10
- transformers/models/gemma3/configuration_gemma3.py +28 -22
- transformers/models/gemma3/image_processing_gemma3_fast.py +2 -2
- transformers/models/gemma3/modeling_gemma3.py +37 -33
- transformers/models/gemma3/modular_gemma3.py +46 -42
- transformers/models/gemma3n/configuration_gemma3n.py +35 -22
- transformers/models/gemma3n/modeling_gemma3n.py +86 -58
- transformers/models/gemma3n/modular_gemma3n.py +112 -75
- transformers/models/git/configuration_git.py +5 -7
- transformers/models/git/modeling_git.py +31 -41
- transformers/models/glm/configuration_glm.py +7 -9
- transformers/models/glm/modeling_glm.py +4 -4
- transformers/models/glm4/configuration_glm4.py +7 -9
- transformers/models/glm4/modeling_glm4.py +4 -4
- transformers/models/glm46v/configuration_glm46v.py +4 -0
- transformers/models/glm46v/image_processing_glm46v.py +5 -2
- transformers/models/glm46v/image_processing_glm46v_fast.py +2 -2
- transformers/models/glm46v/modeling_glm46v.py +91 -46
- transformers/models/glm46v/modular_glm46v.py +4 -0
- transformers/models/glm4_moe/configuration_glm4_moe.py +17 -7
- transformers/models/glm4_moe/modeling_glm4_moe.py +4 -4
- transformers/models/glm4_moe/modular_glm4_moe.py +17 -7
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +8 -10
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +7 -7
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +8 -10
- transformers/models/glm4v/configuration_glm4v.py +12 -8
- transformers/models/glm4v/image_processing_glm4v.py +5 -2
- transformers/models/glm4v/image_processing_glm4v_fast.py +2 -2
- transformers/models/glm4v/modeling_glm4v.py +120 -63
- transformers/models/glm4v/modular_glm4v.py +82 -50
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +18 -6
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +115 -63
- transformers/models/glm4v_moe/modular_glm4v_moe.py +23 -12
- transformers/models/glm_image/configuration_glm_image.py +26 -20
- transformers/models/glm_image/image_processing_glm_image.py +1 -1
- transformers/models/glm_image/image_processing_glm_image_fast.py +5 -7
- transformers/models/glm_image/modeling_glm_image.py +337 -236
- transformers/models/glm_image/modular_glm_image.py +415 -255
- transformers/models/glm_image/processing_glm_image.py +65 -17
- transformers/{pipelines/deprecated → models/glm_ocr}/__init__.py +15 -2
- transformers/models/glm_ocr/configuration_glm_ocr.py +312 -0
- transformers/models/glm_ocr/modeling_glm_ocr.py +1633 -0
- transformers/models/glm_ocr/modular_glm_ocr.py +428 -0
- transformers/models/glmasr/modeling_glmasr.py +34 -28
- transformers/models/glmasr/modular_glmasr.py +23 -11
- transformers/models/glpn/image_processing_glpn_fast.py +3 -3
- transformers/models/glpn/modeling_glpn.py +4 -2
- transformers/models/got_ocr2/configuration_got_ocr2.py +6 -6
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +3 -3
- transformers/models/got_ocr2/modeling_got_ocr2.py +31 -37
- transformers/models/got_ocr2/modular_got_ocr2.py +30 -19
- transformers/models/gpt2/configuration_gpt2.py +13 -1
- transformers/models/gpt2/modeling_gpt2.py +5 -5
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +7 -1
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +5 -4
- transformers/models/gpt_neo/configuration_gpt_neo.py +9 -1
- transformers/models/gpt_neo/modeling_gpt_neo.py +3 -7
- transformers/models/gpt_neox/configuration_gpt_neox.py +8 -3
- transformers/models/gpt_neox/modeling_gpt_neox.py +4 -4
- transformers/models/gpt_neox/modular_gpt_neox.py +4 -4
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +9 -1
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +2 -2
- transformers/models/gpt_oss/configuration_gpt_oss.py +10 -6
- transformers/models/gpt_oss/modeling_gpt_oss.py +46 -79
- transformers/models/gpt_oss/modular_gpt_oss.py +45 -78
- transformers/models/gptj/configuration_gptj.py +4 -4
- transformers/models/gptj/modeling_gptj.py +3 -7
- transformers/models/granite/configuration_granite.py +5 -7
- transformers/models/granite/modeling_granite.py +4 -4
- transformers/models/granite_speech/modeling_granite_speech.py +63 -37
- transformers/models/granitemoe/configuration_granitemoe.py +5 -7
- transformers/models/granitemoe/modeling_granitemoe.py +4 -4
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +17 -7
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +22 -54
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +39 -45
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +6 -7
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +4 -4
- transformers/models/grounding_dino/configuration_grounding_dino.py +10 -45
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +11 -11
- transformers/models/grounding_dino/modeling_grounding_dino.py +68 -86
- transformers/models/groupvit/configuration_groupvit.py +4 -1
- transformers/models/groupvit/modeling_groupvit.py +29 -22
- transformers/models/helium/configuration_helium.py +5 -7
- transformers/models/helium/modeling_helium.py +4 -4
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +2 -4
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +6 -5
- transformers/models/hgnet_v2/modular_hgnet_v2.py +7 -8
- transformers/models/hiera/configuration_hiera.py +2 -4
- transformers/models/hiera/modeling_hiera.py +11 -8
- transformers/models/hubert/configuration_hubert.py +4 -1
- transformers/models/hubert/modeling_hubert.py +7 -4
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +5 -7
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +28 -4
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +28 -6
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +6 -8
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +22 -9
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +22 -8
- transformers/models/ibert/configuration_ibert.py +4 -1
- transformers/models/idefics/configuration_idefics.py +5 -7
- transformers/models/idefics/modeling_idefics.py +3 -4
- transformers/models/idefics/vision.py +5 -4
- transformers/models/idefics2/configuration_idefics2.py +1 -2
- transformers/models/idefics2/image_processing_idefics2_fast.py +1 -0
- transformers/models/idefics2/modeling_idefics2.py +72 -50
- transformers/models/idefics3/configuration_idefics3.py +1 -3
- transformers/models/idefics3/image_processing_idefics3_fast.py +29 -3
- transformers/models/idefics3/modeling_idefics3.py +63 -40
- transformers/models/ijepa/modeling_ijepa.py +3 -3
- transformers/models/imagegpt/configuration_imagegpt.py +9 -1
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +2 -2
- transformers/models/imagegpt/modeling_imagegpt.py +8 -4
- transformers/models/informer/modeling_informer.py +3 -3
- transformers/models/instructblip/configuration_instructblip.py +2 -1
- transformers/models/instructblip/modeling_instructblip.py +65 -39
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -1
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +60 -57
- transformers/models/instructblipvideo/modular_instructblipvideo.py +43 -32
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +2 -2
- transformers/models/internvl/configuration_internvl.py +5 -0
- transformers/models/internvl/modeling_internvl.py +35 -55
- transformers/models/internvl/modular_internvl.py +26 -38
- transformers/models/internvl/video_processing_internvl.py +2 -2
- transformers/models/jais2/configuration_jais2.py +5 -7
- transformers/models/jais2/modeling_jais2.py +4 -4
- transformers/models/jamba/configuration_jamba.py +5 -7
- transformers/models/jamba/modeling_jamba.py +4 -4
- transformers/models/jamba/modular_jamba.py +3 -3
- transformers/models/janus/image_processing_janus.py +2 -2
- transformers/models/janus/image_processing_janus_fast.py +8 -8
- transformers/models/janus/modeling_janus.py +63 -146
- transformers/models/janus/modular_janus.py +62 -20
- transformers/models/jetmoe/configuration_jetmoe.py +6 -4
- transformers/models/jetmoe/modeling_jetmoe.py +3 -3
- transformers/models/jetmoe/modular_jetmoe.py +3 -3
- transformers/models/kosmos2/configuration_kosmos2.py +10 -8
- transformers/models/kosmos2/modeling_kosmos2.py +56 -34
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +8 -8
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +54 -63
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +8 -3
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +44 -40
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +1 -1
- transformers/models/lasr/configuration_lasr.py +2 -4
- transformers/models/lasr/modeling_lasr.py +3 -3
- transformers/models/lasr/modular_lasr.py +3 -3
- transformers/models/layoutlm/configuration_layoutlm.py +14 -1
- transformers/models/layoutlm/modeling_layoutlm.py +3 -3
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +14 -16
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +2 -2
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +16 -18
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +2 -2
- transformers/models/layoutxlm/configuration_layoutxlm.py +14 -16
- transformers/models/led/configuration_led.py +7 -8
- transformers/models/levit/image_processing_levit_fast.py +4 -4
- transformers/models/lfm2/configuration_lfm2.py +5 -7
- transformers/models/lfm2/modeling_lfm2.py +4 -4
- transformers/models/lfm2/modular_lfm2.py +3 -3
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +5 -7
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +4 -4
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -0
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +9 -15
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +42 -28
- transformers/models/lfm2_vl/modular_lfm2_vl.py +42 -27
- transformers/models/lightglue/image_processing_lightglue_fast.py +4 -3
- transformers/models/lightglue/modeling_lightglue.py +3 -3
- transformers/models/lightglue/modular_lightglue.py +3 -3
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +31 -28
- transformers/models/lighton_ocr/modular_lighton_ocr.py +19 -18
- transformers/models/lilt/configuration_lilt.py +6 -1
- transformers/models/llama/configuration_llama.py +5 -7
- transformers/models/llama/modeling_llama.py +4 -4
- transformers/models/llama4/configuration_llama4.py +67 -47
- transformers/models/llama4/image_processing_llama4_fast.py +3 -3
- transformers/models/llama4/modeling_llama4.py +46 -44
- transformers/models/llava/configuration_llava.py +10 -0
- transformers/models/llava/image_processing_llava_fast.py +3 -3
- transformers/models/llava/modeling_llava.py +38 -65
- transformers/models/llava_next/configuration_llava_next.py +2 -1
- transformers/models/llava_next/image_processing_llava_next_fast.py +6 -6
- transformers/models/llava_next/modeling_llava_next.py +61 -60
- transformers/models/llava_next_video/configuration_llava_next_video.py +10 -6
- transformers/models/llava_next_video/modeling_llava_next_video.py +115 -100
- transformers/models/llava_next_video/modular_llava_next_video.py +110 -101
- transformers/models/llava_onevision/configuration_llava_onevision.py +10 -6
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +8 -7
- transformers/models/llava_onevision/modeling_llava_onevision.py +111 -105
- transformers/models/llava_onevision/modular_llava_onevision.py +106 -101
- transformers/models/longcat_flash/configuration_longcat_flash.py +7 -10
- transformers/models/longcat_flash/modeling_longcat_flash.py +7 -7
- transformers/models/longcat_flash/modular_longcat_flash.py +6 -5
- transformers/models/longformer/configuration_longformer.py +4 -1
- transformers/models/longt5/configuration_longt5.py +9 -6
- transformers/models/longt5/modeling_longt5.py +2 -1
- transformers/models/luke/configuration_luke.py +8 -1
- transformers/models/lw_detr/configuration_lw_detr.py +19 -31
- transformers/models/lw_detr/modeling_lw_detr.py +43 -44
- transformers/models/lw_detr/modular_lw_detr.py +36 -38
- transformers/models/lxmert/configuration_lxmert.py +16 -0
- transformers/models/m2m_100/configuration_m2m_100.py +7 -8
- transformers/models/m2m_100/modeling_m2m_100.py +3 -3
- transformers/models/mamba/configuration_mamba.py +5 -2
- transformers/models/mamba/modeling_mamba.py +18 -26
- transformers/models/mamba2/configuration_mamba2.py +5 -7
- transformers/models/mamba2/modeling_mamba2.py +22 -33
- transformers/models/marian/configuration_marian.py +10 -4
- transformers/models/marian/modeling_marian.py +4 -4
- transformers/models/markuplm/configuration_markuplm.py +4 -6
- transformers/models/markuplm/modeling_markuplm.py +3 -3
- transformers/models/mask2former/configuration_mask2former.py +12 -47
- transformers/models/mask2former/image_processing_mask2former_fast.py +8 -8
- transformers/models/mask2former/modeling_mask2former.py +18 -12
- transformers/models/maskformer/configuration_maskformer.py +14 -45
- transformers/models/maskformer/configuration_maskformer_swin.py +2 -4
- transformers/models/maskformer/image_processing_maskformer_fast.py +8 -8
- transformers/models/maskformer/modeling_maskformer.py +15 -9
- transformers/models/maskformer/modeling_maskformer_swin.py +2 -3
- transformers/models/mbart/configuration_mbart.py +9 -4
- transformers/models/mbart/modeling_mbart.py +9 -6
- transformers/models/megatron_bert/configuration_megatron_bert.py +13 -2
- transformers/models/megatron_bert/modeling_megatron_bert.py +0 -15
- transformers/models/metaclip_2/configuration_metaclip_2.py +4 -1
- transformers/models/metaclip_2/modeling_metaclip_2.py +49 -42
- transformers/models/metaclip_2/modular_metaclip_2.py +41 -25
- transformers/models/mgp_str/modeling_mgp_str.py +4 -2
- transformers/models/mimi/configuration_mimi.py +4 -0
- transformers/models/mimi/modeling_mimi.py +40 -36
- transformers/models/minimax/configuration_minimax.py +8 -11
- transformers/models/minimax/modeling_minimax.py +5 -5
- transformers/models/minimax/modular_minimax.py +9 -12
- transformers/models/minimax_m2/configuration_minimax_m2.py +8 -31
- transformers/models/minimax_m2/modeling_minimax_m2.py +4 -4
- transformers/models/minimax_m2/modular_minimax_m2.py +8 -31
- transformers/models/ministral/configuration_ministral.py +5 -7
- transformers/models/ministral/modeling_ministral.py +4 -4
- transformers/models/ministral/modular_ministral.py +5 -8
- transformers/models/ministral3/configuration_ministral3.py +4 -4
- transformers/models/ministral3/modeling_ministral3.py +4 -4
- transformers/models/ministral3/modular_ministral3.py +3 -3
- transformers/models/mistral/configuration_mistral.py +5 -7
- transformers/models/mistral/modeling_mistral.py +4 -4
- transformers/models/mistral/modular_mistral.py +3 -3
- transformers/models/mistral3/configuration_mistral3.py +4 -0
- transformers/models/mistral3/modeling_mistral3.py +36 -40
- transformers/models/mistral3/modular_mistral3.py +31 -32
- transformers/models/mixtral/configuration_mixtral.py +8 -11
- transformers/models/mixtral/modeling_mixtral.py +4 -4
- transformers/models/mlcd/modeling_mlcd.py +7 -5
- transformers/models/mlcd/modular_mlcd.py +7 -5
- transformers/models/mllama/configuration_mllama.py +5 -7
- transformers/models/mllama/image_processing_mllama_fast.py +6 -5
- transformers/models/mllama/modeling_mllama.py +19 -19
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +10 -45
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +66 -84
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +10 -45
- transformers/models/mobilebert/configuration_mobilebert.py +4 -1
- transformers/models/mobilebert/modeling_mobilebert.py +3 -3
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +4 -4
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +4 -2
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +4 -4
- transformers/models/mobilevit/modeling_mobilevit.py +4 -2
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +4 -2
- transformers/models/modernbert/configuration_modernbert.py +46 -21
- transformers/models/modernbert/modeling_modernbert.py +146 -899
- transformers/models/modernbert/modular_modernbert.py +185 -908
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +21 -13
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +9 -17
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +24 -23
- transformers/models/moonshine/configuration_moonshine.py +12 -7
- transformers/models/moonshine/modeling_moonshine.py +7 -7
- transformers/models/moonshine/modular_moonshine.py +19 -13
- transformers/models/moshi/configuration_moshi.py +28 -2
- transformers/models/moshi/modeling_moshi.py +4 -9
- transformers/models/mpnet/configuration_mpnet.py +6 -1
- transformers/models/mpt/configuration_mpt.py +16 -0
- transformers/models/mra/configuration_mra.py +8 -1
- transformers/models/mt5/configuration_mt5.py +9 -5
- transformers/models/mt5/modeling_mt5.py +5 -8
- transformers/models/musicgen/configuration_musicgen.py +12 -7
- transformers/models/musicgen/modeling_musicgen.py +6 -5
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +15 -7
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +7 -17
- transformers/models/mvp/configuration_mvp.py +8 -4
- transformers/models/mvp/modeling_mvp.py +6 -4
- transformers/models/nanochat/configuration_nanochat.py +5 -7
- transformers/models/nanochat/modeling_nanochat.py +4 -4
- transformers/models/nanochat/modular_nanochat.py +4 -4
- transformers/models/nemotron/configuration_nemotron.py +5 -7
- transformers/models/nemotron/modeling_nemotron.py +4 -14
- transformers/models/nllb/tokenization_nllb.py +7 -5
- transformers/models/nllb_moe/configuration_nllb_moe.py +7 -9
- transformers/models/nllb_moe/modeling_nllb_moe.py +3 -3
- transformers/models/nougat/image_processing_nougat_fast.py +8 -8
- transformers/models/nystromformer/configuration_nystromformer.py +8 -1
- transformers/models/olmo/configuration_olmo.py +5 -7
- transformers/models/olmo/modeling_olmo.py +4 -4
- transformers/models/olmo/modular_olmo.py +3 -3
- transformers/models/olmo2/configuration_olmo2.py +9 -11
- transformers/models/olmo2/modeling_olmo2.py +4 -4
- transformers/models/olmo2/modular_olmo2.py +7 -7
- transformers/models/olmo3/configuration_olmo3.py +10 -11
- transformers/models/olmo3/modeling_olmo3.py +4 -4
- transformers/models/olmo3/modular_olmo3.py +13 -14
- transformers/models/olmoe/configuration_olmoe.py +5 -7
- transformers/models/olmoe/modeling_olmoe.py +4 -4
- transformers/models/olmoe/modular_olmoe.py +3 -3
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +14 -49
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +22 -18
- transformers/models/oneformer/configuration_oneformer.py +9 -46
- transformers/models/oneformer/image_processing_oneformer_fast.py +8 -8
- transformers/models/oneformer/modeling_oneformer.py +14 -9
- transformers/models/openai/configuration_openai.py +16 -0
- transformers/models/opt/configuration_opt.py +6 -6
- transformers/models/opt/modeling_opt.py +5 -5
- transformers/models/ovis2/configuration_ovis2.py +4 -0
- transformers/models/ovis2/image_processing_ovis2_fast.py +3 -3
- transformers/models/ovis2/modeling_ovis2.py +58 -99
- transformers/models/ovis2/modular_ovis2.py +52 -13
- transformers/models/owlv2/configuration_owlv2.py +4 -1
- transformers/models/owlv2/image_processing_owlv2_fast.py +5 -5
- transformers/models/owlv2/modeling_owlv2.py +40 -27
- transformers/models/owlv2/modular_owlv2.py +5 -5
- transformers/models/owlvit/configuration_owlvit.py +4 -1
- transformers/models/owlvit/modeling_owlvit.py +40 -27
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +9 -10
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +88 -87
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +82 -53
- transformers/models/paligemma/configuration_paligemma.py +4 -0
- transformers/models/paligemma/modeling_paligemma.py +30 -26
- transformers/models/parakeet/configuration_parakeet.py +2 -4
- transformers/models/parakeet/modeling_parakeet.py +3 -3
- transformers/models/parakeet/modular_parakeet.py +3 -3
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +3 -3
- transformers/models/patchtst/modeling_patchtst.py +3 -3
- transformers/models/pe_audio/modeling_pe_audio.py +4 -4
- transformers/models/pe_audio/modular_pe_audio.py +1 -1
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +4 -4
- transformers/models/pe_audio_video/modular_pe_audio_video.py +4 -4
- transformers/models/pe_video/modeling_pe_video.py +36 -24
- transformers/models/pe_video/modular_pe_video.py +36 -23
- transformers/models/pegasus/configuration_pegasus.py +8 -5
- transformers/models/pegasus/modeling_pegasus.py +4 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +5 -3
- transformers/models/pegasus_x/modeling_pegasus_x.py +3 -3
- transformers/models/perceiver/image_processing_perceiver_fast.py +2 -2
- transformers/models/perceiver/modeling_perceiver.py +17 -9
- transformers/models/perception_lm/modeling_perception_lm.py +26 -27
- transformers/models/perception_lm/modular_perception_lm.py +27 -25
- transformers/models/persimmon/configuration_persimmon.py +5 -7
- transformers/models/persimmon/modeling_persimmon.py +5 -5
- transformers/models/phi/configuration_phi.py +8 -6
- transformers/models/phi/modeling_phi.py +4 -4
- transformers/models/phi/modular_phi.py +3 -3
- transformers/models/phi3/configuration_phi3.py +9 -11
- transformers/models/phi3/modeling_phi3.py +4 -4
- transformers/models/phi3/modular_phi3.py +3 -3
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +11 -13
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +4 -4
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +46 -61
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +44 -30
- transformers/models/phimoe/configuration_phimoe.py +5 -7
- transformers/models/phimoe/modeling_phimoe.py +15 -39
- transformers/models/phimoe/modular_phimoe.py +12 -7
- transformers/models/pix2struct/configuration_pix2struct.py +12 -9
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +5 -5
- transformers/models/pix2struct/modeling_pix2struct.py +14 -7
- transformers/models/pixio/configuration_pixio.py +2 -4
- transformers/models/pixio/modeling_pixio.py +9 -8
- transformers/models/pixio/modular_pixio.py +4 -2
- transformers/models/pixtral/image_processing_pixtral_fast.py +5 -5
- transformers/models/pixtral/modeling_pixtral.py +9 -12
- transformers/models/plbart/configuration_plbart.py +8 -5
- transformers/models/plbart/modeling_plbart.py +9 -7
- transformers/models/plbart/modular_plbart.py +1 -1
- transformers/models/poolformer/image_processing_poolformer_fast.py +7 -7
- transformers/models/pop2piano/configuration_pop2piano.py +7 -6
- transformers/models/pop2piano/modeling_pop2piano.py +2 -1
- transformers/models/pp_doclayout_v3/__init__.py +30 -0
- transformers/models/pp_doclayout_v3/configuration_pp_doclayout_v3.py +277 -0
- transformers/models/pp_doclayout_v3/image_processing_pp_doclayout_v3_fast.py +305 -0
- transformers/models/pp_doclayout_v3/modeling_pp_doclayout_v3.py +2083 -0
- transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py +1549 -0
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +12 -46
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +6 -6
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +8 -6
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +12 -10
- transformers/models/prophetnet/configuration_prophetnet.py +11 -10
- transformers/models/prophetnet/modeling_prophetnet.py +12 -23
- transformers/models/pvt/image_processing_pvt.py +7 -7
- transformers/models/pvt/image_processing_pvt_fast.py +1 -1
- transformers/models/pvt_v2/configuration_pvt_v2.py +2 -4
- transformers/models/pvt_v2/modeling_pvt_v2.py +6 -5
- transformers/models/qwen2/configuration_qwen2.py +14 -4
- transformers/models/qwen2/modeling_qwen2.py +4 -4
- transformers/models/qwen2/modular_qwen2.py +3 -3
- transformers/models/qwen2/tokenization_qwen2.py +0 -4
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +17 -5
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +108 -88
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +115 -87
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +7 -10
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +98 -53
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +18 -6
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +12 -12
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +14 -4
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +4 -4
- transformers/models/qwen2_moe/modular_qwen2_moe.py +3 -3
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +7 -10
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +4 -6
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +97 -53
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +4 -6
- transformers/models/qwen3/configuration_qwen3.py +15 -5
- transformers/models/qwen3/modeling_qwen3.py +4 -4
- transformers/models/qwen3/modular_qwen3.py +3 -3
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +20 -7
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +4 -4
- transformers/models/qwen3_next/configuration_qwen3_next.py +16 -4
- transformers/models/qwen3_next/modeling_qwen3_next.py +5 -5
- transformers/models/qwen3_next/modular_qwen3_next.py +4 -4
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +55 -19
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +161 -98
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +107 -34
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +7 -6
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +115 -49
- transformers/models/qwen3_vl/modular_qwen3_vl.py +88 -37
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +7 -6
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +173 -99
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +23 -7
- transformers/models/rag/configuration_rag.py +6 -6
- transformers/models/rag/modeling_rag.py +3 -3
- transformers/models/rag/retrieval_rag.py +1 -1
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +8 -6
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +4 -5
- transformers/models/reformer/configuration_reformer.py +7 -7
- transformers/models/rembert/configuration_rembert.py +8 -1
- transformers/models/rembert/modeling_rembert.py +0 -22
- transformers/models/resnet/configuration_resnet.py +2 -4
- transformers/models/resnet/modeling_resnet.py +6 -5
- transformers/models/roberta/configuration_roberta.py +11 -2
- transformers/models/roberta/modeling_roberta.py +6 -6
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +11 -2
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +6 -6
- transformers/models/roc_bert/configuration_roc_bert.py +8 -1
- transformers/models/roc_bert/modeling_roc_bert.py +6 -41
- transformers/models/roformer/configuration_roformer.py +13 -2
- transformers/models/roformer/modeling_roformer.py +0 -14
- transformers/models/rt_detr/configuration_rt_detr.py +8 -49
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +2 -4
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +24 -11
- transformers/models/rt_detr/modeling_rt_detr.py +578 -737
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +2 -3
- transformers/models/rt_detr/modular_rt_detr.py +1508 -6
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +12 -57
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +318 -453
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +25 -66
- transformers/models/rwkv/configuration_rwkv.py +2 -3
- transformers/models/rwkv/modeling_rwkv.py +0 -23
- transformers/models/sam/configuration_sam.py +2 -0
- transformers/models/sam/image_processing_sam_fast.py +4 -4
- transformers/models/sam/modeling_sam.py +13 -8
- transformers/models/sam/processing_sam.py +3 -3
- transformers/models/sam2/configuration_sam2.py +1 -1
- transformers/models/sam2/modeling_sam2.py +56 -52
- transformers/models/sam2/modular_sam2.py +47 -55
- transformers/models/sam2_video/modeling_sam2_video.py +50 -51
- transformers/models/sam2_video/modular_sam2_video.py +12 -10
- transformers/models/sam3/modeling_sam3.py +43 -47
- transformers/models/sam3/processing_sam3.py +8 -4
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +1 -2
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +50 -49
- transformers/models/sam3_tracker/modular_sam3_tracker.py +0 -1
- transformers/models/sam3_tracker/processing_sam3_tracker.py +0 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +50 -49
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +10 -22
- transformers/models/sam3_video/modeling_sam3_video.py +27 -14
- transformers/models/sam_hq/configuration_sam_hq.py +2 -0
- transformers/models/sam_hq/modeling_sam_hq.py +13 -9
- transformers/models/sam_hq/modular_sam_hq.py +6 -6
- transformers/models/sam_hq/processing_sam_hq.py +7 -6
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +8 -9
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +8 -9
- transformers/models/seed_oss/configuration_seed_oss.py +7 -9
- transformers/models/seed_oss/modeling_seed_oss.py +4 -4
- transformers/models/seed_oss/modular_seed_oss.py +3 -3
- transformers/models/segformer/image_processing_segformer_fast.py +4 -4
- transformers/models/segformer/modeling_segformer.py +4 -2
- transformers/models/segformer/modular_segformer.py +3 -3
- transformers/models/seggpt/modeling_seggpt.py +20 -8
- transformers/models/sew/configuration_sew.py +4 -1
- transformers/models/sew/modeling_sew.py +9 -5
- transformers/models/sew/modular_sew.py +2 -1
- transformers/models/sew_d/configuration_sew_d.py +4 -1
- transformers/models/sew_d/modeling_sew_d.py +4 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +4 -4
- transformers/models/siglip/configuration_siglip.py +4 -1
- transformers/models/siglip/modeling_siglip.py +27 -71
- transformers/models/siglip2/__init__.py +1 -0
- transformers/models/siglip2/configuration_siglip2.py +4 -2
- transformers/models/siglip2/image_processing_siglip2_fast.py +2 -2
- transformers/models/siglip2/modeling_siglip2.py +37 -78
- transformers/models/siglip2/modular_siglip2.py +74 -25
- transformers/models/siglip2/tokenization_siglip2.py +95 -0
- transformers/models/smollm3/configuration_smollm3.py +6 -6
- transformers/models/smollm3/modeling_smollm3.py +4 -4
- transformers/models/smollm3/modular_smollm3.py +9 -9
- transformers/models/smolvlm/configuration_smolvlm.py +1 -3
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +29 -3
- transformers/models/smolvlm/modeling_smolvlm.py +75 -46
- transformers/models/smolvlm/modular_smolvlm.py +36 -23
- transformers/models/smolvlm/video_processing_smolvlm.py +9 -9
- transformers/models/solar_open/__init__.py +27 -0
- transformers/models/solar_open/configuration_solar_open.py +184 -0
- transformers/models/solar_open/modeling_solar_open.py +642 -0
- transformers/models/solar_open/modular_solar_open.py +224 -0
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +6 -4
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -8
- transformers/models/speech_to_text/modeling_speech_to_text.py +3 -3
- transformers/models/speecht5/configuration_speecht5.py +7 -8
- transformers/models/splinter/configuration_splinter.py +6 -6
- transformers/models/splinter/modeling_splinter.py +8 -3
- transformers/models/squeezebert/configuration_squeezebert.py +14 -1
- transformers/models/stablelm/configuration_stablelm.py +8 -6
- transformers/models/stablelm/modeling_stablelm.py +5 -5
- transformers/models/starcoder2/configuration_starcoder2.py +11 -5
- transformers/models/starcoder2/modeling_starcoder2.py +5 -5
- transformers/models/starcoder2/modular_starcoder2.py +4 -4
- transformers/models/superglue/configuration_superglue.py +4 -0
- transformers/models/superglue/image_processing_superglue_fast.py +4 -3
- transformers/models/superglue/modeling_superglue.py +9 -4
- transformers/models/superpoint/image_processing_superpoint_fast.py +3 -4
- transformers/models/superpoint/modeling_superpoint.py +4 -2
- transformers/models/swin/configuration_swin.py +2 -4
- transformers/models/swin/modeling_swin.py +11 -8
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +2 -2
- transformers/models/swin2sr/modeling_swin2sr.py +4 -2
- transformers/models/swinv2/configuration_swinv2.py +2 -4
- transformers/models/swinv2/modeling_swinv2.py +10 -7
- transformers/models/switch_transformers/configuration_switch_transformers.py +11 -6
- transformers/models/switch_transformers/modeling_switch_transformers.py +3 -3
- transformers/models/switch_transformers/modular_switch_transformers.py +3 -3
- transformers/models/t5/configuration_t5.py +9 -8
- transformers/models/t5/modeling_t5.py +5 -8
- transformers/models/t5gemma/configuration_t5gemma.py +10 -25
- transformers/models/t5gemma/modeling_t5gemma.py +9 -9
- transformers/models/t5gemma/modular_t5gemma.py +11 -24
- transformers/models/t5gemma2/configuration_t5gemma2.py +35 -48
- transformers/models/t5gemma2/modeling_t5gemma2.py +143 -100
- transformers/models/t5gemma2/modular_t5gemma2.py +152 -136
- transformers/models/table_transformer/configuration_table_transformer.py +18 -49
- transformers/models/table_transformer/modeling_table_transformer.py +27 -53
- transformers/models/tapas/configuration_tapas.py +12 -1
- transformers/models/tapas/modeling_tapas.py +1 -1
- transformers/models/tapas/tokenization_tapas.py +1 -0
- transformers/models/textnet/configuration_textnet.py +4 -6
- transformers/models/textnet/image_processing_textnet_fast.py +3 -3
- transformers/models/textnet/modeling_textnet.py +15 -14
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +3 -3
- transformers/models/timesfm/modeling_timesfm.py +5 -6
- transformers/models/timesfm/modular_timesfm.py +5 -6
- transformers/models/timm_backbone/configuration_timm_backbone.py +33 -7
- transformers/models/timm_backbone/modeling_timm_backbone.py +21 -24
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +9 -4
- transformers/models/trocr/configuration_trocr.py +11 -7
- transformers/models/trocr/modeling_trocr.py +4 -2
- transformers/models/tvp/configuration_tvp.py +10 -35
- transformers/models/tvp/image_processing_tvp_fast.py +6 -5
- transformers/models/tvp/modeling_tvp.py +1 -1
- transformers/models/udop/configuration_udop.py +16 -7
- transformers/models/udop/modeling_udop.py +10 -6
- transformers/models/umt5/configuration_umt5.py +8 -6
- transformers/models/umt5/modeling_umt5.py +7 -3
- transformers/models/unispeech/configuration_unispeech.py +4 -1
- transformers/models/unispeech/modeling_unispeech.py +7 -4
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +4 -1
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +7 -4
- transformers/models/upernet/configuration_upernet.py +8 -35
- transformers/models/upernet/modeling_upernet.py +1 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +5 -7
- transformers/models/vaultgemma/modeling_vaultgemma.py +4 -4
- transformers/models/video_llama_3/configuration_video_llama_3.py +4 -0
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +4 -6
- transformers/models/video_llama_3/modeling_video_llama_3.py +85 -48
- transformers/models/video_llama_3/modular_video_llama_3.py +56 -43
- transformers/models/video_llama_3/video_processing_video_llama_3.py +29 -8
- transformers/models/video_llava/configuration_video_llava.py +4 -0
- transformers/models/video_llava/modeling_video_llava.py +87 -89
- transformers/models/videomae/modeling_videomae.py +4 -5
- transformers/models/vilt/configuration_vilt.py +4 -1
- transformers/models/vilt/image_processing_vilt_fast.py +6 -6
- transformers/models/vilt/modeling_vilt.py +27 -12
- transformers/models/vipllava/configuration_vipllava.py +4 -0
- transformers/models/vipllava/modeling_vipllava.py +57 -31
- transformers/models/vipllava/modular_vipllava.py +50 -24
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +10 -6
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +27 -20
- transformers/models/visual_bert/configuration_visual_bert.py +6 -1
- transformers/models/vit/configuration_vit.py +2 -2
- transformers/models/vit/modeling_vit.py +7 -5
- transformers/models/vit_mae/modeling_vit_mae.py +11 -7
- transformers/models/vit_msn/modeling_vit_msn.py +11 -7
- transformers/models/vitdet/configuration_vitdet.py +2 -4
- transformers/models/vitdet/modeling_vitdet.py +2 -3
- transformers/models/vitmatte/configuration_vitmatte.py +6 -35
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +2 -2
- transformers/models/vitmatte/modeling_vitmatte.py +1 -1
- transformers/models/vitpose/configuration_vitpose.py +6 -43
- transformers/models/vitpose/modeling_vitpose.py +5 -3
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +2 -4
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +5 -6
- transformers/models/vits/configuration_vits.py +4 -0
- transformers/models/vits/modeling_vits.py +9 -7
- transformers/models/vivit/modeling_vivit.py +4 -4
- transformers/models/vjepa2/modeling_vjepa2.py +9 -9
- transformers/models/voxtral/configuration_voxtral.py +0 -1
- transformers/models/voxtral/modeling_voxtral.py +25 -24
- transformers/models/voxtral/modular_voxtral.py +26 -20
- transformers/models/wav2vec2/configuration_wav2vec2.py +4 -1
- transformers/models/wav2vec2/modeling_wav2vec2.py +7 -4
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +4 -1
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +4 -1
- transformers/models/wavlm/configuration_wavlm.py +4 -1
- transformers/models/wavlm/modeling_wavlm.py +4 -1
- transformers/models/whisper/configuration_whisper.py +6 -4
- transformers/models/whisper/generation_whisper.py +0 -1
- transformers/models/whisper/modeling_whisper.py +3 -3
- transformers/models/x_clip/configuration_x_clip.py +4 -1
- transformers/models/x_clip/modeling_x_clip.py +26 -27
- transformers/models/xglm/configuration_xglm.py +9 -7
- transformers/models/xlm/configuration_xlm.py +10 -7
- transformers/models/xlm/modeling_xlm.py +1 -1
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +11 -2
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +6 -6
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +10 -1
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +6 -6
- transformers/models/xlnet/configuration_xlnet.py +3 -1
- transformers/models/xlstm/configuration_xlstm.py +5 -7
- transformers/models/xlstm/modeling_xlstm.py +0 -32
- transformers/models/xmod/configuration_xmod.py +11 -2
- transformers/models/xmod/modeling_xmod.py +13 -16
- transformers/models/yolos/image_processing_yolos_fast.py +25 -28
- transformers/models/yolos/modeling_yolos.py +7 -7
- transformers/models/yolos/modular_yolos.py +16 -16
- transformers/models/yoso/configuration_yoso.py +8 -1
- transformers/models/youtu/__init__.py +27 -0
- transformers/models/youtu/configuration_youtu.py +194 -0
- transformers/models/youtu/modeling_youtu.py +619 -0
- transformers/models/youtu/modular_youtu.py +254 -0
- transformers/models/zamba/configuration_zamba.py +5 -7
- transformers/models/zamba/modeling_zamba.py +25 -56
- transformers/models/zamba2/configuration_zamba2.py +8 -13
- transformers/models/zamba2/modeling_zamba2.py +53 -78
- transformers/models/zamba2/modular_zamba2.py +36 -29
- transformers/models/zoedepth/configuration_zoedepth.py +17 -40
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +9 -9
- transformers/models/zoedepth/modeling_zoedepth.py +5 -3
- transformers/pipelines/__init__.py +1 -61
- transformers/pipelines/any_to_any.py +1 -1
- transformers/pipelines/automatic_speech_recognition.py +0 -2
- transformers/pipelines/base.py +1 -1
- transformers/pipelines/image_text_to_text.py +1 -1
- transformers/pipelines/text_to_audio.py +5 -1
- transformers/processing_utils.py +35 -44
- transformers/pytorch_utils.py +2 -26
- transformers/quantizers/quantizer_compressed_tensors.py +7 -5
- transformers/quantizers/quantizer_fbgemm_fp8.py +20 -23
- transformers/quantizers/quantizer_finegrained_fp8.py +14 -20
- transformers/quantizers/quantizer_mxfp4.py +1 -1
- transformers/quantizers/quantizer_torchao.py +0 -16
- transformers/safetensors_conversion.py +11 -4
- transformers/testing_utils.py +3 -28
- transformers/tokenization_mistral_common.py +9 -0
- transformers/tokenization_python.py +6 -4
- transformers/tokenization_utils_base.py +119 -219
- transformers/tokenization_utils_tokenizers.py +31 -2
- transformers/trainer.py +25 -33
- transformers/trainer_seq2seq.py +1 -1
- transformers/training_args.py +411 -417
- transformers/utils/__init__.py +1 -4
- transformers/utils/auto_docstring.py +15 -18
- transformers/utils/backbone_utils.py +13 -373
- transformers/utils/doc.py +4 -36
- transformers/utils/generic.py +69 -33
- transformers/utils/import_utils.py +72 -75
- transformers/utils/loading_report.py +133 -105
- transformers/utils/quantization_config.py +0 -21
- transformers/video_processing_utils.py +5 -5
- transformers/video_utils.py +3 -1
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/METADATA +118 -237
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/RECORD +1019 -994
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/WHEEL +1 -1
- transformers/pipelines/deprecated/text2text_generation.py +0 -408
- transformers/pipelines/image_to_text.py +0 -189
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc3.dist-info → transformers-5.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,2083 @@
|
|
|
1
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
2
|
+
# This file was automatically generated from src/transformers/models/pp_doclayout_v3/modular_pp_doclayout_v3.py.
|
|
3
|
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
4
|
+
# the file from the modular. If any change should be done, please apply the change to the
|
|
5
|
+
# modular_pp_doclayout_v3.py file directly. One of our CI enforces this.
|
|
6
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
7
|
+
# Copyright 2026 The PaddlePaddle Team and The HuggingFace Inc. team. All rights reserved.
|
|
8
|
+
#
|
|
9
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
10
|
+
# you may not use this file except in compliance with the License.
|
|
11
|
+
# You may obtain a copy of the License at
|
|
12
|
+
#
|
|
13
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
14
|
+
#
|
|
15
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
16
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
17
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
18
|
+
# See the License for the specific language governing permissions and
|
|
19
|
+
# limitations under the License.
|
|
20
|
+
|
|
21
|
+
import math
|
|
22
|
+
import warnings
|
|
23
|
+
from collections.abc import Callable
|
|
24
|
+
from dataclasses import dataclass
|
|
25
|
+
|
|
26
|
+
import numpy as np
|
|
27
|
+
import torch
|
|
28
|
+
import torch.nn.functional as F
|
|
29
|
+
from torch import Tensor, nn
|
|
30
|
+
|
|
31
|
+
from ... import initialization as init
|
|
32
|
+
from ...activations import ACT2CLS, ACT2FN
|
|
33
|
+
from ...backbone_utils import load_backbone
|
|
34
|
+
from ...image_transforms import center_to_corners_format, corners_to_center_format
|
|
35
|
+
from ...integrations import use_kernel_forward_from_hub
|
|
36
|
+
from ...modeling_outputs import BaseModelOutput
|
|
37
|
+
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
38
|
+
from ...processing_utils import Unpack
|
|
39
|
+
from ...pytorch_utils import compile_compatible_method_lru_cache
|
|
40
|
+
from ...utils import (
|
|
41
|
+
ModelOutput,
|
|
42
|
+
TransformersKwargs,
|
|
43
|
+
auto_docstring,
|
|
44
|
+
torch_compilable_check,
|
|
45
|
+
torch_int,
|
|
46
|
+
)
|
|
47
|
+
from ...utils.generic import can_return_tuple, check_model_inputs
|
|
48
|
+
from .configuration_pp_doclayout_v3 import PPDocLayoutV3Config
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class PPDocLayoutV3GlobalPointer(nn.Module):
|
|
52
|
+
def __init__(self, config):
|
|
53
|
+
super().__init__()
|
|
54
|
+
self.head_size = config.global_pointer_head_size
|
|
55
|
+
self.dense = nn.Linear(config.d_model, self.head_size * 2)
|
|
56
|
+
self.dropout = nn.Dropout(config.gp_dropout_value)
|
|
57
|
+
|
|
58
|
+
def forward(self, inputs):
|
|
59
|
+
batch_size, sequence_length, _ = inputs.shape
|
|
60
|
+
query_key_projection = self.dense(inputs).reshape(batch_size, sequence_length, 2, self.head_size)
|
|
61
|
+
query_key_projection = self.dropout(query_key_projection)
|
|
62
|
+
queries, keys = torch.unbind(query_key_projection, dim=2)
|
|
63
|
+
|
|
64
|
+
logits = (queries @ keys.transpose(-2, -1)) / (self.head_size**0.5)
|
|
65
|
+
mask = torch.tril(torch.ones(sequence_length, sequence_length, device=logits.device)).bool()
|
|
66
|
+
logits = logits.masked_fill(mask.unsqueeze(0), -1e4)
|
|
67
|
+
|
|
68
|
+
return logits
|
|
69
|
+
|
|
70
|
+
|
|
71
|
+
@use_kernel_forward_from_hub("MultiScaleDeformableAttention")
|
|
72
|
+
class MultiScaleDeformableAttention(nn.Module):
|
|
73
|
+
def forward(
|
|
74
|
+
self,
|
|
75
|
+
value: Tensor,
|
|
76
|
+
value_spatial_shapes: Tensor,
|
|
77
|
+
value_spatial_shapes_list: list[tuple],
|
|
78
|
+
level_start_index: Tensor,
|
|
79
|
+
sampling_locations: Tensor,
|
|
80
|
+
attention_weights: Tensor,
|
|
81
|
+
im2col_step: int,
|
|
82
|
+
):
|
|
83
|
+
batch_size, _, num_heads, hidden_dim = value.shape
|
|
84
|
+
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
|
85
|
+
value_list = value.split([height * width for height, width in value_spatial_shapes_list], dim=1)
|
|
86
|
+
sampling_grids = 2 * sampling_locations - 1
|
|
87
|
+
sampling_value_list = []
|
|
88
|
+
for level_id, (height, width) in enumerate(value_spatial_shapes_list):
|
|
89
|
+
# batch_size, height*width, num_heads, hidden_dim
|
|
90
|
+
# -> batch_size, height*width, num_heads*hidden_dim
|
|
91
|
+
# -> batch_size, num_heads*hidden_dim, height*width
|
|
92
|
+
# -> batch_size*num_heads, hidden_dim, height, width
|
|
93
|
+
value_l_ = (
|
|
94
|
+
value_list[level_id]
|
|
95
|
+
.flatten(2)
|
|
96
|
+
.transpose(1, 2)
|
|
97
|
+
.reshape(batch_size * num_heads, hidden_dim, height, width)
|
|
98
|
+
)
|
|
99
|
+
# batch_size, num_queries, num_heads, num_points, 2
|
|
100
|
+
# -> batch_size, num_heads, num_queries, num_points, 2
|
|
101
|
+
# -> batch_size*num_heads, num_queries, num_points, 2
|
|
102
|
+
sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1)
|
|
103
|
+
# batch_size*num_heads, hidden_dim, num_queries, num_points
|
|
104
|
+
sampling_value_l_ = nn.functional.grid_sample(
|
|
105
|
+
value_l_,
|
|
106
|
+
sampling_grid_l_,
|
|
107
|
+
mode="bilinear",
|
|
108
|
+
padding_mode="zeros",
|
|
109
|
+
align_corners=False,
|
|
110
|
+
)
|
|
111
|
+
sampling_value_list.append(sampling_value_l_)
|
|
112
|
+
# (batch_size, num_queries, num_heads, num_levels, num_points)
|
|
113
|
+
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
|
|
114
|
+
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
|
|
115
|
+
attention_weights = attention_weights.transpose(1, 2).reshape(
|
|
116
|
+
batch_size * num_heads, 1, num_queries, num_levels * num_points
|
|
117
|
+
)
|
|
118
|
+
output = (
|
|
119
|
+
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
|
120
|
+
.sum(-1)
|
|
121
|
+
.view(batch_size, num_heads * hidden_dim, num_queries)
|
|
122
|
+
)
|
|
123
|
+
return output.transpose(1, 2).contiguous()
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
class PPDocLayoutV3MultiscaleDeformableAttention(nn.Module):
|
|
127
|
+
"""
|
|
128
|
+
Multiscale deformable attention as proposed in Deformable DETR.
|
|
129
|
+
"""
|
|
130
|
+
|
|
131
|
+
def __init__(self, config: PPDocLayoutV3Config, num_heads: int, n_points: int):
|
|
132
|
+
super().__init__()
|
|
133
|
+
|
|
134
|
+
self.attn = MultiScaleDeformableAttention()
|
|
135
|
+
|
|
136
|
+
if config.d_model % num_heads != 0:
|
|
137
|
+
raise ValueError(
|
|
138
|
+
f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}"
|
|
139
|
+
)
|
|
140
|
+
dim_per_head = config.d_model // num_heads
|
|
141
|
+
# check if dim_per_head is power of 2
|
|
142
|
+
if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0):
|
|
143
|
+
warnings.warn(
|
|
144
|
+
"You'd better set embed_dim (d_model) in PPDocLayoutV3MultiscaleDeformableAttention to make the"
|
|
145
|
+
" dimension of each attention head a power of 2 which is more efficient in the authors' CUDA"
|
|
146
|
+
" implementation."
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
self.im2col_step = 64
|
|
150
|
+
|
|
151
|
+
self.d_model = config.d_model
|
|
152
|
+
self.n_levels = config.num_feature_levels
|
|
153
|
+
self.n_heads = num_heads
|
|
154
|
+
self.n_points = n_points
|
|
155
|
+
|
|
156
|
+
self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2)
|
|
157
|
+
self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points)
|
|
158
|
+
self.value_proj = nn.Linear(config.d_model, config.d_model)
|
|
159
|
+
self.output_proj = nn.Linear(config.d_model, config.d_model)
|
|
160
|
+
|
|
161
|
+
self.disable_custom_kernels = config.disable_custom_kernels
|
|
162
|
+
|
|
163
|
+
def forward(
|
|
164
|
+
self,
|
|
165
|
+
hidden_states: torch.Tensor,
|
|
166
|
+
attention_mask: torch.Tensor | None = None,
|
|
167
|
+
encoder_hidden_states=None,
|
|
168
|
+
encoder_attention_mask=None,
|
|
169
|
+
position_embeddings: torch.Tensor | None = None,
|
|
170
|
+
reference_points=None,
|
|
171
|
+
spatial_shapes=None,
|
|
172
|
+
spatial_shapes_list=None,
|
|
173
|
+
level_start_index=None,
|
|
174
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
175
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
176
|
+
# add position embeddings to the hidden states before projecting to queries and keys
|
|
177
|
+
if position_embeddings is not None:
|
|
178
|
+
hidden_states = hidden_states + position_embeddings
|
|
179
|
+
|
|
180
|
+
batch_size, num_queries, _ = hidden_states.shape
|
|
181
|
+
batch_size, sequence_length, _ = encoder_hidden_states.shape
|
|
182
|
+
total_elements = sum(height * width for height, width in spatial_shapes_list)
|
|
183
|
+
torch_compilable_check(
|
|
184
|
+
total_elements == sequence_length,
|
|
185
|
+
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states",
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
value = self.value_proj(encoder_hidden_states)
|
|
189
|
+
if attention_mask is not None:
|
|
190
|
+
# we invert the attention_mask
|
|
191
|
+
value = value.masked_fill(~attention_mask[..., None], float(0))
|
|
192
|
+
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
|
|
193
|
+
sampling_offsets = self.sampling_offsets(hidden_states).view(
|
|
194
|
+
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2
|
|
195
|
+
)
|
|
196
|
+
attention_weights = self.attention_weights(hidden_states).view(
|
|
197
|
+
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
|
|
198
|
+
)
|
|
199
|
+
attention_weights = F.softmax(attention_weights, -1).view(
|
|
200
|
+
batch_size, num_queries, self.n_heads, self.n_levels, self.n_points
|
|
201
|
+
)
|
|
202
|
+
# batch_size, num_queries, n_heads, n_levels, n_points, 2
|
|
203
|
+
num_coordinates = reference_points.shape[-1]
|
|
204
|
+
if num_coordinates == 2:
|
|
205
|
+
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
|
|
206
|
+
sampling_locations = (
|
|
207
|
+
reference_points[:, :, None, :, None, :]
|
|
208
|
+
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
|
209
|
+
)
|
|
210
|
+
elif num_coordinates == 4:
|
|
211
|
+
sampling_locations = (
|
|
212
|
+
reference_points[:, :, None, :, None, :2]
|
|
213
|
+
+ sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
|
|
214
|
+
)
|
|
215
|
+
else:
|
|
216
|
+
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
|
|
217
|
+
|
|
218
|
+
output = self.attn(
|
|
219
|
+
value,
|
|
220
|
+
spatial_shapes,
|
|
221
|
+
spatial_shapes_list,
|
|
222
|
+
level_start_index,
|
|
223
|
+
sampling_locations,
|
|
224
|
+
attention_weights,
|
|
225
|
+
self.im2col_step,
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
output = self.output_proj(output)
|
|
229
|
+
|
|
230
|
+
return output, attention_weights
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
@auto_docstring
|
|
234
|
+
class PPDocLayoutV3PreTrainedModel(PreTrainedModel):
|
|
235
|
+
config: PPDocLayoutV3Config
|
|
236
|
+
base_model_prefix = "pp_doclayout_v3"
|
|
237
|
+
main_input_name = "pixel_values"
|
|
238
|
+
input_modalities = ("image",)
|
|
239
|
+
_no_split_modules = [r"PPDocLayoutV3HybridEncoder", r"PPDocLayoutV3DecoderLayer"]
|
|
240
|
+
_supports_sdpa = True
|
|
241
|
+
_supports_flash_attn = True
|
|
242
|
+
_supports_attention_backend = True
|
|
243
|
+
_supports_flex_attn = True
|
|
244
|
+
|
|
245
|
+
@torch.no_grad()
|
|
246
|
+
def _init_weights(self, module):
|
|
247
|
+
"""Initialize the weights"""
|
|
248
|
+
if isinstance(module, PPDocLayoutV3MultiscaleDeformableAttention):
|
|
249
|
+
init.constant_(module.sampling_offsets.weight, 0.0)
|
|
250
|
+
default_dtype = torch.get_default_dtype()
|
|
251
|
+
thetas = torch.arange(module.n_heads, dtype=torch.int64).to(default_dtype) * (
|
|
252
|
+
2.0 * math.pi / module.n_heads
|
|
253
|
+
)
|
|
254
|
+
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
|
255
|
+
grid_init = (
|
|
256
|
+
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
|
257
|
+
.view(module.n_heads, 1, 1, 2)
|
|
258
|
+
.repeat(1, module.n_levels, module.n_points, 1)
|
|
259
|
+
)
|
|
260
|
+
for i in range(module.n_points):
|
|
261
|
+
grid_init[:, :, i, :] *= i + 1
|
|
262
|
+
|
|
263
|
+
init.copy_(module.sampling_offsets.bias, grid_init.view(-1))
|
|
264
|
+
init.constant_(module.attention_weights.weight, 0.0)
|
|
265
|
+
init.constant_(module.attention_weights.bias, 0.0)
|
|
266
|
+
init.xavier_uniform_(module.value_proj.weight)
|
|
267
|
+
init.constant_(module.value_proj.bias, 0.0)
|
|
268
|
+
init.xavier_uniform_(module.output_proj.weight)
|
|
269
|
+
init.constant_(module.output_proj.bias, 0.0)
|
|
270
|
+
|
|
271
|
+
elif isinstance(module, PPDocLayoutV3Model):
|
|
272
|
+
prior_prob = self.config.initializer_bias_prior_prob or 1 / (self.config.num_labels + 1)
|
|
273
|
+
bias = float(-math.log((1 - prior_prob) / prior_prob))
|
|
274
|
+
init.xavier_uniform_(module.enc_score_head.weight)
|
|
275
|
+
init.constant_(module.enc_score_head.bias, bias)
|
|
276
|
+
init.xavier_uniform_(module.decoder.class_embed.weight)
|
|
277
|
+
init.constant_(module.decoder.class_embed.bias, bias)
|
|
278
|
+
|
|
279
|
+
elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
|
|
280
|
+
init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
|
281
|
+
if module.bias is not None:
|
|
282
|
+
init.zeros_(module.bias)
|
|
283
|
+
if getattr(module, "running_mean", None) is not None:
|
|
284
|
+
init.zeros_(module.running_mean)
|
|
285
|
+
init.ones_(module.running_var)
|
|
286
|
+
init.zeros_(module.num_batches_tracked)
|
|
287
|
+
|
|
288
|
+
elif isinstance(module, nn.LayerNorm):
|
|
289
|
+
init.ones_(module.weight)
|
|
290
|
+
init.zeros_(module.bias)
|
|
291
|
+
|
|
292
|
+
if isinstance(module, nn.Embedding):
|
|
293
|
+
init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
|
294
|
+
if module.padding_idx is not None:
|
|
295
|
+
init.zeros_(module.weight.data[module.padding_idx])
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
@dataclass
|
|
299
|
+
class PPDocLayoutV3DecoderOutput(ModelOutput):
|
|
300
|
+
r"""
|
|
301
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
|
302
|
+
Stacked intermediate hidden states (output of each layer of the decoder).
|
|
303
|
+
intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`):
|
|
304
|
+
Stacked intermediate logits (logits of each layer of the decoder).
|
|
305
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`):
|
|
306
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
307
|
+
intermediate_predicted_corners (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
308
|
+
Stacked intermediate predicted corners (predicted corners of each layer of the decoder).
|
|
309
|
+
initial_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
310
|
+
Stacked initial reference points (initial reference points of each layer of the decoder).
|
|
311
|
+
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
|
|
312
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
313
|
+
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
|
|
314
|
+
used to compute the weighted average in the cross-attention heads.
|
|
315
|
+
decoder_out_order_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.num_queries, config.num_queries)`):
|
|
316
|
+
Stacked order logits (order logits of each layer of the decoder).
|
|
317
|
+
decoder_out_masks (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.num_queries, 200, 200)`):
|
|
318
|
+
Stacked masks (masks of each layer of the decoder).
|
|
319
|
+
"""
|
|
320
|
+
|
|
321
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
322
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
323
|
+
intermediate_logits: torch.FloatTensor | None = None
|
|
324
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
325
|
+
intermediate_predicted_corners: torch.FloatTensor | None = None
|
|
326
|
+
initial_reference_points: torch.FloatTensor | None = None
|
|
327
|
+
hidden_states: tuple[torch.FloatTensor] | None = None
|
|
328
|
+
attentions: tuple[torch.FloatTensor] | None = None
|
|
329
|
+
cross_attentions: tuple[torch.FloatTensor] | None = None
|
|
330
|
+
|
|
331
|
+
decoder_out_order_logits: torch.FloatTensor | None = None
|
|
332
|
+
decoder_out_masks: torch.FloatTensor | None = None
|
|
333
|
+
|
|
334
|
+
|
|
335
|
+
@dataclass
|
|
336
|
+
@auto_docstring(
|
|
337
|
+
custom_intro="""
|
|
338
|
+
Base class for outputs of the PP-DocLayoutV3 model.
|
|
339
|
+
"""
|
|
340
|
+
)
|
|
341
|
+
class PPDocLayoutV3ModelOutput(ModelOutput):
|
|
342
|
+
r"""
|
|
343
|
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
344
|
+
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
|
345
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
|
346
|
+
Stacked intermediate hidden states (output of each layer of the decoder).
|
|
347
|
+
intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`):
|
|
348
|
+
Stacked intermediate logits (logits of each layer of the decoder).
|
|
349
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
350
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
351
|
+
intermediate_predicted_corners (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
352
|
+
Stacked intermediate predicted corners (predicted corners of each layer of the decoder).
|
|
353
|
+
initial_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
354
|
+
Initial reference points used for the first decoder layer.
|
|
355
|
+
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
356
|
+
Initial reference points sent through the Transformer decoder.
|
|
357
|
+
enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
|
|
358
|
+
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
|
359
|
+
picked as region proposals in the encoder stage. Output of bounding box binary classification (i.e.
|
|
360
|
+
foreground and background).
|
|
361
|
+
enc_topk_bboxes (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`):
|
|
362
|
+
Logits of predicted bounding boxes coordinates in the encoder stage.
|
|
363
|
+
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
364
|
+
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
|
365
|
+
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
|
|
366
|
+
foreground and background).
|
|
367
|
+
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
368
|
+
Logits of predicted bounding boxes coordinates in the first stage.
|
|
369
|
+
denoising_meta_values (`dict`):
|
|
370
|
+
Extra dictionary for the denoising related values.
|
|
371
|
+
out_order_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.num_queries, config.num_queries)`):
|
|
372
|
+
Stacked order logits (order logits of each layer of the decoder).
|
|
373
|
+
out_masks (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, config.num_queries, 200, 200)`):
|
|
374
|
+
Stacked masks (masks of each layer of the decoder).
|
|
375
|
+
"""
|
|
376
|
+
|
|
377
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
378
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
379
|
+
intermediate_logits: torch.FloatTensor | None = None
|
|
380
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
381
|
+
intermediate_predicted_corners: torch.FloatTensor | None = None
|
|
382
|
+
initial_reference_points: torch.FloatTensor | None = None
|
|
383
|
+
decoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
384
|
+
decoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
385
|
+
cross_attentions: tuple[torch.FloatTensor] | None = None
|
|
386
|
+
encoder_last_hidden_state: torch.FloatTensor | None = None
|
|
387
|
+
encoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
388
|
+
encoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
389
|
+
init_reference_points: torch.FloatTensor | None = None
|
|
390
|
+
enc_topk_logits: torch.FloatTensor | None = None
|
|
391
|
+
enc_topk_bboxes: torch.FloatTensor | None = None
|
|
392
|
+
enc_outputs_class: torch.FloatTensor | None = None
|
|
393
|
+
enc_outputs_coord_logits: torch.FloatTensor | None = None
|
|
394
|
+
denoising_meta_values: dict | None = None
|
|
395
|
+
|
|
396
|
+
out_order_logits: torch.FloatTensor | None = None
|
|
397
|
+
out_masks: torch.FloatTensor | None = None
|
|
398
|
+
|
|
399
|
+
|
|
400
|
+
class PPDocLayoutV3MLPPredictionHead(nn.Module):
|
|
401
|
+
"""
|
|
402
|
+
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
|
|
403
|
+
height and width of a bounding box w.r.t. an image.
|
|
404
|
+
|
|
405
|
+
"""
|
|
406
|
+
|
|
407
|
+
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
|
408
|
+
super().__init__()
|
|
409
|
+
self.num_layers = num_layers
|
|
410
|
+
h = [hidden_dim] * (num_layers - 1)
|
|
411
|
+
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
|
412
|
+
|
|
413
|
+
def forward(self, x):
|
|
414
|
+
for i, layer in enumerate(self.layers):
|
|
415
|
+
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
416
|
+
return x
|
|
417
|
+
|
|
418
|
+
|
|
419
|
+
class PPDocLayoutV3ConvLayer(nn.Module):
|
|
420
|
+
def __init__(
|
|
421
|
+
self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, activation: str = "relu"
|
|
422
|
+
):
|
|
423
|
+
super().__init__()
|
|
424
|
+
self.convolution = nn.Conv2d(
|
|
425
|
+
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, bias=False
|
|
426
|
+
)
|
|
427
|
+
self.normalization = nn.BatchNorm2d(out_channels)
|
|
428
|
+
self.activation = ACT2FN[activation] if activation is not None else nn.Identity()
|
|
429
|
+
|
|
430
|
+
def forward(self, input: Tensor) -> Tensor:
|
|
431
|
+
hidden_state = self.convolution(input)
|
|
432
|
+
hidden_state = self.normalization(hidden_state)
|
|
433
|
+
hidden_state = self.activation(hidden_state)
|
|
434
|
+
return hidden_state
|
|
435
|
+
|
|
436
|
+
|
|
437
|
+
class PPDocLayoutV3ScaleHead(nn.Module):
|
|
438
|
+
def __init__(self, in_channels, feature_channels, fpn_stride, base_stride, align_corners=False):
|
|
439
|
+
super().__init__()
|
|
440
|
+
head_length = max(1, int(np.log2(fpn_stride) - np.log2(base_stride)))
|
|
441
|
+
self.layers = nn.ModuleList()
|
|
442
|
+
for k in range(head_length):
|
|
443
|
+
in_c = in_channels if k == 0 else feature_channels
|
|
444
|
+
self.layers.append(PPDocLayoutV3ConvLayer(in_c, feature_channels, 3, 1, "silu"))
|
|
445
|
+
if fpn_stride != base_stride:
|
|
446
|
+
self.layers.append(nn.Upsample(scale_factor=2, mode="bilinear", align_corners=align_corners))
|
|
447
|
+
|
|
448
|
+
def forward(self, x):
|
|
449
|
+
for layer in self.layers:
|
|
450
|
+
x = layer(x)
|
|
451
|
+
return x
|
|
452
|
+
|
|
453
|
+
|
|
454
|
+
class PPDocLayoutV3MaskFeatFPN(nn.Module):
|
|
455
|
+
def __init__(
|
|
456
|
+
self,
|
|
457
|
+
in_channels=[256, 256, 256],
|
|
458
|
+
fpn_strides=[32, 16, 8],
|
|
459
|
+
feature_channels=256,
|
|
460
|
+
dropout_ratio=0.0,
|
|
461
|
+
out_channels=256,
|
|
462
|
+
align_corners=False,
|
|
463
|
+
):
|
|
464
|
+
super().__init__()
|
|
465
|
+
|
|
466
|
+
reorder_index = np.argsort(fpn_strides, axis=0).tolist()
|
|
467
|
+
in_channels = [in_channels[i] for i in reorder_index]
|
|
468
|
+
fpn_strides = [fpn_strides[i] for i in reorder_index]
|
|
469
|
+
|
|
470
|
+
self.reorder_index = reorder_index
|
|
471
|
+
self.fpn_strides = fpn_strides
|
|
472
|
+
self.dropout_ratio = dropout_ratio
|
|
473
|
+
self.align_corners = align_corners
|
|
474
|
+
if self.dropout_ratio > 0:
|
|
475
|
+
self.dropout = nn.Dropout2d(dropout_ratio)
|
|
476
|
+
|
|
477
|
+
self.scale_heads = nn.ModuleList()
|
|
478
|
+
for i in range(len(fpn_strides)):
|
|
479
|
+
self.scale_heads.append(
|
|
480
|
+
PPDocLayoutV3ScaleHead(
|
|
481
|
+
in_channels=in_channels[i],
|
|
482
|
+
feature_channels=feature_channels,
|
|
483
|
+
fpn_stride=fpn_strides[i],
|
|
484
|
+
base_stride=fpn_strides[0],
|
|
485
|
+
align_corners=align_corners,
|
|
486
|
+
)
|
|
487
|
+
)
|
|
488
|
+
self.output_conv = PPDocLayoutV3ConvLayer(feature_channels, out_channels, 3, 1, "silu")
|
|
489
|
+
|
|
490
|
+
def forward(self, inputs):
|
|
491
|
+
x = [inputs[i] for i in self.reorder_index]
|
|
492
|
+
|
|
493
|
+
output = self.scale_heads[0](x[0])
|
|
494
|
+
for i in range(1, len(self.fpn_strides)):
|
|
495
|
+
output = output + F.interpolate(
|
|
496
|
+
self.scale_heads[i](x[i]), size=output.shape[2:], mode="bilinear", align_corners=self.align_corners
|
|
497
|
+
)
|
|
498
|
+
|
|
499
|
+
if self.dropout_ratio > 0:
|
|
500
|
+
output = self.dropout(output)
|
|
501
|
+
output = self.output_conv(output)
|
|
502
|
+
return output
|
|
503
|
+
|
|
504
|
+
|
|
505
|
+
class PPDocLayoutV3EncoderMaskOutput(nn.Module):
|
|
506
|
+
def __init__(self, in_channels, num_prototypes):
|
|
507
|
+
super().__init__()
|
|
508
|
+
self.base_conv = PPDocLayoutV3ConvLayer(in_channels, in_channels, 3, 1, "silu")
|
|
509
|
+
self.conv = nn.Conv2d(in_channels, num_prototypes, kernel_size=1)
|
|
510
|
+
|
|
511
|
+
def forward(self, x):
|
|
512
|
+
x = self.base_conv(x)
|
|
513
|
+
x = self.conv(x)
|
|
514
|
+
return x
|
|
515
|
+
|
|
516
|
+
|
|
517
|
+
class PPDocLayoutV3MLP(nn.Module):
|
|
518
|
+
def __init__(
|
|
519
|
+
self, config: PPDocLayoutV3Config, hidden_size: int, intermediate_size: int, activation_function: str
|
|
520
|
+
):
|
|
521
|
+
super().__init__()
|
|
522
|
+
self.fc1 = nn.Linear(hidden_size, intermediate_size)
|
|
523
|
+
self.fc2 = nn.Linear(intermediate_size, hidden_size)
|
|
524
|
+
self.activation_fn = ACT2FN[activation_function]
|
|
525
|
+
self.activation_dropout = config.activation_dropout
|
|
526
|
+
self.dropout = config.dropout
|
|
527
|
+
|
|
528
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
529
|
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
530
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
|
531
|
+
hidden_states = self.fc2(hidden_states)
|
|
532
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
533
|
+
return hidden_states
|
|
534
|
+
|
|
535
|
+
|
|
536
|
+
def eager_attention_forward(
|
|
537
|
+
module: nn.Module,
|
|
538
|
+
query: torch.Tensor,
|
|
539
|
+
key: torch.Tensor,
|
|
540
|
+
value: torch.Tensor,
|
|
541
|
+
attention_mask: torch.Tensor | None,
|
|
542
|
+
scaling: float | None = None,
|
|
543
|
+
dropout: float = 0.0,
|
|
544
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
545
|
+
):
|
|
546
|
+
if scaling is None:
|
|
547
|
+
scaling = query.size(-1) ** -0.5
|
|
548
|
+
|
|
549
|
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
|
550
|
+
attn_weights = torch.matmul(query, key.transpose(2, 3)) * scaling
|
|
551
|
+
|
|
552
|
+
if attention_mask is not None:
|
|
553
|
+
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
|
|
554
|
+
attn_weights = attn_weights + attention_mask
|
|
555
|
+
|
|
556
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
|
557
|
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
558
|
+
|
|
559
|
+
attn_output = torch.matmul(attn_weights, value)
|
|
560
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
561
|
+
|
|
562
|
+
return attn_output, attn_weights
|
|
563
|
+
|
|
564
|
+
|
|
565
|
+
class PPDocLayoutV3SelfAttention(nn.Module):
|
|
566
|
+
"""
|
|
567
|
+
Multi-headed self-attention from 'Attention Is All You Need' paper.
|
|
568
|
+
|
|
569
|
+
In PP_DOCLAYOUT_V3, position embeddings are added to both queries and keys (but not values) in self-attention.
|
|
570
|
+
"""
|
|
571
|
+
|
|
572
|
+
def __init__(
|
|
573
|
+
self,
|
|
574
|
+
config: PPDocLayoutV3Config,
|
|
575
|
+
hidden_size: int,
|
|
576
|
+
num_attention_heads: int,
|
|
577
|
+
dropout: float = 0.0,
|
|
578
|
+
bias: bool = True,
|
|
579
|
+
):
|
|
580
|
+
super().__init__()
|
|
581
|
+
self.config = config
|
|
582
|
+
self.head_dim = hidden_size // num_attention_heads
|
|
583
|
+
self.scaling = self.head_dim**-0.5
|
|
584
|
+
self.attention_dropout = dropout
|
|
585
|
+
self.is_causal = False
|
|
586
|
+
|
|
587
|
+
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
588
|
+
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
589
|
+
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
590
|
+
self.o_proj = nn.Linear(hidden_size, hidden_size, bias=bias)
|
|
591
|
+
|
|
592
|
+
def forward(
|
|
593
|
+
self,
|
|
594
|
+
hidden_states: torch.Tensor,
|
|
595
|
+
attention_mask: torch.Tensor | None = None,
|
|
596
|
+
position_embeddings: torch.Tensor | None = None,
|
|
597
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
598
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
599
|
+
"""
|
|
600
|
+
Position embeddings are added to both queries and keys (but not values).
|
|
601
|
+
"""
|
|
602
|
+
input_shape = hidden_states.shape[:-1]
|
|
603
|
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
604
|
+
|
|
605
|
+
query_key_input = hidden_states + position_embeddings if position_embeddings is not None else hidden_states
|
|
606
|
+
|
|
607
|
+
query_states = self.q_proj(query_key_input).view(hidden_shape).transpose(1, 2)
|
|
608
|
+
key_states = self.k_proj(query_key_input).view(hidden_shape).transpose(1, 2)
|
|
609
|
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
|
610
|
+
|
|
611
|
+
attention_interface: Callable = ALL_ATTENTION_FUNCTIONS.get_interface(
|
|
612
|
+
self.config._attn_implementation, eager_attention_forward
|
|
613
|
+
)
|
|
614
|
+
|
|
615
|
+
attn_output, attn_weights = attention_interface(
|
|
616
|
+
self,
|
|
617
|
+
query_states,
|
|
618
|
+
key_states,
|
|
619
|
+
value_states,
|
|
620
|
+
attention_mask,
|
|
621
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
622
|
+
scaling=self.scaling,
|
|
623
|
+
**kwargs,
|
|
624
|
+
)
|
|
625
|
+
|
|
626
|
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
627
|
+
attn_output = self.o_proj(attn_output)
|
|
628
|
+
return attn_output, attn_weights
|
|
629
|
+
|
|
630
|
+
|
|
631
|
+
class PPDocLayoutV3ConvNormLayer(nn.Module):
|
|
632
|
+
def __init__(self, config, in_channels, out_channels, kernel_size, stride, padding=None, activation=None):
|
|
633
|
+
super().__init__()
|
|
634
|
+
self.conv = nn.Conv2d(
|
|
635
|
+
in_channels,
|
|
636
|
+
out_channels,
|
|
637
|
+
kernel_size,
|
|
638
|
+
stride,
|
|
639
|
+
padding=(kernel_size - 1) // 2 if padding is None else padding,
|
|
640
|
+
bias=False,
|
|
641
|
+
)
|
|
642
|
+
self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps)
|
|
643
|
+
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
|
|
644
|
+
|
|
645
|
+
def forward(self, hidden_state):
|
|
646
|
+
hidden_state = self.conv(hidden_state)
|
|
647
|
+
hidden_state = self.norm(hidden_state)
|
|
648
|
+
hidden_state = self.activation(hidden_state)
|
|
649
|
+
return hidden_state
|
|
650
|
+
|
|
651
|
+
|
|
652
|
+
class PPDocLayoutV3EncoderLayer(nn.Module):
|
|
653
|
+
def __init__(self, config: PPDocLayoutV3Config):
|
|
654
|
+
super().__init__()
|
|
655
|
+
self.normalize_before = config.normalize_before
|
|
656
|
+
self.hidden_size = config.encoder_hidden_dim
|
|
657
|
+
|
|
658
|
+
# self-attention
|
|
659
|
+
self.self_attn = PPDocLayoutV3SelfAttention(
|
|
660
|
+
config=config,
|
|
661
|
+
hidden_size=self.hidden_size,
|
|
662
|
+
num_attention_heads=config.num_attention_heads,
|
|
663
|
+
dropout=config.dropout,
|
|
664
|
+
)
|
|
665
|
+
self.self_attn_layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
666
|
+
self.dropout = config.dropout
|
|
667
|
+
self.mlp = PPDocLayoutV3MLP(
|
|
668
|
+
config, self.hidden_size, config.encoder_ffn_dim, config.encoder_activation_function
|
|
669
|
+
)
|
|
670
|
+
self.final_layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
671
|
+
|
|
672
|
+
def forward(
|
|
673
|
+
self,
|
|
674
|
+
hidden_states: torch.Tensor,
|
|
675
|
+
attention_mask: torch.Tensor,
|
|
676
|
+
spatial_position_embeddings: torch.Tensor | None = None,
|
|
677
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
678
|
+
) -> torch.Tensor:
|
|
679
|
+
"""
|
|
680
|
+
Args:
|
|
681
|
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, hidden_size)`
|
|
682
|
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
|
683
|
+
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
|
684
|
+
values.
|
|
685
|
+
spatial_position_embeddings (`torch.FloatTensor`, *optional*):
|
|
686
|
+
Spatial position embeddings (2D positional encodings of image locations), to be added to both
|
|
687
|
+
the queries and keys in self-attention (but not to values).
|
|
688
|
+
"""
|
|
689
|
+
residual = hidden_states
|
|
690
|
+
if self.normalize_before:
|
|
691
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
692
|
+
|
|
693
|
+
hidden_states, _ = self.self_attn(
|
|
694
|
+
hidden_states=hidden_states,
|
|
695
|
+
attention_mask=attention_mask,
|
|
696
|
+
position_embeddings=spatial_position_embeddings,
|
|
697
|
+
**kwargs,
|
|
698
|
+
)
|
|
699
|
+
|
|
700
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
701
|
+
hidden_states = residual + hidden_states
|
|
702
|
+
if not self.normalize_before:
|
|
703
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
704
|
+
|
|
705
|
+
if self.normalize_before:
|
|
706
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
707
|
+
residual = hidden_states
|
|
708
|
+
|
|
709
|
+
hidden_states = self.mlp(hidden_states)
|
|
710
|
+
|
|
711
|
+
hidden_states = residual + hidden_states
|
|
712
|
+
if not self.normalize_before:
|
|
713
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
714
|
+
|
|
715
|
+
if self.training:
|
|
716
|
+
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
|
|
717
|
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
|
718
|
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
|
719
|
+
|
|
720
|
+
return hidden_states
|
|
721
|
+
|
|
722
|
+
|
|
723
|
+
class PPDocLayoutV3RepVggBlock(nn.Module):
|
|
724
|
+
"""
|
|
725
|
+
RepVGG architecture block introduced by the work "RepVGG: Making VGG-style ConvNets Great Again".
|
|
726
|
+
"""
|
|
727
|
+
|
|
728
|
+
def __init__(self, config: PPDocLayoutV3Config):
|
|
729
|
+
super().__init__()
|
|
730
|
+
|
|
731
|
+
activation = config.activation_function
|
|
732
|
+
hidden_channels = int(config.encoder_hidden_dim * config.hidden_expansion)
|
|
733
|
+
self.conv1 = PPDocLayoutV3ConvNormLayer(config, hidden_channels, hidden_channels, 3, 1, padding=1)
|
|
734
|
+
self.conv2 = PPDocLayoutV3ConvNormLayer(config, hidden_channels, hidden_channels, 1, 1, padding=0)
|
|
735
|
+
self.activation = nn.Identity() if activation is None else ACT2CLS[activation]()
|
|
736
|
+
|
|
737
|
+
def forward(self, x):
|
|
738
|
+
y = self.conv1(x) + self.conv2(x)
|
|
739
|
+
return self.activation(y)
|
|
740
|
+
|
|
741
|
+
|
|
742
|
+
class PPDocLayoutV3CSPRepLayer(nn.Module):
|
|
743
|
+
"""
|
|
744
|
+
Cross Stage Partial (CSP) network layer with RepVGG blocks.
|
|
745
|
+
"""
|
|
746
|
+
|
|
747
|
+
def __init__(self, config: PPDocLayoutV3Config):
|
|
748
|
+
super().__init__()
|
|
749
|
+
|
|
750
|
+
in_channels = config.encoder_hidden_dim * 2
|
|
751
|
+
out_channels = config.encoder_hidden_dim
|
|
752
|
+
num_blocks = 3
|
|
753
|
+
activation = config.activation_function
|
|
754
|
+
|
|
755
|
+
hidden_channels = int(out_channels * config.hidden_expansion)
|
|
756
|
+
self.conv1 = PPDocLayoutV3ConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
|
|
757
|
+
self.conv2 = PPDocLayoutV3ConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation)
|
|
758
|
+
self.bottlenecks = nn.Sequential(*[PPDocLayoutV3RepVggBlock(config) for _ in range(num_blocks)])
|
|
759
|
+
if hidden_channels != out_channels:
|
|
760
|
+
self.conv3 = PPDocLayoutV3ConvNormLayer(config, hidden_channels, out_channels, 1, 1, activation=activation)
|
|
761
|
+
else:
|
|
762
|
+
self.conv3 = nn.Identity()
|
|
763
|
+
|
|
764
|
+
def forward(self, hidden_state):
|
|
765
|
+
hidden_state_1 = self.conv1(hidden_state)
|
|
766
|
+
hidden_state_1 = self.bottlenecks(hidden_state_1)
|
|
767
|
+
hidden_state_2 = self.conv2(hidden_state)
|
|
768
|
+
return self.conv3(hidden_state_1 + hidden_state_2)
|
|
769
|
+
|
|
770
|
+
|
|
771
|
+
class PPDocLayoutV3SinePositionEmbedding(nn.Module):
|
|
772
|
+
"""
|
|
773
|
+
2D sinusoidal position embedding used in RT-DETR hybrid encoder.
|
|
774
|
+
"""
|
|
775
|
+
|
|
776
|
+
def __init__(self, embed_dim: int = 256, temperature: int = 10000):
|
|
777
|
+
super().__init__()
|
|
778
|
+
self.embed_dim = embed_dim
|
|
779
|
+
self.temperature = temperature
|
|
780
|
+
|
|
781
|
+
@compile_compatible_method_lru_cache(maxsize=32)
|
|
782
|
+
def forward(
|
|
783
|
+
self,
|
|
784
|
+
width: int,
|
|
785
|
+
height: int,
|
|
786
|
+
device: torch.device | str,
|
|
787
|
+
dtype: torch.dtype,
|
|
788
|
+
) -> torch.Tensor:
|
|
789
|
+
"""
|
|
790
|
+
Generate 2D sinusoidal position embeddings.
|
|
791
|
+
|
|
792
|
+
Returns:
|
|
793
|
+
Position embeddings of shape (1, height*width, embed_dim)
|
|
794
|
+
"""
|
|
795
|
+
grid_w = torch.arange(torch_int(width), device=device).to(dtype)
|
|
796
|
+
grid_h = torch.arange(torch_int(height), device=device).to(dtype)
|
|
797
|
+
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="xy")
|
|
798
|
+
if self.embed_dim % 4 != 0:
|
|
799
|
+
raise ValueError("Embed dimension must be divisible by 4 for 2D sin-cos position embedding")
|
|
800
|
+
pos_dim = self.embed_dim // 4
|
|
801
|
+
omega = torch.arange(pos_dim, device=device).to(dtype) / pos_dim
|
|
802
|
+
omega = 1.0 / (self.temperature**omega)
|
|
803
|
+
|
|
804
|
+
out_w = grid_w.flatten()[..., None] @ omega[None]
|
|
805
|
+
out_h = grid_h.flatten()[..., None] @ omega[None]
|
|
806
|
+
|
|
807
|
+
return torch.concat([out_h.sin(), out_h.cos(), out_w.sin(), out_w.cos()], dim=1)[None, :, :]
|
|
808
|
+
|
|
809
|
+
|
|
810
|
+
class PPDocLayoutV3AIFILayer(nn.Module):
|
|
811
|
+
"""
|
|
812
|
+
AIFI (Attention-based Intra-scale Feature Interaction) layer used in RT-DETR hybrid encoder.
|
|
813
|
+
"""
|
|
814
|
+
|
|
815
|
+
def __init__(self, config: PPDocLayoutV3Config):
|
|
816
|
+
super().__init__()
|
|
817
|
+
self.config = config
|
|
818
|
+
self.encoder_hidden_dim = config.encoder_hidden_dim
|
|
819
|
+
self.eval_size = config.eval_size
|
|
820
|
+
|
|
821
|
+
self.position_embedding = PPDocLayoutV3SinePositionEmbedding(
|
|
822
|
+
embed_dim=self.encoder_hidden_dim,
|
|
823
|
+
temperature=config.positional_encoding_temperature,
|
|
824
|
+
)
|
|
825
|
+
self.layers = nn.ModuleList([PPDocLayoutV3EncoderLayer(config) for _ in range(config.encoder_layers)])
|
|
826
|
+
|
|
827
|
+
def forward(
|
|
828
|
+
self,
|
|
829
|
+
hidden_states: torch.Tensor,
|
|
830
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
831
|
+
) -> torch.Tensor:
|
|
832
|
+
"""
|
|
833
|
+
Args:
|
|
834
|
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, channels, height, width)`):
|
|
835
|
+
Feature map to process.
|
|
836
|
+
"""
|
|
837
|
+
batch_size = hidden_states.shape[0]
|
|
838
|
+
height, width = hidden_states.shape[2:]
|
|
839
|
+
|
|
840
|
+
hidden_states = hidden_states.flatten(2).permute(0, 2, 1)
|
|
841
|
+
|
|
842
|
+
if self.training or self.eval_size is None:
|
|
843
|
+
pos_embed = self.position_embedding(
|
|
844
|
+
width=width,
|
|
845
|
+
height=height,
|
|
846
|
+
device=hidden_states.device,
|
|
847
|
+
dtype=hidden_states.dtype,
|
|
848
|
+
)
|
|
849
|
+
else:
|
|
850
|
+
pos_embed = None
|
|
851
|
+
|
|
852
|
+
for layer in self.layers:
|
|
853
|
+
hidden_states = layer(
|
|
854
|
+
hidden_states,
|
|
855
|
+
attention_mask=None,
|
|
856
|
+
spatial_position_embeddings=pos_embed,
|
|
857
|
+
**kwargs,
|
|
858
|
+
)
|
|
859
|
+
|
|
860
|
+
hidden_states = (
|
|
861
|
+
hidden_states.permute(0, 2, 1).reshape(batch_size, self.encoder_hidden_dim, height, width).contiguous()
|
|
862
|
+
)
|
|
863
|
+
|
|
864
|
+
return hidden_states
|
|
865
|
+
|
|
866
|
+
|
|
867
|
+
class PPDocLayoutV3HybridEncoder(PPDocLayoutV3PreTrainedModel):
|
|
868
|
+
"""
|
|
869
|
+
Main difference to `RTDetrHybridEncoder`:
|
|
870
|
+
1. Mask Feature Head: Added `PPDocLayoutV3MaskFeatFPN` module (`self.mask_feature_head`) for document - specific mask feature generation.
|
|
871
|
+
2. Extra Conv Layers: Introduced `self.encoder_mask_lateral` and `self.encoder_mask_output` for mask feature processing and output.
|
|
872
|
+
"""
|
|
873
|
+
|
|
874
|
+
_can_record_outputs = {
|
|
875
|
+
"hidden_states": PPDocLayoutV3AIFILayer,
|
|
876
|
+
"attentions": PPDocLayoutV3SelfAttention,
|
|
877
|
+
}
|
|
878
|
+
|
|
879
|
+
def __init__(self, config: PPDocLayoutV3Config):
|
|
880
|
+
super().__init__(config)
|
|
881
|
+
self.config = config
|
|
882
|
+
self.in_channels = config.encoder_in_channels
|
|
883
|
+
self.feat_strides = config.feat_strides
|
|
884
|
+
self.encoder_hidden_dim = config.encoder_hidden_dim
|
|
885
|
+
self.encode_proj_layers = config.encode_proj_layers
|
|
886
|
+
self.positional_encoding_temperature = config.positional_encoding_temperature
|
|
887
|
+
self.eval_size = config.eval_size
|
|
888
|
+
self.out_channels = [self.encoder_hidden_dim for _ in self.in_channels]
|
|
889
|
+
self.out_strides = self.feat_strides
|
|
890
|
+
self.num_fpn_stages = len(self.in_channels) - 1
|
|
891
|
+
self.num_pan_stages = len(self.in_channels) - 1
|
|
892
|
+
|
|
893
|
+
# AIFI (Attention-based Intra-scale Feature Interaction) layers
|
|
894
|
+
self.aifi = nn.ModuleList([PPDocLayoutV3AIFILayer(config) for _ in range(len(self.encode_proj_layers))])
|
|
895
|
+
|
|
896
|
+
# top-down FPN
|
|
897
|
+
self.lateral_convs = nn.ModuleList()
|
|
898
|
+
self.fpn_blocks = nn.ModuleList()
|
|
899
|
+
for _ in range(self.num_fpn_stages):
|
|
900
|
+
lateral_conv = PPDocLayoutV3ConvNormLayer(
|
|
901
|
+
config,
|
|
902
|
+
in_channels=self.encoder_hidden_dim,
|
|
903
|
+
out_channels=self.encoder_hidden_dim,
|
|
904
|
+
kernel_size=1,
|
|
905
|
+
stride=1,
|
|
906
|
+
activation=config.activation_function,
|
|
907
|
+
)
|
|
908
|
+
fpn_block = PPDocLayoutV3CSPRepLayer(config)
|
|
909
|
+
self.lateral_convs.append(lateral_conv)
|
|
910
|
+
self.fpn_blocks.append(fpn_block)
|
|
911
|
+
|
|
912
|
+
# bottom-up PAN
|
|
913
|
+
self.downsample_convs = nn.ModuleList()
|
|
914
|
+
self.pan_blocks = nn.ModuleList()
|
|
915
|
+
for _ in range(self.num_pan_stages):
|
|
916
|
+
downsample_conv = PPDocLayoutV3ConvNormLayer(
|
|
917
|
+
config,
|
|
918
|
+
in_channels=self.encoder_hidden_dim,
|
|
919
|
+
out_channels=self.encoder_hidden_dim,
|
|
920
|
+
kernel_size=3,
|
|
921
|
+
stride=2,
|
|
922
|
+
activation=config.activation_function,
|
|
923
|
+
)
|
|
924
|
+
pan_block = PPDocLayoutV3CSPRepLayer(config)
|
|
925
|
+
self.downsample_convs.append(downsample_conv)
|
|
926
|
+
self.pan_blocks.append(pan_block)
|
|
927
|
+
|
|
928
|
+
feat_strides = config.feat_strides
|
|
929
|
+
mask_feature_channels = config.mask_feature_channels
|
|
930
|
+
self.mask_feature_head = PPDocLayoutV3MaskFeatFPN(
|
|
931
|
+
[self.encoder_hidden_dim] * len(feat_strides),
|
|
932
|
+
feat_strides,
|
|
933
|
+
feature_channels=mask_feature_channels[0],
|
|
934
|
+
out_channels=mask_feature_channels[1],
|
|
935
|
+
)
|
|
936
|
+
self.encoder_mask_lateral = PPDocLayoutV3ConvLayer(config.x4_feat_dim, mask_feature_channels[1], 3, 1, "silu")
|
|
937
|
+
self.encoder_mask_output = PPDocLayoutV3EncoderMaskOutput(
|
|
938
|
+
in_channels=mask_feature_channels[1], num_prototypes=config.num_prototypes
|
|
939
|
+
)
|
|
940
|
+
|
|
941
|
+
self.post_init()
|
|
942
|
+
|
|
943
|
+
@check_model_inputs(tie_last_hidden_states=False)
|
|
944
|
+
def forward(
|
|
945
|
+
self,
|
|
946
|
+
inputs_embeds=None,
|
|
947
|
+
x4_feat=None,
|
|
948
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
949
|
+
) -> BaseModelOutput:
|
|
950
|
+
r"""
|
|
951
|
+
Args:
|
|
952
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
|
953
|
+
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
|
|
954
|
+
"""
|
|
955
|
+
feature_maps = inputs_embeds
|
|
956
|
+
|
|
957
|
+
# AIFI: Apply transformer encoder to specified feature levels
|
|
958
|
+
if self.config.encoder_layers > 0:
|
|
959
|
+
for i, enc_ind in enumerate(self.encode_proj_layers):
|
|
960
|
+
feature_maps[enc_ind] = self.aifi[i](feature_maps[enc_ind], **kwargs)
|
|
961
|
+
|
|
962
|
+
# top-down FPN
|
|
963
|
+
fpn_feature_maps = [feature_maps[-1]]
|
|
964
|
+
for idx, (lateral_conv, fpn_block) in enumerate(zip(self.lateral_convs, self.fpn_blocks)):
|
|
965
|
+
backbone_feature_map = feature_maps[self.num_fpn_stages - idx - 1]
|
|
966
|
+
top_fpn_feature_map = fpn_feature_maps[-1]
|
|
967
|
+
# apply lateral block
|
|
968
|
+
top_fpn_feature_map = lateral_conv(top_fpn_feature_map)
|
|
969
|
+
fpn_feature_maps[-1] = top_fpn_feature_map
|
|
970
|
+
# apply fpn block
|
|
971
|
+
top_fpn_feature_map = F.interpolate(top_fpn_feature_map, scale_factor=2.0, mode="nearest")
|
|
972
|
+
fused_feature_map = torch.concat([top_fpn_feature_map, backbone_feature_map], dim=1)
|
|
973
|
+
new_fpn_feature_map = fpn_block(fused_feature_map)
|
|
974
|
+
fpn_feature_maps.append(new_fpn_feature_map)
|
|
975
|
+
|
|
976
|
+
fpn_feature_maps.reverse()
|
|
977
|
+
|
|
978
|
+
# bottom-up PAN
|
|
979
|
+
pan_feature_maps = [fpn_feature_maps[0]]
|
|
980
|
+
for idx, (downsample_conv, pan_block) in enumerate(zip(self.downsample_convs, self.pan_blocks)):
|
|
981
|
+
top_pan_feature_map = pan_feature_maps[-1]
|
|
982
|
+
fpn_feature_map = fpn_feature_maps[idx + 1]
|
|
983
|
+
downsampled_feature_map = downsample_conv(top_pan_feature_map)
|
|
984
|
+
fused_feature_map = torch.concat([downsampled_feature_map, fpn_feature_map], dim=1)
|
|
985
|
+
new_pan_feature_map = pan_block(fused_feature_map)
|
|
986
|
+
pan_feature_maps.append(new_pan_feature_map)
|
|
987
|
+
|
|
988
|
+
mask_feat = self.mask_feature_head(pan_feature_maps)
|
|
989
|
+
mask_feat = F.interpolate(mask_feat, scale_factor=2, mode="bilinear", align_corners=False)
|
|
990
|
+
mask_feat += self.encoder_mask_lateral(x4_feat[0])
|
|
991
|
+
mask_feat = self.encoder_mask_output(mask_feat)
|
|
992
|
+
|
|
993
|
+
return PPDocLayoutV3HybridEncoderOutput(
|
|
994
|
+
last_hidden_state=pan_feature_maps,
|
|
995
|
+
mask_feat=mask_feat,
|
|
996
|
+
)
|
|
997
|
+
|
|
998
|
+
|
|
999
|
+
class PPDocLayoutV3DecoderLayer(nn.Module):
|
|
1000
|
+
def __init__(self, config: PPDocLayoutV3Config):
|
|
1001
|
+
super().__init__()
|
|
1002
|
+
self.hidden_size = config.d_model
|
|
1003
|
+
|
|
1004
|
+
# self-attention
|
|
1005
|
+
self.self_attn = PPDocLayoutV3SelfAttention(
|
|
1006
|
+
config=config,
|
|
1007
|
+
hidden_size=self.hidden_size,
|
|
1008
|
+
num_attention_heads=config.decoder_attention_heads,
|
|
1009
|
+
dropout=config.attention_dropout,
|
|
1010
|
+
)
|
|
1011
|
+
self.dropout = config.dropout
|
|
1012
|
+
|
|
1013
|
+
self.self_attn_layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
1014
|
+
# cross-attention
|
|
1015
|
+
self.encoder_attn = PPDocLayoutV3MultiscaleDeformableAttention(
|
|
1016
|
+
config,
|
|
1017
|
+
num_heads=config.decoder_attention_heads,
|
|
1018
|
+
n_points=config.decoder_n_points,
|
|
1019
|
+
)
|
|
1020
|
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
1021
|
+
# feedforward neural networks
|
|
1022
|
+
self.mlp = PPDocLayoutV3MLP(
|
|
1023
|
+
config, self.hidden_size, config.decoder_ffn_dim, config.decoder_activation_function
|
|
1024
|
+
)
|
|
1025
|
+
self.final_layer_norm = nn.LayerNorm(self.hidden_size, eps=config.layer_norm_eps)
|
|
1026
|
+
|
|
1027
|
+
def forward(
|
|
1028
|
+
self,
|
|
1029
|
+
hidden_states: torch.Tensor,
|
|
1030
|
+
object_queries_position_embeddings: torch.Tensor | None = None,
|
|
1031
|
+
reference_points=None,
|
|
1032
|
+
spatial_shapes=None,
|
|
1033
|
+
spatial_shapes_list=None,
|
|
1034
|
+
level_start_index=None,
|
|
1035
|
+
encoder_hidden_states: torch.Tensor | None = None,
|
|
1036
|
+
encoder_attention_mask: torch.Tensor | None = None,
|
|
1037
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1038
|
+
) -> torch.Tensor:
|
|
1039
|
+
"""
|
|
1040
|
+
Args:
|
|
1041
|
+
hidden_states (`torch.FloatTensor`):
|
|
1042
|
+
Input to the layer of shape `(batch, seq_len, hidden_size)`.
|
|
1043
|
+
object_queries_position_embeddings (`torch.FloatTensor`, *optional*):
|
|
1044
|
+
Position embeddings for the object query slots. These are added to both queries and keys
|
|
1045
|
+
in the self-attention layer (not values).
|
|
1046
|
+
reference_points (`torch.FloatTensor`, *optional*):
|
|
1047
|
+
Reference points.
|
|
1048
|
+
spatial_shapes (`torch.LongTensor`, *optional*):
|
|
1049
|
+
Spatial shapes.
|
|
1050
|
+
level_start_index (`torch.LongTensor`, *optional*):
|
|
1051
|
+
Level start index.
|
|
1052
|
+
encoder_hidden_states (`torch.FloatTensor`):
|
|
1053
|
+
cross attention input to the layer of shape `(batch, seq_len, hidden_size)`
|
|
1054
|
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
|
1055
|
+
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
|
|
1056
|
+
values.
|
|
1057
|
+
"""
|
|
1058
|
+
residual = hidden_states
|
|
1059
|
+
|
|
1060
|
+
# Self Attention
|
|
1061
|
+
hidden_states, _ = self.self_attn(
|
|
1062
|
+
hidden_states=hidden_states,
|
|
1063
|
+
attention_mask=encoder_attention_mask,
|
|
1064
|
+
position_embeddings=object_queries_position_embeddings,
|
|
1065
|
+
**kwargs,
|
|
1066
|
+
)
|
|
1067
|
+
|
|
1068
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
1069
|
+
hidden_states = residual + hidden_states
|
|
1070
|
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
1071
|
+
|
|
1072
|
+
residual = hidden_states
|
|
1073
|
+
|
|
1074
|
+
# Cross-Attention
|
|
1075
|
+
hidden_states, _ = self.encoder_attn(
|
|
1076
|
+
hidden_states=hidden_states,
|
|
1077
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
1078
|
+
position_embeddings=object_queries_position_embeddings,
|
|
1079
|
+
reference_points=reference_points,
|
|
1080
|
+
spatial_shapes=spatial_shapes,
|
|
1081
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
1082
|
+
level_start_index=level_start_index,
|
|
1083
|
+
**kwargs,
|
|
1084
|
+
)
|
|
1085
|
+
|
|
1086
|
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
|
1087
|
+
hidden_states = residual + hidden_states
|
|
1088
|
+
|
|
1089
|
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
|
1090
|
+
|
|
1091
|
+
# Fully Connected
|
|
1092
|
+
residual = hidden_states
|
|
1093
|
+
hidden_states = self.mlp(hidden_states)
|
|
1094
|
+
hidden_states = residual + hidden_states
|
|
1095
|
+
hidden_states = self.final_layer_norm(hidden_states)
|
|
1096
|
+
|
|
1097
|
+
return hidden_states
|
|
1098
|
+
|
|
1099
|
+
|
|
1100
|
+
def inverse_sigmoid(x, eps=1e-5):
|
|
1101
|
+
x = x.clamp(min=0, max=1)
|
|
1102
|
+
x1 = x.clamp(min=eps)
|
|
1103
|
+
x2 = (1 - x).clamp(min=eps)
|
|
1104
|
+
return torch.log(x1 / x2)
|
|
1105
|
+
|
|
1106
|
+
|
|
1107
|
+
class PPDocLayoutV3Decoder(PPDocLayoutV3PreTrainedModel):
|
|
1108
|
+
"""
|
|
1109
|
+
Main difference to `RTDetrDecoder`:
|
|
1110
|
+
A new mask generation process is introduced at each decoder layer.
|
|
1111
|
+
"""
|
|
1112
|
+
|
|
1113
|
+
_can_record_outputs = {
|
|
1114
|
+
"hidden_states": PPDocLayoutV3DecoderLayer,
|
|
1115
|
+
"attentions": PPDocLayoutV3SelfAttention,
|
|
1116
|
+
"cross_attentions": PPDocLayoutV3MultiscaleDeformableAttention,
|
|
1117
|
+
}
|
|
1118
|
+
|
|
1119
|
+
def __init__(self, config: PPDocLayoutV3Config):
|
|
1120
|
+
super().__init__(config)
|
|
1121
|
+
|
|
1122
|
+
self.dropout = config.dropout
|
|
1123
|
+
self.layers = nn.ModuleList([PPDocLayoutV3DecoderLayer(config) for _ in range(config.decoder_layers)])
|
|
1124
|
+
self.query_pos_head = PPDocLayoutV3MLPPredictionHead(4, 2 * config.d_model, config.d_model, num_layers=2)
|
|
1125
|
+
|
|
1126
|
+
# hack implementation for iterative bounding box refinement and two-stage Deformable DETR
|
|
1127
|
+
self.bbox_embed = None
|
|
1128
|
+
self.class_embed = None
|
|
1129
|
+
|
|
1130
|
+
self.num_queries = config.num_queries
|
|
1131
|
+
|
|
1132
|
+
# Initialize weights and apply final processing
|
|
1133
|
+
self.post_init()
|
|
1134
|
+
|
|
1135
|
+
@check_model_inputs()
|
|
1136
|
+
def forward(
|
|
1137
|
+
self,
|
|
1138
|
+
inputs_embeds=None,
|
|
1139
|
+
encoder_hidden_states=None,
|
|
1140
|
+
encoder_attention_mask=None,
|
|
1141
|
+
reference_points=None,
|
|
1142
|
+
spatial_shapes=None,
|
|
1143
|
+
spatial_shapes_list=None,
|
|
1144
|
+
level_start_index=None,
|
|
1145
|
+
order_head=None,
|
|
1146
|
+
global_pointer=None,
|
|
1147
|
+
mask_query_head=None,
|
|
1148
|
+
norm=None,
|
|
1149
|
+
mask_feat=None,
|
|
1150
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1151
|
+
):
|
|
1152
|
+
r"""
|
|
1153
|
+
Args:
|
|
1154
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
1155
|
+
The query embeddings that are passed into the decoder.
|
|
1156
|
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
1157
|
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
|
1158
|
+
of the decoder.
|
|
1159
|
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1160
|
+
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
|
|
1161
|
+
in `[0, 1]`:
|
|
1162
|
+
- 1 for pixels that are real (i.e. **not masked**),
|
|
1163
|
+
- 0 for pixels that are padding (i.e. **masked**).
|
|
1164
|
+
reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*):
|
|
1165
|
+
Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area.
|
|
1166
|
+
spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`):
|
|
1167
|
+
Spatial shapes of the feature maps.
|
|
1168
|
+
level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*):
|
|
1169
|
+
Indexes for the start of each feature level. In range `[0, sequence_length]`.
|
|
1170
|
+
"""
|
|
1171
|
+
if inputs_embeds is not None:
|
|
1172
|
+
hidden_states = inputs_embeds
|
|
1173
|
+
|
|
1174
|
+
# decoder layers
|
|
1175
|
+
intermediate = ()
|
|
1176
|
+
intermediate_reference_points = ()
|
|
1177
|
+
intermediate_logits = ()
|
|
1178
|
+
decoder_out_order_logits = ()
|
|
1179
|
+
decoder_out_masks = ()
|
|
1180
|
+
|
|
1181
|
+
reference_points = F.sigmoid(reference_points)
|
|
1182
|
+
|
|
1183
|
+
# https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/rtdetr_decoder.py#L252
|
|
1184
|
+
for idx, decoder_layer in enumerate(self.layers):
|
|
1185
|
+
reference_points_input = reference_points.unsqueeze(2)
|
|
1186
|
+
object_queries_position_embeddings = self.query_pos_head(reference_points)
|
|
1187
|
+
|
|
1188
|
+
hidden_states = decoder_layer(
|
|
1189
|
+
hidden_states,
|
|
1190
|
+
object_queries_position_embeddings=object_queries_position_embeddings,
|
|
1191
|
+
encoder_hidden_states=encoder_hidden_states,
|
|
1192
|
+
reference_points=reference_points_input,
|
|
1193
|
+
spatial_shapes=spatial_shapes,
|
|
1194
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
1195
|
+
level_start_index=level_start_index,
|
|
1196
|
+
encoder_attention_mask=encoder_attention_mask,
|
|
1197
|
+
**kwargs,
|
|
1198
|
+
)
|
|
1199
|
+
|
|
1200
|
+
# hack implementation for iterative bounding box refinement
|
|
1201
|
+
if self.bbox_embed is not None:
|
|
1202
|
+
predicted_corners = self.bbox_embed(hidden_states)
|
|
1203
|
+
new_reference_points = F.sigmoid(predicted_corners + inverse_sigmoid(reference_points))
|
|
1204
|
+
reference_points = new_reference_points.detach()
|
|
1205
|
+
|
|
1206
|
+
intermediate += (hidden_states,)
|
|
1207
|
+
intermediate_reference_points += (
|
|
1208
|
+
(new_reference_points,) if self.bbox_embed is not None else (reference_points,)
|
|
1209
|
+
)
|
|
1210
|
+
|
|
1211
|
+
# get_pred_class_order_and_mask
|
|
1212
|
+
out_query = norm(hidden_states)
|
|
1213
|
+
mask_query_embed = mask_query_head(out_query)
|
|
1214
|
+
batch_size, mask_dim, _ = mask_query_embed.shape
|
|
1215
|
+
_, _, mask_h, mask_w = mask_feat.shape
|
|
1216
|
+
out_mask = torch.bmm(mask_query_embed, mask_feat.flatten(start_dim=2)).reshape(
|
|
1217
|
+
batch_size, mask_dim, mask_h, mask_w
|
|
1218
|
+
)
|
|
1219
|
+
decoder_out_masks += (out_mask,)
|
|
1220
|
+
|
|
1221
|
+
if self.class_embed is not None:
|
|
1222
|
+
logits = self.class_embed(out_query)
|
|
1223
|
+
intermediate_logits += (logits,)
|
|
1224
|
+
|
|
1225
|
+
if order_head is not None and global_pointer is not None:
|
|
1226
|
+
valid_query = out_query[:, -self.num_queries :] if self.num_queries is not None else out_query
|
|
1227
|
+
order_logits = global_pointer(order_head[idx](valid_query))
|
|
1228
|
+
decoder_out_order_logits += (order_logits,)
|
|
1229
|
+
|
|
1230
|
+
# Keep batch_size as first dimension
|
|
1231
|
+
intermediate = torch.stack(intermediate, dim=1)
|
|
1232
|
+
intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1)
|
|
1233
|
+
if self.class_embed is not None:
|
|
1234
|
+
intermediate_logits = torch.stack(intermediate_logits, dim=1)
|
|
1235
|
+
if order_head is not None and global_pointer is not None:
|
|
1236
|
+
decoder_out_order_logits = torch.stack(decoder_out_order_logits, dim=1)
|
|
1237
|
+
decoder_out_masks = torch.stack(decoder_out_masks, dim=1)
|
|
1238
|
+
|
|
1239
|
+
return PPDocLayoutV3DecoderOutput(
|
|
1240
|
+
last_hidden_state=hidden_states,
|
|
1241
|
+
intermediate_hidden_states=intermediate,
|
|
1242
|
+
intermediate_logits=intermediate_logits,
|
|
1243
|
+
intermediate_reference_points=intermediate_reference_points,
|
|
1244
|
+
decoder_out_order_logits=decoder_out_order_logits,
|
|
1245
|
+
decoder_out_masks=decoder_out_masks,
|
|
1246
|
+
)
|
|
1247
|
+
|
|
1248
|
+
|
|
1249
|
+
class PPDocLayoutV3FrozenBatchNorm2d(nn.Module):
|
|
1250
|
+
"""
|
|
1251
|
+
BatchNorm2d where the batch statistics and the affine parameters are fixed.
|
|
1252
|
+
|
|
1253
|
+
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
|
|
1254
|
+
torchvision.models.resnet[18,34,50,101] produce nans.
|
|
1255
|
+
"""
|
|
1256
|
+
|
|
1257
|
+
def __init__(self, n):
|
|
1258
|
+
super().__init__()
|
|
1259
|
+
self.register_buffer("weight", torch.ones(n))
|
|
1260
|
+
self.register_buffer("bias", torch.zeros(n))
|
|
1261
|
+
self.register_buffer("running_mean", torch.zeros(n))
|
|
1262
|
+
self.register_buffer("running_var", torch.ones(n))
|
|
1263
|
+
|
|
1264
|
+
def _load_from_state_dict(
|
|
1265
|
+
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
1266
|
+
):
|
|
1267
|
+
num_batches_tracked_key = prefix + "num_batches_tracked"
|
|
1268
|
+
if num_batches_tracked_key in state_dict:
|
|
1269
|
+
del state_dict[num_batches_tracked_key]
|
|
1270
|
+
|
|
1271
|
+
super()._load_from_state_dict(
|
|
1272
|
+
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
|
|
1273
|
+
)
|
|
1274
|
+
|
|
1275
|
+
def forward(self, x):
|
|
1276
|
+
# move reshapes to the beginning
|
|
1277
|
+
# to make it user-friendly
|
|
1278
|
+
weight = self.weight.reshape(1, -1, 1, 1)
|
|
1279
|
+
bias = self.bias.reshape(1, -1, 1, 1)
|
|
1280
|
+
running_var = self.running_var.reshape(1, -1, 1, 1)
|
|
1281
|
+
running_mean = self.running_mean.reshape(1, -1, 1, 1)
|
|
1282
|
+
epsilon = 1e-5
|
|
1283
|
+
scale = weight * (running_var + epsilon).rsqrt()
|
|
1284
|
+
bias = bias - running_mean * scale
|
|
1285
|
+
return x * scale + bias
|
|
1286
|
+
|
|
1287
|
+
|
|
1288
|
+
def replace_batch_norm(model):
|
|
1289
|
+
r"""
|
|
1290
|
+
Recursively replace all `torch.nn.BatchNorm2d` with `PPDocLayoutV3FrozenBatchNorm2d`.
|
|
1291
|
+
|
|
1292
|
+
Args:
|
|
1293
|
+
model (torch.nn.Module):
|
|
1294
|
+
input model
|
|
1295
|
+
"""
|
|
1296
|
+
for name, module in model.named_children():
|
|
1297
|
+
if isinstance(module, nn.BatchNorm2d):
|
|
1298
|
+
new_module = PPDocLayoutV3FrozenBatchNorm2d(module.num_features)
|
|
1299
|
+
|
|
1300
|
+
if module.weight.device != torch.device("meta"):
|
|
1301
|
+
new_module.weight.copy_(module.weight)
|
|
1302
|
+
new_module.bias.copy_(module.bias)
|
|
1303
|
+
new_module.running_mean.copy_(module.running_mean)
|
|
1304
|
+
new_module.running_var.copy_(module.running_var)
|
|
1305
|
+
|
|
1306
|
+
model._modules[name] = new_module
|
|
1307
|
+
|
|
1308
|
+
if len(list(module.children())) > 0:
|
|
1309
|
+
replace_batch_norm(module)
|
|
1310
|
+
|
|
1311
|
+
|
|
1312
|
+
class PPDocLayoutV3ConvEncoder(nn.Module):
|
|
1313
|
+
"""
|
|
1314
|
+
Convolutional backbone using the modeling_pp_doclayout_v3_resnet.py.
|
|
1315
|
+
|
|
1316
|
+
nn.BatchNorm2d layers are replaced by PPDocLayoutV3FrozenBatchNorm2d as defined above.
|
|
1317
|
+
https://github.com/lyuwenyu/RT-DETR/blob/main/PPDocLayoutV3_pytorch/src/nn/backbone/presnet.py#L142
|
|
1318
|
+
"""
|
|
1319
|
+
|
|
1320
|
+
def __init__(self, config):
|
|
1321
|
+
super().__init__()
|
|
1322
|
+
|
|
1323
|
+
backbone = load_backbone(config)
|
|
1324
|
+
|
|
1325
|
+
if config.freeze_backbone_batch_norms:
|
|
1326
|
+
# replace batch norm by frozen batch norm
|
|
1327
|
+
with torch.no_grad():
|
|
1328
|
+
replace_batch_norm(backbone)
|
|
1329
|
+
self.model = backbone
|
|
1330
|
+
self.intermediate_channel_sizes = self.model.channels
|
|
1331
|
+
|
|
1332
|
+
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
|
|
1333
|
+
# send pixel_values through the model to get list of feature maps
|
|
1334
|
+
features = self.model(pixel_values).feature_maps
|
|
1335
|
+
|
|
1336
|
+
out = []
|
|
1337
|
+
for feature_map in features:
|
|
1338
|
+
# downsample pixel_mask to match shape of corresponding feature_map
|
|
1339
|
+
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
|
|
1340
|
+
out.append((feature_map, mask))
|
|
1341
|
+
return out
|
|
1342
|
+
|
|
1343
|
+
|
|
1344
|
+
def get_contrastive_denoising_training_group(
|
|
1345
|
+
targets,
|
|
1346
|
+
num_classes,
|
|
1347
|
+
num_queries,
|
|
1348
|
+
class_embed,
|
|
1349
|
+
num_denoising_queries=100,
|
|
1350
|
+
label_noise_ratio=0.5,
|
|
1351
|
+
box_noise_scale=1.0,
|
|
1352
|
+
):
|
|
1353
|
+
"""
|
|
1354
|
+
Creates a contrastive denoising training group using ground-truth samples. It adds noise to labels and boxes.
|
|
1355
|
+
|
|
1356
|
+
Args:
|
|
1357
|
+
targets (`list[dict]`):
|
|
1358
|
+
The target objects, each containing 'class_labels' and 'boxes' for objects in an image.
|
|
1359
|
+
num_classes (`int`):
|
|
1360
|
+
Total number of classes in the dataset.
|
|
1361
|
+
num_queries (`int`):
|
|
1362
|
+
Number of query slots in the transformer.
|
|
1363
|
+
class_embed (`callable`):
|
|
1364
|
+
A function or a model layer to embed class labels.
|
|
1365
|
+
num_denoising_queries (`int`, *optional*, defaults to 100):
|
|
1366
|
+
Number of denoising queries.
|
|
1367
|
+
label_noise_ratio (`float`, *optional*, defaults to 0.5):
|
|
1368
|
+
Ratio of noise applied to labels.
|
|
1369
|
+
box_noise_scale (`float`, *optional*, defaults to 1.0):
|
|
1370
|
+
Scale of noise applied to bounding boxes.
|
|
1371
|
+
Returns:
|
|
1372
|
+
`tuple` comprising various elements:
|
|
1373
|
+
- **input_query_class** (`torch.FloatTensor`) --
|
|
1374
|
+
Class queries with applied label noise.
|
|
1375
|
+
- **input_query_bbox** (`torch.FloatTensor`) --
|
|
1376
|
+
Bounding box queries with applied box noise.
|
|
1377
|
+
- **attn_mask** (`torch.FloatTensor`) --
|
|
1378
|
+
Attention mask for separating denoising and reconstruction queries.
|
|
1379
|
+
- **denoising_meta_values** (`dict`) --
|
|
1380
|
+
Metadata including denoising positive indices, number of groups, and split sizes.
|
|
1381
|
+
"""
|
|
1382
|
+
|
|
1383
|
+
if num_denoising_queries <= 0:
|
|
1384
|
+
return None, None, None, None
|
|
1385
|
+
|
|
1386
|
+
num_ground_truths = [len(t["class_labels"]) for t in targets]
|
|
1387
|
+
device = targets[0]["class_labels"].device
|
|
1388
|
+
|
|
1389
|
+
max_gt_num = max(num_ground_truths)
|
|
1390
|
+
if max_gt_num == 0:
|
|
1391
|
+
return None, None, None, None
|
|
1392
|
+
|
|
1393
|
+
num_groups_denoising_queries = num_denoising_queries // max_gt_num
|
|
1394
|
+
num_groups_denoising_queries = 1 if num_groups_denoising_queries == 0 else num_groups_denoising_queries
|
|
1395
|
+
# pad gt to max_num of a batch
|
|
1396
|
+
batch_size = len(num_ground_truths)
|
|
1397
|
+
|
|
1398
|
+
input_query_class = torch.full([batch_size, max_gt_num], num_classes, dtype=torch.int32, device=device)
|
|
1399
|
+
input_query_bbox = torch.zeros([batch_size, max_gt_num, 4], device=device)
|
|
1400
|
+
pad_gt_mask = torch.zeros([batch_size, max_gt_num], dtype=torch.bool, device=device)
|
|
1401
|
+
|
|
1402
|
+
for i in range(batch_size):
|
|
1403
|
+
num_gt = num_ground_truths[i]
|
|
1404
|
+
if num_gt > 0:
|
|
1405
|
+
input_query_class[i, :num_gt] = targets[i]["class_labels"]
|
|
1406
|
+
input_query_bbox[i, :num_gt] = targets[i]["boxes"]
|
|
1407
|
+
pad_gt_mask[i, :num_gt] = 1
|
|
1408
|
+
# each group has positive and negative queries.
|
|
1409
|
+
input_query_class = input_query_class.tile([1, 2 * num_groups_denoising_queries])
|
|
1410
|
+
input_query_bbox = input_query_bbox.tile([1, 2 * num_groups_denoising_queries, 1])
|
|
1411
|
+
pad_gt_mask = pad_gt_mask.tile([1, 2 * num_groups_denoising_queries])
|
|
1412
|
+
# positive and negative mask
|
|
1413
|
+
negative_gt_mask = torch.zeros([batch_size, max_gt_num * 2, 1], device=device)
|
|
1414
|
+
negative_gt_mask[:, max_gt_num:] = 1
|
|
1415
|
+
negative_gt_mask = negative_gt_mask.tile([1, num_groups_denoising_queries, 1])
|
|
1416
|
+
positive_gt_mask = 1 - negative_gt_mask
|
|
1417
|
+
# contrastive denoising training positive index
|
|
1418
|
+
positive_gt_mask = positive_gt_mask.squeeze(-1) * pad_gt_mask
|
|
1419
|
+
denoise_positive_idx = torch.nonzero(positive_gt_mask)[:, 1]
|
|
1420
|
+
denoise_positive_idx = torch.split(
|
|
1421
|
+
denoise_positive_idx, [n * num_groups_denoising_queries for n in num_ground_truths]
|
|
1422
|
+
)
|
|
1423
|
+
# total denoising queries
|
|
1424
|
+
num_denoising_queries = torch_int(max_gt_num * 2 * num_groups_denoising_queries)
|
|
1425
|
+
|
|
1426
|
+
if label_noise_ratio > 0:
|
|
1427
|
+
mask = torch.rand_like(input_query_class, dtype=torch.float) < (label_noise_ratio * 0.5)
|
|
1428
|
+
# randomly put a new one here
|
|
1429
|
+
new_label = torch.randint_like(mask, 0, num_classes, dtype=input_query_class.dtype)
|
|
1430
|
+
input_query_class = torch.where(mask & pad_gt_mask, new_label, input_query_class)
|
|
1431
|
+
|
|
1432
|
+
if box_noise_scale > 0:
|
|
1433
|
+
known_bbox = center_to_corners_format(input_query_bbox)
|
|
1434
|
+
diff = torch.tile(input_query_bbox[..., 2:] * 0.5, [1, 1, 2]) * box_noise_scale
|
|
1435
|
+
rand_sign = torch.randint_like(input_query_bbox, 0, 2) * 2.0 - 1.0
|
|
1436
|
+
rand_part = torch.rand_like(input_query_bbox)
|
|
1437
|
+
rand_part = (rand_part + 1.0) * negative_gt_mask + rand_part * (1 - negative_gt_mask)
|
|
1438
|
+
rand_part *= rand_sign
|
|
1439
|
+
known_bbox += rand_part * diff
|
|
1440
|
+
known_bbox.clip_(min=0.0, max=1.0)
|
|
1441
|
+
input_query_bbox = corners_to_center_format(known_bbox)
|
|
1442
|
+
input_query_bbox = inverse_sigmoid(input_query_bbox)
|
|
1443
|
+
|
|
1444
|
+
input_query_class = class_embed(input_query_class)
|
|
1445
|
+
|
|
1446
|
+
target_size = num_denoising_queries + num_queries
|
|
1447
|
+
attn_mask = torch.full([target_size, target_size], 0, dtype=torch.float, device=device)
|
|
1448
|
+
# match query cannot see the reconstruction
|
|
1449
|
+
attn_mask[num_denoising_queries:, :num_denoising_queries] = -torch.inf
|
|
1450
|
+
|
|
1451
|
+
# reconstructions cannot see each other
|
|
1452
|
+
for i in range(num_groups_denoising_queries):
|
|
1453
|
+
idx_block_start = max_gt_num * 2 * i
|
|
1454
|
+
idx_block_end = max_gt_num * 2 * (i + 1)
|
|
1455
|
+
attn_mask[idx_block_start:idx_block_end, :idx_block_start] = -torch.inf
|
|
1456
|
+
attn_mask[idx_block_start:idx_block_end, idx_block_end:num_denoising_queries] = -torch.inf
|
|
1457
|
+
|
|
1458
|
+
denoising_meta_values = {
|
|
1459
|
+
"dn_positive_idx": denoise_positive_idx,
|
|
1460
|
+
"dn_num_group": num_groups_denoising_queries,
|
|
1461
|
+
"dn_num_split": [num_denoising_queries, num_queries],
|
|
1462
|
+
}
|
|
1463
|
+
|
|
1464
|
+
return input_query_class, input_query_bbox, attn_mask, denoising_meta_values
|
|
1465
|
+
|
|
1466
|
+
|
|
1467
|
+
def mask_to_box_coordinate(mask, dtype):
|
|
1468
|
+
mask = mask.bool()
|
|
1469
|
+
|
|
1470
|
+
height, width = mask.shape[-2:]
|
|
1471
|
+
|
|
1472
|
+
y_coords, x_coords = torch.meshgrid(
|
|
1473
|
+
torch.arange(height, device=mask.device), torch.arange(width, device=mask.device), indexing="ij"
|
|
1474
|
+
)
|
|
1475
|
+
x_coords = x_coords.to(dtype)
|
|
1476
|
+
y_coords = y_coords.to(dtype)
|
|
1477
|
+
|
|
1478
|
+
x_coords_masked = x_coords * mask
|
|
1479
|
+
x_max = x_coords_masked.flatten(start_dim=-2).max(dim=-1).values + 1
|
|
1480
|
+
x_min = (
|
|
1481
|
+
torch.where(mask, x_coords_masked, torch.tensor(torch.finfo(dtype).max))
|
|
1482
|
+
.flatten(start_dim=-2)
|
|
1483
|
+
.min(dim=-1)
|
|
1484
|
+
.values
|
|
1485
|
+
)
|
|
1486
|
+
|
|
1487
|
+
y_coords_masked = y_coords * mask
|
|
1488
|
+
y_max = y_coords_masked.flatten(start_dim=-2).max(dim=-1).values + 1
|
|
1489
|
+
y_min = (
|
|
1490
|
+
torch.where(mask, y_coords_masked, torch.tensor(torch.finfo(dtype).max))
|
|
1491
|
+
.flatten(start_dim=-2)
|
|
1492
|
+
.min(dim=-1)
|
|
1493
|
+
.values
|
|
1494
|
+
)
|
|
1495
|
+
|
|
1496
|
+
unnormalized_bbox = torch.stack([x_min, y_min, x_max, y_max], dim=-1)
|
|
1497
|
+
|
|
1498
|
+
is_mask_non_empty = torch.any(mask, dim=(-2, -1)).unsqueeze(-1)
|
|
1499
|
+
unnormalized_bbox = unnormalized_bbox * is_mask_non_empty
|
|
1500
|
+
|
|
1501
|
+
norm_tensor = torch.tensor([width, height, width, height], device=mask.device, dtype=dtype)
|
|
1502
|
+
normalized_bbox_xyxy = unnormalized_bbox / norm_tensor
|
|
1503
|
+
|
|
1504
|
+
x_min_norm, y_min_norm, x_max_norm, y_max_norm = normalized_bbox_xyxy.unbind(dim=-1)
|
|
1505
|
+
|
|
1506
|
+
center_x = (x_min_norm + x_max_norm) / 2
|
|
1507
|
+
center_y = (y_min_norm + y_max_norm) / 2
|
|
1508
|
+
box_width = x_max_norm - x_min_norm
|
|
1509
|
+
box_height = y_max_norm - y_min_norm
|
|
1510
|
+
|
|
1511
|
+
return torch.stack([center_x, center_y, box_width, box_height], dim=-1)
|
|
1512
|
+
|
|
1513
|
+
|
|
1514
|
+
@auto_docstring(
|
|
1515
|
+
custom_intro="""
|
|
1516
|
+
PP-DocLayoutV3 Model (consisting of a backbone and encoder-decoder) outputting raw hidden states without any head on top.
|
|
1517
|
+
"""
|
|
1518
|
+
)
|
|
1519
|
+
class PPDocLayoutV3Model(PPDocLayoutV3PreTrainedModel):
|
|
1520
|
+
_tied_weights_keys = {
|
|
1521
|
+
"decoder.class_embed": "enc_score_head",
|
|
1522
|
+
"decoder.bbox_embed": "enc_bbox_head",
|
|
1523
|
+
}
|
|
1524
|
+
|
|
1525
|
+
def __init__(self, config: PPDocLayoutV3Config):
|
|
1526
|
+
super().__init__(config)
|
|
1527
|
+
|
|
1528
|
+
# Create backbone
|
|
1529
|
+
self.backbone = PPDocLayoutV3ConvEncoder(config)
|
|
1530
|
+
intermediate_channel_sizes = self.backbone.intermediate_channel_sizes
|
|
1531
|
+
|
|
1532
|
+
# Create encoder input projection layers
|
|
1533
|
+
# https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/PPDocLayoutV3_pytorch/src/zoo/PPDocLayoutV3/hybrid_encoder.py#L212
|
|
1534
|
+
num_backbone_outs = len(intermediate_channel_sizes)
|
|
1535
|
+
|
|
1536
|
+
encoder_input_proj_list = []
|
|
1537
|
+
for i in range(num_backbone_outs):
|
|
1538
|
+
in_channels = intermediate_channel_sizes[i]
|
|
1539
|
+
encoder_input_proj_list.append(
|
|
1540
|
+
nn.Sequential(
|
|
1541
|
+
nn.Conv2d(in_channels, config.encoder_hidden_dim, kernel_size=1, bias=False),
|
|
1542
|
+
nn.BatchNorm2d(config.encoder_hidden_dim),
|
|
1543
|
+
)
|
|
1544
|
+
)
|
|
1545
|
+
self.encoder_input_proj = nn.ModuleList(encoder_input_proj_list[1:])
|
|
1546
|
+
|
|
1547
|
+
# Create encoder
|
|
1548
|
+
self.encoder = PPDocLayoutV3HybridEncoder(config)
|
|
1549
|
+
|
|
1550
|
+
# denoising part
|
|
1551
|
+
if config.num_denoising > 0:
|
|
1552
|
+
self.denoising_class_embed = nn.Embedding(
|
|
1553
|
+
config.num_labels + 1, config.d_model, padding_idx=config.num_labels
|
|
1554
|
+
)
|
|
1555
|
+
|
|
1556
|
+
# decoder embedding
|
|
1557
|
+
if config.learn_initial_query:
|
|
1558
|
+
self.weight_embedding = nn.Embedding(config.num_queries, config.d_model)
|
|
1559
|
+
|
|
1560
|
+
# encoder head
|
|
1561
|
+
self.enc_output = nn.Sequential(
|
|
1562
|
+
nn.Linear(config.d_model, config.d_model),
|
|
1563
|
+
nn.LayerNorm(config.d_model, eps=config.layer_norm_eps),
|
|
1564
|
+
)
|
|
1565
|
+
self.enc_score_head = nn.Linear(config.d_model, config.num_labels)
|
|
1566
|
+
self.enc_bbox_head = PPDocLayoutV3MLPPredictionHead(config.d_model, config.d_model, 4, num_layers=3)
|
|
1567
|
+
|
|
1568
|
+
# init encoder output anchors and valid_mask
|
|
1569
|
+
if config.anchor_image_size:
|
|
1570
|
+
self.anchors, self.valid_mask = self.generate_anchors(dtype=self.dtype)
|
|
1571
|
+
|
|
1572
|
+
# Create decoder input projection layers
|
|
1573
|
+
# https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/PPDocLayoutV3_pytorch/src/zoo/PPDocLayoutV3/PPDocLayoutV3_decoder.py#L412
|
|
1574
|
+
num_backbone_outs = len(config.decoder_in_channels)
|
|
1575
|
+
decoder_input_proj_list = []
|
|
1576
|
+
for i in range(num_backbone_outs):
|
|
1577
|
+
in_channels = config.decoder_in_channels[i]
|
|
1578
|
+
decoder_input_proj_list.append(
|
|
1579
|
+
nn.Sequential(
|
|
1580
|
+
nn.Conv2d(in_channels, config.d_model, kernel_size=1, bias=False),
|
|
1581
|
+
nn.BatchNorm2d(config.d_model, config.batch_norm_eps),
|
|
1582
|
+
)
|
|
1583
|
+
)
|
|
1584
|
+
for _ in range(config.num_feature_levels - num_backbone_outs):
|
|
1585
|
+
decoder_input_proj_list.append(
|
|
1586
|
+
nn.Sequential(
|
|
1587
|
+
nn.Conv2d(in_channels, config.d_model, kernel_size=3, stride=2, padding=1, bias=False),
|
|
1588
|
+
nn.BatchNorm2d(config.d_model, config.batch_norm_eps),
|
|
1589
|
+
)
|
|
1590
|
+
)
|
|
1591
|
+
in_channels = config.d_model
|
|
1592
|
+
self.decoder_input_proj = nn.ModuleList(decoder_input_proj_list)
|
|
1593
|
+
self.decoder = PPDocLayoutV3Decoder(config)
|
|
1594
|
+
|
|
1595
|
+
self.decoder_order_head = nn.ModuleList(
|
|
1596
|
+
[nn.Linear(config.d_model, config.d_model) for _ in range(config.decoder_layers)]
|
|
1597
|
+
)
|
|
1598
|
+
self.decoder_global_pointer = PPDocLayoutV3GlobalPointer(config)
|
|
1599
|
+
self.decoder_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
|
1600
|
+
self.decoder.class_embed = nn.Linear(config.d_model, config.num_labels)
|
|
1601
|
+
self.decoder.bbox_embed = PPDocLayoutV3MLPPredictionHead(config.d_model, config.d_model, 4, num_layers=3)
|
|
1602
|
+
|
|
1603
|
+
self.mask_enhanced = config.mask_enhanced
|
|
1604
|
+
self.mask_query_head = PPDocLayoutV3MLPPredictionHead(
|
|
1605
|
+
config.d_model, config.d_model, config.num_prototypes, num_layers=3
|
|
1606
|
+
)
|
|
1607
|
+
|
|
1608
|
+
self.post_init()
|
|
1609
|
+
|
|
1610
|
+
def freeze_backbone(self):
|
|
1611
|
+
for param in self.backbone.parameters():
|
|
1612
|
+
param.requires_grad_(False)
|
|
1613
|
+
|
|
1614
|
+
def unfreeze_backbone(self):
|
|
1615
|
+
for param in self.backbone.parameters():
|
|
1616
|
+
param.requires_grad_(True)
|
|
1617
|
+
|
|
1618
|
+
@compile_compatible_method_lru_cache(maxsize=32)
|
|
1619
|
+
def generate_anchors(self, spatial_shapes=None, grid_size=0.05, device="cpu", dtype=torch.float32):
|
|
1620
|
+
if spatial_shapes is None:
|
|
1621
|
+
spatial_shapes = [
|
|
1622
|
+
[int(self.config.anchor_image_size[0] / s), int(self.config.anchor_image_size[1] / s)]
|
|
1623
|
+
for s in self.config.feat_strides
|
|
1624
|
+
]
|
|
1625
|
+
anchors = []
|
|
1626
|
+
for level, (height, width) in enumerate(spatial_shapes):
|
|
1627
|
+
grid_y, grid_x = torch.meshgrid(
|
|
1628
|
+
torch.arange(end=height, device=device).to(dtype),
|
|
1629
|
+
torch.arange(end=width, device=device).to(dtype),
|
|
1630
|
+
indexing="ij",
|
|
1631
|
+
)
|
|
1632
|
+
grid_xy = torch.stack([grid_x, grid_y], -1)
|
|
1633
|
+
grid_xy = grid_xy.unsqueeze(0) + 0.5
|
|
1634
|
+
grid_xy[..., 0] /= width
|
|
1635
|
+
grid_xy[..., 1] /= height
|
|
1636
|
+
wh = torch.ones_like(grid_xy) * grid_size * (2.0**level)
|
|
1637
|
+
anchors.append(torch.concat([grid_xy, wh], -1).reshape(-1, height * width, 4))
|
|
1638
|
+
# define the valid range for anchor coordinates
|
|
1639
|
+
eps = 1e-2
|
|
1640
|
+
anchors = torch.concat(anchors, 1)
|
|
1641
|
+
valid_mask = ((anchors > eps) * (anchors < 1 - eps)).all(-1, keepdim=True)
|
|
1642
|
+
anchors = torch.log(anchors / (1 - anchors))
|
|
1643
|
+
anchors = torch.where(valid_mask, anchors, torch.tensor(torch.finfo(dtype).max, dtype=dtype, device=device))
|
|
1644
|
+
|
|
1645
|
+
return anchors, valid_mask
|
|
1646
|
+
|
|
1647
|
+
@auto_docstring
|
|
1648
|
+
@can_return_tuple
|
|
1649
|
+
def forward(
|
|
1650
|
+
self,
|
|
1651
|
+
pixel_values: torch.FloatTensor,
|
|
1652
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
1653
|
+
encoder_outputs: torch.FloatTensor | None = None,
|
|
1654
|
+
labels: list[dict] | None = None,
|
|
1655
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1656
|
+
) -> tuple[torch.FloatTensor] | PPDocLayoutV3ModelOutput:
|
|
1657
|
+
r"""
|
|
1658
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
1659
|
+
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
|
1660
|
+
can choose to directly pass a flattened representation of an image.
|
|
1661
|
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
1662
|
+
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
|
1663
|
+
embedded representation.
|
|
1664
|
+
labels (`list[Dict]` of len `(batch_size,)`, *optional*):
|
|
1665
|
+
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
|
|
1666
|
+
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
|
|
1667
|
+
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
|
|
1668
|
+
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
|
|
1669
|
+
|
|
1670
|
+
Examples:
|
|
1671
|
+
|
|
1672
|
+
```python
|
|
1673
|
+
>>> from transformers import AutoImageProcessor, PPDocLayoutV2Model
|
|
1674
|
+
>>> from PIL import Image
|
|
1675
|
+
>>> import requests
|
|
1676
|
+
|
|
1677
|
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
|
1678
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
1679
|
+
|
|
1680
|
+
>>> image_processor = AutoImageProcessor.from_pretrained("PekingU/PPDocLayoutV2_r50vd")
|
|
1681
|
+
>>> model = PPDocLayoutV2Model.from_pretrained("PekingU/PPDocLayoutV2_r50vd")
|
|
1682
|
+
|
|
1683
|
+
>>> inputs = image_processor(images=image, return_tensors="pt")
|
|
1684
|
+
|
|
1685
|
+
>>> outputs = model(**inputs)
|
|
1686
|
+
|
|
1687
|
+
>>> last_hidden_states = outputs.last_hidden_state
|
|
1688
|
+
>>> list(last_hidden_states.shape)
|
|
1689
|
+
[1, 300, 256]
|
|
1690
|
+
```"""
|
|
1691
|
+
batch_size, num_channels, height, width = pixel_values.shape
|
|
1692
|
+
device = pixel_values.device
|
|
1693
|
+
|
|
1694
|
+
if pixel_mask is None:
|
|
1695
|
+
pixel_mask = torch.ones(((batch_size, height, width)), device=device)
|
|
1696
|
+
|
|
1697
|
+
features = self.backbone(pixel_values, pixel_mask)
|
|
1698
|
+
x4_feat = features.pop(0)
|
|
1699
|
+
proj_feats = [self.encoder_input_proj[level](source) for level, (source, mask) in enumerate(features)]
|
|
1700
|
+
|
|
1701
|
+
if encoder_outputs is None:
|
|
1702
|
+
encoder_outputs = self.encoder(
|
|
1703
|
+
proj_feats,
|
|
1704
|
+
x4_feat,
|
|
1705
|
+
**kwargs,
|
|
1706
|
+
)
|
|
1707
|
+
# If the user passed a tuple for encoder_outputs, we wrap it in a PPDocLayoutV3HybridEncoderOutput when return_dict=True
|
|
1708
|
+
elif not isinstance(encoder_outputs, PPDocLayoutV3HybridEncoderOutput):
|
|
1709
|
+
encoder_outputs = PPDocLayoutV3HybridEncoderOutput(
|
|
1710
|
+
last_hidden_state=encoder_outputs[0],
|
|
1711
|
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
|
1712
|
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
|
1713
|
+
mask_feat=encoder_outputs[-1],
|
|
1714
|
+
)
|
|
1715
|
+
|
|
1716
|
+
# Equivalent to def _get_encoder_input
|
|
1717
|
+
# https://github.com/lyuwenyu/RT-DETR/blob/94f5e16708329d2f2716426868ec89aa774af016/rtdetr_pytorch/src/zoo/rtdetr/rtdetr_decoder.py#L412
|
|
1718
|
+
sources = []
|
|
1719
|
+
for level, source in enumerate(encoder_outputs.last_hidden_state):
|
|
1720
|
+
sources.append(self.decoder_input_proj[level](source))
|
|
1721
|
+
|
|
1722
|
+
# Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage
|
|
1723
|
+
if self.config.num_feature_levels > len(sources):
|
|
1724
|
+
_len_sources = len(sources)
|
|
1725
|
+
sources.append(self.decoder_input_proj[_len_sources](encoder_outputs.last_hidden_state[-1]))
|
|
1726
|
+
for i in range(_len_sources + 1, self.config.num_feature_levels):
|
|
1727
|
+
sources.append(self.decoder_input_proj[i](encoder_outputs.last_hidden_state[-1]))
|
|
1728
|
+
|
|
1729
|
+
# Prepare encoder inputs (by flattening)
|
|
1730
|
+
source_flatten = []
|
|
1731
|
+
spatial_shapes_list = []
|
|
1732
|
+
spatial_shapes = torch.empty((len(sources), 2), device=device, dtype=torch.long)
|
|
1733
|
+
for level, source in enumerate(sources):
|
|
1734
|
+
height, width = source.shape[-2:]
|
|
1735
|
+
spatial_shapes[level, 0] = height
|
|
1736
|
+
spatial_shapes[level, 1] = width
|
|
1737
|
+
spatial_shapes_list.append((height, width))
|
|
1738
|
+
source = source.flatten(2).transpose(1, 2)
|
|
1739
|
+
source_flatten.append(source)
|
|
1740
|
+
source_flatten = torch.cat(source_flatten, 1)
|
|
1741
|
+
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
|
|
1742
|
+
|
|
1743
|
+
# prepare denoising training
|
|
1744
|
+
if self.training and self.config.num_denoising > 0 and labels is not None:
|
|
1745
|
+
(
|
|
1746
|
+
denoising_class,
|
|
1747
|
+
denoising_bbox_unact,
|
|
1748
|
+
attention_mask,
|
|
1749
|
+
denoising_meta_values,
|
|
1750
|
+
) = get_contrastive_denoising_training_group(
|
|
1751
|
+
targets=labels,
|
|
1752
|
+
num_classes=self.config.num_labels,
|
|
1753
|
+
num_queries=self.config.num_queries,
|
|
1754
|
+
class_embed=self.denoising_class_embed,
|
|
1755
|
+
num_denoising_queries=self.config.num_denoising,
|
|
1756
|
+
label_noise_ratio=self.config.label_noise_ratio,
|
|
1757
|
+
box_noise_scale=self.config.box_noise_scale,
|
|
1758
|
+
)
|
|
1759
|
+
else:
|
|
1760
|
+
denoising_class, denoising_bbox_unact, attention_mask, denoising_meta_values = None, None, None, None
|
|
1761
|
+
|
|
1762
|
+
batch_size = len(source_flatten)
|
|
1763
|
+
device = source_flatten.device
|
|
1764
|
+
dtype = source_flatten.dtype
|
|
1765
|
+
|
|
1766
|
+
# prepare input for decoder
|
|
1767
|
+
if self.training or self.config.anchor_image_size is None:
|
|
1768
|
+
# Pass spatial_shapes as tuple to make it hashable and make sure
|
|
1769
|
+
# lru_cache is working for generate_anchors()
|
|
1770
|
+
spatial_shapes_tuple = tuple(spatial_shapes_list)
|
|
1771
|
+
anchors, valid_mask = self.generate_anchors(spatial_shapes_tuple, device=device, dtype=dtype)
|
|
1772
|
+
else:
|
|
1773
|
+
anchors, valid_mask = self.anchors, self.valid_mask
|
|
1774
|
+
anchors, valid_mask = anchors.to(device, dtype), valid_mask.to(device, dtype)
|
|
1775
|
+
|
|
1776
|
+
# use the valid_mask to selectively retain values in the feature map where the mask is `True`
|
|
1777
|
+
memory = valid_mask.to(source_flatten.dtype) * source_flatten
|
|
1778
|
+
|
|
1779
|
+
output_memory = self.enc_output(memory)
|
|
1780
|
+
|
|
1781
|
+
enc_outputs_class = self.enc_score_head(output_memory)
|
|
1782
|
+
enc_outputs_coord_logits = self.enc_bbox_head(output_memory) + anchors
|
|
1783
|
+
|
|
1784
|
+
_, topk_ind = torch.topk(enc_outputs_class.max(-1).values, self.config.num_queries, dim=1)
|
|
1785
|
+
|
|
1786
|
+
reference_points_unact = enc_outputs_coord_logits.gather(
|
|
1787
|
+
dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_coord_logits.shape[-1])
|
|
1788
|
+
)
|
|
1789
|
+
|
|
1790
|
+
# _get_pred_class_and_mask
|
|
1791
|
+
batch_ind = torch.arange(memory.shape[0], device=output_memory.device).unsqueeze(1)
|
|
1792
|
+
target = output_memory[batch_ind, topk_ind]
|
|
1793
|
+
out_query = self.decoder_norm(target)
|
|
1794
|
+
mask_query_embed = self.mask_query_head(out_query)
|
|
1795
|
+
batch_size, mask_dim, _ = mask_query_embed.shape
|
|
1796
|
+
|
|
1797
|
+
enc_topk_bboxes = F.sigmoid(reference_points_unact)
|
|
1798
|
+
|
|
1799
|
+
enc_topk_logits = enc_outputs_class.gather(
|
|
1800
|
+
dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, enc_outputs_class.shape[-1])
|
|
1801
|
+
)
|
|
1802
|
+
|
|
1803
|
+
# extract region features
|
|
1804
|
+
if self.config.learn_initial_query:
|
|
1805
|
+
target = self.weight_embedding.tile([batch_size, 1, 1])
|
|
1806
|
+
else:
|
|
1807
|
+
target = output_memory.gather(dim=1, index=topk_ind.unsqueeze(-1).repeat(1, 1, output_memory.shape[-1]))
|
|
1808
|
+
target = target.detach()
|
|
1809
|
+
|
|
1810
|
+
if denoising_class is not None:
|
|
1811
|
+
target = torch.concat([denoising_class, target], 1)
|
|
1812
|
+
|
|
1813
|
+
if self.mask_enhanced:
|
|
1814
|
+
_, _, mask_h, mask_w = encoder_outputs.mask_feat.shape
|
|
1815
|
+
enc_out_masks = torch.bmm(mask_query_embed, encoder_outputs.mask_feat.flatten(start_dim=2)).reshape(
|
|
1816
|
+
batch_size, mask_dim, mask_h, mask_w
|
|
1817
|
+
)
|
|
1818
|
+
reference_points = mask_to_box_coordinate(enc_out_masks > 0, dtype=reference_points_unact.dtype)
|
|
1819
|
+
reference_points_unact = inverse_sigmoid(reference_points)
|
|
1820
|
+
|
|
1821
|
+
if denoising_bbox_unact is not None:
|
|
1822
|
+
reference_points_unact = torch.concat([denoising_bbox_unact, reference_points_unact], 1)
|
|
1823
|
+
|
|
1824
|
+
init_reference_points = reference_points_unact.detach()
|
|
1825
|
+
|
|
1826
|
+
# decoder
|
|
1827
|
+
decoder_outputs = self.decoder(
|
|
1828
|
+
inputs_embeds=target,
|
|
1829
|
+
encoder_hidden_states=source_flatten,
|
|
1830
|
+
encoder_attention_mask=attention_mask,
|
|
1831
|
+
reference_points=init_reference_points,
|
|
1832
|
+
spatial_shapes=spatial_shapes,
|
|
1833
|
+
spatial_shapes_list=spatial_shapes_list,
|
|
1834
|
+
level_start_index=level_start_index,
|
|
1835
|
+
order_head=self.decoder_order_head,
|
|
1836
|
+
global_pointer=self.decoder_global_pointer,
|
|
1837
|
+
mask_query_head=self.mask_query_head,
|
|
1838
|
+
norm=self.decoder_norm,
|
|
1839
|
+
mask_feat=encoder_outputs.mask_feat,
|
|
1840
|
+
**kwargs,
|
|
1841
|
+
)
|
|
1842
|
+
|
|
1843
|
+
return PPDocLayoutV3ModelOutput(
|
|
1844
|
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
|
1845
|
+
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
|
|
1846
|
+
intermediate_logits=decoder_outputs.intermediate_logits,
|
|
1847
|
+
intermediate_reference_points=decoder_outputs.intermediate_reference_points,
|
|
1848
|
+
intermediate_predicted_corners=decoder_outputs.intermediate_predicted_corners,
|
|
1849
|
+
initial_reference_points=decoder_outputs.initial_reference_points,
|
|
1850
|
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
|
1851
|
+
decoder_attentions=decoder_outputs.attentions,
|
|
1852
|
+
cross_attentions=decoder_outputs.cross_attentions,
|
|
1853
|
+
out_order_logits=decoder_outputs.decoder_out_order_logits,
|
|
1854
|
+
out_masks=decoder_outputs.decoder_out_masks,
|
|
1855
|
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
|
1856
|
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
|
1857
|
+
encoder_attentions=encoder_outputs.attentions,
|
|
1858
|
+
init_reference_points=init_reference_points,
|
|
1859
|
+
enc_topk_logits=enc_topk_logits,
|
|
1860
|
+
enc_topk_bboxes=enc_topk_bboxes,
|
|
1861
|
+
enc_outputs_class=enc_outputs_class,
|
|
1862
|
+
enc_outputs_coord_logits=enc_outputs_coord_logits,
|
|
1863
|
+
denoising_meta_values=denoising_meta_values,
|
|
1864
|
+
)
|
|
1865
|
+
|
|
1866
|
+
|
|
1867
|
+
@dataclass
|
|
1868
|
+
@auto_docstring
|
|
1869
|
+
class PPDocLayoutV3HybridEncoderOutput(BaseModelOutput):
|
|
1870
|
+
r"""
|
|
1871
|
+
mask_feat (`torch.FloatTensor` of shape `(batch_size, config.num_queries, 200, 200)`):
|
|
1872
|
+
Mask features for each query in the batch.
|
|
1873
|
+
"""
|
|
1874
|
+
|
|
1875
|
+
mask_feat: torch.FloatTensor = None
|
|
1876
|
+
|
|
1877
|
+
|
|
1878
|
+
@dataclass
|
|
1879
|
+
@auto_docstring
|
|
1880
|
+
class PPDocLayoutV3ForObjectDetectionOutput(ModelOutput):
|
|
1881
|
+
r"""
|
|
1882
|
+
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
|
|
1883
|
+
Classification logits (including no-object) for all queries.
|
|
1884
|
+
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
1885
|
+
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
|
|
1886
|
+
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
|
|
1887
|
+
possible padding). You can use [`~PPDocLayoutV3ImageProcessorFast.post_process_object_detection`] to retrieve the
|
|
1888
|
+
unnormalized (absolute) bounding boxes.
|
|
1889
|
+
order_logits (`tuple` of `torch.FloatTensor` of shape `(batch_size, num_queries, num_queries)`):
|
|
1890
|
+
Order logits of the final layer of the decoder.
|
|
1891
|
+
out_masks (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, height, width)`):
|
|
1892
|
+
Masks of the final layer of the decoder.
|
|
1893
|
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
|
|
1894
|
+
Sequence of hidden-states at the output of the last layer of the decoder of the model.
|
|
1895
|
+
intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`):
|
|
1896
|
+
Stacked intermediate hidden states (output of each layer of the decoder).
|
|
1897
|
+
intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, config.num_labels)`):
|
|
1898
|
+
Stacked intermediate logits (logits of each layer of the decoder).
|
|
1899
|
+
intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
1900
|
+
Stacked intermediate reference points (reference points of each layer of the decoder).
|
|
1901
|
+
intermediate_predicted_corners (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
1902
|
+
Stacked intermediate predicted corners (predicted corners of each layer of the decoder).
|
|
1903
|
+
initial_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`):
|
|
1904
|
+
Stacked initial reference points (initial reference points of each layer of the decoder).
|
|
1905
|
+
init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
|
|
1906
|
+
Initial reference points sent through the Transformer decoder.
|
|
1907
|
+
enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
1908
|
+
Logits of predicted bounding boxes coordinates in the encoder.
|
|
1909
|
+
enc_topk_bboxes (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
1910
|
+
Logits of predicted bounding boxes coordinates in the encoder.
|
|
1911
|
+
enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
1912
|
+
Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are
|
|
1913
|
+
picked as region proposals in the first stage. Output of bounding box binary classification (i.e.
|
|
1914
|
+
foreground and background).
|
|
1915
|
+
enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`):
|
|
1916
|
+
Logits of predicted bounding boxes coordinates in the first stage.
|
|
1917
|
+
denoising_meta_values (`dict`):
|
|
1918
|
+
Extra dictionary for the denoising related values
|
|
1919
|
+
"""
|
|
1920
|
+
|
|
1921
|
+
logits: torch.FloatTensor | None = None
|
|
1922
|
+
pred_boxes: torch.FloatTensor | None = None
|
|
1923
|
+
order_logits: torch.FloatTensor | None = None
|
|
1924
|
+
out_masks: torch.FloatTensor | None = None
|
|
1925
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
1926
|
+
intermediate_hidden_states: torch.FloatTensor | None = None
|
|
1927
|
+
intermediate_logits: torch.FloatTensor | None = None
|
|
1928
|
+
intermediate_reference_points: torch.FloatTensor | None = None
|
|
1929
|
+
intermediate_predicted_corners: torch.FloatTensor | None = None
|
|
1930
|
+
initial_reference_points: torch.FloatTensor | None = None
|
|
1931
|
+
decoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
1932
|
+
decoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
1933
|
+
cross_attentions: tuple[torch.FloatTensor] | None = None
|
|
1934
|
+
encoder_last_hidden_state: torch.FloatTensor | None = None
|
|
1935
|
+
encoder_hidden_states: tuple[torch.FloatTensor] | None = None
|
|
1936
|
+
encoder_attentions: tuple[torch.FloatTensor] | None = None
|
|
1937
|
+
init_reference_points: tuple[torch.FloatTensor] | None = None
|
|
1938
|
+
enc_topk_logits: torch.FloatTensor | None = None
|
|
1939
|
+
enc_topk_bboxes: torch.FloatTensor | None = None
|
|
1940
|
+
enc_outputs_class: torch.FloatTensor | None = None
|
|
1941
|
+
enc_outputs_coord_logits: torch.FloatTensor | None = None
|
|
1942
|
+
denoising_meta_values: dict | None = None
|
|
1943
|
+
|
|
1944
|
+
|
|
1945
|
+
@auto_docstring(
|
|
1946
|
+
custom_intro="""
|
|
1947
|
+
PP-DocLayoutV3 Model (consisting of a backbone and encoder-decoder) outputs bounding boxes and logits sorted according to reading order,
|
|
1948
|
+
which are further decoded into scores and classes.
|
|
1949
|
+
"""
|
|
1950
|
+
)
|
|
1951
|
+
class PPDocLayoutV3ForObjectDetection(PPDocLayoutV3PreTrainedModel):
|
|
1952
|
+
# When using clones, all layers > 0 will be clones, but layer 0 *is* required
|
|
1953
|
+
# We can't initialize the model on meta device as some weights are modified during the initialization
|
|
1954
|
+
_no_split_modules = None
|
|
1955
|
+
_keys_to_ignore_on_load_missing = ["num_batches_tracked", "rel_pos_y_bias", "rel_pos_x_bias"]
|
|
1956
|
+
|
|
1957
|
+
def __init__(self, config: PPDocLayoutV3Config):
|
|
1958
|
+
super().__init__(config)
|
|
1959
|
+
self.model = PPDocLayoutV3Model(config)
|
|
1960
|
+
|
|
1961
|
+
self.model.denoising_class_embed = nn.Embedding(config.num_labels, config.d_model)
|
|
1962
|
+
self.num_queries = config.num_queries
|
|
1963
|
+
# if two-stage, the last class_embed and bbox_embed is for region proposal generation
|
|
1964
|
+
self.post_init()
|
|
1965
|
+
|
|
1966
|
+
def _set_aux_loss(self, outputs_class, outputs_coord):
|
|
1967
|
+
return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class, outputs_coord)]
|
|
1968
|
+
|
|
1969
|
+
@auto_docstring
|
|
1970
|
+
@can_return_tuple
|
|
1971
|
+
def forward(
|
|
1972
|
+
self,
|
|
1973
|
+
pixel_values: torch.FloatTensor,
|
|
1974
|
+
pixel_mask: torch.LongTensor | None = None,
|
|
1975
|
+
encoder_outputs: torch.FloatTensor | None = None,
|
|
1976
|
+
labels: list[dict] | None = None,
|
|
1977
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1978
|
+
) -> tuple[torch.FloatTensor] | PPDocLayoutV3ForObjectDetectionOutput:
|
|
1979
|
+
r"""
|
|
1980
|
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
1981
|
+
Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you
|
|
1982
|
+
can choose to directly pass a flattened representation of an image.
|
|
1983
|
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*):
|
|
1984
|
+
Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an
|
|
1985
|
+
embedded representation.
|
|
1986
|
+
labels (`list[Dict]` of len `(batch_size,)`, *optional*):
|
|
1987
|
+
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
|
|
1988
|
+
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
|
|
1989
|
+
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
|
|
1990
|
+
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
|
|
1991
|
+
|
|
1992
|
+
Examples:
|
|
1993
|
+
|
|
1994
|
+
```python
|
|
1995
|
+
>>> from transformers import AutoModelForObjectDetection, AutoImageProcessor
|
|
1996
|
+
>>> from PIL import Image
|
|
1997
|
+
>>> import requests
|
|
1998
|
+
>>> import torch
|
|
1999
|
+
|
|
2000
|
+
>>> url = "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/layout_demo.jpg"
|
|
2001
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
2002
|
+
|
|
2003
|
+
>>> model_path = "PaddlePaddle/PP-DocLayoutV3_safetensors"
|
|
2004
|
+
>>> image_processor = AutoImageProcessor.from_pretrained(model_path)
|
|
2005
|
+
>>> model = AutoModelForObjectDetection.from_pretrained(model_path)
|
|
2006
|
+
|
|
2007
|
+
>>> # prepare image for the model
|
|
2008
|
+
>>> inputs = image_processor(images=[image], return_tensors="pt")
|
|
2009
|
+
|
|
2010
|
+
>>> # forward pass
|
|
2011
|
+
>>> outputs = model(**inputs)
|
|
2012
|
+
|
|
2013
|
+
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
|
|
2014
|
+
>>> results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]))
|
|
2015
|
+
|
|
2016
|
+
>>> # print outputs
|
|
2017
|
+
>>> for result in results:
|
|
2018
|
+
... for idx, (score, label_id, box) in enumerate(zip(result["scores"], result["labels"], result["boxes"])):
|
|
2019
|
+
... score, label = score.item(), label_id.item()
|
|
2020
|
+
... box = [round(i, 2) for i in box.tolist()]
|
|
2021
|
+
... print(f"Order {idx + 1}: {model.config.id2label[label]}: {score:.2f} {box}")
|
|
2022
|
+
Order 1: text: 0.99 [334.95, 184.78, 897.25, 654.83]
|
|
2023
|
+
Order 2: paragraph_title: 0.97 [337.28, 683.92, 869.16, 798.35]
|
|
2024
|
+
Order 3: text: 0.99 [335.75, 842.82, 892.13, 1454.32]
|
|
2025
|
+
Order 4: text: 0.99 [920.18, 185.28, 1476.38, 464.49]
|
|
2026
|
+
Order 5: text: 0.98 [920.47, 483.68, 1480.63, 765.72]
|
|
2027
|
+
Order 6: text: 0.98 [920.62, 846.8, 1482.09, 1220.67]
|
|
2028
|
+
Order 7: text: 0.97 [920.92, 1239.41, 1469.55, 1378.02]
|
|
2029
|
+
Order 8: footnote: 0.86 [335.03, 1614.68, 1483.33, 1731.73]
|
|
2030
|
+
Order 9: footnote: 0.83 [334.64, 1756.74, 1471.78, 1845.69]
|
|
2031
|
+
Order 10: text: 0.81 [336.8, 1910.52, 661.64, 1939.92]
|
|
2032
|
+
Order 11: footnote: 0.96 [336.24, 2114.42, 1450.14, 2172.12]
|
|
2033
|
+
Order 12: number: 0.88 [106.0, 2257.5, 135.84, 2282.18]
|
|
2034
|
+
Order 13: footer: 0.93 [338.4, 2255.52, 986.15, 2284.37]
|
|
2035
|
+
```"""
|
|
2036
|
+
outputs = self.model(
|
|
2037
|
+
pixel_values,
|
|
2038
|
+
pixel_mask=pixel_mask,
|
|
2039
|
+
encoder_outputs=encoder_outputs,
|
|
2040
|
+
labels=labels,
|
|
2041
|
+
**kwargs,
|
|
2042
|
+
)
|
|
2043
|
+
|
|
2044
|
+
intermediate_logits = outputs.intermediate_logits
|
|
2045
|
+
intermediate_reference_points = outputs.intermediate_reference_points
|
|
2046
|
+
order_logits = outputs.out_order_logits
|
|
2047
|
+
out_masks = outputs.out_masks
|
|
2048
|
+
|
|
2049
|
+
pred_boxes = intermediate_reference_points[:, -1]
|
|
2050
|
+
logits = intermediate_logits[:, -1]
|
|
2051
|
+
order_logits = order_logits[:, -1]
|
|
2052
|
+
out_masks = out_masks[:, -1]
|
|
2053
|
+
|
|
2054
|
+
if labels is not None:
|
|
2055
|
+
raise ValueError("PPDocLayoutV3ForObjectDetection does not support training")
|
|
2056
|
+
|
|
2057
|
+
return PPDocLayoutV3ForObjectDetectionOutput(
|
|
2058
|
+
logits=logits,
|
|
2059
|
+
pred_boxes=pred_boxes,
|
|
2060
|
+
order_logits=order_logits,
|
|
2061
|
+
out_masks=out_masks,
|
|
2062
|
+
last_hidden_state=outputs.last_hidden_state,
|
|
2063
|
+
intermediate_hidden_states=outputs.intermediate_hidden_states,
|
|
2064
|
+
intermediate_logits=outputs.intermediate_logits,
|
|
2065
|
+
intermediate_reference_points=outputs.intermediate_reference_points,
|
|
2066
|
+
intermediate_predicted_corners=outputs.intermediate_predicted_corners,
|
|
2067
|
+
initial_reference_points=outputs.initial_reference_points,
|
|
2068
|
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
|
2069
|
+
decoder_attentions=outputs.decoder_attentions,
|
|
2070
|
+
cross_attentions=outputs.cross_attentions,
|
|
2071
|
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
|
2072
|
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
|
2073
|
+
encoder_attentions=outputs.encoder_attentions,
|
|
2074
|
+
init_reference_points=outputs.init_reference_points,
|
|
2075
|
+
enc_topk_logits=outputs.enc_topk_logits,
|
|
2076
|
+
enc_topk_bboxes=outputs.enc_topk_bboxes,
|
|
2077
|
+
enc_outputs_class=outputs.enc_outputs_class,
|
|
2078
|
+
enc_outputs_coord_logits=outputs.enc_outputs_coord_logits,
|
|
2079
|
+
denoising_meta_values=outputs.denoising_meta_values,
|
|
2080
|
+
)
|
|
2081
|
+
|
|
2082
|
+
|
|
2083
|
+
__all__ = ["PPDocLayoutV3ForObjectDetection", "PPDocLayoutV3Model", "PPDocLayoutV3PreTrainedModel"]
|