teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (108) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +71 -0
  4. teradataml/_version.py +2 -2
  5. teradataml/analytics/analytic_function_executor.py +51 -24
  6. teradataml/analytics/json_parser/utils.py +11 -17
  7. teradataml/automl/__init__.py +103 -48
  8. teradataml/automl/data_preparation.py +55 -37
  9. teradataml/automl/data_transformation.py +131 -69
  10. teradataml/automl/feature_engineering.py +117 -185
  11. teradataml/automl/feature_exploration.py +9 -2
  12. teradataml/automl/model_evaluation.py +13 -25
  13. teradataml/automl/model_training.py +214 -75
  14. teradataml/catalog/model_cataloging_utils.py +1 -1
  15. teradataml/clients/auth_client.py +133 -0
  16. teradataml/common/aed_utils.py +3 -2
  17. teradataml/common/constants.py +11 -6
  18. teradataml/common/garbagecollector.py +5 -0
  19. teradataml/common/messagecodes.py +3 -1
  20. teradataml/common/messages.py +2 -1
  21. teradataml/common/utils.py +6 -0
  22. teradataml/context/context.py +49 -29
  23. teradataml/data/advertising.csv +201 -0
  24. teradataml/data/bank_marketing.csv +11163 -0
  25. teradataml/data/bike_sharing.csv +732 -0
  26. teradataml/data/boston2cols.csv +721 -0
  27. teradataml/data/breast_cancer.csv +570 -0
  28. teradataml/data/customer_segmentation_test.csv +2628 -0
  29. teradataml/data/customer_segmentation_train.csv +8069 -0
  30. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  31. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  32. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  33. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  34. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  35. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  36. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  37. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  38. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  39. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  40. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  41. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  42. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  43. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  44. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  45. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  46. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  47. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  48. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  49. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  50. teradataml/data/glm_example.json +28 -1
  51. teradataml/data/housing_train_segment.csv +201 -0
  52. teradataml/data/insect2Cols.csv +61 -0
  53. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  54. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  55. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  56. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  57. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  58. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  59. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  60. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  61. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  62. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  63. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  64. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  65. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  66. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  67. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  68. teradataml/data/kmeans_example.json +5 -0
  69. teradataml/data/kmeans_table.csv +10 -0
  70. teradataml/data/onehot_encoder_train.csv +4 -0
  71. teradataml/data/openml_example.json +29 -0
  72. teradataml/data/scale_attributes.csv +3 -0
  73. teradataml/data/scale_example.json +52 -1
  74. teradataml/data/scale_input_part_sparse.csv +31 -0
  75. teradataml/data/scale_input_partitioned.csv +16 -0
  76. teradataml/data/scale_input_sparse.csv +11 -0
  77. teradataml/data/scale_parameters.csv +3 -0
  78. teradataml/data/scripts/deploy_script.py +20 -1
  79. teradataml/data/scripts/sklearn/sklearn_fit.py +23 -27
  80. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +20 -28
  81. teradataml/data/scripts/sklearn/sklearn_function.template +13 -18
  82. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  83. teradataml/data/scripts/sklearn/sklearn_neighbors.py +18 -27
  84. teradataml/data/scripts/sklearn/sklearn_score.py +20 -29
  85. teradataml/data/scripts/sklearn/sklearn_transform.py +30 -38
  86. teradataml/data/teradataml_example.json +77 -0
  87. teradataml/data/ztest_example.json +16 -0
  88. teradataml/dataframe/copy_to.py +8 -3
  89. teradataml/dataframe/data_transfer.py +120 -61
  90. teradataml/dataframe/dataframe.py +102 -17
  91. teradataml/dataframe/dataframe_utils.py +47 -9
  92. teradataml/dataframe/fastload.py +272 -89
  93. teradataml/dataframe/sql.py +84 -0
  94. teradataml/dbutils/dbutils.py +2 -2
  95. teradataml/lib/aed_0_1.dll +0 -0
  96. teradataml/opensource/sklearn/_sklearn_wrapper.py +102 -55
  97. teradataml/options/__init__.py +13 -4
  98. teradataml/options/configure.py +27 -6
  99. teradataml/scriptmgmt/UserEnv.py +19 -16
  100. teradataml/scriptmgmt/lls_utils.py +117 -14
  101. teradataml/table_operators/Script.py +2 -3
  102. teradataml/table_operators/TableOperator.py +58 -10
  103. teradataml/utils/validators.py +40 -2
  104. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +78 -6
  105. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/RECORD +108 -90
  106. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +0 -0
  107. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
  108. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +0 -0
@@ -1,13 +1,13 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=8g05OMHrGp7X287akUppOQ7p5an8_SiIxkaUct6fF0g,302023
2
- teradataml/LICENSE.pdf,sha256=AUAuscoFVLRLEPFRm7afwgOm_mjl1RES-tfLa8QxV0A,66677
3
- teradataml/README.md,sha256=YVDqrWwD3u1tSIfRqPp1jvrDk9y3NbWeE1XH42wnBDY,102196
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=ZrYd86rv7qc83E7xa9HC7VegF6OXJVwi6MBTEiB32kk,310854
2
+ teradataml/LICENSE.pdf,sha256=YAaz9284BsR7reNg2ez_CCccYhD3k8r7rTLaORDZ-HE,66827
3
+ teradataml/README.md,sha256=jYLOg9VI4yMSf9yjVCTfywXLry6oURodHft_TBje7ao,106467
4
4
  teradataml/__init__.py,sha256=9Ycya12HoIYTgwQASpdzK7NSNPcayqLb-xM7HMD1MmE,2497
5
- teradataml/_version.py,sha256=gGqRPNae_BqTFfodlSXmm8Occ6ZclYcLSAUwlazPgJ4,364
5
+ teradataml/_version.py,sha256=mUUB6KxwOXJAtbPZoBNVSLnqHPhuKLi3LOA-2_LqdvA,364
6
6
  teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
7
7
  teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
8
8
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
9
9
  teradataml/analytics/__init__.py,sha256=q75q1s02_qlGWsvVKgFZvltKwkMCUkjY60nzfD3IiGk,2931
10
- teradataml/analytics/analytic_function_executor.py,sha256=jOEBRZBlCIJjCzN1WdkGIRb6qIDRsagMV3y3d8NlFE4,91166
10
+ teradataml/analytics/analytic_function_executor.py,sha256=XMeJCSudqfOP0htOhZQUH6qcF4Ztp_V7uzeUeu4n6dY,92393
11
11
  teradataml/analytics/analytic_query_generator.py,sha256=4Ny_qOlZpoXxN2goUGod9Cv6Kl5T3So3jvYnLQ7347A,42459
12
12
  teradataml/analytics/meta_class.py,sha256=7qz3Ik7woaWOz8yd8Zhzf3T2MLZyJTn6q4GoEBR5gIg,7024
13
13
  teradataml/analytics/utils.py,sha256=6m-1MEMYLrYBYVl_Q2DiUmfB5crJR9a2F4bCf8euJcY,27731
@@ -19,7 +19,7 @@ teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9
19
19
  teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
20
20
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
21
21
  teradataml/analytics/json_parser/metadata.py,sha256=QE_Mcxor_TMxvDG5FaU1KzSlAFdIoKrD30aXzsZ789U,74277
22
- teradataml/analytics/json_parser/utils.py,sha256=JcTAAg0HZP-wsM1vpUkBQ6z_iscoTki61FiiQleI8pQ,33896
22
+ teradataml/analytics/json_parser/utils.py,sha256=hYi2ZLuJbRaGGyIpLUvUWS4ohL2ohS2uPPUcLcH5jCQ,33425
23
23
  teradataml/analytics/sqle/DecisionTreePredict.py,sha256=e-Bislx7JevujMqi5J6EJmAbTzZWb76YVeqgasSmEJU,22270
24
24
  teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
25
25
  teradataml/analytics/sqle/__init__.py,sha256=jyAHj8at7qJVrvHfW1W4DucFZenx_aTv7G0zJVxqb0g,3853
@@ -27,34 +27,35 @@ teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgW
27
27
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
28
28
  teradataml/analytics/table_operator/__init__.py,sha256=ph7pzbwJO2w73nRZiixnJlalgfPu1m2jNhI1zikx5nE,463
29
29
  teradataml/analytics/uaf/__init__.py,sha256=fxDRJBcmkKQvpmQPKEK36U-fB-rP6WbrWmwR-taBzHM,2295
30
- teradataml/automl/__init__.py,sha256=cuycK8Px5u-s3OG6TJPbghFv26LPA73__H0pbA6JHZ4,77100
30
+ teradataml/automl/__init__.py,sha256=cx55kRJ_Sv5XQZZ-Mce1BEDLTn5FXo-rKAkHt0xJ2lU,79825
31
31
  teradataml/automl/custom_json_utils.py,sha256=ROPsq-iv2WFIcz_zYDhHgHKv1I5kHO8ZFvdEhs5pdK4,63166
32
- teradataml/automl/data_preparation.py,sha256=pIxnfPDcrlLTZjQtHmg4yy94jlY9dvv1SKZ06RYeTag,43285
33
- teradataml/automl/data_transformation.py,sha256=My-Pi0-CpCXjicj4S3LTNt8dENfpjHiWtEGBAa9-Auk,38520
34
- teradataml/automl/feature_engineering.py,sha256=bjfBR7_LsjQtvU9ZwV_Fu8zdda2OTsJvBe8dGyaFPGw,84899
35
- teradataml/automl/feature_exploration.py,sha256=DdO3xjOOBbdMFmUqnAwTuRifUvvcD8p-tPlJwl57PVs,21595
36
- teradataml/automl/model_evaluation.py,sha256=efKcrHp46XpwMIVSuy-4r4u4TAYfWUvYyXhIVCtW6jA,6082
37
- teradataml/automl/model_training.py,sha256=5jUqwrZNI7zPTQgxYBzD44DuESq-_0h_S5-3KtDWcpQ,38119
32
+ teradataml/automl/data_preparation.py,sha256=P4sVPNQIylByo6eby4ktwdgL7bvwhPoDNsKxdLVfxyA,44517
33
+ teradataml/automl/data_transformation.py,sha256=KoFbZwp_lOTYcZRrc9q3t6m-jSmFWiDFZMVYI6bpMv0,41684
34
+ teradataml/automl/feature_engineering.py,sha256=oQOLpj0vUL0BL_q2SZTjcD3SmbFIsbLU1QhQtUJf4kE,83273
35
+ teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
36
+ teradataml/automl/model_evaluation.py,sha256=4F-ehLBYBKO5u7V3T4m_D81dWh47yfRk_RCghIlaPio,5689
37
+ teradataml/automl/model_training.py,sha256=Qk4oRjxnb6-EbXHsN5OPScdgIR6lHylwdf9qvbKooq8,44145
38
38
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
39
39
  teradataml/catalog/byom.py,sha256=cw8j2XBaiKC9jip7z1NkpNm_oXqu0fqMiSPG_i9wXdo,99689
40
40
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
41
- teradataml/catalog/model_cataloging_utils.py,sha256=tJ96wxL7GprmlcLqBgxFuQxtdzs-F06mnjA79l2Csf0,20623
41
+ teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
42
42
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
+ teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
43
44
  teradataml/clients/pkce_client.py,sha256=2-lQQTFs-2iGnY4Hf1TGKliVJPjDZ-XBuKFUZxQeNOg,16585
44
45
  teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
45
- teradataml/common/aed_utils.py,sha256=ZzZVZy06IpJ_TxjjlGOlo5R4sa726tU7j_6WeOU2WIg,106144
46
+ teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
46
47
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
47
- teradataml/common/constants.py,sha256=RiuRY9udqdL_SdjrPmQEdaamGPhzWgRXBXMb3EnJrUc,57693
48
+ teradataml/common/constants.py,sha256=DQkD3BsYcZ_Q1Fkckgiumye4_yfavQrQuJyf4hGWL34,57892
48
49
  teradataml/common/deprecations.py,sha256=DAz_DeTMK1ksZFn6bAVm7fRSFfoi3YCTDgmNCZIOWbM,5729
49
50
  teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
50
51
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
51
- teradataml/common/garbagecollector.py,sha256=3wrEUP95QcKJykyiLxViHYC6lrrna06YrbTlatDHPh4,25752
52
- teradataml/common/messagecodes.py,sha256=TLwrbriTwTfCna8WKg_9eSPSgVwzkq6TfNcjRZOhryk,28204
53
- teradataml/common/messages.py,sha256=0n_mpv-EWTZQXUnXtA4IZiZTmkO9yISr1pkEhGTNCZw,17540
52
+ teradataml/common/garbagecollector.py,sha256=uPM2SPwti8xwnq4XntHK2ulgwLpLrUFsEl5_MfsNWug,26088
53
+ teradataml/common/messagecodes.py,sha256=VAQdn3H71PkxobFSrcDoLWp7iiSKcjd-QIqbvQ1pWiE,28322
54
+ teradataml/common/messages.py,sha256=dbzg_XVhjICy4KQdLpaPUgK9QEGj-xTO6d8Zqzhsy08,17615
54
55
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
55
56
  teradataml/common/sqlbundle.py,sha256=t-TvbRgz4029DbA8HGfnNscu0ipoNLOR-MD3Q3peiaE,23641
56
57
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
57
- teradataml/common/utils.py,sha256=7YCrwjF1d1krcMwJpVn1xGQDebrOr9J-HcS67LFm-VU,88784
58
+ teradataml/common/utils.py,sha256=7f0BZSVTCWRtJ6SX48SJ-Nd7QtsWOUvSltw9wWfXNaw,89118
58
59
  teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
59
60
  teradataml/common/wrapper_utils.py,sha256=ynw1n441RX0loAV8lQsKCcbrWtRFPf9x2kvpWzkEBOQ,27845
60
61
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -65,7 +66,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
65
66
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
66
67
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
67
68
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
68
- teradataml/context/context.py,sha256=985B6EpBdHF8gXLC976lJ7MzN5YV8ocSpWTBClbugdk,42361
69
+ teradataml/context/context.py,sha256=8eWoeDmrshWpOmHF0ZbS6XBavKM5AYTQZONQUqme7UY,43359
69
70
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
70
71
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
71
72
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -92,6 +93,7 @@ teradataml/data/additional_table.csv,sha256=hlzG3wvabxcAlgBil8Zot5n2b5BUQGGlSV8M
92
93
  teradataml/data/admissions_test.csv,sha256=p8c4_C88AMJsiHSQzapcHkuMc8yJcIwcuNmmwLsSB5A,675
93
94
  teradataml/data/admissions_train.csv,sha256=DZ1vw3a6nf3QJGSYO6Q_Q_-Wi-v7bj7b5iUTDzcPxlA,1285
94
95
  teradataml/data/admissions_train_nulls.csv,sha256=ATKujpSwylRzqwQhuYk5oJQZnocct67N5IL6k6WbXjw,1198
96
+ teradataml/data/advertising.csv,sha256=E391Wtb9O8ZHEIX3YxovumwEy4rNcer1zJr2g51D_dU,4062
95
97
  teradataml/data/ageandheight.csv,sha256=wZqCAsV7SApRpoa24-p8ws6v7DNsY2_CAIKwZapmLnY,244
96
98
  teradataml/data/ageandpressure.csv,sha256=Ur91-8fz1VjPsFxfgvwWy9yNB3m2aV9qiPRCHkXHXgU,392
97
99
  teradataml/data/antiselect_example.json,sha256=w1V67r47thUYYgE8n0buuPcIQbFnDVPZzcIDGxm46U4,1280
@@ -106,12 +108,14 @@ teradataml/data/attribution_sample_table.csv,sha256=BXE9yIn-MlSqlq9qJ5qi4YpKuwIG
106
108
  teradataml/data/attribution_sample_table1.csv,sha256=xGBzinj_Z1JiaOEImhtCP4l_-UbIvDysjZTMDw0izP0,207
107
109
  teradataml/data/attribution_sample_table2.csv,sha256=iTu9SrEEKwSPNqdgffdhWgukWF_jrS2uN33nKpeiy_w,389
108
110
  teradataml/data/bank_churn.csv,sha256=kPZiXDG9_LDN47lMTzAE5DeV44KSHQpb5nxL1JCziBg,561600
111
+ teradataml/data/bank_marketing.csv,sha256=udShSyWloOBb6FcYdxVFJnYGuG95h-ncJhIf9BsAo_4,930146
109
112
  teradataml/data/bank_web_clicks1.csv,sha256=mVtjtto25BiTTDOwEfSbQdjsIfaYSwAIhGn1RMakIEg,2164
110
113
  teradataml/data/bank_web_clicks2.csv,sha256=fUBohxq4IMv25VxRiwb3Y1EimYJyv7CofQdsOcrBuQY,3810
111
114
  teradataml/data/bank_web_url.csv,sha256=kSEx40OV3cdnRHiOZGkqPvrstyU4Fssh6KcIa122qW8,4715
112
115
  teradataml/data/barrier.csv,sha256=KDTOFTcPlR5OiyIJ4abT7NvQI0fU9JM5de-B9u78uWk,43
113
116
  teradataml/data/barrier_new.csv,sha256=AlNzJ9iUBHuBCZKjhS2g1VZS2tiqk7B4t3oZHCHY6Rk,73
114
117
  teradataml/data/betweenness_example.json,sha256=fXlQLIfU5fwMTH1TWP6UGP6QicwwrHX5WI7pL6XkNFI,214
118
+ teradataml/data/bike_sharing.csv,sha256=nh_5NnwePRIdjShn3IBkiZcwpyeNHJ92qRdPj25_AV0,57569
115
119
  teradataml/data/bin_breaks.csv,sha256=7IOmKpk4ov_dPO9nZqblAPxJa9Tk0MidC031SBLw9nc,43
116
120
  teradataml/data/bin_fit_ip.csv,sha256=X7AL7cR7ryQVwbwllwb11Dm3mSd5FlQWbtWCJh-HXxc,100
117
121
  teradataml/data/binary_complex_left.csv,sha256=W-9jjtc-t6k8ctNvSBoS9aQb2trgn7af4A838nE7kFQ,251
@@ -123,6 +127,8 @@ teradataml/data/binary_matrix_real_right.csv,sha256=p6BpwbkLzfFP6mlSqdE3P8yqQ-eS
123
127
  teradataml/data/blood2ageandweight.csv,sha256=TnIFSWXQzaOR-PjoX5qN58-G3z2x66LpbCAFnHN7yiY,506
124
128
  teradataml/data/bmi.csv,sha256=9TvDxRlpE6PDIjvT7VNVwnB24UOJSMPxZqAqIi6bCck,8318
125
129
  teradataml/data/boston.csv,sha256=nLO7wxYIG1xUXFBOzMEQzFyT2AGEzJm5DW8NDfVqinU,37155
130
+ teradataml/data/boston2cols.csv,sha256=qmb9XFJT9lhP9r2v6qnRQFZMUSBZCxRykyFABy5lNSk,17401
131
+ teradataml/data/breast_cancer.csv,sha256=YJjbRrFwf5PWU7Al4NB46Y2yXNyfJMrZ06YDMY-ySTo,125141
126
132
  teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
127
133
  teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
128
134
  teradataml/data/burst_example.json,sha256=ijC2YaBUGL-ZKR2lM3CHgBTPHYXr4LpTrXzhHzXhcB4,434
@@ -173,6 +179,8 @@ teradataml/data/cpt.csv,sha256=IMQwhawu2su6zaOkGyHQk7IYGjH-A8jqJqIwUCgkMfI,908
173
179
  teradataml/data/credit_ex_merged.csv,sha256=9yoTcOJLvM4iGlu87F2i1NzT0yjjHEugafgRAl16hpw,10493
174
180
  teradataml/data/customer_loyalty.csv,sha256=Z5YW-Apil6Xz6MgTS12kxJYptQXo5dLH84vfWuswjSk,8663
175
181
  teradataml/data/customer_loyalty_newseq.csv,sha256=ufn_bjCqWoLaZ5l0ZSVAdWfboinduvc4L5jwiGxZAFc,805
182
+ teradataml/data/customer_segmentation_test.csv,sha256=8iaPDIFgn249mytmwxOi8cU_FnzRo0EtaRV_SXrxmP4,125982
183
+ teradataml/data/customer_segmentation_train.csv,sha256=U4aGWbqHv2vOfPVMT1ga4FjMj--Mdlp2CZAyLMUERsE,403494
176
184
  teradataml/data/dataframe_example.json,sha256=PMBl3s3eNuQ_kvPDTP5Zyzt8eAgdtLEa_8QHAc3N6p8,4005
177
185
  teradataml/data/decisionforest_example.json,sha256=USwkJRLKXN-OFixZto9gkmh8RVlnD7Pug_XkwxiSgPQ,1188
178
186
  teradataml/data/decisionforestpredict_example.json,sha256=uuvBRtE4Ftc2UbMCfJtTbXXyjd16PqbX2J4SfqC7INA,1364
@@ -212,7 +220,7 @@ teradataml/data/genData.csv,sha256=y1Lvbme5Gp9JCCRkootSCR5xS_eBQNVkzgzgQQYEb90,7
212
220
  teradataml/data/geodataframe_example.json,sha256=r6ENcly45GWH-Ma-5_vASZCkUlIwaX6RLe6PB_yJRCY,961
213
221
  teradataml/data/glass_types.csv,sha256=4roe2TEESLUV5_aj9D0oQvdezYMqcSHFirjdbFV4FTo,10054
214
222
  teradataml/data/glm_admissions_model.csv,sha256=4NjcVBiKKzb0z-v4aSrC5odT9sPf0FkrvBOTKQqmT-I,753
215
- teradataml/data/glm_example.json,sha256=5Kew0xMh6Xh1kjhJBbPYVGqgl1VA2YtbFD58gNAnsXA,988
223
+ teradataml/data/glm_example.json,sha256=D8q6DQZ4IksWfyR8v0pVmORqu0HnBwdAo_G6YTM6v40,1859
216
224
  teradataml/data/glml1l2_example.json,sha256=XSCQriuLf_gaqEXgUKo_a6xc3_4hBRLEKJPr7DXYyXo,907
217
225
  teradataml/data/glml1l2predict_example.json,sha256=GZJpQ7dWM188f1spjmItIN5u1f_VCFI8cAShl4tbhdo,1782
218
226
  teradataml/data/glmpredict_example.json,sha256=LbPzvK5doOjsamOR5cUSHpg6XU0X-I-yliV3hDFsoBw,1911
@@ -235,6 +243,7 @@ teradataml/data/housing_train_attribute.csv,sha256=zLd9bMMthooD08bxtkCxCyTBFWND0
235
243
  teradataml/data/housing_train_binary.csv,sha256=Xuj9uCs4iePRSQRbtL8-lACAfvE5qw3ANKNxJI-SR_s,29062
236
244
  teradataml/data/housing_train_parameter.csv,sha256=1N3jDyS4mLvbmFSf3lEBkptGJzByuSRPnaXUWpcI-F8,59
237
245
  teradataml/data/housing_train_response.csv,sha256=GXe8a4qFn_cbWmga8KhxRvQTnceyY7JMe-0OJhfEnzE,7646
246
+ teradataml/data/housing_train_segment.csv,sha256=bdgjb2IdgyouRiblq-0jg2L5bL27mbPYqZ0RO-EDNn8,11332
238
247
  teradataml/data/ibm_stock.csv,sha256=nY85WYi9rtYlM5eStAKVRVPIjYAMN4fZ-CVSzbS6pL4,9521
239
248
  teradataml/data/ibm_stock1.csv,sha256=GZ7woXK6ss4UYhKxWyjWiFitS46GHT2D6Cp1YjSu4Zk,17747
240
249
  teradataml/data/identitymatch_example.json,sha256=EQnoTmGowYaDveMsmufATtecWdF3jG-vsW5H6z6eT1s,553
@@ -242,6 +251,7 @@ teradataml/data/idf_table.csv,sha256=dPVvU7hx1ELtkAxnGDJFGMvF6-lgXO0OQiPnD_zEbkQ
242
251
  teradataml/data/impressions.csv,sha256=gK1lAA4CnJmjB65KRhCmgAy7h5nKwDyQbAl4WTem0Yc,2483
243
252
  teradataml/data/inflation.csv,sha256=0grPat_poXsU6ZlSRtpFizcGPwLF0_DdEVS8IcmjKBM,553
244
253
  teradataml/data/initial.csv,sha256=0OP1Xopmge1wyQsMpqBDN1XIUH2vlTnky1erV-W2Hq0,53
254
+ teradataml/data/insect2Cols.csv,sha256=A8h4ng_It3rOBwJoxr4LtrDDD-GdjX1vl5Xi7hwsCo0,671
245
255
  teradataml/data/insect_sprays.csv,sha256=akKmsfoEkiOqRTi_7i-UihnJkPl-urUaSVlEhmSz2ZU,307
246
256
  teradataml/data/insurance.csv,sha256=OI7_Z5VX0IrBn0Y9Al3l4LStxIJTfIRW0Zk014Yh_Uc,55628
247
257
  teradataml/data/interpolator_example.json,sha256=G7s8es8pSLne_4cD1q6GCSyU0OBxLp1toUHp16Nrync,345
@@ -257,7 +267,8 @@ teradataml/data/iris_test.csv,sha256=zSYepP8ZX0NxbE2psLuNvw3TDCyYRAj4ETcQ-3bPruw
257
267
  teradataml/data/iris_train.csv,sha256=jNtDylLX7nSGrSKQjQrTJIHqLcLp1e20Fl4j5ds_MTU,2626
258
268
  teradataml/data/join_table1.csv,sha256=wmq7t19KVRO6ErYcoWLDMUtSQVwL7J-FRK9_0gHIbFo,76
259
269
  teradataml/data/join_table2.csv,sha256=OVyS9lIa5ZoGEbxpN1DRpasAGW78BgNzhv4Q2bJgvVQ,95
260
- teradataml/data/kmeans_example.json,sha256=rFuKvwZRBAwwQLPJm9DuCJlra0ZPgVjA2WUgDY5blns,346
270
+ teradataml/data/kmeans_example.json,sha256=UDWmnpF3Rjey9pjnvpYk-fPsp2tj2oqSwXgD98LTrTc,434
271
+ teradataml/data/kmeans_table.csv,sha256=fAlU42s5pNxDEzyTQeBYIchopaeERy0FRot9mLlfeg0,91
261
272
  teradataml/data/kmeans_us_arrests_data.csv,sha256=VPIkcXCbueSuGesRK4e4m9QKNSjfj5RVtjZIwgtPoyM,1479
262
273
  teradataml/data/knn_example.json,sha256=7k8aZ6iTbszx6OgImLWWJYLtJxr6NTAiNopVS16_DzY,390
263
274
  teradataml/data/knnrecommender_example.json,sha256=R8XIteOmQkkIXHtAYiO5qm03_3tUk4_ah2HXK1kYDwo,117
@@ -322,7 +333,8 @@ teradataml/data/ocean_buoys.csv,sha256=IF8hMlqQSBl7xP4ELiC3CBWE33zh0vy47wWZ5DZHV
322
333
  teradataml/data/ocean_buoys2.csv,sha256=5OsUz_8Q5xD9MedPi5MR81TuJg53eC2nu_1_nttq_f8,1556
323
334
  teradataml/data/ocean_buoys_nonpti.csv,sha256=qE8fQs6VJAQJgRFk6jc4xR6Rp2U1AmlI39cGjcva3cg,1030
324
335
  teradataml/data/ocean_buoys_seq.csv,sha256=jIU12R7mB7empv5tQhfvgOtgydeVHcVfzfmSEd78mSM,1471
325
- teradataml/data/openml_example.json,sha256=HT2hzC7mh8ku4KNViRqkSJuDcRC98sB4Wz6IlRD-ops,1634
336
+ teradataml/data/onehot_encoder_train.csv,sha256=8pG8ucUvum6SQhOKPnwUgPlEOAFDsmdBgA-Qo8XAPrE,41
337
+ teradataml/data/openml_example.json,sha256=JUEzOD6uOgg7ns6Pca3AdlLP0PS4Sl1eZjb3qkhDLmc,2582
326
338
  teradataml/data/optional_event_table.csv,sha256=FJuG4_g7lIqi3ZKLNsUb-Y4uT54oceGjlCT6dUApiOU,58
327
339
  teradataml/data/orders1.csv,sha256=NdYv2BQ0ZGY6DMwauduuecFsiBonOne1nT9vhEyT1NU,180
328
340
  teradataml/data/orders1_12.csv,sha256=weWu40ZXGoGrqrU0MAslXuQUXH5dUs3872gsqle6Rg4,129
@@ -363,9 +375,14 @@ teradataml/data/sample_shapes.csv,sha256=TsewEbNMysCM2dVbdn81fSBRQCmZ2Vo99izJ01P
363
375
  teradataml/data/sample_streets.csv,sha256=_LJeoG7nH6wHGsQFldOn-O3a2Morm-Hg69o0qbvpG18,123
364
376
  teradataml/data/sampling_example.json,sha256=pnB1Lzwt5baZIBDU0sMLKqnGDzcOoVQ-5X26PZSboDs,269
365
377
  teradataml/data/sax_example.json,sha256=b9FN__52MuTp_I_y54LMpwtpt5x-rgdD6Rdp04SKKZU,169
366
- teradataml/data/scale_example.json,sha256=8YrZW37ZdIxQGI5ifVclGDBCE9FFKQAJXi3xQrqEYF8,669
378
+ teradataml/data/scale_attributes.csv,sha256=3OC7BRqhQohXO9OYfjyzYY_K1G-gs1Y6KdMV1MmONRk,37
379
+ teradataml/data/scale_example.json,sha256=2KJEsG7CXoXkQD5qT_x9BtmdD1vkRwa2aij53r0VvSs,2152
367
380
  teradataml/data/scale_housing.csv,sha256=yD016RxlF2ldgv6-C8z-liooe_icioZNxiFEjQjRQqc,363
368
381
  teradataml/data/scale_housing_test.csv,sha256=xW9Z3GBnn4j2LQTjNQkF8xurwxarYxEy3dM99zCviI0,219
382
+ teradataml/data/scale_input_part_sparse.csv,sha256=GSjSmKDBjAwHIL9rzWZDTAlwRwxd3gwx-rHxhq_u7dM,519
383
+ teradataml/data/scale_input_partitioned.csv,sha256=-uE42DZeIhOe608qY1yu2wsKTFm5TPNx5LfZSSa1BbE,1229
384
+ teradataml/data/scale_input_sparse.csv,sha256=u3SzzEX3uPQqUpIxFjiFdvdKbf4uyGXCLN5FDWzwXLI,189
385
+ teradataml/data/scale_parameters.csv,sha256=u9tbnBSz5_w-GmfZlVWs-W8MWu6mpht0bWhnS2efPhE,78
369
386
  teradataml/data/scale_stat.csv,sha256=6XiED8g7B7iCdJy9S0uNfKaCqE_HCU3l_u4jgAz0Ca8,308
370
387
  teradataml/data/scalebypartition_example.json,sha256=Ps1ETcaILx0JkxoKjViYmQarwC6Lls6yzVf2VWq5hxo,356
371
388
  teradataml/data/scalemap_example.json,sha256=0HRJoy3-qesjKxLsTtAKqiDPaIGXlieauiBiE4uPBnQ,353
@@ -415,7 +432,7 @@ teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqr
415
432
  teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
416
433
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
417
434
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
418
- teradataml/data/teradataml_example.json,sha256=YZG0EjiOnELm2Qbo5yoGEULpEm2STK1KulN7Fv0WBpY,39171
435
+ teradataml/data/teradataml_example.json,sha256=H1cfD6eJH8uv8R9DWs-00TbIEQeEN5owExEHhWyko6M,41250
419
436
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
420
437
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
421
438
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -477,6 +494,7 @@ teradataml/data/xconvolve_complex_left.csv,sha256=1QR-q2BMst4TOB_8MaCadTpuijCCtp
477
494
  teradataml/data/xconvolve_complex_leftmulti.csv,sha256=iDgLo-vhPBlZHs1JNqjFzTiLm3MHsDnZ8ulEKRTf5xY,281
478
495
  teradataml/data/xgboost_example.json,sha256=nPMG94PCras6P0JC5bkk5Boa0Fs3pNnz3CV26piaCkc,891
479
496
  teradataml/data/xgboostpredict_example.json,sha256=-XQ7o9eHQjBoAl3zobM6yvuKE6eMq95TOqD9n1By8tc,787
497
+ teradataml/data/ztest_example.json,sha256=HvBkbCcSKcSPV1RuEsxe8utaHT8xiXfrt90bgjMzexY,345
480
498
  teradataml/data/docs/__init__.py,sha256=5XVCpXHM3si13drwS1VzLUi3Jq9aAgvCCn8O0qs61as,36
481
499
  teradataml/data/docs/byom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
482
500
  teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=WtpNV7dOf0lJ0J28k88Qs_TmrIFtOiB3QMU-sHIeEL8,8921
@@ -509,10 +527,10 @@ teradataml/data/docs/sqle/docs_17_10/NPath.py,sha256=cseXGtYLU8j2G2f9phS40zlzY0u
509
527
  teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py,sha256=yGvYOiQekom0ph2hOGrHqWmHEjk8u5_pI8yHQYQKwA0,5372
510
528
  teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py,sha256=mV90klHkHEdTybUFYTF8b4Gv2UZ_o9Q7XV9UhRLSv1o,8102
511
529
  teradataml/data/docs/sqle/docs_17_10/NumApply.py,sha256=SvKyxAyXSxRLHgS5E8KHCHACikPJqq2kLq1qoz5Iy3o,6327
512
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py,sha256=dAffOqeG5RS71va2Pxpf4Rr9eeqC4c4fOXwTDxjw4UI,6023
513
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=suiB4t0xNt_5B0eyUrJnY9LNYqdCaYYXBf_f0OImq-I,4509
530
+ teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py,sha256=CMdTjsd4Z9ulm2P1-k5yILgddwmNMeCFqH1PPdQ9Brk,6177
531
+ teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=Zt5XWW-_QnEDS9VOLlAYOewAnxtU36JvgtcfVoKGyVo,4874
514
532
  teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py,sha256=ttKL0YXjGXMpnxjwHPG0b3THC3qD1oscjKxh7n3wR-4,7419
515
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=q8LsJk8xZC0eOvEt_dkyBDGqywEUCcNIpkKJ3YBjegE,4558
533
+ teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=_LfHzh3pGNzNrST-ancdrVEml4EVZjFUlWN8_Emsk-4,4920
516
534
  teradataml/data/docs/sqle/docs_17_10/Pack.py,sha256=VqHpY8CnKUMXP1glJWaKOtFUYLQfc4c5Kv38v-dPYto,5368
517
535
  teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py,sha256=kvYnoL910OM1HKLW6eUjiMe9jgx0JgUexhzj4aziQs0,4927
518
536
  teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py,sha256=OCez0bsR99XeLyAx7vMSa79BWmpb4nmYdZFXVbCL0ps,4507
@@ -535,7 +553,7 @@ teradataml/data/docs/sqle/docs_17_10/WhichMax.py,sha256=mvdTMss1ydf09kzO-FoHB2yT
535
553
  teradataml/data/docs/sqle/docs_17_10/WhichMin.py,sha256=td0Q5LiiP-BzlxA4uhsy4wF9qLJ4ZLUWRvq70LxG1VQ,3429
536
554
  teradataml/data/docs/sqle/docs_17_10/ZTest.py,sha256=rWwAe8bEWYiPySlCJkzmMkCSce6D3nDECRJfqNaI1uI,6476
537
555
  teradataml/data/docs/sqle/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
538
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=l7TsweBXh3-Ok0EGggvxZasDrNpNHA5hMRMVjuKg528,5280
556
+ teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=l96tqbGqoaCfLkjiK1vy6zIOagOpuWWiqnrUQdmIgU0,8035
539
557
  teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZeWMiRnOPw07_ZUPpd7GJ8,3502
540
558
  teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
541
559
  teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
@@ -544,23 +562,23 @@ teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py,sha256=safyFvuNm1BNTG
544
562
  teradataml/data/docs/sqle/docs_17_20/ChiSq.py,sha256=ibyMwPKJnBkVmedHXa3oNsUEqsUCw9NSkyU2KS7WPAM,3811
545
563
  teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py,sha256=9QqTNMl1ymjhe4C9UF0IGPbHRyaBzvS1i43kyh1hCQY,8178
546
564
  teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py,sha256=XsOQR4KIfmjBGbESy2p-KfKs8kiFmwnrxPBR5fDf-u8,3691
547
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py,sha256=EVg4d3iIsTCYUBRuvMcy5czoRWOMdnF3hoGNpK1O4Dk,12428
565
+ teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py,sha256=9J0Wmmwx7qr6Z7XoxEN4uafpxorffaX15zuiGU41xlI,12525
548
566
  teradataml/data/docs/sqle/docs_17_20/ConvertTo.py,sha256=aG3ZrRMxs75S_jR05jrHZxzl0RPBk7Mw_a2qXFE3UVo,4698
549
567
  teradataml/data/docs/sqle/docs_17_20/DecisionForest.py,sha256=1QWNxf0Dj5-FTEW9q2L9UgqAvWqSmKPHwaKAI6xZQwM,14553
550
568
  teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py,sha256=oK7pP1wVKogUnpkh2v1d2hir-4aluniy_ZEkhcuOo3k,6786
551
569
  teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py,sha256=y0grw0Kkg85y38COidwsu9do4HxLxhrTzDNjvd_pCao,6454
552
- teradataml/data/docs/sqle/docs_17_20/FTest.py,sha256=R-fMp0ABfkzut3I0jw8uOXBTU6Erxctg-Wrfn5ASTaQ,6970
570
+ teradataml/data/docs/sqle/docs_17_20/FTest.py,sha256=5RIr24vBtFWezcmaI7mZQ2Oz8N7y6KRLppvCfCz92rM,10356
553
571
  teradataml/data/docs/sqle/docs_17_20/FillRowId.py,sha256=pNMOlZe5dow7NxglD_Vq6UOJXJihUHqOxtOhVT6R_zM,3533
554
572
  teradataml/data/docs/sqle/docs_17_20/Fit.py,sha256=icqA35RoP_pY-qJwv0MUpQDDtdMh6rYsvPQaIXXPMvE,3822
555
- teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=IOZN2_MeJd1zXEkjhXdLk6vX0o9rnzSKhtrvwPW5mFA,18168
573
+ teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=5Y5uLJCaVXQTmBJoDVSiQNxV_TsEguO75s3gCbZNtEc,25398
556
574
  teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py,sha256=ezplov5qzdp1BiC4GP_SWeFD20a5bi29sPW6WJowhHc,21000
557
575
  teradataml/data/docs/sqle/docs_17_20/GLMPredict.py,sha256=piOwuf40UFDnpUOaFp09z4ebWQXcoc3ei4V1svCd8yM,6405
558
576
  teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py,sha256=g7SX2d3BMOdW1j43Qiw6OZvrZ9ojpzWRI10CP8mMpOo,12103
559
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py,sha256=ZGTcD0sVkaAL3fLp7qXq9CEd70f7I8WiXRbLUulJ9r4,5577
577
+ teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py,sha256=WPLDjcGefBlXwOrvsmLxoUpixZrpHnVKwkqS0XnZLtg,5659
560
578
  teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py,sha256=b2lJtNqaf3nF47YOEDCnkWJ2bedtQ0zttwcEKy-RFZc,4968
561
579
  teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py,sha256=fpSBZOSNCrpDK7VLlhFdr77is9fH5dQzfd7WaJo8tOY,4799
562
580
  teradataml/data/docs/sqle/docs_17_20/Histogram.py,sha256=VdWTGkD3k4FSOHbrS4x5Vv7xLhjxZfPBUcx9O0zmbjk,10563
563
- teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=pI1W4zRe1TBvdQVo5UXHvHIq8rc9VL3FQi9EKJarEnI,9202
581
+ teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=EDv-GI6i1V58ScOvU8PWAQS1hp-N9pJzchWLBIZpu2A,11155
564
582
  teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zCulwJhMqaT1qHvjQc73fcdfuo,6115
565
583
  teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
566
584
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
@@ -569,13 +587,13 @@ teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6
569
587
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
570
588
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=POgE-rQseF6eUxBisxDJfsrVvWWXWNxZ9Zb10aSCrsA,8157
571
589
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=cNW60bF1i_rk-KHgR0p8RmqZqoFujtuCjFv2huZmJGU,5724
572
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=PRXO_DaA1gMjFo2Ti4JyxiQAwyevUzCDUM6215oaRA0,5175
590
+ teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=3l0hOE1VCZfQ2XyAR-oOjRQKWjBaLfwgXo5XfBnqZkE,5236
573
591
  teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py,sha256=7VveajQ0jMoRH-TxP-E8N_9rLLJJgwVk0gUNIwtB2a4,4889
574
592
  teradataml/data/docs/sqle/docs_17_20/NumApply.py,sha256=78KeTUal1gXpfHtaHjiyTAV6VPW_ZIetS6whCpF3bkM,6334
575
593
  teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py,sha256=CnYQ_YYHHL8mnTeZRxe0f88Tuq0XAs6MDQzMqX403MM,13946
576
594
  teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py,sha256=hQsae48P4I7Yg7ockkv73CcOwISPRjmEdGd02-_ejJM,8464
577
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=kIjDSmZs9x9XNlMcrh4hKmxNO-30dR_JYJT_kkJ7drw,10910
578
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=9OS5wnwtk5LBO2CeVqhDazBGkHZQjgXwyF3zqP_zCsU,5060
595
+ teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=V-dnV9Oo_yCyXUe9B4YjrO5Xi5cqIBc50NZtedBf9Nk,11265
596
+ teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=RqX_iobIa9vm9f5hb-OLDO4hDTIRyvZXlEQHyyYT7YY,5425
579
597
  teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py,sha256=Yg95-8bdfdegy_9eKUAadd4kNMEAULwkL5HodWksW1Y,10375
580
598
  teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py,sha256=kkIlM-wYjgfsNVplzX0YUwDbkc5lcjsusIa_Xi5380E,5874
581
599
  teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=iHi1ixIMe5Tzl_bxeLS8gi2Ab_o2hidRCtFbhSwOiQU,8197
@@ -584,7 +602,7 @@ teradataml/data/docs/sqle/docs_17_20/Pack.py,sha256=-yCTy4g-M5AICn25U6ajFJgHsxb1
584
602
  teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py,sha256=jili0hiQiuss4hiZHx_bbbOc12EFfUC1NmycL7cz-ds,4934
585
603
  teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=kqhmU0GgvJvNOJV7nrJNNDuqZImJZJb1XxHJFwBa9TQ,4979
586
604
  teradataml/data/docs/sqle/docs_17_20/QQNorm.py,sha256=ew7OnZlRDKGYpZXI4CeShkT_t7NYEqIshpv54QR7nAM,4692
587
- teradataml/data/docs/sqle/docs_17_20/ROC.py,sha256=PBBHYKLW3Tl1uRVal2csyMg72neKNgMKMNi9yPLgUkA,6810
605
+ teradataml/data/docs/sqle/docs_17_20/ROC.py,sha256=QIUmtHk41Ph6-eWbHlLXr3EL6SOWLjSqHNTZr6XVYgo,6841
588
606
  teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py,sha256=42pqcLxvr_pBARjVDD2iXprKiepluawmiNj4dQnpSnM,6692
589
607
  teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py,sha256=3my_ki5WQA9U9qQiGAw10tgkHsiNcgWa8b75DdhDpqY,4813
590
608
  teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py,sha256=em1fAbW-Bry9KVwG7zFq1nTGSDTMxg1WHc2e4wsXSxA,5193
@@ -593,10 +611,10 @@ teradataml/data/docs/sqle/docs_17_20/RoundColumns.py,sha256=57NVyAecTwnbY9pZnCQf
593
611
  teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py,sha256=wdbFuCdeJslfSq-fD3OU20JHEjdOC2WXF0ljukymuNU,5348
594
612
  teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=9Ja5ev4neABpv_jJagr34AAXyXve0b1gI-r8VyNOBw8,4994
595
613
  teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=txuwmP54us3xk5UzTYKrPj40bZYMGWzNhE3glmvo6_U,18482
596
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=5vpcUcjfKGxrDQ5cw1pnd3l2uhvKLWo-TDTQxhqeV9k,8823
614
+ teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=XR9sK9CxSNdK62c4TqFa9Jq15aAfonZ2S2tRUe4orYY,9245
597
615
  teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py,sha256=aKczZjm_QTN1jVFv3Ty1eMYzG6lrx8Nz1BinyItNhjQ,7102
598
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=qtVCAR6rLjSovVa4RXmPt7cemLuORzTgtNt_3hlylbs,11144
599
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=x9SynimB9X22apLjgIjhZV4j156ylsymmAMbAq7Yzi0,4707
616
+ teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb7Z4NtY0_1ZlRPvPClVc,16643
617
+ teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
600
618
  teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
601
619
  teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
602
620
  teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
@@ -605,7 +623,7 @@ teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZn
605
623
  teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=ZbYLGiyLJIIqqPCwZ79jHjPScarkWE-IEutR2y-yrDU,7250
606
624
  teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=J-m4qiPM7BhFP4b3ZaEf-uvwaHzQor-mhp6PSU1C4yk,7576
607
625
  teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=Chb-269nY2d94wY8tw-7uJ3CnV1uoXwzQidBZhncebk,10207
608
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=g-xM7e8XhkvnDduBciYG28RZyyvWmL3JwLN2exbBKqA,7974
626
+ teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=OH-hnCDBD0vSCJoPiktwNqfenPt_9RHZxH4BOVOEuv0,15433
609
627
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
610
628
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
611
629
  teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=FwCdeIrYKkeOUYV3m0e8Z-2z_Zd2b5OsIoALE65DSs8,7559
@@ -617,9 +635,9 @@ teradataml/data/docs/sqle/docs_17_20/VectorDistance.py,sha256=llIAzHu7R6sg1oV5_d
617
635
  teradataml/data/docs/sqle/docs_17_20/WhichMax.py,sha256=Df-nQMDQ6C2-ncgWO6g9rjUbFdorbHn4_s55XorIq7I,3455
618
636
  teradataml/data/docs/sqle/docs_17_20/WhichMin.py,sha256=ChvXLNJP7hLdKtOVI6yNkxrspE385H_VcGX0x0Tsjwg,3436
619
637
  teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py,sha256=3xZ8kSch-_UvYLzM31tqgj4y1GxZgOtMlcRwTkiRADk,11212
620
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py,sha256=t-Hz0jlDpfHEMYGgAnVmjtGv9_H46SPzgREBbUa71i8,17407
621
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=VkM94spF5UG15hHf4lDrlhNURsItEMdsNzziU3KGYw8,14348
622
- teradataml/data/docs/sqle/docs_17_20/ZTest.py,sha256=m0Nlf8IV_QqIEm3A1SFYxWRq8UtdUggA9Xyog5tkYb4,6483
638
+ teradataml/data/docs/sqle/docs_17_20/XGBoost.py,sha256=Lnr6ZRgAeTDD_0QVXmacEU4Uea3d9-ZzMl2S0OxF0hM,17691
639
+ teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=1W2FEBRrufRAouJy1mp2Yw4yzGZCsMN6EQNZecSDHeY,14557
640
+ teradataml/data/docs/sqle/docs_17_20/ZTest.py,sha256=934Ia4OJEAN2f9vK8X--qzROxtrtcfwl1rjabAR1_RQ,9322
623
641
  teradataml/data/docs/sqle/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
624
642
  teradataml/data/docs/tableoperator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
625
643
  teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py,sha256=dD5r4flkzgltPKgp6UjmbpFi2qVjCN6Qvh6G9Q9LUIA,22901
@@ -798,7 +816,7 @@ teradataml/data/jsons/sqle/17.20/Pack.json,sha256=rGLF10fH5fpsiK9DfNu9YxMuyC9K5z
798
816
  teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json,sha256=sMUK3DVXTHI_bIxlHxyDesZQECQTKpSRacKgVZhsoGE,6839
799
817
  teradataml/data/jsons/sqle/17.20/Sessionize.json,sha256=IIA23vN016aUNl5IFeRQj3hxtmqNvjnwL96fjPLUXlo,4469
800
818
  teradataml/data/jsons/sqle/17.20/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
801
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=tqH_4v1cKahjNwjl2T4FZCDF4IyYA6bgtXr-ugxdNFA,2393
819
+ teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=_tONpTLLmul5MP5t5PhLvebgtjoN5mLX61BMZPJD7rY,5268
802
820
  teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json,sha256=SXC2_jSQABC53QGQ3S9gox8j4DTq65WpNBkHwP6F7SE,9292
803
821
  teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json,sha256=SG1Dz-m9B37B5nK-aubz52QulWgzZq_O_nUllVWUaqo,2468
804
822
  teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json,sha256=S5iSTpkJWGO07FkMlmv2KkRtkKcAt8GMdIkJF4Vt1Y4,1761
@@ -809,23 +827,23 @@ teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json,sha256=YTrdmY6_mEEPeP
809
827
  teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json,sha256=7CdjCnCcafWf8LvQn8pPcdew3Qx-M-W9L2vlP1v3tWw,3499
810
828
  teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json,sha256=pVZTBZRhGTiJPjz4ZL_Z5vtkwlcaeH-SMz4sLVEDzQA,14062
811
829
  teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json,sha256=dTRx9AQjcrW3IsT9fjxAEchGEr7kk0uGw63_35dFqyI,4872
812
- teradataml/data/jsons/sqle/17.20/TD_FTest.json,sha256=QuIcgblLUcbxUlRuOfQyH85LWkbTf-zYWy6xb958U8Q,5622
830
+ teradataml/data/jsons/sqle/17.20/TD_FTest.json,sha256=5uR2I1hDVt-P0GQvhZ8a1Uv-3HDnPUtvFIQYgziELak,8860
813
831
  teradataml/data/jsons/sqle/17.20/TD_FillRowID.json,sha256=heHvZH6zgMjvyZNjkV1UmhKBFFE3raYlKc-bNB5n8eQ,1601
814
832
  teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json,sha256=q8UMIsF1aElG0Zrb5bXjCXDeJS1xk2sC1AwbsvDPAOY,1678
815
833
  teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json,sha256=j5xySuywYT87GSyLyuf1wiJmH-g8KpwTCPdvyK2vbM4,2425
816
- teradataml/data/jsons/sqle/17.20/TD_GLM.json,sha256=_RePWSHWI_Hx-pkICWiYbmeRO-lss0pVK1iYw_DVLrA,20206
817
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json,sha256=yX1x-NpiogDXsphKdC89rm8tD8MsMlpGuyJnbtPRVWA,4431
834
+ teradataml/data/jsons/sqle/17.20/TD_GLM.json,sha256=INZ2WJaCE3ljoY6gGyPEQx-r452xAc875redOxR_La8,24199
835
+ teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json,sha256=2DM0JH-ktqFmqIQ3qeX0XdmqY8G7ZTiqNphdxcVf7sU,6762
818
836
  teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json,sha256=rYAPZS0p0B1NRxyX4RK25Uv04MuiTXmq-e5xcleRybM,18973
819
837
  teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json,sha256=_p9C1F8TZjJL4T5hZ_f3nkUBP87hqC0gyoSDCF59X4g,5810
820
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json,sha256=ufC3xW_hyaTpNIJN40oSQDsRyNDgTkFb6aTjEDceAmo,3252
838
+ teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json,sha256=-oBoiPUda7B69f87LxeiojbXxnwPGikEa--xoYe4MKE,3318
821
839
  teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json,sha256=BFzGpf--iYOJTtjlyuQ8UAU4IayNJXzDhysr-S98zeY,2635
822
840
  teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json,sha256=SuWfeL9Gj5Me0I-N6hoGeao-xq5Je5gWpK4agwX2gyc,2643
823
841
  teradataml/data/jsons/sqle/17.20/TD_Histogram.json,sha256=maRiTySFqhKcfzcH0VWigcF15afMW4LLcNkSnRHDVBA,5841
824
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=28OaSdnVN10uvz9PhKqT-whvDm-lkqYqZknDRi3gACE,7571
842
+ teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=1l_vfCZtGRgzlKMuNDIy-H9gjC0sZNC5thzwEIIc930,8297
825
843
  teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json,sha256=qvKPOK-wOMyd05JWA7RmvkogjObHqiVZr4b5M3XkcBI,2976
826
844
  teradataml/data/jsons/sqle/17.20/TD_KNN.json,sha256=0pF8hgOXtR4i16dkHoK5DxDarkp_OT0vi62sv3VA27k,10439
827
845
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json,sha256=2Ri0K7ZpVsQIJCa1f8Rjpy97oKigxrN-v1AAYMb3ofQ,4385
828
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json,sha256=rSuPrfRVJSVVcVEJtQ8ni_O4zwDogZcdsCpGbHEhzgc,3416
846
+ teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json,sha256=ybn6aYRmo9dkBprs27ol8c6D4gxpJCLv8PuRIVctp1g,3458
829
847
  teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json,sha256=rWq7tvhrOKdvsD97rrFs4RglPOC-JdidCunKAoShZgk,2708
830
848
  teradataml/data/jsons/sqle/17.20/TD_NumApply.json,sha256=9tiM8ju9kF2fMYtCDOMm3QzZ7GaMk4rIZbjXY6jmrdQ,5212
831
849
  teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json,sha256=1huR_7WgqbvjJvuMhGXtrVjVdF7runEa2Iu-aYFUUKo,14584
@@ -839,7 +857,7 @@ teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json,sha256=oVZy0WkEZ
839
857
  teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json,sha256=bytxobsmHEtTpSdGWd2UpkbRQUSBaN0_s0009jQ0weM,4110
840
858
  teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json,sha256=ROjgTSShfLqomsJxCtade3xXoWWUfKdOJ_X06RPuOvo,2524
841
859
  teradataml/data/jsons/sqle/17.20/TD_QQNorm.json,sha256=C_ZGyq9pZb9HPpm-TEz2bnX_Z4vGzFo7RcVMgyu3_q8,4133
842
- teradataml/data/jsons/sqle/17.20/TD_ROC.json,sha256=IBLtjHmbsC8e4uhT5OafKmsLmbVwJW20mepQKu6mhJc,7052
860
+ teradataml/data/jsons/sqle/17.20/TD_ROC.json,sha256=6NSxZrBxLUxj3ET-YWAdOokKUDl6VB6jToopWG9jksI,7081
843
861
  teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json,sha256=do2Lcuno87VM6VbamTP85P9qPbYcPTe-OHWZLp3VuGA,6246
844
862
  teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json,sha256=-8b4fcYshlxHNIz4c69XRhKNFFjRRzRU80xJc13jIpE,2400
845
863
  teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json,sha256=yryZZ6T31fPxhBi5ocf6ui8Dq_21AxiPuO1sYkidVEY,2682
@@ -847,10 +865,10 @@ teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json,sha256=EppbRKRD9hzL
847
865
  teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json,sha256=AgbGYCGOvhl_iUSCjzi1KcNtTQ6hS5MfMnh3joZRJYQ,3546
848
866
  teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json,sha256=ghnwqbuiTPMsKyFivDswALVGLg18AFYYDHVDPv2aZ2s,4211
849
867
  teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json,sha256=JZh2R6fYJcSqqV_QKXdBseajYxwgWt31joUfQpasGbU,2480
850
- teradataml/data/jsons/sqle/17.20/TD_SVM.json,sha256=Tj8cvXEiDB8rmVsLHzQ8TpAy89ZtR5fs1RlvHTrIlRI,17764
851
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=4gCfI39uHd7l40HLoU17aWVmhrV7B1R4luHOl7vQ33Q,4532
852
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=rEeZZImZPhUHEUZ2ZW5_LWnsz-S2zWdKm9t8PPAgab4,8444
853
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=iyeANSyGKlxeg6214Rkv873wGb2BFmujkNTmGdmb7As,2398
868
+ teradataml/data/jsons/sqle/17.20/TD_SVM.json,sha256=Ao620whcupTfdOaATFSQRiJtvWLosVJW0yg-pRZTQpg,17763
869
+ teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5h1ToDWvswdSBI_qW0ndQpo,5142
870
+ teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
871
+ teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=aHX7ccFEfjJ9uP23qj9OiC3rREeuryP_T7kcWrpkbQg,3992
854
872
  teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=LVPbPPGi_z6l3f-OjD7XrhjOR_dG3XuZdUgaafVeED4,7045
855
873
  teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=Wt6QlckJUNUGrCWAY4tv2xvi2K6tw9cjpUUK7U0esU8,4840
856
874
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=zOhzZZDdlBnRv-vZQL3XCO5sHcBiz2e93dfqpkbuWF8,4995
@@ -865,9 +883,9 @@ teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json,sha256=ytRPvQhDifsUCRS9M
865
883
  teradataml/data/jsons/sqle/17.20/TD_WhichMax.json,sha256=g9vzWEK6aD4VDUM8UMyTri08optvWi27D7oSL-RUapE,1695
866
884
  teradataml/data/jsons/sqle/17.20/TD_WhichMin.json,sha256=4r9ZbsKLL7SBiNHHi334GZbMK8uwtDQ3B-gQY_Qqqq0,1695
867
885
  teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json,sha256=lElGcRwdXEBBReer6RWPAkMPWB7kMt5MnlNcSb8X7OI,7869
868
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json,sha256=-q4_kvHfAOqNh1Grph54ITigrV_Dkzmf-mVYRM2vtNs,13800
869
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=aeTp79rGAicHA43GfSvaJVHM1ikt_89m1ymeV90l0EE,6045
870
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=G-kRGvrm2r-jEWGHZG5R39hE2yTNW9ZSkgnQvXDX3ZI,5182
886
+ teradataml/data/jsons/sqle/17.20/TD_XGBoost.json,sha256=9-3ag2DKURb-NU_LbnwnBbB1_Jtggck--8cSsuYp-MA,14372
887
+ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cxqyBvtmThgXEVcsotDVwN4hk16U,6503
888
+ teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
871
889
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
872
890
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
873
891
  teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
@@ -949,35 +967,35 @@ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions
949
967
  teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb,sha256=7e5OAeeW7whQhGy9WqPLg3R1smjaRA41_ZiiBq4CqDE,38012
950
968
  teradataml/data/notebooks/sqlalchemy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
951
969
  teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb,sha256=U5iuJ8scVyM5UDVQb5PDyjjVeKHykoT8BvUp3neOrcU,24413
952
- teradataml/data/scripts/deploy_script.py,sha256=mEOXrvfOGAcTHMhAc7q4uhL23c-OqBv9F51q8WrviKQ,1768
970
+ teradataml/data/scripts/deploy_script.py,sha256=zDTBhIXifod2LK_f6JVDjOCgnpAteUaIjFH3sanHYIg,2469
953
971
  teradataml/data/scripts/mapper.R,sha256=wsa90rHfJDOCzpPAiHy6EzpiNskC7d2K4QnJCuXrLqI,613
954
972
  teradataml/data/scripts/mapper.py,sha256=8l0tJl96icteNBFRG4cROuho1iWUJtU81l7R7Jz6SmY,547
955
973
  teradataml/data/scripts/mapper_replace.py,sha256=qBcXNMb19LccZ3KhMtZBgrpib33KWZjrJ5MoW5l6G98,552
956
974
  teradataml/data/scripts/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
957
- teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=pLGvpIoJQUd3xuU3tQPvp_PxdVx3yw1BhLCFDqmdPp8,6239
958
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=-KAyM71Ae1sNiBWe5X419dwFxs5TG58rQdo5ycaB3Gg,4955
959
- teradataml/data/scripts/sklearn/sklearn_function.template,sha256=uzKh8-cC8qvuBPNmvwpHIzt0Sq5hN3zGwHpmSlEnW68,4365
960
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=2gJThB1CPjAHD1KDkCJU8oB2pNhO-3XI2XxcrXBaF2c,5937
961
- teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=9witRDQzKlr8cRi3Sqenr3ysoUlvQ4HZJQdefMcvgME,5943
962
- teradataml/data/scripts/sklearn/sklearn_score.py,sha256=Lz2xufPlB4UiFt7mdQukWrWQK4aHqHP8mWyTb5JWXNM,4518
963
- teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=JO8bacjaw3sgINCfiWYKXwbIRvo4qOUXg3Y_8YYtq1s,7770
975
+ teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=xwso_Oso5SKtxR3-xMfA5e7Ax7n8H42yjwkFNIkIsjM,6426
976
+ teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=HCZLOEUkObc13CpqL4jhu1S36GQnTro-a56Atptg0gs,4976
977
+ teradataml/data/scripts/sklearn/sklearn_function.template,sha256=iwBfT_ohX2k-BUEkJqPS4xVP6aDqu41GJJOQhLA5EBo,4419
978
+ teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=0oyIv7oKZ_Vde-y3CY_sw9Qv8f48DGQGlapOGrSLba0,5979
979
+ teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=JYORv2_A9W_amRrgfcNv7HifOFRNukSaOc9BxIwePbI,5948
980
+ teradataml/data/scripts/sklearn/sklearn_score.py,sha256=KWqd1hvcJ2o41jE-oBLnfxNPhHjnM-ltHgM7GaLoAcI,4538
981
+ teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=uHPclMehdoJzfIgK8QA1rCh1gOJqk9VYajFIDkkaVI4,7844
964
982
  teradataml/data/templates/open_source_ml.json,sha256=O1kWGBxHbOGeBjiEPg-K2ykb0uaneaGaLYQiPu_BFwM,156
965
983
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
966
- teradataml/dataframe/copy_to.py,sha256=qKRuHEsmXweSUw8t78KtErdL_7JBZlEFEDIDrFhOz0Q,76053
967
- teradataml/dataframe/data_transfer.py,sha256=mVcZWyZrGmcY09rU6jmSoEbfRMrK9RGD4m2Vk4On8Fc,121030
968
- teradataml/dataframe/dataframe.py,sha256=omeXW9bUzVDsFQHq1io6RP9_in8BPstLmAEsU425F7Q,929401
969
- teradataml/dataframe/dataframe_utils.py,sha256=Xt209gKYO1IGswUXXPQRZuvT7EyrZMvr10ea-ywvxoI,86011
970
- teradataml/dataframe/fastload.py,sha256=SwB9vojHcnlT07rWejtGckFsHjp21bZykF30ZUtA1Bc,30879
984
+ teradataml/dataframe/copy_to.py,sha256=vUmfruKAHLrURqDyBo-0DgCi2PZDHpRwGflnn9Fwros,76421
985
+ teradataml/dataframe/data_transfer.py,sha256=uhyLodyZ37--QqdLUKW8Q1k0e1S3EOMKsb9QHfv4rXw,123602
986
+ teradataml/dataframe/dataframe.py,sha256=kcKzwxOw7uXdXrQNy4tKX_-btEmY0pqRvIDfxk2qSTQ,934636
987
+ teradataml/dataframe/dataframe_utils.py,sha256=vbvKogavhqXSVe39zKepFcjGkyJuy6radN2ninHdc3Y,88417
988
+ teradataml/dataframe/fastload.py,sha256=IhlCrmQ3MI_Sg6UHYKm-mxe7q6pj0bz90L7s8KVVC8I,41988
971
989
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
972
990
  teradataml/dataframe/setop.py,sha256=vVN1H4F_4WvQQdCN1DRIwtmmHCsHu-MwQQcBxHwyb1Q,56933
973
- teradataml/dataframe/sql.py,sha256=RndAcQlBz9xd7YLtHugOcZ3aYtJ-_o2E5ETXakKiX64,598800
991
+ teradataml/dataframe/sql.py,sha256=KrXTgEJvZjXt715OFTaFkC__W1kZ8Sc1PvHaTXuU9eU,602917
974
992
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
975
993
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
976
994
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
977
995
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
978
996
  teradataml/dataframe/window.py,sha256=RS1Ng77do6vyGanwzZdipni5LBNwgG83tcjoVhPy3qc,32757
979
997
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
980
- teradataml/dbutils/dbutils.py,sha256=W56DIrfayzXQ-YKbO3VkztfUnWdNpUJhPTgHaDOLxyo,47458
998
+ teradataml/dbutils/dbutils.py,sha256=cYPoSf1r_DyNCLcyLlUZz67G-avlfeKbRNzhwhHyeaI,47531
981
999
  teradataml/dbutils/filemgr.py,sha256=6VdGuiHtpNPXRcdxa2lH-jHAFOyb2AM4XXIJQ3bVPig,12337
982
1000
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
983
1001
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
@@ -989,17 +1007,17 @@ teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDi
989
1007
  teradataml/hyperparameter_tuner/optimizer.py,sha256=BP_0gyFcRIAe60csQ7GuZyC3QcbKHuVnH7ZiJaORzJc,198074
990
1008
  teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
991
1009
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
992
- teradataml/lib/aed_0_1.dll,sha256=LY_vI-UC2Ck9AQPVa3WJNlTqE-ZL03b7xrUfHaggcsY,3928816
1010
+ teradataml/lib/aed_0_1.dll,sha256=8k_R1DftckFyr8mCP5WUsvmUaQGWUqRLaMNEuLrK3xk,3928816
993
1011
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
994
1012
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
995
1013
  teradataml/opensource/__init__.py,sha256=ysO_7mcfAHpQkE6qmcoxBOgtRWS97z_XDXkNk1I1VzY,54
996
1014
  teradataml/opensource/sklearn/__init__.py,sha256=N9goinLnrCyYQvicxKOpJ24bVlos8SJrjaGtNS3jV9E,32
997
1015
  teradataml/opensource/sklearn/_class.py,sha256=69hRN5Fu6rIGvJ0azmulcRKBBCjEF-c2yo1wz7-rBCo,9572
998
- teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=p2vfmvFgx6AUd1rrTNduhP98iPLj6xWsGUWEvIM24vI,80265
1016
+ teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=Pkn5JkkEQtCOJiFoLZsXcWmlb7dEhwY6nVFYh28nLoY,83351
999
1017
  teradataml/opensource/sklearn/_wrapper_utils.py,sha256=T8ojlibH_EW0MU7CsgCEwmZiGQ9CrABJHZRzeqc9Kz4,12199
1000
1018
  teradataml/opensource/sklearn/constants.py,sha256=D-XbA8e3VIx2v817aKm9ARsiu49lKBUnofm-3axFU2M,2598
1001
- teradataml/options/__init__.py,sha256=-dWw6bhZIjkoOoKoHPUePF572GwNKZzWEWJG6b3yIMc,5299
1002
- teradataml/options/configure.py,sha256=80nX6p929uTwLsTHQkWSyUh2gH29xppFcb7oSqb-ZBU,18376
1019
+ teradataml/options/__init__.py,sha256=dERjj_LvmsZen7qUrrv7Lqnmm7qYJo0dN0QJyCSFhtc,5736
1020
+ teradataml/options/configure.py,sha256=hv1CqvIjScryDwPIuM0SHKBC9ZLe-N_fqlQZwqXfc0s,19779
1003
1021
  teradataml/options/display.py,sha256=_jtBUAx4-K22jVtv_e9-PgvT-z-Pgw1eeuXPCAMZI5o,7962
1004
1022
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1005
1023
  teradataml/plot/axis.py,sha256=ij9kD4vmY63h--gT0TqRNm07_taVtDY0zE4lg18DFR8,54240
@@ -1008,15 +1026,15 @@ teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,123
1008
1026
  teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
1009
1027
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1010
1028
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1011
- teradataml/scriptmgmt/UserEnv.py,sha256=euflI9J03K4gWceVPoRgKb9RutXSrHtsIkYO_9onBdM,176731
1029
+ teradataml/scriptmgmt/UserEnv.py,sha256=WwRdFduF5FrmHEYh8YRQrluJ3_7xXQ6yAsGZqIWw900,176869
1012
1030
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1013
- teradataml/scriptmgmt/lls_utils.py,sha256=3HUailXY-sv8ghC-mmuphsIKsXKTCWWculrTPuuRiXs,69528
1031
+ teradataml/scriptmgmt/lls_utils.py,sha256=I7EgE2ljMXhnwPP2o5EKtikFf8_szbgftKt-KzavVw8,74553
1014
1032
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1015
1033
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1016
1034
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1017
1035
  teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
1018
- teradataml/table_operators/Script.py,sha256=atd373WtOnkUzBf_RttEVRSzcuUvyehhy9CTF8IitBE,77300
1019
- teradataml/table_operators/TableOperator.py,sha256=htjHKr0qyj-ieD8RG1P18vN1bb5DIJ4ff5zSHKXM8cg,63392
1036
+ teradataml/table_operators/Script.py,sha256=SLQhtfFeasQgBBD6H-SgOg8Nw8LhO9rLfGVeoIkhySM,77197
1037
+ teradataml/table_operators/TableOperator.py,sha256=U2wHTCz4TIGCKnhPcYoAROM9fcqW14U4wRV9rVEPBK0,72180
1020
1038
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1021
1039
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1022
1040
  teradataml/table_operators/query_generator.py,sha256=zuuD47ec7jsTS-O8iNLvsQZcngFdHz5KPoeg9ag3WTs,23002
@@ -1030,9 +1048,9 @@ teradataml/utils/dtypes.py,sha256=Wqzi0LcNjkxoFlNARSzv8KbRc0iaxbV7WIeL8N4qhKs,26
1030
1048
  teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
1031
1049
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1032
1050
  teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1033
- teradataml/utils/validators.py,sha256=ljVG9MW_639w_2f5mfWFTy3a6m36Y-wxekM0F96U1Sc,91216
1034
- teradataml-20.0.0.0.dist-info/METADATA,sha256=e4iwyFC1BMEOm0NTpokEK1HZxazSd3x1axfeL24pRYQ,101318
1035
- teradataml-20.0.0.0.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1036
- teradataml-20.0.0.0.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1037
- teradataml-20.0.0.0.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1038
- teradataml-20.0.0.0.dist-info/RECORD,,
1051
+ teradataml/utils/validators.py,sha256=hmv9q9r6ctZI-rNs8QB3_zZ3owLA9tZM1iCKFthp9ac,92474
1052
+ teradataml-20.0.0.1.dist-info/METADATA,sha256=Wz3cuVNzN9S3g8796pmxCwJfLjh0vTdwqGHhEoWdpUY,105532
1053
+ teradataml-20.0.0.1.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1054
+ teradataml-20.0.0.1.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1055
+ teradataml-20.0.0.1.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1056
+ teradataml-20.0.0.1.dist-info/RECORD,,