teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +71 -0
- teradataml/_version.py +2 -2
- teradataml/analytics/analytic_function_executor.py +51 -24
- teradataml/analytics/json_parser/utils.py +11 -17
- teradataml/automl/__init__.py +103 -48
- teradataml/automl/data_preparation.py +55 -37
- teradataml/automl/data_transformation.py +131 -69
- teradataml/automl/feature_engineering.py +117 -185
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +13 -25
- teradataml/automl/model_training.py +214 -75
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +11 -6
- teradataml/common/garbagecollector.py +5 -0
- teradataml/common/messagecodes.py +3 -1
- teradataml/common/messages.py +2 -1
- teradataml/common/utils.py +6 -0
- teradataml/context/context.py +49 -29
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/glm_example.json +28 -1
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +20 -1
- teradataml/data/scripts/sklearn/sklearn_fit.py +23 -27
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +20 -28
- teradataml/data/scripts/sklearn/sklearn_function.template +13 -18
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +18 -27
- teradataml/data/scripts/sklearn/sklearn_score.py +20 -29
- teradataml/data/scripts/sklearn/sklearn_transform.py +30 -38
- teradataml/data/teradataml_example.json +77 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +8 -3
- teradataml/dataframe/data_transfer.py +120 -61
- teradataml/dataframe/dataframe.py +102 -17
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +272 -89
- teradataml/dataframe/sql.py +84 -0
- teradataml/dbutils/dbutils.py +2 -2
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +102 -55
- teradataml/options/__init__.py +13 -4
- teradataml/options/configure.py +27 -6
- teradataml/scriptmgmt/UserEnv.py +19 -16
- teradataml/scriptmgmt/lls_utils.py +117 -14
- teradataml/table_operators/Script.py +2 -3
- teradataml/table_operators/TableOperator.py +58 -10
- teradataml/utils/validators.py +40 -2
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +78 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/RECORD +108 -90
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +0 -0
|
@@ -1,13 +1,13 @@
|
|
|
1
|
-
teradataml/LICENSE-3RD-PARTY.pdf,sha256=
|
|
2
|
-
teradataml/LICENSE.pdf,sha256=
|
|
3
|
-
teradataml/README.md,sha256=
|
|
1
|
+
teradataml/LICENSE-3RD-PARTY.pdf,sha256=ZrYd86rv7qc83E7xa9HC7VegF6OXJVwi6MBTEiB32kk,310854
|
|
2
|
+
teradataml/LICENSE.pdf,sha256=YAaz9284BsR7reNg2ez_CCccYhD3k8r7rTLaORDZ-HE,66827
|
|
3
|
+
teradataml/README.md,sha256=jYLOg9VI4yMSf9yjVCTfywXLry6oURodHft_TBje7ao,106467
|
|
4
4
|
teradataml/__init__.py,sha256=9Ycya12HoIYTgwQASpdzK7NSNPcayqLb-xM7HMD1MmE,2497
|
|
5
|
-
teradataml/_version.py,sha256=
|
|
5
|
+
teradataml/_version.py,sha256=mUUB6KxwOXJAtbPZoBNVSLnqHPhuKLi3LOA-2_LqdvA,364
|
|
6
6
|
teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
|
|
7
7
|
teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
|
|
8
8
|
teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
|
|
9
9
|
teradataml/analytics/__init__.py,sha256=q75q1s02_qlGWsvVKgFZvltKwkMCUkjY60nzfD3IiGk,2931
|
|
10
|
-
teradataml/analytics/analytic_function_executor.py,sha256=
|
|
10
|
+
teradataml/analytics/analytic_function_executor.py,sha256=XMeJCSudqfOP0htOhZQUH6qcF4Ztp_V7uzeUeu4n6dY,92393
|
|
11
11
|
teradataml/analytics/analytic_query_generator.py,sha256=4Ny_qOlZpoXxN2goUGod9Cv6Kl5T3So3jvYnLQ7347A,42459
|
|
12
12
|
teradataml/analytics/meta_class.py,sha256=7qz3Ik7woaWOz8yd8Zhzf3T2MLZyJTn6q4GoEBR5gIg,7024
|
|
13
13
|
teradataml/analytics/utils.py,sha256=6m-1MEMYLrYBYVl_Q2DiUmfB5crJR9a2F4bCf8euJcY,27731
|
|
@@ -19,7 +19,7 @@ teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9
|
|
|
19
19
|
teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
|
|
20
20
|
teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
|
|
21
21
|
teradataml/analytics/json_parser/metadata.py,sha256=QE_Mcxor_TMxvDG5FaU1KzSlAFdIoKrD30aXzsZ789U,74277
|
|
22
|
-
teradataml/analytics/json_parser/utils.py,sha256=
|
|
22
|
+
teradataml/analytics/json_parser/utils.py,sha256=hYi2ZLuJbRaGGyIpLUvUWS4ohL2ohS2uPPUcLcH5jCQ,33425
|
|
23
23
|
teradataml/analytics/sqle/DecisionTreePredict.py,sha256=e-Bislx7JevujMqi5J6EJmAbTzZWb76YVeqgasSmEJU,22270
|
|
24
24
|
teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
|
|
25
25
|
teradataml/analytics/sqle/__init__.py,sha256=jyAHj8at7qJVrvHfW1W4DucFZenx_aTv7G0zJVxqb0g,3853
|
|
@@ -27,34 +27,35 @@ teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgW
|
|
|
27
27
|
teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
|
|
28
28
|
teradataml/analytics/table_operator/__init__.py,sha256=ph7pzbwJO2w73nRZiixnJlalgfPu1m2jNhI1zikx5nE,463
|
|
29
29
|
teradataml/analytics/uaf/__init__.py,sha256=fxDRJBcmkKQvpmQPKEK36U-fB-rP6WbrWmwR-taBzHM,2295
|
|
30
|
-
teradataml/automl/__init__.py,sha256=
|
|
30
|
+
teradataml/automl/__init__.py,sha256=cx55kRJ_Sv5XQZZ-Mce1BEDLTn5FXo-rKAkHt0xJ2lU,79825
|
|
31
31
|
teradataml/automl/custom_json_utils.py,sha256=ROPsq-iv2WFIcz_zYDhHgHKv1I5kHO8ZFvdEhs5pdK4,63166
|
|
32
|
-
teradataml/automl/data_preparation.py,sha256=
|
|
33
|
-
teradataml/automl/data_transformation.py,sha256=
|
|
34
|
-
teradataml/automl/feature_engineering.py,sha256=
|
|
35
|
-
teradataml/automl/feature_exploration.py,sha256=
|
|
36
|
-
teradataml/automl/model_evaluation.py,sha256=
|
|
37
|
-
teradataml/automl/model_training.py,sha256=
|
|
32
|
+
teradataml/automl/data_preparation.py,sha256=P4sVPNQIylByo6eby4ktwdgL7bvwhPoDNsKxdLVfxyA,44517
|
|
33
|
+
teradataml/automl/data_transformation.py,sha256=KoFbZwp_lOTYcZRrc9q3t6m-jSmFWiDFZMVYI6bpMv0,41684
|
|
34
|
+
teradataml/automl/feature_engineering.py,sha256=oQOLpj0vUL0BL_q2SZTjcD3SmbFIsbLU1QhQtUJf4kE,83273
|
|
35
|
+
teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
|
|
36
|
+
teradataml/automl/model_evaluation.py,sha256=4F-ehLBYBKO5u7V3T4m_D81dWh47yfRk_RCghIlaPio,5689
|
|
37
|
+
teradataml/automl/model_training.py,sha256=Qk4oRjxnb6-EbXHsN5OPScdgIR6lHylwdf9qvbKooq8,44145
|
|
38
38
|
teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
|
|
39
39
|
teradataml/catalog/byom.py,sha256=cw8j2XBaiKC9jip7z1NkpNm_oXqu0fqMiSPG_i9wXdo,99689
|
|
40
40
|
teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
|
|
41
|
-
teradataml/catalog/model_cataloging_utils.py,sha256=
|
|
41
|
+
teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
|
|
42
42
|
teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
43
|
+
teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
|
|
43
44
|
teradataml/clients/pkce_client.py,sha256=2-lQQTFs-2iGnY4Hf1TGKliVJPjDZ-XBuKFUZxQeNOg,16585
|
|
44
45
|
teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
|
|
45
|
-
teradataml/common/aed_utils.py,sha256=
|
|
46
|
+
teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
|
|
46
47
|
teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
|
|
47
|
-
teradataml/common/constants.py,sha256=
|
|
48
|
+
teradataml/common/constants.py,sha256=DQkD3BsYcZ_Q1Fkckgiumye4_yfavQrQuJyf4hGWL34,57892
|
|
48
49
|
teradataml/common/deprecations.py,sha256=DAz_DeTMK1ksZFn6bAVm7fRSFfoi3YCTDgmNCZIOWbM,5729
|
|
49
50
|
teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
|
|
50
51
|
teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
|
|
51
|
-
teradataml/common/garbagecollector.py,sha256=
|
|
52
|
-
teradataml/common/messagecodes.py,sha256=
|
|
53
|
-
teradataml/common/messages.py,sha256=
|
|
52
|
+
teradataml/common/garbagecollector.py,sha256=uPM2SPwti8xwnq4XntHK2ulgwLpLrUFsEl5_MfsNWug,26088
|
|
53
|
+
teradataml/common/messagecodes.py,sha256=VAQdn3H71PkxobFSrcDoLWp7iiSKcjd-QIqbvQ1pWiE,28322
|
|
54
|
+
teradataml/common/messages.py,sha256=dbzg_XVhjICy4KQdLpaPUgK9QEGj-xTO6d8Zqzhsy08,17615
|
|
54
55
|
teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
|
|
55
56
|
teradataml/common/sqlbundle.py,sha256=t-TvbRgz4029DbA8HGfnNscu0ipoNLOR-MD3Q3peiaE,23641
|
|
56
57
|
teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
|
|
57
|
-
teradataml/common/utils.py,sha256=
|
|
58
|
+
teradataml/common/utils.py,sha256=7f0BZSVTCWRtJ6SX48SJ-Nd7QtsWOUvSltw9wWfXNaw,89118
|
|
58
59
|
teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
|
|
59
60
|
teradataml/common/wrapper_utils.py,sha256=ynw1n441RX0loAV8lQsKCcbrWtRFPf9x2kvpWzkEBOQ,27845
|
|
60
61
|
teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -65,7 +66,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
|
|
|
65
66
|
teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
|
|
66
67
|
teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
67
68
|
teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
|
|
68
|
-
teradataml/context/context.py,sha256=
|
|
69
|
+
teradataml/context/context.py,sha256=8eWoeDmrshWpOmHF0ZbS6XBavKM5AYTQZONQUqme7UY,43359
|
|
69
70
|
teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
|
|
70
71
|
teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
|
|
71
72
|
teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
|
|
@@ -92,6 +93,7 @@ teradataml/data/additional_table.csv,sha256=hlzG3wvabxcAlgBil8Zot5n2b5BUQGGlSV8M
|
|
|
92
93
|
teradataml/data/admissions_test.csv,sha256=p8c4_C88AMJsiHSQzapcHkuMc8yJcIwcuNmmwLsSB5A,675
|
|
93
94
|
teradataml/data/admissions_train.csv,sha256=DZ1vw3a6nf3QJGSYO6Q_Q_-Wi-v7bj7b5iUTDzcPxlA,1285
|
|
94
95
|
teradataml/data/admissions_train_nulls.csv,sha256=ATKujpSwylRzqwQhuYk5oJQZnocct67N5IL6k6WbXjw,1198
|
|
96
|
+
teradataml/data/advertising.csv,sha256=E391Wtb9O8ZHEIX3YxovumwEy4rNcer1zJr2g51D_dU,4062
|
|
95
97
|
teradataml/data/ageandheight.csv,sha256=wZqCAsV7SApRpoa24-p8ws6v7DNsY2_CAIKwZapmLnY,244
|
|
96
98
|
teradataml/data/ageandpressure.csv,sha256=Ur91-8fz1VjPsFxfgvwWy9yNB3m2aV9qiPRCHkXHXgU,392
|
|
97
99
|
teradataml/data/antiselect_example.json,sha256=w1V67r47thUYYgE8n0buuPcIQbFnDVPZzcIDGxm46U4,1280
|
|
@@ -106,12 +108,14 @@ teradataml/data/attribution_sample_table.csv,sha256=BXE9yIn-MlSqlq9qJ5qi4YpKuwIG
|
|
|
106
108
|
teradataml/data/attribution_sample_table1.csv,sha256=xGBzinj_Z1JiaOEImhtCP4l_-UbIvDysjZTMDw0izP0,207
|
|
107
109
|
teradataml/data/attribution_sample_table2.csv,sha256=iTu9SrEEKwSPNqdgffdhWgukWF_jrS2uN33nKpeiy_w,389
|
|
108
110
|
teradataml/data/bank_churn.csv,sha256=kPZiXDG9_LDN47lMTzAE5DeV44KSHQpb5nxL1JCziBg,561600
|
|
111
|
+
teradataml/data/bank_marketing.csv,sha256=udShSyWloOBb6FcYdxVFJnYGuG95h-ncJhIf9BsAo_4,930146
|
|
109
112
|
teradataml/data/bank_web_clicks1.csv,sha256=mVtjtto25BiTTDOwEfSbQdjsIfaYSwAIhGn1RMakIEg,2164
|
|
110
113
|
teradataml/data/bank_web_clicks2.csv,sha256=fUBohxq4IMv25VxRiwb3Y1EimYJyv7CofQdsOcrBuQY,3810
|
|
111
114
|
teradataml/data/bank_web_url.csv,sha256=kSEx40OV3cdnRHiOZGkqPvrstyU4Fssh6KcIa122qW8,4715
|
|
112
115
|
teradataml/data/barrier.csv,sha256=KDTOFTcPlR5OiyIJ4abT7NvQI0fU9JM5de-B9u78uWk,43
|
|
113
116
|
teradataml/data/barrier_new.csv,sha256=AlNzJ9iUBHuBCZKjhS2g1VZS2tiqk7B4t3oZHCHY6Rk,73
|
|
114
117
|
teradataml/data/betweenness_example.json,sha256=fXlQLIfU5fwMTH1TWP6UGP6QicwwrHX5WI7pL6XkNFI,214
|
|
118
|
+
teradataml/data/bike_sharing.csv,sha256=nh_5NnwePRIdjShn3IBkiZcwpyeNHJ92qRdPj25_AV0,57569
|
|
115
119
|
teradataml/data/bin_breaks.csv,sha256=7IOmKpk4ov_dPO9nZqblAPxJa9Tk0MidC031SBLw9nc,43
|
|
116
120
|
teradataml/data/bin_fit_ip.csv,sha256=X7AL7cR7ryQVwbwllwb11Dm3mSd5FlQWbtWCJh-HXxc,100
|
|
117
121
|
teradataml/data/binary_complex_left.csv,sha256=W-9jjtc-t6k8ctNvSBoS9aQb2trgn7af4A838nE7kFQ,251
|
|
@@ -123,6 +127,8 @@ teradataml/data/binary_matrix_real_right.csv,sha256=p6BpwbkLzfFP6mlSqdE3P8yqQ-eS
|
|
|
123
127
|
teradataml/data/blood2ageandweight.csv,sha256=TnIFSWXQzaOR-PjoX5qN58-G3z2x66LpbCAFnHN7yiY,506
|
|
124
128
|
teradataml/data/bmi.csv,sha256=9TvDxRlpE6PDIjvT7VNVwnB24UOJSMPxZqAqIi6bCck,8318
|
|
125
129
|
teradataml/data/boston.csv,sha256=nLO7wxYIG1xUXFBOzMEQzFyT2AGEzJm5DW8NDfVqinU,37155
|
|
130
|
+
teradataml/data/boston2cols.csv,sha256=qmb9XFJT9lhP9r2v6qnRQFZMUSBZCxRykyFABy5lNSk,17401
|
|
131
|
+
teradataml/data/breast_cancer.csv,sha256=YJjbRrFwf5PWU7Al4NB46Y2yXNyfJMrZ06YDMY-ySTo,125141
|
|
126
132
|
teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
|
|
127
133
|
teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
|
|
128
134
|
teradataml/data/burst_example.json,sha256=ijC2YaBUGL-ZKR2lM3CHgBTPHYXr4LpTrXzhHzXhcB4,434
|
|
@@ -173,6 +179,8 @@ teradataml/data/cpt.csv,sha256=IMQwhawu2su6zaOkGyHQk7IYGjH-A8jqJqIwUCgkMfI,908
|
|
|
173
179
|
teradataml/data/credit_ex_merged.csv,sha256=9yoTcOJLvM4iGlu87F2i1NzT0yjjHEugafgRAl16hpw,10493
|
|
174
180
|
teradataml/data/customer_loyalty.csv,sha256=Z5YW-Apil6Xz6MgTS12kxJYptQXo5dLH84vfWuswjSk,8663
|
|
175
181
|
teradataml/data/customer_loyalty_newseq.csv,sha256=ufn_bjCqWoLaZ5l0ZSVAdWfboinduvc4L5jwiGxZAFc,805
|
|
182
|
+
teradataml/data/customer_segmentation_test.csv,sha256=8iaPDIFgn249mytmwxOi8cU_FnzRo0EtaRV_SXrxmP4,125982
|
|
183
|
+
teradataml/data/customer_segmentation_train.csv,sha256=U4aGWbqHv2vOfPVMT1ga4FjMj--Mdlp2CZAyLMUERsE,403494
|
|
176
184
|
teradataml/data/dataframe_example.json,sha256=PMBl3s3eNuQ_kvPDTP5Zyzt8eAgdtLEa_8QHAc3N6p8,4005
|
|
177
185
|
teradataml/data/decisionforest_example.json,sha256=USwkJRLKXN-OFixZto9gkmh8RVlnD7Pug_XkwxiSgPQ,1188
|
|
178
186
|
teradataml/data/decisionforestpredict_example.json,sha256=uuvBRtE4Ftc2UbMCfJtTbXXyjd16PqbX2J4SfqC7INA,1364
|
|
@@ -212,7 +220,7 @@ teradataml/data/genData.csv,sha256=y1Lvbme5Gp9JCCRkootSCR5xS_eBQNVkzgzgQQYEb90,7
|
|
|
212
220
|
teradataml/data/geodataframe_example.json,sha256=r6ENcly45GWH-Ma-5_vASZCkUlIwaX6RLe6PB_yJRCY,961
|
|
213
221
|
teradataml/data/glass_types.csv,sha256=4roe2TEESLUV5_aj9D0oQvdezYMqcSHFirjdbFV4FTo,10054
|
|
214
222
|
teradataml/data/glm_admissions_model.csv,sha256=4NjcVBiKKzb0z-v4aSrC5odT9sPf0FkrvBOTKQqmT-I,753
|
|
215
|
-
teradataml/data/glm_example.json,sha256=
|
|
223
|
+
teradataml/data/glm_example.json,sha256=D8q6DQZ4IksWfyR8v0pVmORqu0HnBwdAo_G6YTM6v40,1859
|
|
216
224
|
teradataml/data/glml1l2_example.json,sha256=XSCQriuLf_gaqEXgUKo_a6xc3_4hBRLEKJPr7DXYyXo,907
|
|
217
225
|
teradataml/data/glml1l2predict_example.json,sha256=GZJpQ7dWM188f1spjmItIN5u1f_VCFI8cAShl4tbhdo,1782
|
|
218
226
|
teradataml/data/glmpredict_example.json,sha256=LbPzvK5doOjsamOR5cUSHpg6XU0X-I-yliV3hDFsoBw,1911
|
|
@@ -235,6 +243,7 @@ teradataml/data/housing_train_attribute.csv,sha256=zLd9bMMthooD08bxtkCxCyTBFWND0
|
|
|
235
243
|
teradataml/data/housing_train_binary.csv,sha256=Xuj9uCs4iePRSQRbtL8-lACAfvE5qw3ANKNxJI-SR_s,29062
|
|
236
244
|
teradataml/data/housing_train_parameter.csv,sha256=1N3jDyS4mLvbmFSf3lEBkptGJzByuSRPnaXUWpcI-F8,59
|
|
237
245
|
teradataml/data/housing_train_response.csv,sha256=GXe8a4qFn_cbWmga8KhxRvQTnceyY7JMe-0OJhfEnzE,7646
|
|
246
|
+
teradataml/data/housing_train_segment.csv,sha256=bdgjb2IdgyouRiblq-0jg2L5bL27mbPYqZ0RO-EDNn8,11332
|
|
238
247
|
teradataml/data/ibm_stock.csv,sha256=nY85WYi9rtYlM5eStAKVRVPIjYAMN4fZ-CVSzbS6pL4,9521
|
|
239
248
|
teradataml/data/ibm_stock1.csv,sha256=GZ7woXK6ss4UYhKxWyjWiFitS46GHT2D6Cp1YjSu4Zk,17747
|
|
240
249
|
teradataml/data/identitymatch_example.json,sha256=EQnoTmGowYaDveMsmufATtecWdF3jG-vsW5H6z6eT1s,553
|
|
@@ -242,6 +251,7 @@ teradataml/data/idf_table.csv,sha256=dPVvU7hx1ELtkAxnGDJFGMvF6-lgXO0OQiPnD_zEbkQ
|
|
|
242
251
|
teradataml/data/impressions.csv,sha256=gK1lAA4CnJmjB65KRhCmgAy7h5nKwDyQbAl4WTem0Yc,2483
|
|
243
252
|
teradataml/data/inflation.csv,sha256=0grPat_poXsU6ZlSRtpFizcGPwLF0_DdEVS8IcmjKBM,553
|
|
244
253
|
teradataml/data/initial.csv,sha256=0OP1Xopmge1wyQsMpqBDN1XIUH2vlTnky1erV-W2Hq0,53
|
|
254
|
+
teradataml/data/insect2Cols.csv,sha256=A8h4ng_It3rOBwJoxr4LtrDDD-GdjX1vl5Xi7hwsCo0,671
|
|
245
255
|
teradataml/data/insect_sprays.csv,sha256=akKmsfoEkiOqRTi_7i-UihnJkPl-urUaSVlEhmSz2ZU,307
|
|
246
256
|
teradataml/data/insurance.csv,sha256=OI7_Z5VX0IrBn0Y9Al3l4LStxIJTfIRW0Zk014Yh_Uc,55628
|
|
247
257
|
teradataml/data/interpolator_example.json,sha256=G7s8es8pSLne_4cD1q6GCSyU0OBxLp1toUHp16Nrync,345
|
|
@@ -257,7 +267,8 @@ teradataml/data/iris_test.csv,sha256=zSYepP8ZX0NxbE2psLuNvw3TDCyYRAj4ETcQ-3bPruw
|
|
|
257
267
|
teradataml/data/iris_train.csv,sha256=jNtDylLX7nSGrSKQjQrTJIHqLcLp1e20Fl4j5ds_MTU,2626
|
|
258
268
|
teradataml/data/join_table1.csv,sha256=wmq7t19KVRO6ErYcoWLDMUtSQVwL7J-FRK9_0gHIbFo,76
|
|
259
269
|
teradataml/data/join_table2.csv,sha256=OVyS9lIa5ZoGEbxpN1DRpasAGW78BgNzhv4Q2bJgvVQ,95
|
|
260
|
-
teradataml/data/kmeans_example.json,sha256=
|
|
270
|
+
teradataml/data/kmeans_example.json,sha256=UDWmnpF3Rjey9pjnvpYk-fPsp2tj2oqSwXgD98LTrTc,434
|
|
271
|
+
teradataml/data/kmeans_table.csv,sha256=fAlU42s5pNxDEzyTQeBYIchopaeERy0FRot9mLlfeg0,91
|
|
261
272
|
teradataml/data/kmeans_us_arrests_data.csv,sha256=VPIkcXCbueSuGesRK4e4m9QKNSjfj5RVtjZIwgtPoyM,1479
|
|
262
273
|
teradataml/data/knn_example.json,sha256=7k8aZ6iTbszx6OgImLWWJYLtJxr6NTAiNopVS16_DzY,390
|
|
263
274
|
teradataml/data/knnrecommender_example.json,sha256=R8XIteOmQkkIXHtAYiO5qm03_3tUk4_ah2HXK1kYDwo,117
|
|
@@ -322,7 +333,8 @@ teradataml/data/ocean_buoys.csv,sha256=IF8hMlqQSBl7xP4ELiC3CBWE33zh0vy47wWZ5DZHV
|
|
|
322
333
|
teradataml/data/ocean_buoys2.csv,sha256=5OsUz_8Q5xD9MedPi5MR81TuJg53eC2nu_1_nttq_f8,1556
|
|
323
334
|
teradataml/data/ocean_buoys_nonpti.csv,sha256=qE8fQs6VJAQJgRFk6jc4xR6Rp2U1AmlI39cGjcva3cg,1030
|
|
324
335
|
teradataml/data/ocean_buoys_seq.csv,sha256=jIU12R7mB7empv5tQhfvgOtgydeVHcVfzfmSEd78mSM,1471
|
|
325
|
-
teradataml/data/
|
|
336
|
+
teradataml/data/onehot_encoder_train.csv,sha256=8pG8ucUvum6SQhOKPnwUgPlEOAFDsmdBgA-Qo8XAPrE,41
|
|
337
|
+
teradataml/data/openml_example.json,sha256=JUEzOD6uOgg7ns6Pca3AdlLP0PS4Sl1eZjb3qkhDLmc,2582
|
|
326
338
|
teradataml/data/optional_event_table.csv,sha256=FJuG4_g7lIqi3ZKLNsUb-Y4uT54oceGjlCT6dUApiOU,58
|
|
327
339
|
teradataml/data/orders1.csv,sha256=NdYv2BQ0ZGY6DMwauduuecFsiBonOne1nT9vhEyT1NU,180
|
|
328
340
|
teradataml/data/orders1_12.csv,sha256=weWu40ZXGoGrqrU0MAslXuQUXH5dUs3872gsqle6Rg4,129
|
|
@@ -363,9 +375,14 @@ teradataml/data/sample_shapes.csv,sha256=TsewEbNMysCM2dVbdn81fSBRQCmZ2Vo99izJ01P
|
|
|
363
375
|
teradataml/data/sample_streets.csv,sha256=_LJeoG7nH6wHGsQFldOn-O3a2Morm-Hg69o0qbvpG18,123
|
|
364
376
|
teradataml/data/sampling_example.json,sha256=pnB1Lzwt5baZIBDU0sMLKqnGDzcOoVQ-5X26PZSboDs,269
|
|
365
377
|
teradataml/data/sax_example.json,sha256=b9FN__52MuTp_I_y54LMpwtpt5x-rgdD6Rdp04SKKZU,169
|
|
366
|
-
teradataml/data/
|
|
378
|
+
teradataml/data/scale_attributes.csv,sha256=3OC7BRqhQohXO9OYfjyzYY_K1G-gs1Y6KdMV1MmONRk,37
|
|
379
|
+
teradataml/data/scale_example.json,sha256=2KJEsG7CXoXkQD5qT_x9BtmdD1vkRwa2aij53r0VvSs,2152
|
|
367
380
|
teradataml/data/scale_housing.csv,sha256=yD016RxlF2ldgv6-C8z-liooe_icioZNxiFEjQjRQqc,363
|
|
368
381
|
teradataml/data/scale_housing_test.csv,sha256=xW9Z3GBnn4j2LQTjNQkF8xurwxarYxEy3dM99zCviI0,219
|
|
382
|
+
teradataml/data/scale_input_part_sparse.csv,sha256=GSjSmKDBjAwHIL9rzWZDTAlwRwxd3gwx-rHxhq_u7dM,519
|
|
383
|
+
teradataml/data/scale_input_partitioned.csv,sha256=-uE42DZeIhOe608qY1yu2wsKTFm5TPNx5LfZSSa1BbE,1229
|
|
384
|
+
teradataml/data/scale_input_sparse.csv,sha256=u3SzzEX3uPQqUpIxFjiFdvdKbf4uyGXCLN5FDWzwXLI,189
|
|
385
|
+
teradataml/data/scale_parameters.csv,sha256=u9tbnBSz5_w-GmfZlVWs-W8MWu6mpht0bWhnS2efPhE,78
|
|
369
386
|
teradataml/data/scale_stat.csv,sha256=6XiED8g7B7iCdJy9S0uNfKaCqE_HCU3l_u4jgAz0Ca8,308
|
|
370
387
|
teradataml/data/scalebypartition_example.json,sha256=Ps1ETcaILx0JkxoKjViYmQarwC6Lls6yzVf2VWq5hxo,356
|
|
371
388
|
teradataml/data/scalemap_example.json,sha256=0HRJoy3-qesjKxLsTtAKqiDPaIGXlieauiBiE4uPBnQ,353
|
|
@@ -415,7 +432,7 @@ teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqr
|
|
|
415
432
|
teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
|
|
416
433
|
teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
|
|
417
434
|
teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
|
|
418
|
-
teradataml/data/teradataml_example.json,sha256=
|
|
435
|
+
teradataml/data/teradataml_example.json,sha256=H1cfD6eJH8uv8R9DWs-00TbIEQeEN5owExEHhWyko6M,41250
|
|
419
436
|
teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
|
|
420
437
|
teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
|
|
421
438
|
teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
|
|
@@ -477,6 +494,7 @@ teradataml/data/xconvolve_complex_left.csv,sha256=1QR-q2BMst4TOB_8MaCadTpuijCCtp
|
|
|
477
494
|
teradataml/data/xconvolve_complex_leftmulti.csv,sha256=iDgLo-vhPBlZHs1JNqjFzTiLm3MHsDnZ8ulEKRTf5xY,281
|
|
478
495
|
teradataml/data/xgboost_example.json,sha256=nPMG94PCras6P0JC5bkk5Boa0Fs3pNnz3CV26piaCkc,891
|
|
479
496
|
teradataml/data/xgboostpredict_example.json,sha256=-XQ7o9eHQjBoAl3zobM6yvuKE6eMq95TOqD9n1By8tc,787
|
|
497
|
+
teradataml/data/ztest_example.json,sha256=HvBkbCcSKcSPV1RuEsxe8utaHT8xiXfrt90bgjMzexY,345
|
|
480
498
|
teradataml/data/docs/__init__.py,sha256=5XVCpXHM3si13drwS1VzLUi3Jq9aAgvCCn8O0qs61as,36
|
|
481
499
|
teradataml/data/docs/byom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
482
500
|
teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=WtpNV7dOf0lJ0J28k88Qs_TmrIFtOiB3QMU-sHIeEL8,8921
|
|
@@ -509,10 +527,10 @@ teradataml/data/docs/sqle/docs_17_10/NPath.py,sha256=cseXGtYLU8j2G2f9phS40zlzY0u
|
|
|
509
527
|
teradataml/data/docs/sqle/docs_17_10/NaiveBayesPredict.py,sha256=yGvYOiQekom0ph2hOGrHqWmHEjk8u5_pI8yHQYQKwA0,5372
|
|
510
528
|
teradataml/data/docs/sqle/docs_17_10/NaiveBayesTextClassifierPredict.py,sha256=mV90klHkHEdTybUFYTF8b4Gv2UZ_o9Q7XV9UhRLSv1o,8102
|
|
511
529
|
teradataml/data/docs/sqle/docs_17_10/NumApply.py,sha256=SvKyxAyXSxRLHgS5E8KHCHACikPJqq2kLq1qoz5Iy3o,6327
|
|
512
|
-
teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py,sha256=
|
|
513
|
-
teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=
|
|
530
|
+
teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py,sha256=CMdTjsd4Z9ulm2P1-k5yILgddwmNMeCFqH1PPdQ9Brk,6177
|
|
531
|
+
teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py,sha256=Zt5XWW-_QnEDS9VOLlAYOewAnxtU36JvgtcfVoKGyVo,4874
|
|
514
532
|
teradataml/data/docs/sqle/docs_17_10/OutlierFilterFit.py,sha256=ttKL0YXjGXMpnxjwHPG0b3THC3qD1oscjKxh7n3wR-4,7419
|
|
515
|
-
teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=
|
|
533
|
+
teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py,sha256=_LfHzh3pGNzNrST-ancdrVEml4EVZjFUlWN8_Emsk-4,4920
|
|
516
534
|
teradataml/data/docs/sqle/docs_17_10/Pack.py,sha256=VqHpY8CnKUMXP1glJWaKOtFUYLQfc4c5Kv38v-dPYto,5368
|
|
517
535
|
teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesFit.py,sha256=kvYnoL910OM1HKLW6eUjiMe9jgx0JgUexhzj4aziQs0,4927
|
|
518
536
|
teradataml/data/docs/sqle/docs_17_10/PolynomialFeaturesTransform.py,sha256=OCez0bsR99XeLyAx7vMSa79BWmpb4nmYdZFXVbCL0ps,4507
|
|
@@ -535,7 +553,7 @@ teradataml/data/docs/sqle/docs_17_10/WhichMax.py,sha256=mvdTMss1ydf09kzO-FoHB2yT
|
|
|
535
553
|
teradataml/data/docs/sqle/docs_17_10/WhichMin.py,sha256=td0Q5LiiP-BzlxA4uhsy4wF9qLJ4ZLUWRvq70LxG1VQ,3429
|
|
536
554
|
teradataml/data/docs/sqle/docs_17_10/ZTest.py,sha256=rWwAe8bEWYiPySlCJkzmMkCSce6D3nDECRJfqNaI1uI,6476
|
|
537
555
|
teradataml/data/docs/sqle/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
538
|
-
teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=
|
|
556
|
+
teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=l96tqbGqoaCfLkjiK1vy6zIOagOpuWWiqnrUQdmIgU0,8035
|
|
539
557
|
teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZeWMiRnOPw07_ZUPpd7GJ8,3502
|
|
540
558
|
teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
|
|
541
559
|
teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
|
|
@@ -544,23 +562,23 @@ teradataml/data/docs/sqle/docs_17_20/CategoricalSummary.py,sha256=safyFvuNm1BNTG
|
|
|
544
562
|
teradataml/data/docs/sqle/docs_17_20/ChiSq.py,sha256=ibyMwPKJnBkVmedHXa3oNsUEqsUCw9NSkyU2KS7WPAM,3811
|
|
545
563
|
teradataml/data/docs/sqle/docs_17_20/ClassificationEvaluator.py,sha256=9QqTNMl1ymjhe4C9UF0IGPbHRyaBzvS1i43kyh1hCQY,8178
|
|
546
564
|
teradataml/data/docs/sqle/docs_17_20/ColumnSummary.py,sha256=XsOQR4KIfmjBGbESy2p-KfKs8kiFmwnrxPBR5fDf-u8,3691
|
|
547
|
-
teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py,sha256=
|
|
565
|
+
teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py,sha256=9J0Wmmwx7qr6Z7XoxEN4uafpxorffaX15zuiGU41xlI,12525
|
|
548
566
|
teradataml/data/docs/sqle/docs_17_20/ConvertTo.py,sha256=aG3ZrRMxs75S_jR05jrHZxzl0RPBk7Mw_a2qXFE3UVo,4698
|
|
549
567
|
teradataml/data/docs/sqle/docs_17_20/DecisionForest.py,sha256=1QWNxf0Dj5-FTEW9q2L9UgqAvWqSmKPHwaKAI6xZQwM,14553
|
|
550
568
|
teradataml/data/docs/sqle/docs_17_20/DecisionForestPredict.py,sha256=oK7pP1wVKogUnpkh2v1d2hir-4aluniy_ZEkhcuOo3k,6786
|
|
551
569
|
teradataml/data/docs/sqle/docs_17_20/DecisionTreePredict.py,sha256=y0grw0Kkg85y38COidwsu9do4HxLxhrTzDNjvd_pCao,6454
|
|
552
|
-
teradataml/data/docs/sqle/docs_17_20/FTest.py,sha256=
|
|
570
|
+
teradataml/data/docs/sqle/docs_17_20/FTest.py,sha256=5RIr24vBtFWezcmaI7mZQ2Oz8N7y6KRLppvCfCz92rM,10356
|
|
553
571
|
teradataml/data/docs/sqle/docs_17_20/FillRowId.py,sha256=pNMOlZe5dow7NxglD_Vq6UOJXJihUHqOxtOhVT6R_zM,3533
|
|
554
572
|
teradataml/data/docs/sqle/docs_17_20/Fit.py,sha256=icqA35RoP_pY-qJwv0MUpQDDtdMh6rYsvPQaIXXPMvE,3822
|
|
555
|
-
teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=
|
|
573
|
+
teradataml/data/docs/sqle/docs_17_20/GLM.py,sha256=5Y5uLJCaVXQTmBJoDVSiQNxV_TsEguO75s3gCbZNtEc,25398
|
|
556
574
|
teradataml/data/docs/sqle/docs_17_20/GLMPerSegment.py,sha256=ezplov5qzdp1BiC4GP_SWeFD20a5bi29sPW6WJowhHc,21000
|
|
557
575
|
teradataml/data/docs/sqle/docs_17_20/GLMPredict.py,sha256=piOwuf40UFDnpUOaFp09z4ebWQXcoc3ei4V1svCd8yM,6405
|
|
558
576
|
teradataml/data/docs/sqle/docs_17_20/GLMPredictPerSegment.py,sha256=g7SX2d3BMOdW1j43Qiw6OZvrZ9ojpzWRI10CP8mMpOo,12103
|
|
559
|
-
teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py,sha256=
|
|
577
|
+
teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py,sha256=WPLDjcGefBlXwOrvsmLxoUpixZrpHnVKwkqS0XnZLtg,5659
|
|
560
578
|
teradataml/data/docs/sqle/docs_17_20/GetRowsWithMissingValues.py,sha256=b2lJtNqaf3nF47YOEDCnkWJ2bedtQ0zttwcEKy-RFZc,4968
|
|
561
579
|
teradataml/data/docs/sqle/docs_17_20/GetRowsWithoutMissingValues.py,sha256=fpSBZOSNCrpDK7VLlhFdr77is9fH5dQzfd7WaJo8tOY,4799
|
|
562
580
|
teradataml/data/docs/sqle/docs_17_20/Histogram.py,sha256=VdWTGkD3k4FSOHbrS4x5Vv7xLhjxZfPBUcx9O0zmbjk,10563
|
|
563
|
-
teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=
|
|
581
|
+
teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=EDv-GI6i1V58ScOvU8PWAQS1hp-N9pJzchWLBIZpu2A,11155
|
|
564
582
|
teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zCulwJhMqaT1qHvjQc73fcdfuo,6115
|
|
565
583
|
teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
|
|
566
584
|
teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
|
|
@@ -569,13 +587,13 @@ teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6
|
|
|
569
587
|
teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
|
|
570
588
|
teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=POgE-rQseF6eUxBisxDJfsrVvWWXWNxZ9Zb10aSCrsA,8157
|
|
571
589
|
teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=cNW60bF1i_rk-KHgR0p8RmqZqoFujtuCjFv2huZmJGU,5724
|
|
572
|
-
teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=
|
|
590
|
+
teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py,sha256=3l0hOE1VCZfQ2XyAR-oOjRQKWjBaLfwgXo5XfBnqZkE,5236
|
|
573
591
|
teradataml/data/docs/sqle/docs_17_20/NonLinearCombineTransform.py,sha256=7VveajQ0jMoRH-TxP-E8N_9rLLJJgwVk0gUNIwtB2a4,4889
|
|
574
592
|
teradataml/data/docs/sqle/docs_17_20/NumApply.py,sha256=78KeTUal1gXpfHtaHjiyTAV6VPW_ZIetS6whCpF3bkM,6334
|
|
575
593
|
teradataml/data/docs/sqle/docs_17_20/OneClassSVM.py,sha256=CnYQ_YYHHL8mnTeZRxe0f88Tuq0XAs6MDQzMqX403MM,13946
|
|
576
594
|
teradataml/data/docs/sqle/docs_17_20/OneClassSVMPredict.py,sha256=hQsae48P4I7Yg7ockkv73CcOwISPRjmEdGd02-_ejJM,8464
|
|
577
|
-
teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=
|
|
578
|
-
teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=
|
|
595
|
+
teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py,sha256=V-dnV9Oo_yCyXUe9B4YjrO5Xi5cqIBc50NZtedBf9Nk,11265
|
|
596
|
+
teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py,sha256=RqX_iobIa9vm9f5hb-OLDO4hDTIRyvZXlEQHyyYT7YY,5425
|
|
579
597
|
teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingFit.py,sha256=Yg95-8bdfdegy_9eKUAadd4kNMEAULwkL5HodWksW1Y,10375
|
|
580
598
|
teradataml/data/docs/sqle/docs_17_20/OrdinalEncodingTransform.py,sha256=kkIlM-wYjgfsNVplzX0YUwDbkc5lcjsusIa_Xi5380E,5874
|
|
581
599
|
teradataml/data/docs/sqle/docs_17_20/OutlierFilterFit.py,sha256=iHi1ixIMe5Tzl_bxeLS8gi2Ab_o2hidRCtFbhSwOiQU,8197
|
|
@@ -584,7 +602,7 @@ teradataml/data/docs/sqle/docs_17_20/Pack.py,sha256=-yCTy4g-M5AICn25U6ajFJgHsxb1
|
|
|
584
602
|
teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesFit.py,sha256=jili0hiQiuss4hiZHx_bbbOc12EFfUC1NmycL7cz-ds,4934
|
|
585
603
|
teradataml/data/docs/sqle/docs_17_20/PolynomialFeaturesTransform.py,sha256=kqhmU0GgvJvNOJV7nrJNNDuqZImJZJb1XxHJFwBa9TQ,4979
|
|
586
604
|
teradataml/data/docs/sqle/docs_17_20/QQNorm.py,sha256=ew7OnZlRDKGYpZXI4CeShkT_t7NYEqIshpv54QR7nAM,4692
|
|
587
|
-
teradataml/data/docs/sqle/docs_17_20/ROC.py,sha256=
|
|
605
|
+
teradataml/data/docs/sqle/docs_17_20/ROC.py,sha256=QIUmtHk41Ph6-eWbHlLXr3EL6SOWLjSqHNTZr6XVYgo,6841
|
|
588
606
|
teradataml/data/docs/sqle/docs_17_20/RandomProjectionFit.py,sha256=42pqcLxvr_pBARjVDD2iXprKiepluawmiNj4dQnpSnM,6692
|
|
589
607
|
teradataml/data/docs/sqle/docs_17_20/RandomProjectionMinComponents.py,sha256=3my_ki5WQA9U9qQiGAw10tgkHsiNcgWa8b75DdhDpqY,4813
|
|
590
608
|
teradataml/data/docs/sqle/docs_17_20/RandomProjectionTransform.py,sha256=em1fAbW-Bry9KVwG7zFq1nTGSDTMxg1WHc2e4wsXSxA,5193
|
|
@@ -593,10 +611,10 @@ teradataml/data/docs/sqle/docs_17_20/RoundColumns.py,sha256=57NVyAecTwnbY9pZnCQf
|
|
|
593
611
|
teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py,sha256=wdbFuCdeJslfSq-fD3OU20JHEjdOC2WXF0ljukymuNU,5348
|
|
594
612
|
teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=9Ja5ev4neABpv_jJagr34AAXyXve0b1gI-r8VyNOBw8,4994
|
|
595
613
|
teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=txuwmP54us3xk5UzTYKrPj40bZYMGWzNhE3glmvo6_U,18482
|
|
596
|
-
teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=
|
|
614
|
+
teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=XR9sK9CxSNdK62c4TqFa9Jq15aAfonZ2S2tRUe4orYY,9245
|
|
597
615
|
teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py,sha256=aKczZjm_QTN1jVFv3Ty1eMYzG6lrx8Nz1BinyItNhjQ,7102
|
|
598
|
-
teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=
|
|
599
|
-
teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=
|
|
616
|
+
teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb7Z4NtY0_1ZlRPvPClVc,16643
|
|
617
|
+
teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
|
|
600
618
|
teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
|
|
601
619
|
teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
|
|
602
620
|
teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
|
|
@@ -605,7 +623,7 @@ teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZn
|
|
|
605
623
|
teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=ZbYLGiyLJIIqqPCwZ79jHjPScarkWE-IEutR2y-yrDU,7250
|
|
606
624
|
teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=J-m4qiPM7BhFP4b3ZaEf-uvwaHzQor-mhp6PSU1C4yk,7576
|
|
607
625
|
teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=Chb-269nY2d94wY8tw-7uJ3CnV1uoXwzQidBZhncebk,10207
|
|
608
|
-
teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=
|
|
626
|
+
teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=OH-hnCDBD0vSCJoPiktwNqfenPt_9RHZxH4BOVOEuv0,15433
|
|
609
627
|
teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
|
|
610
628
|
teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
|
|
611
629
|
teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=FwCdeIrYKkeOUYV3m0e8Z-2z_Zd2b5OsIoALE65DSs8,7559
|
|
@@ -617,9 +635,9 @@ teradataml/data/docs/sqle/docs_17_20/VectorDistance.py,sha256=llIAzHu7R6sg1oV5_d
|
|
|
617
635
|
teradataml/data/docs/sqle/docs_17_20/WhichMax.py,sha256=Df-nQMDQ6C2-ncgWO6g9rjUbFdorbHn4_s55XorIq7I,3455
|
|
618
636
|
teradataml/data/docs/sqle/docs_17_20/WhichMin.py,sha256=ChvXLNJP7hLdKtOVI6yNkxrspE385H_VcGX0x0Tsjwg,3436
|
|
619
637
|
teradataml/data/docs/sqle/docs_17_20/WordEmbeddings.py,sha256=3xZ8kSch-_UvYLzM31tqgj4y1GxZgOtMlcRwTkiRADk,11212
|
|
620
|
-
teradataml/data/docs/sqle/docs_17_20/XGBoost.py,sha256=
|
|
621
|
-
teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=
|
|
622
|
-
teradataml/data/docs/sqle/docs_17_20/ZTest.py,sha256=
|
|
638
|
+
teradataml/data/docs/sqle/docs_17_20/XGBoost.py,sha256=Lnr6ZRgAeTDD_0QVXmacEU4Uea3d9-ZzMl2S0OxF0hM,17691
|
|
639
|
+
teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py,sha256=1W2FEBRrufRAouJy1mp2Yw4yzGZCsMN6EQNZecSDHeY,14557
|
|
640
|
+
teradataml/data/docs/sqle/docs_17_20/ZTest.py,sha256=934Ia4OJEAN2f9vK8X--qzROxtrtcfwl1rjabAR1_RQ,9322
|
|
623
641
|
teradataml/data/docs/sqle/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
624
642
|
teradataml/data/docs/tableoperator/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
625
643
|
teradataml/data/docs/tableoperator/docs_17_00/ReadNOS.py,sha256=dD5r4flkzgltPKgp6UjmbpFi2qVjCN6Qvh6G9Q9LUIA,22901
|
|
@@ -798,7 +816,7 @@ teradataml/data/jsons/sqle/17.20/Pack.json,sha256=rGLF10fH5fpsiK9DfNu9YxMuyC9K5z
|
|
|
798
816
|
teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json,sha256=sMUK3DVXTHI_bIxlHxyDesZQECQTKpSRacKgVZhsoGE,6839
|
|
799
817
|
teradataml/data/jsons/sqle/17.20/Sessionize.json,sha256=IIA23vN016aUNl5IFeRQj3hxtmqNvjnwL96fjPLUXlo,4469
|
|
800
818
|
teradataml/data/jsons/sqle/17.20/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
|
|
801
|
-
teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=
|
|
819
|
+
teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=_tONpTLLmul5MP5t5PhLvebgtjoN5mLX61BMZPJD7rY,5268
|
|
802
820
|
teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json,sha256=SXC2_jSQABC53QGQ3S9gox8j4DTq65WpNBkHwP6F7SE,9292
|
|
803
821
|
teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json,sha256=SG1Dz-m9B37B5nK-aubz52QulWgzZq_O_nUllVWUaqo,2468
|
|
804
822
|
teradataml/data/jsons/sqle/17.20/TD_CategoricalSummary.json,sha256=S5iSTpkJWGO07FkMlmv2KkRtkKcAt8GMdIkJF4Vt1Y4,1761
|
|
@@ -809,23 +827,23 @@ teradataml/data/jsons/sqle/17.20/TD_ColumnTransformer.json,sha256=YTrdmY6_mEEPeP
|
|
|
809
827
|
teradataml/data/jsons/sqle/17.20/TD_ConvertTo.json,sha256=7CdjCnCcafWf8LvQn8pPcdew3Qx-M-W9L2vlP1v3tWw,3499
|
|
810
828
|
teradataml/data/jsons/sqle/17.20/TD_DecisionForest.json,sha256=pVZTBZRhGTiJPjz4ZL_Z5vtkwlcaeH-SMz4sLVEDzQA,14062
|
|
811
829
|
teradataml/data/jsons/sqle/17.20/TD_DecisionForestPredict.json,sha256=dTRx9AQjcrW3IsT9fjxAEchGEr7kk0uGw63_35dFqyI,4872
|
|
812
|
-
teradataml/data/jsons/sqle/17.20/TD_FTest.json,sha256=
|
|
830
|
+
teradataml/data/jsons/sqle/17.20/TD_FTest.json,sha256=5uR2I1hDVt-P0GQvhZ8a1Uv-3HDnPUtvFIQYgziELak,8860
|
|
813
831
|
teradataml/data/jsons/sqle/17.20/TD_FillRowID.json,sha256=heHvZH6zgMjvyZNjkV1UmhKBFFE3raYlKc-bNB5n8eQ,1601
|
|
814
832
|
teradataml/data/jsons/sqle/17.20/TD_FunctionFit.json,sha256=q8UMIsF1aElG0Zrb5bXjCXDeJS1xk2sC1AwbsvDPAOY,1678
|
|
815
833
|
teradataml/data/jsons/sqle/17.20/TD_FunctionTransform.json,sha256=j5xySuywYT87GSyLyuf1wiJmH-g8KpwTCPdvyK2vbM4,2425
|
|
816
|
-
teradataml/data/jsons/sqle/17.20/TD_GLM.json,sha256=
|
|
817
|
-
teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json,sha256=
|
|
834
|
+
teradataml/data/jsons/sqle/17.20/TD_GLM.json,sha256=INZ2WJaCE3ljoY6gGyPEQx-r452xAc875redOxR_La8,24199
|
|
835
|
+
teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json,sha256=2DM0JH-ktqFmqIQ3qeX0XdmqY8G7ZTiqNphdxcVf7sU,6762
|
|
818
836
|
teradataml/data/jsons/sqle/17.20/TD_GLMPerSegment.json,sha256=rYAPZS0p0B1NRxyX4RK25Uv04MuiTXmq-e5xcleRybM,18973
|
|
819
837
|
teradataml/data/jsons/sqle/17.20/TD_GLMPredictPerSegment.json,sha256=_p9C1F8TZjJL4T5hZ_f3nkUBP87hqC0gyoSDCF59X4g,5810
|
|
820
|
-
teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json,sha256
|
|
838
|
+
teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json,sha256=-oBoiPUda7B69f87LxeiojbXxnwPGikEa--xoYe4MKE,3318
|
|
821
839
|
teradataml/data/jsons/sqle/17.20/TD_GetRowsWithMissingValues.json,sha256=BFzGpf--iYOJTtjlyuQ8UAU4IayNJXzDhysr-S98zeY,2635
|
|
822
840
|
teradataml/data/jsons/sqle/17.20/TD_GetRowsWithoutMissingValues.json,sha256=SuWfeL9Gj5Me0I-N6hoGeao-xq5Je5gWpK4agwX2gyc,2643
|
|
823
841
|
teradataml/data/jsons/sqle/17.20/TD_Histogram.json,sha256=maRiTySFqhKcfzcH0VWigcF15afMW4LLcNkSnRHDVBA,5841
|
|
824
|
-
teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=
|
|
842
|
+
teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=1l_vfCZtGRgzlKMuNDIy-H9gjC0sZNC5thzwEIIc930,8297
|
|
825
843
|
teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json,sha256=qvKPOK-wOMyd05JWA7RmvkogjObHqiVZr4b5M3XkcBI,2976
|
|
826
844
|
teradataml/data/jsons/sqle/17.20/TD_KNN.json,sha256=0pF8hgOXtR4i16dkHoK5DxDarkp_OT0vi62sv3VA27k,10439
|
|
827
845
|
teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json,sha256=2Ri0K7ZpVsQIJCa1f8Rjpy97oKigxrN-v1AAYMb3ofQ,4385
|
|
828
|
-
teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json,sha256=
|
|
846
|
+
teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json,sha256=ybn6aYRmo9dkBprs27ol8c6D4gxpJCLv8PuRIVctp1g,3458
|
|
829
847
|
teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineTransform.json,sha256=rWq7tvhrOKdvsD97rrFs4RglPOC-JdidCunKAoShZgk,2708
|
|
830
848
|
teradataml/data/jsons/sqle/17.20/TD_NumApply.json,sha256=9tiM8ju9kF2fMYtCDOMm3QzZ7GaMk4rIZbjXY6jmrdQ,5212
|
|
831
849
|
teradataml/data/jsons/sqle/17.20/TD_OneClassSVM.json,sha256=1huR_7WgqbvjJvuMhGXtrVjVdF7runEa2Iu-aYFUUKo,14584
|
|
@@ -839,7 +857,7 @@ teradataml/data/jsons/sqle/17.20/TD_OutlierFilterTransform.json,sha256=oVZy0WkEZ
|
|
|
839
857
|
teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesFit.json,sha256=bytxobsmHEtTpSdGWd2UpkbRQUSBaN0_s0009jQ0weM,4110
|
|
840
858
|
teradataml/data/jsons/sqle/17.20/TD_PolynomialFeaturesTransform.json,sha256=ROjgTSShfLqomsJxCtade3xXoWWUfKdOJ_X06RPuOvo,2524
|
|
841
859
|
teradataml/data/jsons/sqle/17.20/TD_QQNorm.json,sha256=C_ZGyq9pZb9HPpm-TEz2bnX_Z4vGzFo7RcVMgyu3_q8,4133
|
|
842
|
-
teradataml/data/jsons/sqle/17.20/TD_ROC.json,sha256=
|
|
860
|
+
teradataml/data/jsons/sqle/17.20/TD_ROC.json,sha256=6NSxZrBxLUxj3ET-YWAdOokKUDl6VB6jToopWG9jksI,7081
|
|
843
861
|
teradataml/data/jsons/sqle/17.20/TD_RandomProjectionFit.json,sha256=do2Lcuno87VM6VbamTP85P9qPbYcPTe-OHWZLp3VuGA,6246
|
|
844
862
|
teradataml/data/jsons/sqle/17.20/TD_RandomProjectionMinComponents.json,sha256=-8b4fcYshlxHNIz4c69XRhKNFFjRRzRU80xJc13jIpE,2400
|
|
845
863
|
teradataml/data/jsons/sqle/17.20/TD_RandomProjectionTransform.json,sha256=yryZZ6T31fPxhBi5ocf6ui8Dq_21AxiPuO1sYkidVEY,2682
|
|
@@ -847,10 +865,10 @@ teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json,sha256=EppbRKRD9hzL
|
|
|
847
865
|
teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json,sha256=AgbGYCGOvhl_iUSCjzi1KcNtTQ6hS5MfMnh3joZRJYQ,3546
|
|
848
866
|
teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json,sha256=ghnwqbuiTPMsKyFivDswALVGLg18AFYYDHVDPv2aZ2s,4211
|
|
849
867
|
teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json,sha256=JZh2R6fYJcSqqV_QKXdBseajYxwgWt31joUfQpasGbU,2480
|
|
850
|
-
teradataml/data/jsons/sqle/17.20/TD_SVM.json,sha256=
|
|
851
|
-
teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=
|
|
852
|
-
teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=
|
|
853
|
-
teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=
|
|
868
|
+
teradataml/data/jsons/sqle/17.20/TD_SVM.json,sha256=Ao620whcupTfdOaATFSQRiJtvWLosVJW0yg-pRZTQpg,17763
|
|
869
|
+
teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5h1ToDWvswdSBI_qW0ndQpo,5142
|
|
870
|
+
teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
|
|
871
|
+
teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=aHX7ccFEfjJ9uP23qj9OiC3rREeuryP_T7kcWrpkbQg,3992
|
|
854
872
|
teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=LVPbPPGi_z6l3f-OjD7XrhjOR_dG3XuZdUgaafVeED4,7045
|
|
855
873
|
teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=Wt6QlckJUNUGrCWAY4tv2xvi2K6tw9cjpUUK7U0esU8,4840
|
|
856
874
|
teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=zOhzZZDdlBnRv-vZQL3XCO5sHcBiz2e93dfqpkbuWF8,4995
|
|
@@ -865,9 +883,9 @@ teradataml/data/jsons/sqle/17.20/TD_VectorDistance.json,sha256=ytRPvQhDifsUCRS9M
|
|
|
865
883
|
teradataml/data/jsons/sqle/17.20/TD_WhichMax.json,sha256=g9vzWEK6aD4VDUM8UMyTri08optvWi27D7oSL-RUapE,1695
|
|
866
884
|
teradataml/data/jsons/sqle/17.20/TD_WhichMin.json,sha256=4r9ZbsKLL7SBiNHHi334GZbMK8uwtDQ3B-gQY_Qqqq0,1695
|
|
867
885
|
teradataml/data/jsons/sqle/17.20/TD_WordEmbeddings.json,sha256=lElGcRwdXEBBReer6RWPAkMPWB7kMt5MnlNcSb8X7OI,7869
|
|
868
|
-
teradataml/data/jsons/sqle/17.20/TD_XGBoost.json,sha256
|
|
869
|
-
teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=
|
|
870
|
-
teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=
|
|
886
|
+
teradataml/data/jsons/sqle/17.20/TD_XGBoost.json,sha256=9-3ag2DKURb-NU_LbnwnBbB1_Jtggck--8cSsuYp-MA,14372
|
|
887
|
+
teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cxqyBvtmThgXEVcsotDVwN4hk16U,6503
|
|
888
|
+
teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
|
|
871
889
|
teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
|
|
872
890
|
teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
|
|
873
891
|
teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
|
|
@@ -949,35 +967,35 @@ teradataml/data/notebooks/sqlalchemy/Teradata Vantage Window Aggregate Functions
|
|
|
949
967
|
teradataml/data/notebooks/sqlalchemy/Using Generic SQLAlchemy ClauseElements teradataml DataFrame assign method.ipynb,sha256=7e5OAeeW7whQhGy9WqPLg3R1smjaRA41_ZiiBq4CqDE,38012
|
|
950
968
|
teradataml/data/notebooks/sqlalchemy/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
951
969
|
teradataml/data/notebooks/sqlalchemy/teradataml filtering using SQLAlchemy ClauseElements.ipynb,sha256=U5iuJ8scVyM5UDVQb5PDyjjVeKHykoT8BvUp3neOrcU,24413
|
|
952
|
-
teradataml/data/scripts/deploy_script.py,sha256=
|
|
970
|
+
teradataml/data/scripts/deploy_script.py,sha256=zDTBhIXifod2LK_f6JVDjOCgnpAteUaIjFH3sanHYIg,2469
|
|
953
971
|
teradataml/data/scripts/mapper.R,sha256=wsa90rHfJDOCzpPAiHy6EzpiNskC7d2K4QnJCuXrLqI,613
|
|
954
972
|
teradataml/data/scripts/mapper.py,sha256=8l0tJl96icteNBFRG4cROuho1iWUJtU81l7R7Jz6SmY,547
|
|
955
973
|
teradataml/data/scripts/mapper_replace.py,sha256=qBcXNMb19LccZ3KhMtZBgrpib33KWZjrJ5MoW5l6G98,552
|
|
956
974
|
teradataml/data/scripts/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
957
|
-
teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=
|
|
958
|
-
teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256
|
|
959
|
-
teradataml/data/scripts/sklearn/sklearn_function.template,sha256=
|
|
960
|
-
teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=
|
|
961
|
-
teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=
|
|
962
|
-
teradataml/data/scripts/sklearn/sklearn_score.py,sha256=
|
|
963
|
-
teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=
|
|
975
|
+
teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=xwso_Oso5SKtxR3-xMfA5e7Ax7n8H42yjwkFNIkIsjM,6426
|
|
976
|
+
teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=HCZLOEUkObc13CpqL4jhu1S36GQnTro-a56Atptg0gs,4976
|
|
977
|
+
teradataml/data/scripts/sklearn/sklearn_function.template,sha256=iwBfT_ohX2k-BUEkJqPS4xVP6aDqu41GJJOQhLA5EBo,4419
|
|
978
|
+
teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=0oyIv7oKZ_Vde-y3CY_sw9Qv8f48DGQGlapOGrSLba0,5979
|
|
979
|
+
teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=JYORv2_A9W_amRrgfcNv7HifOFRNukSaOc9BxIwePbI,5948
|
|
980
|
+
teradataml/data/scripts/sklearn/sklearn_score.py,sha256=KWqd1hvcJ2o41jE-oBLnfxNPhHjnM-ltHgM7GaLoAcI,4538
|
|
981
|
+
teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=uHPclMehdoJzfIgK8QA1rCh1gOJqk9VYajFIDkkaVI4,7844
|
|
964
982
|
teradataml/data/templates/open_source_ml.json,sha256=O1kWGBxHbOGeBjiEPg-K2ykb0uaneaGaLYQiPu_BFwM,156
|
|
965
983
|
teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
966
|
-
teradataml/dataframe/copy_to.py,sha256=
|
|
967
|
-
teradataml/dataframe/data_transfer.py,sha256=
|
|
968
|
-
teradataml/dataframe/dataframe.py,sha256=
|
|
969
|
-
teradataml/dataframe/dataframe_utils.py,sha256=
|
|
970
|
-
teradataml/dataframe/fastload.py,sha256=
|
|
984
|
+
teradataml/dataframe/copy_to.py,sha256=vUmfruKAHLrURqDyBo-0DgCi2PZDHpRwGflnn9Fwros,76421
|
|
985
|
+
teradataml/dataframe/data_transfer.py,sha256=uhyLodyZ37--QqdLUKW8Q1k0e1S3EOMKsb9QHfv4rXw,123602
|
|
986
|
+
teradataml/dataframe/dataframe.py,sha256=kcKzwxOw7uXdXrQNy4tKX_-btEmY0pqRvIDfxk2qSTQ,934636
|
|
987
|
+
teradataml/dataframe/dataframe_utils.py,sha256=vbvKogavhqXSVe39zKepFcjGkyJuy6radN2ninHdc3Y,88417
|
|
988
|
+
teradataml/dataframe/fastload.py,sha256=IhlCrmQ3MI_Sg6UHYKm-mxe7q6pj0bz90L7s8KVVC8I,41988
|
|
971
989
|
teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
|
|
972
990
|
teradataml/dataframe/setop.py,sha256=vVN1H4F_4WvQQdCN1DRIwtmmHCsHu-MwQQcBxHwyb1Q,56933
|
|
973
|
-
teradataml/dataframe/sql.py,sha256=
|
|
991
|
+
teradataml/dataframe/sql.py,sha256=KrXTgEJvZjXt715OFTaFkC__W1kZ8Sc1PvHaTXuU9eU,602917
|
|
974
992
|
teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
|
|
975
993
|
teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
|
|
976
994
|
teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
|
|
977
995
|
teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
|
|
978
996
|
teradataml/dataframe/window.py,sha256=RS1Ng77do6vyGanwzZdipni5LBNwgG83tcjoVhPy3qc,32757
|
|
979
997
|
teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
|
|
980
|
-
teradataml/dbutils/dbutils.py,sha256=
|
|
998
|
+
teradataml/dbutils/dbutils.py,sha256=cYPoSf1r_DyNCLcyLlUZz67G-avlfeKbRNzhwhHyeaI,47531
|
|
981
999
|
teradataml/dbutils/filemgr.py,sha256=6VdGuiHtpNPXRcdxa2lH-jHAFOyb2AM4XXIJQ3bVPig,12337
|
|
982
1000
|
teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
|
|
983
1001
|
teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
|
|
@@ -989,17 +1007,17 @@ teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDi
|
|
|
989
1007
|
teradataml/hyperparameter_tuner/optimizer.py,sha256=BP_0gyFcRIAe60csQ7GuZyC3QcbKHuVnH7ZiJaORzJc,198074
|
|
990
1008
|
teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
|
|
991
1009
|
teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
992
|
-
teradataml/lib/aed_0_1.dll,sha256=
|
|
1010
|
+
teradataml/lib/aed_0_1.dll,sha256=8k_R1DftckFyr8mCP5WUsvmUaQGWUqRLaMNEuLrK3xk,3928816
|
|
993
1011
|
teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
|
|
994
1012
|
teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
|
|
995
1013
|
teradataml/opensource/__init__.py,sha256=ysO_7mcfAHpQkE6qmcoxBOgtRWS97z_XDXkNk1I1VzY,54
|
|
996
1014
|
teradataml/opensource/sklearn/__init__.py,sha256=N9goinLnrCyYQvicxKOpJ24bVlos8SJrjaGtNS3jV9E,32
|
|
997
1015
|
teradataml/opensource/sklearn/_class.py,sha256=69hRN5Fu6rIGvJ0azmulcRKBBCjEF-c2yo1wz7-rBCo,9572
|
|
998
|
-
teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=
|
|
1016
|
+
teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=Pkn5JkkEQtCOJiFoLZsXcWmlb7dEhwY6nVFYh28nLoY,83351
|
|
999
1017
|
teradataml/opensource/sklearn/_wrapper_utils.py,sha256=T8ojlibH_EW0MU7CsgCEwmZiGQ9CrABJHZRzeqc9Kz4,12199
|
|
1000
1018
|
teradataml/opensource/sklearn/constants.py,sha256=D-XbA8e3VIx2v817aKm9ARsiu49lKBUnofm-3axFU2M,2598
|
|
1001
|
-
teradataml/options/__init__.py,sha256
|
|
1002
|
-
teradataml/options/configure.py,sha256=
|
|
1019
|
+
teradataml/options/__init__.py,sha256=dERjj_LvmsZen7qUrrv7Lqnmm7qYJo0dN0QJyCSFhtc,5736
|
|
1020
|
+
teradataml/options/configure.py,sha256=hv1CqvIjScryDwPIuM0SHKBC9ZLe-N_fqlQZwqXfc0s,19779
|
|
1003
1021
|
teradataml/options/display.py,sha256=_jtBUAx4-K22jVtv_e9-PgvT-z-Pgw1eeuXPCAMZI5o,7962
|
|
1004
1022
|
teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
|
|
1005
1023
|
teradataml/plot/axis.py,sha256=ij9kD4vmY63h--gT0TqRNm07_taVtDY0zE4lg18DFR8,54240
|
|
@@ -1008,15 +1026,15 @@ teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,123
|
|
|
1008
1026
|
teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
|
|
1009
1027
|
teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
|
|
1010
1028
|
teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
|
|
1011
|
-
teradataml/scriptmgmt/UserEnv.py,sha256=
|
|
1029
|
+
teradataml/scriptmgmt/UserEnv.py,sha256=WwRdFduF5FrmHEYh8YRQrluJ3_7xXQ6yAsGZqIWw900,176869
|
|
1012
1030
|
teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
|
|
1013
|
-
teradataml/scriptmgmt/lls_utils.py,sha256=
|
|
1031
|
+
teradataml/scriptmgmt/lls_utils.py,sha256=I7EgE2ljMXhnwPP2o5EKtikFf8_szbgftKt-KzavVw8,74553
|
|
1014
1032
|
teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1015
1033
|
teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
|
|
1016
1034
|
teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
|
|
1017
1035
|
teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
|
|
1018
|
-
teradataml/table_operators/Script.py,sha256=
|
|
1019
|
-
teradataml/table_operators/TableOperator.py,sha256=
|
|
1036
|
+
teradataml/table_operators/Script.py,sha256=SLQhtfFeasQgBBD6H-SgOg8Nw8LhO9rLfGVeoIkhySM,77197
|
|
1037
|
+
teradataml/table_operators/TableOperator.py,sha256=U2wHTCz4TIGCKnhPcYoAROM9fcqW14U4wRV9rVEPBK0,72180
|
|
1020
1038
|
teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
|
|
1021
1039
|
teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
|
|
1022
1040
|
teradataml/table_operators/query_generator.py,sha256=zuuD47ec7jsTS-O8iNLvsQZcngFdHz5KPoeg9ag3WTs,23002
|
|
@@ -1030,9 +1048,9 @@ teradataml/utils/dtypes.py,sha256=Wqzi0LcNjkxoFlNARSzv8KbRc0iaxbV7WIeL8N4qhKs,26
|
|
|
1030
1048
|
teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
|
|
1031
1049
|
teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
|
|
1032
1050
|
teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
|
|
1033
|
-
teradataml/utils/validators.py,sha256=
|
|
1034
|
-
teradataml-20.0.0.
|
|
1035
|
-
teradataml-20.0.0.
|
|
1036
|
-
teradataml-20.0.0.
|
|
1037
|
-
teradataml-20.0.0.
|
|
1038
|
-
teradataml-20.0.0.
|
|
1051
|
+
teradataml/utils/validators.py,sha256=hmv9q9r6ctZI-rNs8QB3_zZ3owLA9tZM1iCKFthp9ac,92474
|
|
1052
|
+
teradataml-20.0.0.1.dist-info/METADATA,sha256=Wz3cuVNzN9S3g8796pmxCwJfLjh0vTdwqGHhEoWdpUY,105532
|
|
1053
|
+
teradataml-20.0.0.1.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
|
|
1054
|
+
teradataml-20.0.0.1.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
|
|
1055
|
+
teradataml-20.0.0.1.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
|
|
1056
|
+
teradataml-20.0.0.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|