teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +71 -0
- teradataml/_version.py +2 -2
- teradataml/analytics/analytic_function_executor.py +51 -24
- teradataml/analytics/json_parser/utils.py +11 -17
- teradataml/automl/__init__.py +103 -48
- teradataml/automl/data_preparation.py +55 -37
- teradataml/automl/data_transformation.py +131 -69
- teradataml/automl/feature_engineering.py +117 -185
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +13 -25
- teradataml/automl/model_training.py +214 -75
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +11 -6
- teradataml/common/garbagecollector.py +5 -0
- teradataml/common/messagecodes.py +3 -1
- teradataml/common/messages.py +2 -1
- teradataml/common/utils.py +6 -0
- teradataml/context/context.py +49 -29
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/glm_example.json +28 -1
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +20 -1
- teradataml/data/scripts/sklearn/sklearn_fit.py +23 -27
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +20 -28
- teradataml/data/scripts/sklearn/sklearn_function.template +13 -18
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +18 -27
- teradataml/data/scripts/sklearn/sklearn_score.py +20 -29
- teradataml/data/scripts/sklearn/sklearn_transform.py +30 -38
- teradataml/data/teradataml_example.json +77 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +8 -3
- teradataml/dataframe/data_transfer.py +120 -61
- teradataml/dataframe/dataframe.py +102 -17
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +272 -89
- teradataml/dataframe/sql.py +84 -0
- teradataml/dbutils/dbutils.py +2 -2
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +102 -55
- teradataml/options/__init__.py +13 -4
- teradataml/options/configure.py +27 -6
- teradataml/scriptmgmt/UserEnv.py +19 -16
- teradataml/scriptmgmt/lls_utils.py +117 -14
- teradataml/table_operators/Script.py +2 -3
- teradataml/table_operators/TableOperator.py +58 -10
- teradataml/utils/validators.py +40 -2
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +78 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/RECORD +108 -90
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +0 -0
|
@@ -1,6 +1,7 @@
|
|
|
1
|
-
def ZTest(data=None, alpha=0.
|
|
1
|
+
def ZTest(data=None, alpha=0.05, first_sample_column=None, second_sample_column=None,
|
|
2
2
|
alternate_hypothesis="two-tailed", first_sample_variance=None,
|
|
3
|
-
second_sample_variance=None, mean_under_h0=None,
|
|
3
|
+
second_sample_variance=None, mean_under_h0=0, sample_name_column=None,
|
|
4
|
+
sample_value_column=None, first_sample_name=None, second_sample_name=None,
|
|
4
5
|
**generic_arguments):
|
|
5
6
|
|
|
6
7
|
"""
|
|
@@ -20,17 +21,17 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
20
21
|
alpha:
|
|
21
22
|
Optional Argument.
|
|
22
23
|
Specifies the value of alpha in hypothesis test function.
|
|
23
|
-
Default Value: 0.
|
|
24
|
+
Default Value: 0.05
|
|
24
25
|
Types: float
|
|
25
26
|
|
|
26
27
|
first_sample_column:
|
|
27
|
-
|
|
28
|
-
Specifies the first sample column in
|
|
28
|
+
Optional Argument.
|
|
29
|
+
Specifies the first sample column in Z-Test.
|
|
29
30
|
Types: str
|
|
30
31
|
|
|
31
32
|
second_sample_column:
|
|
32
33
|
Optional Argument.
|
|
33
|
-
Specifies the second sample column in
|
|
34
|
+
Specifies the second sample column in Z-Test.
|
|
34
35
|
Types: str
|
|
35
36
|
|
|
36
37
|
alternate_hypothesis:
|
|
@@ -48,7 +49,7 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
48
49
|
Types: str
|
|
49
50
|
|
|
50
51
|
first_sample_variance:
|
|
51
|
-
|
|
52
|
+
Optional Argument.
|
|
52
53
|
Specifies the first sample variance.
|
|
53
54
|
Types: float
|
|
54
55
|
|
|
@@ -60,8 +61,42 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
60
61
|
mean_under_h0:
|
|
61
62
|
Optional Argument.
|
|
62
63
|
Specifies the mean under the null hypothesis.
|
|
64
|
+
Default Value: 0
|
|
63
65
|
Types: float
|
|
64
66
|
|
|
67
|
+
sample_name_column:
|
|
68
|
+
Optional Argument.
|
|
69
|
+
Specifies the column in the "data" containing the names of the samples
|
|
70
|
+
included in the Z-Test.
|
|
71
|
+
Note:
|
|
72
|
+
* This argument is used when data contains sample names in a column
|
|
73
|
+
and sample values in another column.
|
|
74
|
+
Types: str
|
|
75
|
+
|
|
76
|
+
sample_value_column:
|
|
77
|
+
Optional Argument.
|
|
78
|
+
Specifies the column in the "data" containing the values for each sample member.
|
|
79
|
+
Note:
|
|
80
|
+
* This argument is used when data contains sample names in a column
|
|
81
|
+
and sample values in another column.
|
|
82
|
+
Types: str
|
|
83
|
+
|
|
84
|
+
first_sample_name:
|
|
85
|
+
Optional Argument.
|
|
86
|
+
Specifies the name of the first sample included in the Z-Test.
|
|
87
|
+
Note:
|
|
88
|
+
* This argument is used when data contains sample names in a column
|
|
89
|
+
and sample values in another column.
|
|
90
|
+
Types: str
|
|
91
|
+
|
|
92
|
+
second_sample_name:
|
|
93
|
+
Optional Argument.
|
|
94
|
+
Specifies the name of the second sample included in the Z-Test.
|
|
95
|
+
Note:
|
|
96
|
+
* This argument is used when data contains sample names in a column
|
|
97
|
+
and sample values in another column.
|
|
98
|
+
Types: str
|
|
99
|
+
|
|
65
100
|
**generic_arguments:
|
|
66
101
|
Specifies the generic keyword arguments SQLE functions accept.
|
|
67
102
|
Below are the generic keyword arguments:
|
|
@@ -113,9 +148,11 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
113
148
|
|
|
114
149
|
# Load the example data.
|
|
115
150
|
load_example_data("teradataml", ["titanic"])
|
|
151
|
+
load_example_data('ztest', 'boston2cols')
|
|
116
152
|
|
|
117
153
|
# Create teradataml DataFrame object.
|
|
118
154
|
titanic_data = DataFrame.from_table("titanic")
|
|
155
|
+
bostonCol = DataFrame.from_table("boston2cols")
|
|
119
156
|
|
|
120
157
|
# Check the list of available analytic functions.
|
|
121
158
|
display_analytic_functions()
|
|
@@ -152,4 +189,32 @@ def ZTest(data=None, alpha=0.5, first_sample_column=None, second_sample_column=N
|
|
|
152
189
|
# Print the result DataFrame.
|
|
153
190
|
print(obj.result)
|
|
154
191
|
|
|
192
|
+
# Example 3: Perform ZTest analysis on input data column that
|
|
193
|
+
# contains data for the first and second sample
|
|
194
|
+
# population and variance of the first and second sample
|
|
195
|
+
# population by specifying sample_name_column, sample_value_column,
|
|
196
|
+
# first_sample_name and second_sample_name.
|
|
197
|
+
obj = ZTest(data=bostonCol,
|
|
198
|
+
first_sample_name='NOX',
|
|
199
|
+
second_sample_name='RM',
|
|
200
|
+
sample_name_column='groupName',
|
|
201
|
+
sample_value_column='groupValue')
|
|
202
|
+
|
|
203
|
+
# Print the result DataFrame.
|
|
204
|
+
print(obj.result)
|
|
205
|
+
|
|
206
|
+
# ExPerform ZTest analysis on input data column that
|
|
207
|
+
# contains data for the first sample population and
|
|
208
|
+
# variance of the first sample population by specifying
|
|
209
|
+
# sample_name_column, sample_value_column.
|
|
210
|
+
obj = ZTest(data=boston,
|
|
211
|
+
first_sample_name='NOX',
|
|
212
|
+
sample_name_column='groupName',
|
|
213
|
+
sample_value_column='groupValue')
|
|
214
|
+
|
|
215
|
+
# Print the result DataFrame.
|
|
216
|
+
print(obj.result)
|
|
217
|
+
|
|
218
|
+
|
|
219
|
+
|
|
155
220
|
"""
|
teradataml/data/glm_example.json
CHANGED
|
@@ -25,5 +25,32 @@
|
|
|
25
25
|
"prefarea" : "varchar(10)",
|
|
26
26
|
"homestyle" : "varchar(20)"
|
|
27
27
|
|
|
28
|
-
}
|
|
28
|
+
},
|
|
29
|
+
"housing_train_segment":{
|
|
30
|
+
"sn" : "integer",
|
|
31
|
+
"price" : "real",
|
|
32
|
+
"lotsize" : "real",
|
|
33
|
+
"bedrooms" : "integer",
|
|
34
|
+
"bathrms" : "integer",
|
|
35
|
+
"stories" : "integer",
|
|
36
|
+
"driveway" : "real",
|
|
37
|
+
"recroom" : "real",
|
|
38
|
+
"fullbase": "real",
|
|
39
|
+
"gashw" : "real",
|
|
40
|
+
"airco" : "real",
|
|
41
|
+
"garagepl" : "integer",
|
|
42
|
+
"prefarea" : "real",
|
|
43
|
+
"homestyle" : "integer",
|
|
44
|
+
"partition_id" : "integer"
|
|
45
|
+
},
|
|
46
|
+
"housing_train_parameter":{
|
|
47
|
+
"partition_id": "integer",
|
|
48
|
+
"parameter_column": "VARCHAR(64)",
|
|
49
|
+
"value_column" :"VARCHAR(64)"
|
|
50
|
+
},
|
|
51
|
+
"housing_train_attribute":{
|
|
52
|
+
"partition_id": "integer",
|
|
53
|
+
"attribute_column " :"VARCHAR(64)"
|
|
54
|
+
|
|
55
|
+
}
|
|
29
56
|
}
|
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
partition_id,sn,price,lotsize,bedrooms,bathrms,stories,driveway,recroom,fullbase,gashw,airco,garagepl,prefarea,homestyle
|
|
2
|
+
34,1,42000.0,5850.0,3,1,2,1.0,0.0,1.0,0.0,0.0,1,0.0,0
|
|
3
|
+
31,1,42000.0,5850.0,3,1,2,1.0,0.0,1.0,0.0,0.0,1,0.0,0
|
|
4
|
+
34,2,38500.0,4000.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
5
|
+
31,2,38500.0,4000.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
6
|
+
34,3,49500.0,3060.0,3,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
7
|
+
31,3,49500.0,3060.0,3,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
8
|
+
34,4,60500.0,6650.0,3,1,2,1.0,1.0,0.0,0.0,0.0,0,0.0,1
|
|
9
|
+
31,4,60500.0,6650.0,3,1,2,1.0,1.0,0.0,0.0,0.0,0,0.0,1
|
|
10
|
+
34,5,61000.0,6360.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
11
|
+
31,5,61000.0,6360.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
12
|
+
34,6,66000.0,4160.0,3,1,1,1.0,1.0,1.0,0.0,1.0,0,0.0,1
|
|
13
|
+
31,6,66000.0,4160.0,3,1,1,1.0,1.0,1.0,0.0,1.0,0,0.0,1
|
|
14
|
+
34,7,66000.0,3880.0,3,2,2,1.0,0.0,1.0,0.0,0.0,2,0.0,1
|
|
15
|
+
31,7,66000.0,3880.0,3,2,2,1.0,0.0,1.0,0.0,0.0,2,0.0,1
|
|
16
|
+
34,8,69000.0,4160.0,3,1,3,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
17
|
+
31,8,69000.0,4160.0,3,1,3,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
18
|
+
34,9,83800.0,4800.0,3,1,1,1.0,1.0,1.0,0.0,0.0,0,0.0,1
|
|
19
|
+
31,9,83800.0,4800.0,3,1,1,1.0,1.0,1.0,0.0,0.0,0,0.0,1
|
|
20
|
+
34,10,88500.0,5500.0,3,2,4,1.0,1.0,0.0,0.0,1.0,1,0.0,1
|
|
21
|
+
31,10,88500.0,5500.0,3,2,4,1.0,1.0,0.0,0.0,1.0,1,0.0,1
|
|
22
|
+
34,11,90000.0,7200.0,3,2,1,1.0,0.0,1.0,0.0,1.0,3,0.0,1
|
|
23
|
+
31,11,90000.0,7200.0,3,2,1,1.0,0.0,1.0,0.0,1.0,3,0.0,1
|
|
24
|
+
34,12,30500.0,3000.0,2,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
25
|
+
31,12,30500.0,3000.0,2,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
26
|
+
34,13,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
27
|
+
31,13,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
28
|
+
34,14,36000.0,2880.0,3,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
29
|
+
31,14,36000.0,2880.0,3,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
30
|
+
34,15,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
31
|
+
31,15,37000.0,3600.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
32
|
+
34,16,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
33
|
+
31,16,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
34
|
+
34,17,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
35
|
+
31,17,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
36
|
+
34,18,40750.0,5200.0,4,1,3,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
37
|
+
31,18,40750.0,5200.0,4,1,3,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
38
|
+
34,19,45000.0,3450.0,1,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
39
|
+
31,19,45000.0,3450.0,1,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
40
|
+
34,20,45000.0,3986.0,2,2,1,0.0,1.0,1.0,0.0,0.0,1,0.0,0
|
|
41
|
+
31,20,45000.0,3986.0,2,2,1,0.0,1.0,1.0,0.0,0.0,1,0.0,0
|
|
42
|
+
34,21,48500.0,4785.0,3,1,2,1.0,1.0,1.0,0.0,1.0,1,0.0,0
|
|
43
|
+
31,21,48500.0,4785.0,3,1,2,1.0,1.0,1.0,0.0,1.0,1,0.0,0
|
|
44
|
+
34,22,65900.0,4510.0,4,2,2,1.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
45
|
+
31,22,65900.0,4510.0,4,2,2,1.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
46
|
+
32,1,42000.0,5850.0,3,1,2,1.0,0.0,1.0,0.0,0.0,1,0.0,0
|
|
47
|
+
31,23,37900.0,4000.0,3,1,2,1.0,0.0,0.0,0.0,1.0,0,0.0,0
|
|
48
|
+
32,2,38500.0,4000.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
49
|
+
31,24,38000.0,3934.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
50
|
+
32,3,49500.0,3060.0,3,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
51
|
+
31,25,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
52
|
+
32,4,60500.0,6650.0,3,1,2,1.0,1.0,0.0,0.0,0.0,0,0.0,1
|
|
53
|
+
31,26,42300.0,3000.0,2,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
54
|
+
32,5,61000.0,6360.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
55
|
+
31,27,43500.0,3800.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
56
|
+
32,6,66000.0,4160.0,3,1,1,1.0,1.0,1.0,0.0,1.0,0,0.0,1
|
|
57
|
+
31,28,44000.0,4960.0,2,1,1,1.0,0.0,1.0,0.0,1.0,0,0.0,0
|
|
58
|
+
32,7,66000.0,3880.0,3,2,2,1.0,0.0,1.0,0.0,0.0,2,0.0,1
|
|
59
|
+
31,29,44500.0,3000.0,3,1,1,0.0,0.0,0.0,0.0,1.0,0,0.0,0
|
|
60
|
+
32,8,69000.0,4160.0,3,1,3,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
61
|
+
31,30,44900.0,4500.0,3,1,2,1.0,0.0,0.0,0.0,1.0,0,0.0,0
|
|
62
|
+
32,9,83800.0,4800.0,3,1,1,1.0,1.0,1.0,0.0,0.0,0,0.0,1
|
|
63
|
+
31,31,45000.0,3500.0,2,1,1,0.0,0.0,1.0,0.0,0.0,0,0.0,0
|
|
64
|
+
32,10,88500.0,5500.0,3,2,4,1.0,1.0,0.0,0.0,1.0,1,0.0,1
|
|
65
|
+
31,32,48000.0,3500.0,4,1,2,1.0,0.0,0.0,0.0,1.0,2,0.0,0
|
|
66
|
+
32,11,90000.0,7200.0,3,2,1,1.0,0.0,1.0,0.0,1.0,3,0.0,1
|
|
67
|
+
31,33,49000.0,4000.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
68
|
+
32,12,30500.0,3000.0,2,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
69
|
+
31,34,51500.0,4500.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
70
|
+
32,13,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
71
|
+
31,35,61000.0,6360.0,2,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
72
|
+
32,14,36000.0,2880.0,3,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
73
|
+
31,36,61000.0,4500.0,2,1,1,1.0,0.0,0.0,0.0,1.0,2,0.0,1
|
|
74
|
+
32,15,37000.0,3600.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
75
|
+
31,37,61700.0,4032.0,2,1,1,1.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
76
|
+
32,16,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
77
|
+
31,38,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
78
|
+
32,17,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
79
|
+
31,39,82000.0,5400.0,4,2,2,1.0,0.0,0.0,0.0,1.0,2,0.0,1
|
|
80
|
+
32,18,40750.0,5200.0,4,1,3,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
81
|
+
31,40,54500.0,3150.0,2,2,1,0.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
82
|
+
32,19,45000.0,3450.0,1,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
83
|
+
31,41,66500.0,3745.0,3,1,2,1.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
84
|
+
32,20,45000.0,3986.0,2,2,1,0.0,1.0,1.0,0.0,0.0,1,0.0,0
|
|
85
|
+
31,42,70000.0,4520.0,3,1,2,1.0,0.0,1.0,0.0,1.0,0,0.0,1
|
|
86
|
+
32,21,48500.0,4785.0,3,1,2,1.0,1.0,1.0,0.0,1.0,1,0.0,0
|
|
87
|
+
31,43,82000.0,4640.0,4,1,2,1.0,0.0,0.0,0.0,0.0,1,0.0,1
|
|
88
|
+
32,22,65900.0,4510.0,4,2,2,1.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
89
|
+
31,44,92000.0,8580.0,5,3,2,1.0,0.0,0.0,0.0,0.0,2,0.0,1
|
|
90
|
+
33,1,42000.0,5850.0,3,1,2,1.0,0.0,1.0,0.0,0.0,1,0.0,0
|
|
91
|
+
31,45,38000.0,2000.0,2,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
92
|
+
33,2,38500.0,4000.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
93
|
+
31,46,44000.0,2160.0,3,1,2,0.0,0.0,1.0,0.0,0.0,0,0.0,0
|
|
94
|
+
33,3,49500.0,3060.0,3,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
95
|
+
31,47,41000.0,3040.0,2,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
96
|
+
33,4,60500.0,6650.0,3,1,2,1.0,1.0,0.0,0.0,0.0,0,0.0,1
|
|
97
|
+
31,48,43000.0,3090.0,3,1,2,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
98
|
+
33,5,61000.0,6360.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
99
|
+
31,49,48000.0,4960.0,4,1,3,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
100
|
+
33,6,66000.0,4160.0,3,1,1,1.0,1.0,1.0,0.0,1.0,0,0.0,1
|
|
101
|
+
31,50,54800.0,3350.0,3,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
102
|
+
33,7,66000.0,3880.0,3,2,2,1.0,0.0,1.0,0.0,0.0,2,0.0,1
|
|
103
|
+
31,51,55000.0,5300.0,5,2,2,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
104
|
+
33,8,69000.0,4160.0,3,1,3,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
105
|
+
31,52,57000.0,4100.0,4,1,1,0.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
106
|
+
33,9,83800.0,4800.0,3,1,1,1.0,1.0,1.0,0.0,0.0,0,0.0,1
|
|
107
|
+
31,53,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
108
|
+
33,10,88500.0,5500.0,3,2,4,1.0,1.0,0.0,0.0,1.0,1,0.0,1
|
|
109
|
+
31,54,95000.0,4040.0,3,1,2,1.0,0.0,1.0,1.0,0.0,1,0.0,1
|
|
110
|
+
33,11,90000.0,7200.0,3,2,1,1.0,0.0,1.0,0.0,1.0,3,0.0,1
|
|
111
|
+
31,55,38000.0,3630.0,3,3,2,0.0,1.0,0.0,0.0,0.0,0,0.0,0
|
|
112
|
+
33,12,30500.0,3000.0,2,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
113
|
+
31,56,25000.0,3620.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
114
|
+
33,13,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
115
|
+
31,57,25245.0,2400.0,3,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
116
|
+
33,14,36000.0,2880.0,3,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
117
|
+
31,58,56000.0,7260.0,3,2,1,1.0,1.0,1.0,0.0,0.0,3,0.0,1
|
|
118
|
+
33,15,37000.0,3600.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
119
|
+
31,59,35500.0,4400.0,3,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
120
|
+
33,16,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
121
|
+
31,60,30000.0,2400.0,3,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
122
|
+
33,17,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
123
|
+
31,61,48000.0,4120.0,2,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
124
|
+
33,18,40750.0,5200.0,4,1,3,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
125
|
+
31,62,48000.0,4750.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
126
|
+
33,19,45000.0,3450.0,1,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
127
|
+
31,63,52000.0,4280.0,2,1,1,1.0,0.0,0.0,0.0,1.0,2,0.0,1
|
|
128
|
+
33,20,45000.0,3986.0,2,2,1,0.0,1.0,1.0,0.0,0.0,1,0.0,0
|
|
129
|
+
31,64,54000.0,4820.0,3,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
130
|
+
33,21,48500.0,4785.0,3,1,2,1.0,1.0,1.0,0.0,1.0,1,0.0,0
|
|
131
|
+
31,65,56000.0,5500.0,4,1,2,1.0,1.0,1.0,0.0,0.0,0,0.0,1
|
|
132
|
+
33,22,65900.0,4510.0,4,2,2,1.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
133
|
+
31,66,60000.0,5500.0,3,1,2,1.0,0.0,0.0,0.0,1.0,0,0.0,1
|
|
134
|
+
31,67,60000.0,5040.0,3,1,2,1.0,0.0,1.0,0.0,1.0,0,0.0,1
|
|
135
|
+
31,68,67000.0,6000.0,2,1,1,1.0,0.0,1.0,0.0,1.0,1,0.0,1
|
|
136
|
+
31,69,47000.0,2500.0,2,1,1,0.0,0.0,0.0,0.0,1.0,0,0.0,0
|
|
137
|
+
31,70,70000.0,4095.0,3,1,2,0.0,1.0,1.0,0.0,1.0,0,0.0,1
|
|
138
|
+
31,71,45000.0,4095.0,2,1,1,1.0,0.0,0.0,0.0,0.0,2,0.0,0
|
|
139
|
+
31,72,51000.0,3150.0,3,1,2,1.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
140
|
+
31,73,32500.0,1836.0,2,1,1,0.0,0.0,1.0,0.0,0.0,0,0.0,0
|
|
141
|
+
31,74,34000.0,2475.0,3,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
142
|
+
31,75,35000.0,3210.0,3,1,2,1.0,0.0,1.0,0.0,0.0,0,0.0,0
|
|
143
|
+
31,76,36000.0,3180.0,3,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
144
|
+
31,77,45000.0,1650.0,3,1,2,0.0,0.0,1.0,0.0,0.0,0,0.0,0
|
|
145
|
+
31,78,47000.0,3180.0,4,1,2,1.0,0.0,1.0,0.0,1.0,0,0.0,0
|
|
146
|
+
31,79,55000.0,3180.0,2,2,1,1.0,0.0,1.0,0.0,0.0,2,0.0,1
|
|
147
|
+
31,80,63900.0,6360.0,2,1,1,1.0,0.0,1.0,0.0,1.0,1,0.0,1
|
|
148
|
+
31,81,50000.0,4240.0,3,1,2,1.0,0.0,0.0,0.0,1.0,0,0.0,0
|
|
149
|
+
31,82,35000.0,3240.0,2,1,1,0.0,1.0,0.0,0.0,0.0,1,0.0,0
|
|
150
|
+
31,83,50000.0,3650.0,3,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
151
|
+
31,84,43000.0,3240.0,3,1,2,1.0,0.0,0.0,0.0,0.0,2,0.0,0
|
|
152
|
+
31,85,55500.0,3780.0,2,1,2,1.0,1.0,1.0,0.0,0.0,0,0.0,1
|
|
153
|
+
31,86,57000.0,6480.0,3,1,2,0.0,0.0,0.0,0.0,1.0,1,0.0,1
|
|
154
|
+
31,87,60000.0,5850.0,2,1,1,1.0,1.0,1.0,0.0,0.0,2,0.0,1
|
|
155
|
+
31,88,78000.0,3150.0,3,2,1,1.0,1.0,1.0,0.0,1.0,0,0.0,1
|
|
156
|
+
31,89,35000.0,3000.0,2,1,1,1.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
157
|
+
31,90,44000.0,3090.0,2,1,1,1.0,1.0,1.0,0.0,0.0,0,0.0,0
|
|
158
|
+
31,91,47000.0,6060.0,3,1,1,1.0,1.0,1.0,0.0,0.0,0,0.0,0
|
|
159
|
+
31,92,58000.0,5900.0,4,2,2,0.0,0.0,1.0,0.0,0.0,1,0.0,1
|
|
160
|
+
31,93,163000.0,7420.0,4,1,2,1.0,1.0,1.0,0.0,1.0,2,0.0,0
|
|
161
|
+
31,94,128000.0,8500.0,3,2,4,1.0,0.0,0.0,0.0,1.0,2,0.0,0
|
|
162
|
+
31,95,123500.0,8050.0,3,1,1,1.0,1.0,1.0,0.0,1.0,1,0.0,0
|
|
163
|
+
31,96,39000.0,6800.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
164
|
+
31,97,53900.0,8250.0,3,1,1,1.0,0.0,0.0,0.0,0.0,2,0.0,1
|
|
165
|
+
31,98,59900.0,8250.0,3,1,1,1.0,0.0,1.0,0.0,0.0,3,0.0,1
|
|
166
|
+
31,99,35000.0,3500.0,2,1,1,1.0,1.0,0.0,0.0,0.0,0,0.0,0
|
|
167
|
+
31,100,43000.0,2835.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
168
|
+
31,101,57000.0,4500.0,3,2,2,0.0,0.0,1.0,0.0,1.0,0,0.0,1
|
|
169
|
+
31,102,79000.0,3300.0,3,3,2,1.0,0.0,1.0,0.0,0.0,0,0.0,1
|
|
170
|
+
31,103,125000.0,4320.0,3,1,2,1.0,0.0,1.0,1.0,0.0,2,0.0,0
|
|
171
|
+
31,104,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
172
|
+
31,105,58000.0,4992.0,3,2,2,1.0,0.0,0.0,0.0,0.0,2,0.0,1
|
|
173
|
+
31,106,43000.0,4600.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
174
|
+
31,107,48000.0,3720.0,2,1,1,0.0,0.0,0.0,0.0,1.0,0,0.0,0
|
|
175
|
+
31,108,58500.0,3680.0,3,2,2,1.0,0.0,0.0,0.0,0.0,0,0.0,1
|
|
176
|
+
31,109,73000.0,3000.0,3,2,2,1.0,1.0,1.0,0.0,0.0,0,0.0,1
|
|
177
|
+
31,110,63500.0,3750.0,2,1,1,1.0,1.0,1.0,0.0,0.0,0,0.0,1
|
|
178
|
+
31,111,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
179
|
+
31,112,46500.0,4500.0,2,1,1,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
180
|
+
31,113,92000.0,5000.0,3,1,2,1.0,0.0,0.0,0.0,1.0,0,0.0,1
|
|
181
|
+
31,114,75000.0,4260.0,4,1,2,1.0,0.0,1.0,0.0,1.0,0,0.0,1
|
|
182
|
+
31,115,75000.0,6540.0,4,2,2,0.0,0.0,0.0,0.0,1.0,0,0.0,1
|
|
183
|
+
31,116,85000.0,3700.0,4,1,2,1.0,1.0,0.0,0.0,1.0,0,0.0,1
|
|
184
|
+
31,117,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
185
|
+
31,118,94500.0,4000.0,3,2,2,1.0,0.0,1.0,0.0,1.0,1,0.0,1
|
|
186
|
+
31,119,106500.0,4300.0,3,2,2,1.0,0.0,1.0,0.0,0.0,1,0.0,0
|
|
187
|
+
31,120,116000.0,6840.0,5,1,2,1.0,1.0,1.0,0.0,1.0,1,0.0,0
|
|
188
|
+
31,121,61500.0,4400.0,2,1,1,1.0,0.0,0.0,0.0,0.0,1,0.0,1
|
|
189
|
+
31,122,80000.0,10500.0,4,2,2,1.0,0.0,0.0,0.0,0.0,1,0.0,1
|
|
190
|
+
31,123,37000.0,4400.0,2,1,1,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
191
|
+
31,124,59500.0,4840.0,3,1,2,1.0,0.0,0.0,0.0,0.0,1,0.0,1
|
|
192
|
+
31,125,70000.0,4120.0,2,1,1,1.0,0.0,1.0,0.0,0.0,1,0.0,1
|
|
193
|
+
31,126,95000.0,4260.0,4,2,2,1.0,0.0,0.0,1.0,0.0,0,0.0,1
|
|
194
|
+
31,127,117000.0,5960.0,3,3,2,1.0,1.0,1.0,0.0,0.0,1,0.0,0
|
|
195
|
+
31,128,122500.0,8800.0,3,2,2,1.0,0.0,0.0,0.0,1.0,2,0.0,0
|
|
196
|
+
31,129,123500.0,4560.0,3,2,2,1.0,1.0,1.0,0.0,1.0,1,0.0,0
|
|
197
|
+
31,130,127000.0,4600.0,3,2,2,1.0,1.0,0.0,0.0,1.0,2,0.0,0
|
|
198
|
+
31,131,35000.0,4840.0,2,1,2,1.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
199
|
+
31,132,40500.0,3300.0,3,1,2,0.0,0.0,0.0,0.0,0.0,1,0.0,0
|
|
200
|
+
31,133,49900.0,4900.0,3,1,2,0.0,0.0,0.0,0.0,0.0,0,0.0,0
|
|
201
|
+
31,134,50500.0,3850.0,3,1,1,1.0,0.0,0.0,0.0,0.0,2,0.0,1
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
groupName,groupValue
|
|
2
|
+
groupD,12
|
|
3
|
+
groupF,15
|
|
4
|
+
groupE,34
|
|
5
|
+
groupB,21
|
|
6
|
+
groupD,12
|
|
7
|
+
groupF,26
|
|
8
|
+
groupE,31
|
|
9
|
+
groupB,19
|
|
10
|
+
groupD,5
|
|
11
|
+
groupF,26
|
|
12
|
+
groupE,21
|
|
13
|
+
groupB,21
|
|
14
|
+
groupD,23
|
|
15
|
+
groupF,10
|
|
16
|
+
groupE,11
|
|
17
|
+
groupB,17
|
|
18
|
+
groupD,6
|
|
19
|
+
groupF,22
|
|
20
|
+
groupE,5
|
|
21
|
+
groupB,11
|
|
22
|
+
groupD,42
|
|
23
|
+
groupF,15
|
|
24
|
+
groupE,13
|
|
25
|
+
groupB,16
|
|
26
|
+
groupD,31
|
|
27
|
+
groupF,16
|
|
28
|
+
groupE,60
|
|
29
|
+
groupB,14
|
|
30
|
+
groupD,7
|
|
31
|
+
groupF,11
|
|
32
|
+
groupE,7
|
|
33
|
+
groupB,11
|
|
34
|
+
groupD,5
|
|
35
|
+
groupF,13
|
|
36
|
+
groupE,11
|
|
37
|
+
groupB,17
|
|
38
|
+
groupD,5
|
|
39
|
+
groupF,9
|
|
40
|
+
groupE,5
|
|
41
|
+
groupB,17
|
|
42
|
+
groupC,7
|
|
43
|
+
groupC,13
|
|
44
|
+
groupC,10
|
|
45
|
+
groupC,11
|
|
46
|
+
groupC,20
|
|
47
|
+
groupC,13
|
|
48
|
+
groupC,11
|
|
49
|
+
groupC,10
|
|
50
|
+
groupC,21
|
|
51
|
+
groupC,11
|
|
52
|
+
groupA,20
|
|
53
|
+
groupA,17
|
|
54
|
+
groupA,20
|
|
55
|
+
groupA,23
|
|
56
|
+
groupA,14
|
|
57
|
+
groupA,14
|
|
58
|
+
groupA,12
|
|
59
|
+
groupA,10
|
|
60
|
+
groupA,10
|
|
61
|
+
groupA,7
|
|
@@ -1,12 +1,14 @@
|
|
|
1
1
|
{
|
|
2
2
|
"json_schema_major_version": "1",
|
|
3
|
-
"json_schema_minor_version": "
|
|
4
|
-
"json_content_version": "
|
|
3
|
+
"json_schema_minor_version": "2",
|
|
4
|
+
"json_content_version": "2",
|
|
5
5
|
"function_name": "TD_ANOVA",
|
|
6
|
-
"
|
|
6
|
+
"function_alias_name": "TD_ANOVA",
|
|
7
|
+
"function_version": "2.0",
|
|
8
|
+
"commence_db_version" : "17.20.00",
|
|
9
|
+
"change_db_version" : "17.20.03.XX",
|
|
7
10
|
"function_type": "fastpath",
|
|
8
11
|
"function_category": "Hypothesis Testing",
|
|
9
|
-
"function_alias_name": "TD_ANOVA",
|
|
10
12
|
"function_r_name": "aa.td_anova",
|
|
11
13
|
"short_description": "hypothesis test function to perform anova analysis on a data set.",
|
|
12
14
|
"long_description": "fastpath function to perform one-way anova analysis on a data set with two or more groups.",
|
|
@@ -15,15 +17,14 @@
|
|
|
15
17
|
"requiredInputKind": [
|
|
16
18
|
"PartitionByAny"
|
|
17
19
|
],
|
|
18
|
-
"isOrdered": false,
|
|
19
|
-
"partitionByOne": false,
|
|
20
20
|
"name": "InputTable",
|
|
21
21
|
"alternateNames": [],
|
|
22
22
|
"isRequired": true,
|
|
23
|
-
"rDescription": "The relation that contains input data.",
|
|
24
|
-
"description": "The relation that contains input data.",
|
|
25
23
|
"datatype": "TABLE_ALIAS",
|
|
26
|
-
"
|
|
24
|
+
"partitionByOne": false,
|
|
25
|
+
"isOrdered": false,
|
|
26
|
+
"description": "The relation that contains input data.",
|
|
27
|
+
"rDescription": "The relation that contains input data.",
|
|
27
28
|
"rName": "data",
|
|
28
29
|
"useInR": true,
|
|
29
30
|
"rOrderNum": 1
|
|
@@ -31,6 +32,9 @@
|
|
|
31
32
|
],
|
|
32
33
|
"argument_clauses": [
|
|
33
34
|
{
|
|
35
|
+
"name": "GroupColumns",
|
|
36
|
+
"alternateNames": [],
|
|
37
|
+
"isRequired": false,
|
|
34
38
|
"targetTable": [
|
|
35
39
|
"InputTable"
|
|
36
40
|
],
|
|
@@ -39,39 +43,107 @@
|
|
|
39
43
|
"allowedTypeGroups": [
|
|
40
44
|
"NUMERIC"
|
|
41
45
|
],
|
|
42
|
-
"
|
|
43
|
-
"allowPadding": false,
|
|
44
|
-
"name": "Groupcolumns",
|
|
45
|
-
"alternateNames": [],
|
|
46
|
-
"isRequired": false,
|
|
47
|
-
"rDescription": "Specifies the input table columns to use in the computation.",
|
|
46
|
+
"rOrderNum": 2,
|
|
48
47
|
"description": "Specifies the input table columns to use in the computation.",
|
|
48
|
+
"rDescription": "Specifies the input table columns to use in the computation.",
|
|
49
49
|
"datatype": "COLUMNS",
|
|
50
50
|
"allowsLists": true,
|
|
51
51
|
"rName": "group.columns",
|
|
52
52
|
"useInR": true,
|
|
53
|
-
"
|
|
53
|
+
"rFormulaUsage" : false
|
|
54
|
+
},
|
|
55
|
+
{
|
|
56
|
+
"name": "GroupNameColumn",
|
|
57
|
+
"alternateNames": [],
|
|
58
|
+
"isRequired": false,
|
|
59
|
+
"targetTable": [
|
|
60
|
+
"InputTable"
|
|
61
|
+
],
|
|
62
|
+
"checkDuplicate": true,
|
|
63
|
+
"allowedTypes": [],
|
|
64
|
+
"allowedTypeGroups": [
|
|
65
|
+
"STRING"
|
|
66
|
+
],
|
|
67
|
+
"rOrderNum": 3,
|
|
68
|
+
"description": "Specifies the input table column containing the names of the groups included in the ANOVA test. This argument is used when Input is in group-value format.",
|
|
69
|
+
"rDescription": "Specifies the input table column containing the names of the groups included in the ANOVA test. This argument is used when Input is in group-value format.",
|
|
70
|
+
"datatype": "COLUMNS",
|
|
71
|
+
"allowsLists": false,
|
|
72
|
+
"rName": "group.name.column",
|
|
73
|
+
"useInR": true
|
|
74
|
+
},
|
|
75
|
+
{
|
|
76
|
+
"name": "GroupValueColumn",
|
|
77
|
+
"alternateNames": [],
|
|
78
|
+
"isRequired": false,
|
|
79
|
+
"targetTable": [
|
|
80
|
+
"InputTable"
|
|
81
|
+
],
|
|
82
|
+
"checkDuplicate": true,
|
|
83
|
+
"allowedTypes": [],
|
|
84
|
+
"allowedTypeGroups": [
|
|
85
|
+
"NUMERIC"
|
|
86
|
+
],
|
|
87
|
+
"rOrderNum": 4,
|
|
88
|
+
"description": "Specifies the input table column containing the values for each group member. This argument is used when Input is in group-value format.",
|
|
89
|
+
"rDescription": "Specifies the input table column containing the values for each group member. This argument is used when Input is in group-value format.",
|
|
90
|
+
"datatype": "COLUMNS",
|
|
91
|
+
"allowsLists": false,
|
|
92
|
+
"rName": "group.value.column",
|
|
93
|
+
"useInR": true
|
|
94
|
+
},
|
|
95
|
+
{
|
|
96
|
+
"name": "GroupNames",
|
|
97
|
+
"alternateNames": [],
|
|
98
|
+
"isRequired": false,
|
|
99
|
+
"defaultValue" : "",
|
|
100
|
+
"rOrderNum": 5,
|
|
101
|
+
"description": "Specifies the names of the groups included in the ANOVA test. This argument is used when Input is in group-value format.",
|
|
102
|
+
"rDescription": "Specifies the names of the groups included in the ANOVA test. This argument is used when Input is in group-value format.",
|
|
103
|
+
"datatype": "STRING",
|
|
104
|
+
"allowsLists": true,
|
|
105
|
+
"allowPadding": false,
|
|
106
|
+
"rName": "group.names",
|
|
107
|
+
"useInR": true,
|
|
108
|
+
"rDefaultValue" : ""
|
|
109
|
+
},
|
|
110
|
+
{
|
|
111
|
+
"name": "NumGroups",
|
|
112
|
+
"alternateNames": [],
|
|
113
|
+
"isRequired": false,
|
|
114
|
+
"rOrderNum": 6,
|
|
115
|
+
"lowerBound" : 1,
|
|
116
|
+
"loweBoundType" : "INCLUSIVE",
|
|
117
|
+
"upperBound" : 2045,
|
|
118
|
+
"upperBoundType" : "INCLUSIVE",
|
|
119
|
+
"allowNaN" : false,
|
|
120
|
+
"description": "Specifies the number of different groups in the input table included in the ANOVA test. This argument is used when Input is in group-value format.",
|
|
121
|
+
"rDescription": "Specifies the number of different groups in the input table included in the ANOVA test. This argument is used when Input is in group-value format.",
|
|
122
|
+
"datatype": "INTEGER",
|
|
123
|
+
"allowsLists": false,
|
|
124
|
+
"allowPadding": false,
|
|
125
|
+
"rName": "num.groups",
|
|
126
|
+
"useInR": true,
|
|
127
|
+
"rDefaultValue" : ""
|
|
54
128
|
},
|
|
55
129
|
{
|
|
130
|
+
"name": "Alpha",
|
|
131
|
+
"alternateNames": [],
|
|
132
|
+
"isRequired": false,
|
|
56
133
|
"defaultValue": 0.05,
|
|
134
|
+
"rOrderNum": 7,
|
|
57
135
|
"lowerBound": 0,
|
|
58
|
-
"upperBound": 1,
|
|
59
136
|
"lowerBoundType": "INCLUSIVE",
|
|
137
|
+
"upperBound": 1,
|
|
60
138
|
"upperBoundType": "INCLUSIVE",
|
|
61
139
|
"allowNaN": false,
|
|
62
|
-
"isOutputColumn": false,
|
|
63
|
-
"matchLengthOfArgument": "",
|
|
64
|
-
"allowPadding": false,
|
|
65
|
-
"name": "Alpha",
|
|
66
|
-
"alternateNames": [],
|
|
67
|
-
"isRequired": false,
|
|
68
|
-
"rDescription": "Specifies the value of alpha in hypothesis function",
|
|
69
140
|
"description": "Specifies the value of alpha in hypothesis function",
|
|
70
|
-
"
|
|
141
|
+
"rDescription": "Specifies the value of alpha in hypothesis function",
|
|
142
|
+
"datatype": "DOUBLE",
|
|
71
143
|
"allowsLists": false,
|
|
144
|
+
"allowPadding": false,
|
|
72
145
|
"rName": "alpha",
|
|
73
|
-
"useInR": true
|
|
74
|
-
"rOrderNum": 3
|
|
146
|
+
"useInR": true
|
|
75
147
|
}
|
|
76
148
|
]
|
|
77
149
|
}
|