teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (108) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +71 -0
  4. teradataml/_version.py +2 -2
  5. teradataml/analytics/analytic_function_executor.py +51 -24
  6. teradataml/analytics/json_parser/utils.py +11 -17
  7. teradataml/automl/__init__.py +103 -48
  8. teradataml/automl/data_preparation.py +55 -37
  9. teradataml/automl/data_transformation.py +131 -69
  10. teradataml/automl/feature_engineering.py +117 -185
  11. teradataml/automl/feature_exploration.py +9 -2
  12. teradataml/automl/model_evaluation.py +13 -25
  13. teradataml/automl/model_training.py +214 -75
  14. teradataml/catalog/model_cataloging_utils.py +1 -1
  15. teradataml/clients/auth_client.py +133 -0
  16. teradataml/common/aed_utils.py +3 -2
  17. teradataml/common/constants.py +11 -6
  18. teradataml/common/garbagecollector.py +5 -0
  19. teradataml/common/messagecodes.py +3 -1
  20. teradataml/common/messages.py +2 -1
  21. teradataml/common/utils.py +6 -0
  22. teradataml/context/context.py +49 -29
  23. teradataml/data/advertising.csv +201 -0
  24. teradataml/data/bank_marketing.csv +11163 -0
  25. teradataml/data/bike_sharing.csv +732 -0
  26. teradataml/data/boston2cols.csv +721 -0
  27. teradataml/data/breast_cancer.csv +570 -0
  28. teradataml/data/customer_segmentation_test.csv +2628 -0
  29. teradataml/data/customer_segmentation_train.csv +8069 -0
  30. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  31. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  32. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  33. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  34. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  35. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  36. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  37. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  38. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  39. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  40. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  41. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  42. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  43. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  44. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  45. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  46. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  47. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  48. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  49. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  50. teradataml/data/glm_example.json +28 -1
  51. teradataml/data/housing_train_segment.csv +201 -0
  52. teradataml/data/insect2Cols.csv +61 -0
  53. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  54. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  55. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  56. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  57. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  58. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  59. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  60. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  61. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  62. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  63. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  64. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  65. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  66. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  67. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  68. teradataml/data/kmeans_example.json +5 -0
  69. teradataml/data/kmeans_table.csv +10 -0
  70. teradataml/data/onehot_encoder_train.csv +4 -0
  71. teradataml/data/openml_example.json +29 -0
  72. teradataml/data/scale_attributes.csv +3 -0
  73. teradataml/data/scale_example.json +52 -1
  74. teradataml/data/scale_input_part_sparse.csv +31 -0
  75. teradataml/data/scale_input_partitioned.csv +16 -0
  76. teradataml/data/scale_input_sparse.csv +11 -0
  77. teradataml/data/scale_parameters.csv +3 -0
  78. teradataml/data/scripts/deploy_script.py +20 -1
  79. teradataml/data/scripts/sklearn/sklearn_fit.py +23 -27
  80. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +20 -28
  81. teradataml/data/scripts/sklearn/sklearn_function.template +13 -18
  82. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  83. teradataml/data/scripts/sklearn/sklearn_neighbors.py +18 -27
  84. teradataml/data/scripts/sklearn/sklearn_score.py +20 -29
  85. teradataml/data/scripts/sklearn/sklearn_transform.py +30 -38
  86. teradataml/data/teradataml_example.json +77 -0
  87. teradataml/data/ztest_example.json +16 -0
  88. teradataml/dataframe/copy_to.py +8 -3
  89. teradataml/dataframe/data_transfer.py +120 -61
  90. teradataml/dataframe/dataframe.py +102 -17
  91. teradataml/dataframe/dataframe_utils.py +47 -9
  92. teradataml/dataframe/fastload.py +272 -89
  93. teradataml/dataframe/sql.py +84 -0
  94. teradataml/dbutils/dbutils.py +2 -2
  95. teradataml/lib/aed_0_1.dll +0 -0
  96. teradataml/opensource/sklearn/_sklearn_wrapper.py +102 -55
  97. teradataml/options/__init__.py +13 -4
  98. teradataml/options/configure.py +27 -6
  99. teradataml/scriptmgmt/UserEnv.py +19 -16
  100. teradataml/scriptmgmt/lls_utils.py +117 -14
  101. teradataml/table_operators/Script.py +2 -3
  102. teradataml/table_operators/TableOperator.py +58 -10
  103. teradataml/utils/validators.py +40 -2
  104. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +78 -6
  105. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/RECORD +108 -90
  106. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +0 -0
  107. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
  108. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +0 -0
@@ -1,4 +1,4 @@
1
- def ROC(data=None, probability_column=None, observation_column=None, model_id_column=None, positive_label=None,
1
+ def ROC(data=None, probability_column=None, observation_column=None, model_id_column=None, positive_class='1',
2
2
  num_thresholds=50, auc=True, gini=True, **generic_arguments):
3
3
  """
4
4
  DESCRIPTION:
@@ -48,8 +48,9 @@ def ROC(data=None, probability_column=None, observation_column=None, model_id_co
48
48
  Types: str
49
49
 
50
50
  positive_class:
51
- Required Argument.
51
+ Optional Argument.
52
52
  Specifies the label of the positive class.
53
+ Default Value: '1'
53
54
  Types: str
54
55
 
55
56
  num_thresholds:
@@ -1,5 +1,6 @@
1
1
  def SVMPredict(object=None, newdata=None, id_column=None, accumulate=None,
2
- output_prob=False, output_responses=None, **generic_arguments):
2
+ output_prob=False, output_responses=None, model_type='Classification',
3
+ **generic_arguments):
3
4
  """
4
5
  DESCRIPTION:
5
6
  The SVMPredict() function uses the model generated by the function SVM() to
@@ -57,6 +58,15 @@ def SVMPredict(object=None, newdata=None, id_column=None, accumulate=None,
57
58
  Note:
58
59
  Only applicable when "output_prob" is 'True'.
59
60
  Types: str OR list of strs
61
+
62
+ model_type:
63
+ Optional Argument.
64
+ Specifies the type of the analysis.
65
+ Note:
66
+ * Required for Regression problem.
67
+ Permitted Values: 'Classification', 'Regression'
68
+ Default Value: 'Classification'
69
+ Types: str
60
70
 
61
71
  **generic_arguments:
62
72
  Specifies the generic keyword arguments SQLE functions accept. Below
@@ -155,7 +165,8 @@ def SVMPredict(object=None, newdata=None, id_column=None, accumulate=None,
155
165
  SVMPredict_out1 = SVMPredict(newdata=transform_obj.result,
156
166
  object=svm_obj1.result,
157
167
  id_column="id",
158
- accumulate="MedHouseVal"
168
+ accumulate="MedHouseVal",
169
+ model_type="Regression"
159
170
  )
160
171
 
161
172
  # Print the result DataFrame.
@@ -1,5 +1,9 @@
1
1
  def ScaleFit(data=None, target_columns=None, scale_method=None, miss_value="KEEP",
2
- global_scale=False, multiplier='1', intercept='0', **generic_arguments):
2
+ global_scale=False, multiplier='1', intercept='0',
3
+ parameter_data=None, attribute_data=None, partition_columns=None,
4
+ ignoreinvalid_locationscale=False, unused_attributes="UNSCALED",
5
+ attribute_name_column=None, attribute_value_column=None, target_attributes=None,
6
+ **generic_arguments):
3
7
  """
4
8
  DESCRIPTION:
5
9
  ScaleFit() function outputs statistics to input to ScaleTransform() function,
@@ -15,6 +19,9 @@ def ScaleFit(data=None, target_columns=None, scale_method=None, miss_value="KEEP
15
19
  Required Argument.
16
20
  Specifies the input teradataml DataFrame column(s) for which to output statistics.
17
21
  The columns must contain numeric data in the range (-1e\u00B3\u2070\u2078, 1e\u00B3\u2070\u2078).
22
+ Note:
23
+ * This argument cannot be used with "target_attributes", "attribute_name_column",
24
+ "attribute_value_column".
18
25
  Types: str OR list of Strings (str)
19
26
 
20
27
  scale_method:
@@ -124,6 +131,60 @@ def ScaleFit(data=None, target_columns=None, scale_method=None, miss_value="KEEP
124
131
  Default Value: "0"
125
132
  Types: str OR list of String (str)
126
133
 
134
+ parameter_data:
135
+ Optional Argument.
136
+ Specifies the input teradataml DataFrame containing the parameters.
137
+ Note:
138
+ * This is valid when "data_partition_column" is used.
139
+ Types: teradataml DataFrame
140
+
141
+ attribute_data:
142
+ Optional Argument.
143
+ Specifies the input teradataml DataFrame containing the attributes.
144
+ Note:
145
+ * This is valid when "data_partition_column" is used.
146
+ Types: teradataml DataFrame
147
+
148
+ partition_columns:
149
+ Optional Argument.
150
+ Specifies the column name in the "data" to partition the input.
151
+ Types: str OR list of Strings (str)
152
+
153
+ ignoreinvalid_locationscale:
154
+ Optional Argument.
155
+ Specifies whether to ignore invalid values of location and scale parameters.
156
+ Default Value: False
157
+ Types: bool
158
+
159
+ unused_attributes:
160
+ Optional Argument.
161
+ Specifies whether to emit out unused attributes of different partitions
162
+ as unscaled values or NULLs (for dense input).
163
+ Permitted Values: 'NULLIFY', 'UNSCALED'
164
+ Default Value: 'UNSCALED'
165
+ Types: str
166
+
167
+ attribute_name_column:
168
+ Optional Argument.
169
+ Specifies the column name in the "attribute_data" which contains attribute names.
170
+ Note:
171
+ * This is required for sparse input.
172
+ Types: str
173
+
174
+ attribute_value_column:
175
+ Optional Argument.
176
+ Specifies the column name in the "attribute_data" which contains attribute values.
177
+ Note:
178
+ * This is required for sparse input.
179
+ Types: str
180
+
181
+ target_attributes:
182
+ Optional Argument.
183
+ Specifies the attributes for which scaling should be performed.
184
+ Note:
185
+ * This is required for sparse input.
186
+ Types: str OR list of Strings (str)
187
+
127
188
  **generic_arguments:
128
189
  Specifies the generic keyword arguments SQLE functions accept.
129
190
  Below are the generic keyword arguments:
@@ -174,9 +235,16 @@ def ScaleFit(data=None, target_columns=None, scale_method=None, miss_value="KEEP
174
235
 
175
236
  # Load the example data.
176
237
  load_example_data("teradataml", ["scale_housing"])
238
+ load_example_data('scale', ["scale_attributes", "scale_parameters",
239
+ "scale_input_partitioned", "scale_input_sparse","scale_input_part_sparse"])
177
240
 
178
241
  # Create teradataml DataFrame.
179
242
  scaling_house = DataFrame.from_table("scale_housing")
243
+ scale_attribute = DataFrame.from_table("scale_attributes")
244
+ scale_parameter = DataFrame.from_table("scale_parameters")
245
+ scale_inp_part = DataFrame.from_table("scale_input_partitioned")
246
+ scale_inp_sparse = DataFrame.from_table("scale_input_sparse")
247
+ scale_inp_part_sparse = DataFrame.from_table("scale_input_part_sparse")
180
248
 
181
249
  # Check the list of available analytic functions.
182
250
  display_analytic_functions()
@@ -194,4 +262,54 @@ def ScaleFit(data=None, target_columns=None, scale_method=None, miss_value="KEEP
194
262
  # Print the result DataFrame.
195
263
  print(fit_obj.output)
196
264
  print(fit_obj.output_data)
265
+
266
+ # Example 2: Create statistics to scale "fare" and "age" columns
267
+ # with respect to maximum absolute value with partition column
268
+ # for dense input.
269
+ fit_obj = ScaleFit(data=scale_inp_part,
270
+ attribute_data=scale_attribute,
271
+ parameter_data=scale_parameter,
272
+ target_columns=['fare', 'age'],
273
+ scale_method="maxabs",
274
+ miss_value="zero",
275
+ global_scale=False,
276
+ data_partition_column='pid',
277
+ attribute_data_partition_column='pid',
278
+ parameter_data_partition_column='pid')
279
+
280
+ # Print the result DataFrame.
281
+ print(fit_obj.output)
282
+ print(fit_obj.output_data)
283
+
284
+ # Example 3: Create statistics to scale "fare" column with respect to
285
+ # range for sparse input.
286
+ fit_obj = ScaleFit(data=scale_inp_sparse,
287
+ target_attribute=['fare'],
288
+ scale_method="range",
289
+ miss_value="keep",
290
+ global_scale=False,
291
+ attribute_name_column='attribute_column',
292
+ attribute_value_column='attribute_value')
293
+
294
+ # Print the result DataFrame.
295
+ print(fit_obj.output)
296
+ print(fit_obj.output_data)
297
+
298
+ # Example 4: Create statistics to scale "fare" column with respect to
299
+ # maximum absolute value for sparse input with partition column.
300
+ fit_obj = ScaleFit(data=scale_inp_part_sparse,
301
+ parameter_data=scale_parameter,
302
+ attribute_data=scale_attribute,
303
+ scale_method="maxabs",
304
+ miss_value="zero",
305
+ global_scale=False,
306
+ attribute_name_column='attribute_column',
307
+ attribute_value_column='attribute_value',
308
+ data_partition_column='pid',
309
+ attribute_data_partition_column='pid',
310
+ parameter_data_partition_column='pid')
311
+
312
+ # Print the result DataFrame.
313
+ print(fit_obj.output)
314
+ print(fit_obj.output_data)
197
315
  """
@@ -1,4 +1,5 @@
1
- def ScaleTransform(data=None, object=None, accumulate=None, **generic_arguments):
1
+ def ScaleTransform(data=None, object=None, accumulate=None, attribute_name_column=None,
2
+ attribute_value_column=None, **generic_arguments):
2
3
  """
3
4
  DESCRIPTION:
4
5
  ScaleTransform() function scales specified columns in input data, using ScaleFit() function output.
@@ -21,6 +22,20 @@ def ScaleTransform(data=None, object=None, accumulate=None, **generic_arguments)
21
22
  Specifies the names of input teradataml DataFrame columns to copy to the output.
22
23
  Types: str OR list of Strings (str)
23
24
 
25
+ attribute_name_column:
26
+ Optional Argument.
27
+ Specifies the column name in the "attribute_data" which contains attribute names.
28
+ Note:
29
+ * This is required for sparse input.
30
+ Types: str
31
+
32
+ attribute_value_column:
33
+ Optional Argument.
34
+ Specifies the column name in the "attribute_data" which contains attribute values.
35
+ Note:
36
+ * This is required for sparse input.
37
+ Types: str
38
+
24
39
  **generic_arguments:
25
40
  Specifies the generic keyword arguments SQLE functions accept.
26
41
  Below are the generic keyword arguments:
@@ -70,9 +85,16 @@ def ScaleTransform(data=None, object=None, accumulate=None, **generic_arguments)
70
85
 
71
86
  # Load the example data.
72
87
  load_example_data("teradataml", ["scale_housing"])
88
+ load_example_data('scale', ["scale_attributes", "scale_parameters",
89
+ "scale_input_partitioned", "scale_input_sparse","scale_input_part_sparse"])
73
90
 
74
91
  # Create teradataml DataFrame.
75
92
  scaling_house = DataFrame.from_table("scale_housing")
93
+ scale_attribute = DataFrame.from_table("scale_attributes")
94
+ scale_parameter = DataFrame.from_table("scale_parameters")
95
+ scale_inp_part = DataFrame.from_table("scale_input_partitioned")
96
+ scale_inp_sparse = DataFrame.from_table("scale_input_sparse")
97
+ scale_inp_part_sparse = DataFrame.from_table("scale_input_part_sparse")
76
98
 
77
99
  # Check the list of available analytic functions.
78
100
  display_analytic_functions()
@@ -107,4 +129,74 @@ def ScaleTransform(data=None, object=None, accumulate=None, **generic_arguments)
107
129
 
108
130
  # Print the result DataFrame.
109
131
  print(obj1.result)
132
+
133
+ # Example 3: Create statistics to scale "fare" and "age" columns with respect to
134
+ # maximum absolute value for partitioned input.
135
+ fit_obj = ScaleFit(data=scale_inp_part,
136
+ attribute_data=scale_attribute,
137
+ parameter_data=scale_parameter,
138
+ target_columns=['fare', 'age'],
139
+ scale_method="maxabs",
140
+ miss_value="zero",
141
+ global_scale=False,
142
+ data_partition_column='pid',
143
+ attribute_data_partition_column='pid',
144
+ parameter_data_partition_column='pid')
145
+
146
+ obj = ScaleTransform(data=scale_inp_part,
147
+ object=fit_obj.output,
148
+ accumulate=['pid','passenger'],
149
+ data_partition_column='pid',
150
+ object_partition_column='pid')
151
+
152
+ # Print the result DataFrame.
153
+ print(obj.result)
154
+
155
+
156
+ # Example 4: Create statistics to scale "fare" column with respect to
157
+ # range for sparse input.
158
+ fit_obj = ScaleFit(data=scale_inp_sparse,
159
+ target_attribute=['fare'],
160
+ scale_method="range",
161
+ miss_value="keep",
162
+ global_scale=False,
163
+ attribute_name_column='attribute_column',
164
+ attribute_value_column='attribute_value')
165
+
166
+ obj = ScaleTransform(data=scale_inp_sparse,
167
+ object=fit_obj.output,
168
+ accumulate=['passenger'],
169
+ attribute_name_column='attribute_column',
170
+ attribute_value_column='attribute_value'
171
+ )
172
+
173
+ # Print the result DataFrame.
174
+ print(obj.result)
175
+
176
+
177
+ # Example 5: Create statistics to scale "fare" column with respect to
178
+ # maximum absolute value for sparse input with partition column.
179
+ fit_obj = ScaleFit(data=scale_inp_part_sparse,
180
+ parameter_data=scale_parameter,
181
+ attribute_data=scale_attribute,
182
+ scale_method="maxabs",
183
+ miss_value="zero",
184
+ global_scale=False,
185
+ attribute_name_column='attribute_column',
186
+ attribute_value_column='attribute_value',
187
+ data_partition_column='pid',
188
+ attribute_data_partition_column='pid',
189
+ parameter_data_partition_column='pid')
190
+
191
+ obj = ScaleTransform(data=scale_inp_part_sparse,
192
+ object=fit_obj.output,
193
+ accumulate=["passenger",'pid'],
194
+ attribute_name_column='attribute_column',
195
+ attribute_value_column='attribute_value',
196
+ object_partition_column='pid',
197
+ data_partition_column='pid')
198
+
199
+ # Print the result DataFrame.
200
+ print(obj.result)
201
+
110
202
  """
@@ -1,5 +1,6 @@
1
1
  def TDGLMPredict(object=None, newdata=None, id_column=None, accumulate=None, output_prob=False,
2
- output_responses=None, **generic_arguments):
2
+ output_responses=None, partition_column=None, family="GAUSSIAN",
3
+ **generic_arguments):
3
4
  """
4
5
  DESCRIPTION:
5
6
  The TDGLMPredict() function predicts target values (regression) and class labels
@@ -57,6 +58,18 @@ def TDGLMPredict(object=None, newdata=None, id_column=None, accumulate=None, out
57
58
  Note:
58
59
  Only applicable if "output_prob" is True.
59
60
  Types: str OR list of strs
61
+
62
+ partition_column:
63
+ Optional Argument.
64
+ Specifies the column names of "data" on which to partition the input.
65
+ Types: str OR list of Strings (str)
66
+
67
+ family:
68
+ Optional Argument.
69
+ Specifies the distribution exponential family.
70
+ Permitted Values: 'GAUSSIAN', 'BINOMIAL'
71
+ Default Value: 'GAUSSIAN'
72
+ Types: str
60
73
 
61
74
  **generic_arguments:
62
75
  Specifies the generic keyword arguments SQLE functions accept. Below
@@ -168,4 +181,153 @@ def TDGLMPredict(object=None, newdata=None, id_column=None, accumulate=None, out
168
181
 
169
182
  # Print the result DataFrame.
170
183
  print(TDGLMPredict_out1.result)
184
+
185
+ # Example 3 : TDGLMPredict() predicts the 'medv' using generated regression model by GLM
186
+ # using stepwise regression algorithm.
187
+ # This example uses the boston dataset and scales the data.
188
+ # Scaled data is used as input data to generate the GLM model and predict the target values.
189
+
190
+ # loading the example data
191
+ load_example_data("decisionforest", ["boston"])
192
+ load_example_data('glm', ['housing_train_segment', 'housing_train_parameter', 'housing_train_attribute'])
193
+
194
+ # Create teradataml DataFrame objects.
195
+ boston_df = DataFrame('boston')
196
+ housing_seg = DataFrame('housing_train_segment')
197
+ housing_parameter = DataFrame('housing_train_parameter')
198
+ housing_attribute = DataFrame('housing_train_attribute')
199
+
200
+ # scaling the data
201
+ # Scale "target_columns" with respect to 'STD' value of the column.
202
+ fit_obj = ScaleFit(data=boston_df,
203
+ target_columns=['crim','zn','indus','chas','nox','rm','age','dis','rad','tax','ptratio','black','lstat',],
204
+ scale_method="STD")
205
+
206
+ # Scale values specified in the input data using the fit data generated by the ScaleFit() function above.
207
+ obj = ScaleTransform(object=fit_obj.output,
208
+ data=boston_df,
209
+ accumulate=["id","medv"])
210
+
211
+ boston = obj.result
212
+
213
+ # Generate generalized linear model(GLM) using stepwise regression algorithm.
214
+ glm_1 = GLM(data=boston,
215
+ input_columns=['indus','chas','nox','rm'],
216
+ response_column='medv',
217
+ family='GAUSSIAN',
218
+ lambda1=0.02,
219
+ alpha=0.33,
220
+ batch_size=10,
221
+ learning_rate='optimal',
222
+ iter_max=36,
223
+ iter_num_no_change=100,
224
+ tolerance=0.0001,
225
+ initial_eta=0.02,
226
+ stepwise_direction='backward',
227
+ max_steps_num=10)
228
+
229
+ # Predict target values using generated regression model by GLM and newdata.
230
+ res = TDGLMPredict(id_column="id",
231
+ newdata=boston,
232
+ object=glm_1,
233
+ accumulate='medv')
234
+
235
+ # Print the result DataFrame.
236
+ print(res.result)
237
+
238
+ # Example 4 : TDGLMPredict() predicts the 'medv' using generated regression model by GLM
239
+ # stepwise regression algorithm with initial_stepwise_columns.
240
+ glm_2 = GLM(data=boston,
241
+ input_columns=['crim','zn','indus','chas','nox','rm','age','dis','rad','tax','ptratio','black','lstat'],
242
+ response_column='medv',
243
+ family='GAUSSIAN',
244
+ lambda1=0.02,
245
+ alpha=0.33,
246
+ batch_size=10,
247
+ learning_rate='optimal',
248
+ iter_max=36,
249
+ iter_num_no_change=100,
250
+ tolerance=0.0001,
251
+ initial_eta=0.02,
252
+ stepwise_direction='bidirectional',
253
+ max_steps_num=10,
254
+ initial_stepwise_columns=['rad','tax']
255
+ )
256
+
257
+ # Predict target values using generated regression model by GLM and newdata.
258
+ res = TDGLMPredict(id_column="id",
259
+ newdata=boston,
260
+ object=glm_2,
261
+ accumulate='medv')
262
+
263
+ # Print the result DataFrame.
264
+ print(res.result)
265
+
266
+ # Example 5 : TDGLMPredict() predicts the 'price' using generated regression model by GLM
267
+ # using partition by key.
268
+ glm_3 = GLM(data=housing_seg,
269
+ input_columns=['bedrooms', 'bathrms', 'stories', 'driveway', 'recroom', 'fullbase', 'gashw', 'airco'],
270
+ response_column='price',
271
+ family='GAUSSIAN',
272
+ batch_size=10,
273
+ iter_max=1000,
274
+ data_partition_column='partition_id'
275
+ )
276
+
277
+ # Predict target values using generated regression model by GLM and newdata.
278
+ res = TDGLMPredict(id_column="sn",
279
+ newdata=housing_seg,
280
+ object=glm_3,
281
+ accumulate='price',
282
+ newdata_partition_column='partition_id',
283
+ object_partition_column='partition_id')
284
+
285
+ # Print the result DataFrame.
286
+ print(res.result)
287
+
288
+ # Example 6 : TDGLMPredict() predicts the 'price' using generated regression model by GLM
289
+ # using partition by key with attribute data.
290
+ glm_4 = GLM(data=housing_seg,
291
+ input_columns=['bedrooms', 'bathrms', 'stories', 'driveway', 'recroom', 'fullbase', 'gashw', 'airco'],
292
+ response_column='price',
293
+ family='GAUSSIAN',
294
+ batch_size=10,
295
+ iter_max=1000,
296
+ data_partition_column='partition_id',
297
+ attribute_data = housing_attribute,
298
+ attribute_data_partition_column = 'partition_id'
299
+ )
300
+
301
+ # Predict target values using generated regression model by GLM and newdata.
302
+ res = TDGLMPredict(id_column="sn",
303
+ newdata=housing_seg,
304
+ object=glm_4,
305
+ accumulate='price',
306
+ newdata_partition_column='partition_id',
307
+ object_partition_column='partition_id')
308
+
309
+ # Print the result DataFrame.
310
+ print(res.result)
311
+
312
+ # Example 7 : TDGLMPredict() predicts the 'homestyle' using generated generalized linear model by GLM
313
+ # using partition by key with parameter data.
314
+ glm_5 = GLM(data=housing_seg,
315
+ input_columns=['bedrooms', 'bathrms', 'stories', 'driveway', 'recroom', 'fullbase', 'gashw', 'airco'],
316
+ response_column='homestyle',
317
+ family='binomial',
318
+ iter_max=1000,
319
+ data_partition_column='partition_id',
320
+ parameter_data = housing_parameter,
321
+ parameter_data_partition_column = 'partition_id'
322
+ )
323
+
324
+ res = TDGLMPredict(id_column="sn",
325
+ newdata=housing_seg,
326
+ object=glm_5,
327
+ accumulate='homestyle',
328
+ newdata_partition_column='partition_id',
329
+ object_partition_column='partition_id')
330
+
331
+ # Print the result DataFrame.
332
+ print(res.result)
171
333
  """
@@ -1,7 +1,7 @@
1
1
  def XGBoost(formula=None, data=None, input_columns=None, response_column=None, max_depth=5,
2
2
  num_boosted_trees=-1, min_node_size=1, seed=1, model_type='REGRESSION',
3
- coverage_factor=1.0, min_impurity=0.0, lambda1=100000,
4
- shrinkage_factor=0.1, column_sampling=1.0, iter_num=10, tree_size=-1,
3
+ coverage_factor=1.0, min_impurity=0.0, lambda1=1, shrinkage_factor=0.5,
4
+ column_sampling=1.0, iter_num=10, tree_size=-1, base_score=0.0,
5
5
  **generic_arguments):
6
6
  """
7
7
  DESCRIPTION:
@@ -174,7 +174,7 @@ def XGBoost(formula=None, data=None, input_columns=None, response_column=None, m
174
174
  Notes:
175
175
  * The "lambda1" must be in the range [0, 100000].
176
176
  * The value 0 specifies no regularization.
177
- Default Value: 100000
177
+ Default Value: 1
178
178
  Types: float OR int
179
179
 
180
180
  shrinkage_factor:
@@ -185,7 +185,7 @@ def XGBoost(formula=None, data=None, input_columns=None, response_column=None, m
185
185
  Notes:
186
186
  * The "shrinkage_factor" is a DOUBLE PRECISION value in the range (0, 1].
187
187
  * The value 1 specifies no shrinkage.
188
- Default Value: 0.1
188
+ Default Value: 0.5
189
189
  Types: float
190
190
 
191
191
  column_sampling:
@@ -217,6 +217,14 @@ def XGBoost(formula=None, data=None, input_columns=None, response_column=None, m
217
217
  Default Value: -1
218
218
  Types: int
219
219
 
220
+ base_score:
221
+ Optional Argument.
222
+ Specifies the initial prediction value for all data points.
223
+ Note:
224
+ * The "base_score" must be in the range [-1e50, 1e50].
225
+ Default Value: 0.0
226
+ Types: float
227
+
220
228
  **generic_arguments:
221
229
  Specifies the generic keyword arguments SQLE functions accept. Below
222
230
  are the generic keyword arguments:
@@ -1,6 +1,6 @@
1
1
  def XGBoostPredict(newdata=None, object=None, id_column=None, num_boosted_tree=1000,
2
2
  iter_num=3, accumulate=None, output_prob=False, model_type="REGRESSION",
3
- output_responses=None, **generic_arguments):
3
+ output_responses=None, detailed=False, **generic_arguments):
4
4
  """
5
5
  DESCRIPTION:
6
6
  The XGBoostPredict() function runs the predictive algorithm based on the model generated
@@ -123,6 +123,12 @@ def XGBoostPredict(newdata=None, object=None, id_column=None, num_boosted_tree=1
123
123
  'Classification'.
124
124
  Types: str OR list of str(s)
125
125
 
126
+ detailed:
127
+ Optional Argument.
128
+ Specifies whether to output detailed information of each prediction.
129
+ Default Value: False
130
+ Types: bool
131
+
126
132
  **generic_arguments:
127
133
  Specifies the generic keyword arguments SQLE functions accept. Below
128
134
  are the generic keyword arguments: