teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (108) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/LICENSE.pdf +0 -0
  3. teradataml/README.md +71 -0
  4. teradataml/_version.py +2 -2
  5. teradataml/analytics/analytic_function_executor.py +51 -24
  6. teradataml/analytics/json_parser/utils.py +11 -17
  7. teradataml/automl/__init__.py +103 -48
  8. teradataml/automl/data_preparation.py +55 -37
  9. teradataml/automl/data_transformation.py +131 -69
  10. teradataml/automl/feature_engineering.py +117 -185
  11. teradataml/automl/feature_exploration.py +9 -2
  12. teradataml/automl/model_evaluation.py +13 -25
  13. teradataml/automl/model_training.py +214 -75
  14. teradataml/catalog/model_cataloging_utils.py +1 -1
  15. teradataml/clients/auth_client.py +133 -0
  16. teradataml/common/aed_utils.py +3 -2
  17. teradataml/common/constants.py +11 -6
  18. teradataml/common/garbagecollector.py +5 -0
  19. teradataml/common/messagecodes.py +3 -1
  20. teradataml/common/messages.py +2 -1
  21. teradataml/common/utils.py +6 -0
  22. teradataml/context/context.py +49 -29
  23. teradataml/data/advertising.csv +201 -0
  24. teradataml/data/bank_marketing.csv +11163 -0
  25. teradataml/data/bike_sharing.csv +732 -0
  26. teradataml/data/boston2cols.csv +721 -0
  27. teradataml/data/breast_cancer.csv +570 -0
  28. teradataml/data/customer_segmentation_test.csv +2628 -0
  29. teradataml/data/customer_segmentation_train.csv +8069 -0
  30. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
  31. teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
  32. teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
  33. teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
  34. teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
  35. teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
  36. teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
  37. teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
  38. teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
  39. teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
  40. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
  41. teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
  42. teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
  43. teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
  44. teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
  45. teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
  46. teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
  47. teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
  48. teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
  49. teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
  50. teradataml/data/glm_example.json +28 -1
  51. teradataml/data/housing_train_segment.csv +201 -0
  52. teradataml/data/insect2Cols.csv +61 -0
  53. teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
  54. teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
  55. teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
  56. teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
  57. teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
  58. teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
  59. teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
  60. teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
  61. teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
  62. teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
  63. teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
  64. teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
  65. teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
  66. teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
  67. teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
  68. teradataml/data/kmeans_example.json +5 -0
  69. teradataml/data/kmeans_table.csv +10 -0
  70. teradataml/data/onehot_encoder_train.csv +4 -0
  71. teradataml/data/openml_example.json +29 -0
  72. teradataml/data/scale_attributes.csv +3 -0
  73. teradataml/data/scale_example.json +52 -1
  74. teradataml/data/scale_input_part_sparse.csv +31 -0
  75. teradataml/data/scale_input_partitioned.csv +16 -0
  76. teradataml/data/scale_input_sparse.csv +11 -0
  77. teradataml/data/scale_parameters.csv +3 -0
  78. teradataml/data/scripts/deploy_script.py +20 -1
  79. teradataml/data/scripts/sklearn/sklearn_fit.py +23 -27
  80. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +20 -28
  81. teradataml/data/scripts/sklearn/sklearn_function.template +13 -18
  82. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
  83. teradataml/data/scripts/sklearn/sklearn_neighbors.py +18 -27
  84. teradataml/data/scripts/sklearn/sklearn_score.py +20 -29
  85. teradataml/data/scripts/sklearn/sklearn_transform.py +30 -38
  86. teradataml/data/teradataml_example.json +77 -0
  87. teradataml/data/ztest_example.json +16 -0
  88. teradataml/dataframe/copy_to.py +8 -3
  89. teradataml/dataframe/data_transfer.py +120 -61
  90. teradataml/dataframe/dataframe.py +102 -17
  91. teradataml/dataframe/dataframe_utils.py +47 -9
  92. teradataml/dataframe/fastload.py +272 -89
  93. teradataml/dataframe/sql.py +84 -0
  94. teradataml/dbutils/dbutils.py +2 -2
  95. teradataml/lib/aed_0_1.dll +0 -0
  96. teradataml/opensource/sklearn/_sklearn_wrapper.py +102 -55
  97. teradataml/options/__init__.py +13 -4
  98. teradataml/options/configure.py +27 -6
  99. teradataml/scriptmgmt/UserEnv.py +19 -16
  100. teradataml/scriptmgmt/lls_utils.py +117 -14
  101. teradataml/table_operators/Script.py +2 -3
  102. teradataml/table_operators/TableOperator.py +58 -10
  103. teradataml/utils/validators.py +40 -2
  104. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +78 -6
  105. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/RECORD +108 -90
  106. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +0 -0
  107. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
  108. {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +0 -0
@@ -30,6 +30,7 @@ from teradataml.utils.dtypes import _Dtypes
30
30
  from teradataml.common.utils import UtilFuncs
31
31
  from teradataml import TeradataMlException
32
32
  from teradataml.common.messages import Messages, MessageCodes
33
+ from teradatasqlalchemy.telemetry.queryband import collect_queryband
33
34
 
34
35
  # AutoML Internal libraries
35
36
  from teradataml.automl.data_preparation import _DataPreparation
@@ -51,6 +52,7 @@ class AutoML:
51
52
  max_runtime_secs = None,
52
53
  stopping_metric = None,
53
54
  stopping_tolerance = None,
55
+ max_models = None,
54
56
  custom_config_file = None):
55
57
  """
56
58
  DESCRIPTION:
@@ -82,12 +84,12 @@ class AutoML:
82
84
  AutoML also provides an option to customize the processes within feature
83
85
  engineering, data preparation and model training phases. User can customize
84
86
  the processes by passing the JSON file path in case of custom run. It also
85
- supports early stopping of model training based on stopping metrics and
86
- maximum running time.
87
+ supports early stopping of model training based on stopping metrics,
88
+ maximum running time and maximum models to be trained.
87
89
 
88
90
  PARAMETERS:
89
91
  task_type:
90
- Optional Arugment.
92
+ Optional Argument.
91
93
  Specifies the task type for AutoML, whether to apply regression OR classification
92
94
  on the provided dataset. If user wants AutoML to decide the task type automatically,
93
95
  then it should be set to "Default".
@@ -122,7 +124,7 @@ class AutoML:
122
124
  Types: int
123
125
 
124
126
  max_runtime_secs:
125
- Optional Arugment.
127
+ Optional Argument.
126
128
  Specifies the time limit in seconds for model training.
127
129
  Types: int
128
130
 
@@ -143,6 +145,11 @@ class AutoML:
143
145
  Required, when "stopping_metric" is set, otherwise optional.
144
146
  Specifies the stopping tolerance for stopping metrics in model training.
145
147
  Types: float
148
+
149
+ max_models:
150
+ Optional Argument.
151
+ Specifies the maximum number of models to be trained.
152
+ Types: int
146
153
 
147
154
  custom_config_file:
148
155
  Optional Argument.
@@ -285,6 +292,7 @@ class AutoML:
285
292
  >>> exclude="xgboost",
286
293
  >>> stopping_metric="R2",
287
294
  >>> stopping_tolerance=0.7,
295
+ >>> max_models=10,
288
296
  >>> custom_config_file="custom_housing.json")
289
297
  # Fit the data.
290
298
  >>> automl_obj.fit(housing_train, "price")
@@ -303,7 +311,8 @@ class AutoML:
303
311
  # Create instance of AutoML.
304
312
  >>> automl_obj = AutoML(verbose=2,
305
313
  >>> exclude="xgboost",
306
- >>> max_runtime_secs=500)
314
+ >>> max_runtime_secs=500,
315
+ >>> max_models=3)
307
316
  # Fit the data.
308
317
  >>> automl_obj.fit(iris_input, iris_input.species)
309
318
 
@@ -339,6 +348,7 @@ class AutoML:
339
348
  'WEIGHTED-PRECISION','WEIGHTED-RECALL',
340
349
  'WEIGHTED-F1', 'ACCURACY']])
341
350
  arg_info_matrix.append(["stopping_tolerance", stopping_tolerance, True, (float, int)])
351
+ arg_info_matrix.append(["max_models", max_models, True, (int)])
342
352
  arg_info_matrix.append(["custom_config_file", custom_config_file, True, (str), True])
343
353
 
344
354
 
@@ -349,6 +359,8 @@ class AutoML:
349
359
  _Validators._validate_mutually_exclusive_arguments(include, "include", exclude, "exclude")
350
360
  # Validate mutually inclusive arguments
351
361
  _Validators._validate_mutually_inclusive_arguments(stopping_metric, "stopping_metric", stopping_tolerance, "stopping_tolerance")
362
+ # Validate lower range for max_models
363
+ _Validators._validate_argument_range(max_models, "max_models", lbound=1, lbound_inclusive=True)
352
364
 
353
365
  custom_data = None
354
366
  self.auto = True
@@ -375,10 +387,12 @@ class AutoML:
375
387
  self.max_runtime_secs = max_runtime_secs
376
388
  self.stopping_metric = stopping_metric
377
389
  self.stopping_tolerance = stopping_tolerance
390
+ self.max_models = max_models
378
391
  self.model_list = ['decision_forest', 'xgboost', 'knn', 'svm', 'glm']
379
392
  self.is_classification_type = lambda: self.task_type.upper() == 'CLASSIFICATION'
380
393
  self._is_fit_called = False
381
394
 
395
+ @collect_queryband(queryband="AutoML_fit")
382
396
  def fit(self,
383
397
  data,
384
398
  target_column):
@@ -394,7 +408,7 @@ class AutoML:
394
408
  Types: teradataml Dataframe
395
409
 
396
410
  target_column:
397
- Required Arugment.
411
+ Required Argument.
398
412
  Specifies target column of dataset.
399
413
  Types: str or ColumnExpression
400
414
 
@@ -484,7 +498,7 @@ class AutoML:
484
498
 
485
499
  # Displaying received custom input
486
500
  if self.custom_data:
487
- print("\n Received below input for customization : ")
501
+ print("\nReceived below input for customization : ")
488
502
  print(json.dumps(self.custom_data, indent=4))
489
503
 
490
504
  # Classification probelm
@@ -506,13 +520,15 @@ class AutoML:
506
520
  verbose = self.verbose,
507
521
  max_runtime_secs = self.max_runtime_secs,
508
522
  stopping_metric = self.stopping_metric,
509
- stopping_tolerance = self.stopping_tolerance
510
- )
523
+ stopping_tolerance = self.stopping_tolerance,
524
+ max_models = self.max_models)
525
+
511
526
  # Model Evaluation Phase
512
527
  self.m_evaluator = _ModelEvaluator(self.model_info,
513
528
  self.target_column,
514
529
  self.task_type)
515
530
 
531
+ @collect_queryband(queryband="AutoML_predict")
516
532
  def predict(self,
517
533
  data = None,
518
534
  rank = 1):
@@ -582,6 +598,10 @@ class AutoML:
582
598
 
583
599
  # Validate argument types
584
600
  _Validators._validate_function_arguments(arg_info_pred_matrix)
601
+ # Validate range for model rank
602
+ _Validators._validate_argument_range(rank, "rank", lbound=1,
603
+ ubound=self.leader_board.Rank.max(),
604
+ lbound_inclusive=True, ubound_inclusive=True)
585
605
 
586
606
  # Setting test data indicator to default value, i.e., False.
587
607
  self.test_data_ind = False
@@ -633,7 +653,7 @@ class AutoML:
633
653
  if self.is_classification_type() and self.target_label is not None:
634
654
  # Displaying target column labels
635
655
  tar_dct = {}
636
- print('Target Column Mapping:')
656
+ print('\nTarget Column Mapping:')
637
657
  # Iterating rows
638
658
  for row in self.target_label.result.itertuples():
639
659
  # Retrieving the category names of encoded target column
@@ -645,13 +665,13 @@ class AutoML:
645
665
  for key, value in tar_dct.items():
646
666
  print(f"{key}: {value}")
647
667
 
648
- print("\n Prediction : ")
668
+ print("\nPrediction : ")
649
669
  print(pred.result)
650
670
 
651
671
  # Showing performance metrics if there is no test data
652
672
  # Or if target column is present in test data.
653
673
  if not self.test_data_ind or self.target_column_ind:
654
- print("\n Performance Metrics : ")
674
+ print("\nPerformance Metrics : ")
655
675
  print(metrics.result)
656
676
 
657
677
  prediction_column = 'prediction' if 'prediction' in pred.result.columns else 'Prediction'
@@ -669,19 +689,20 @@ class AutoML:
669
689
  }
670
690
  # Fitting ROC
671
691
  roc_out = ROC(**fit_params)
672
- print("\n ROC-AUC : ")
692
+ print("\nROC-AUC : ")
673
693
  print_data(roc_out.result)
674
694
  print_data(roc_out.output_data)
675
695
 
676
696
  # Displaying confusion matrix for binary and multiclass classification
677
697
  prediction_df=pred.result.to_pandas()
678
698
  target_col = self.target_column
679
- print("\n Confusion Matrix : ")
699
+ print("\nConfusion Matrix : ")
680
700
  print_data(confusion_matrix(prediction_df[target_col], prediction_df[prediction_column]))
681
701
 
682
702
  # Returning prediction
683
703
  return pred.result
684
704
 
705
+ @collect_queryband(queryband="AutoML_leaderboard")
685
706
  def leaderboard(self):
686
707
  """
687
708
  DESCRIPTION:
@@ -709,6 +730,7 @@ class AutoML:
709
730
  raise TeradataMlException(err, MessageCodes.EXECUTION_FAILED)
710
731
  return self.leader_board
711
732
 
733
+ @collect_queryband(queryband="AutoML_leader")
712
734
  def leader(self):
713
735
  """
714
736
  DESCRIPTION:
@@ -810,12 +832,12 @@ class _Regression(_FeatureExplore, _FeatureEngineering, _DataPreparation, _Model
810
832
  Types: teradataml Dataframe
811
833
 
812
834
  target_column:
813
- Required Arugment.
835
+ Required Argument.
814
836
  Specifies the name of the target column in "data".
815
837
  Types: str
816
838
 
817
839
  custom_data:
818
- Optional Arugment.
840
+ Optional Argument.
819
841
  Specifies json object containing user customized input.
820
842
  Types: json object
821
843
  """
@@ -830,14 +852,15 @@ class _Regression(_FeatureExplore, _FeatureEngineering, _DataPreparation, _Model
830
852
  verbose = 0,
831
853
  max_runtime_secs = None,
832
854
  stopping_metric = None,
833
- stopping_tolerance = None):
855
+ stopping_tolerance = None,
856
+ max_models = None):
834
857
  """
835
858
  DESCRIPTION:
836
859
  Interal Function runs Regression.
837
860
 
838
861
  PARAMETERS:
839
862
  auto:
840
- Optional Arugment.
863
+ Optional Argument.
841
864
  Specifies whether to run AutoML in custom mode or auto mode.
842
865
  When set to False, runs in custom mode. Otherwise, by default runs in auto mode.
843
866
  Types: bool
@@ -853,19 +876,24 @@ class _Regression(_FeatureExplore, _FeatureEngineering, _DataPreparation, _Model
853
876
  Types: int
854
877
 
855
878
  max_runtime_secs:
856
- Optional Arugment.
879
+ Optional Argument.
857
880
  Specifies the time limit in seconds for model training.
858
881
  Types: int
859
882
 
860
883
  stopping_metric:
861
884
  Required, when "stopping_tolerance" is set, otherwise optional.
862
- Specifies the stopping mertics for stopping tolerance in model training.
885
+ Specifies the stopping mertics for stopping tolerance in model training.
863
886
  Types: str
864
887
 
865
888
  stopping_tolerance:
866
889
  Required, when "stopping_metric" is set, otherwise optional.
867
- Specifies the stopping tolerance for stopping metrics in model training.
890
+ Specifies the stopping tolerance for stopping metrics in model training.
868
891
  Types: float
892
+
893
+ max_models:
894
+ Optional Argument.
895
+ Specifies the maximum number of models to be trained.
896
+ Types: int
869
897
 
870
898
  RETURNS:
871
899
  a tuple containing, model information and leaderboard.
@@ -919,7 +947,8 @@ class _Regression(_FeatureExplore, _FeatureEngineering, _DataPreparation, _Model
919
947
  models_info, leaderboard, target_count = self.model_training(auto = auto,
920
948
  max_runtime_secs = max_runtime_secs,
921
949
  stopping_metric = stopping_metric,
922
- stopping_tolerance = stopping_tolerance)
950
+ stopping_tolerance = stopping_tolerance,
951
+ max_models = max_models)
923
952
 
924
953
  return (models_info, leaderboard, target_count, target_label, data_transformation_params, self.table_name_mapping)
925
954
 
@@ -940,12 +969,12 @@ class _Classification(_FeatureExplore, _FeatureEngineering, _DataPreparation, _M
940
969
  Types: teradataml Dataframe
941
970
 
942
971
  target_column:
943
- Required Arugment.
972
+ Required Argument.
944
973
  Specifies the name of the target column in "data".
945
974
  Types: str
946
975
 
947
976
  custom_data:
948
- Optional Arugment.
977
+ Optional Argument.
949
978
  Specifies json object containing user customized input.
950
979
  Types: json object
951
980
  """
@@ -959,14 +988,15 @@ class _Classification(_FeatureExplore, _FeatureEngineering, _DataPreparation, _M
959
988
  verbose = 0,
960
989
  max_runtime_secs = None,
961
990
  stopping_metric = None,
962
- stopping_tolerance = None):
991
+ stopping_tolerance = None,
992
+ max_models = None):
963
993
  """
964
994
  DESCRIPTION:
965
995
  Interal Function runs Classification.
966
996
 
967
997
  PARAMETERS:
968
998
  auto:
969
- Optional Arugment.
999
+ Optional Argument.
970
1000
  Specifies whether to run AutoML in custom mode or auto mode.
971
1001
  When set to False, runs in custom mode. Otherwise, by default runs in auto mode.
972
1002
  Types: bool
@@ -982,7 +1012,7 @@ class _Classification(_FeatureExplore, _FeatureEngineering, _DataPreparation, _M
982
1012
  Types: int
983
1013
 
984
1014
  max_runtime_secs:
985
- Optional Arugment.
1015
+ Optional Argument.
986
1016
  Specifies the time limit in seconds for model training.
987
1017
  Types: int
988
1018
 
@@ -995,6 +1025,11 @@ class _Classification(_FeatureExplore, _FeatureEngineering, _DataPreparation, _M
995
1025
  Required, when "stopping_metric" is set, otherwise optional.
996
1026
  Specifies the stopping tolerance for stopping metrics in model training.
997
1027
  Types: float
1028
+
1029
+ max_models:
1030
+ Optional Argument.
1031
+ Specifies the maximum number of models to be trained.
1032
+ Types: int
998
1033
 
999
1034
  RETURNS:
1000
1035
  a tuple containing, model information and leaderboard.
@@ -1051,7 +1086,8 @@ class _Classification(_FeatureExplore, _FeatureEngineering, _DataPreparation, _M
1051
1086
  models_info, leaderboard, target_count = self.model_training(auto = auto,
1052
1087
  max_runtime_secs = max_runtime_secs,
1053
1088
  stopping_metric = stopping_metric,
1054
- stopping_tolerance = stopping_tolerance)
1089
+ stopping_tolerance = stopping_tolerance,
1090
+ max_models = max_models)
1055
1091
 
1056
1092
  return (models_info, leaderboard, target_count, target_label, data_transformation_params, self.table_name_mapping)
1057
1093
 
@@ -1166,7 +1202,7 @@ class _Classification(_FeatureExplore, _FeatureEngineering, _DataPreparation, _M
1166
1202
  min_label_count = min(data[self.target_column].value_counts())
1167
1203
  if self._data_sampling_method == 'SMOTE':
1168
1204
  n_neighbors = min(5, min_label_count - 1)
1169
- sampling_method = SMOTE(k_neighbors=n_neighbors, random_state=5)
1205
+ sampling_method = SMOTE(k_neighbors=n_neighbors, random_state=42)
1170
1206
  else:
1171
1207
  n_neighbors = min(3, min_label_count)
1172
1208
  sampling_method = NearMiss(version=1, n_neighbors=n_neighbors)
@@ -1206,6 +1242,7 @@ class AutoRegressor(AutoML):
1206
1242
  max_runtime_secs=None,
1207
1243
  stopping_metric=None,
1208
1244
  stopping_tolerance=None,
1245
+ max_models=None,
1209
1246
  custom_config_file=None
1210
1247
  ):
1211
1248
  """
@@ -1239,7 +1276,7 @@ class AutoRegressor(AutoML):
1239
1276
  Types: int
1240
1277
 
1241
1278
  max_runtime_secs:
1242
- Optional Arugment.
1279
+ Optional Argument.
1243
1280
  Specifies the time limit in seconds for model training.
1244
1281
  Types: int
1245
1282
 
@@ -1260,6 +1297,11 @@ class AutoRegressor(AutoML):
1260
1297
  Required, when "stopping_metric" is set, otherwise optional.
1261
1298
  Specifies the stopping tolerance for stopping metrics in model training.
1262
1299
  Types: float
1300
+
1301
+ max_models:
1302
+ Optional Argument.
1303
+ Specifies the maximum number of models to be trained.
1304
+ Types: int
1263
1305
 
1264
1306
  custom_config_file:
1265
1307
  Optional Argument.
@@ -1325,10 +1367,11 @@ class AutoRegressor(AutoML):
1325
1367
 
1326
1368
  # Create instance of AutoRegressor.
1327
1369
  >>> automl_obj = AutoRegressor(verbose=2,
1328
- >>> exclude="xgboost",
1329
- >>> stopping_metric="R2",
1330
- >>> stopping_tolerance=0.7,
1331
- >>> custom_config_file="custom_housing.json")
1370
+ >>> exclude="xgboost",
1371
+ >>> stopping_metric="R2",
1372
+ >>> stopping_tolerance=0.7,
1373
+ >>> max_models=10,
1374
+ >>> custom_config_file="custom_housing.json")
1332
1375
  # Fit the data.
1333
1376
  >>> automl_obj.fit(housing_train, "price")
1334
1377
 
@@ -1345,8 +1388,8 @@ class AutoRegressor(AutoML):
1345
1388
 
1346
1389
  # Create instance of AutoRegressor.
1347
1390
  >>> automl_obj = AutoRegressor(verbose=2,
1348
- >>> exclude="xgboost",
1349
- >>> max_runtime_secs=500)
1391
+ >>> exclude="xgboost",
1392
+ >>> max_runtime_secs=500)
1350
1393
  # Fit the data.
1351
1394
  >>> automl_obj.fit(housing_train, "price")
1352
1395
 
@@ -1368,6 +1411,7 @@ class AutoRegressor(AutoML):
1368
1411
  self.max_runtime_secs = max_runtime_secs
1369
1412
  self.stopping_metric = stopping_metric
1370
1413
  self.stopping_tolerance = stopping_tolerance
1414
+ self.max_models = max_models
1371
1415
  self.custom_config_file = custom_config_file
1372
1416
  self.task_type = "Regression"
1373
1417
  self.include = include
@@ -1380,6 +1424,7 @@ class AutoRegressor(AutoML):
1380
1424
  max_runtime_secs=self.max_runtime_secs,
1381
1425
  stopping_metric=self.stopping_metric,
1382
1426
  stopping_tolerance=self.stopping_tolerance,
1427
+ max_models=self.max_models,
1383
1428
  custom_config_file=self.custom_config_file)
1384
1429
  class AutoClassifier(AutoML):
1385
1430
 
@@ -1390,6 +1435,7 @@ class AutoClassifier(AutoML):
1390
1435
  max_runtime_secs=None,
1391
1436
  stopping_metric=None,
1392
1437
  stopping_tolerance=None,
1438
+ max_models=None,
1393
1439
  custom_config_file=None
1394
1440
  ):
1395
1441
  """
@@ -1423,18 +1469,13 @@ class AutoClassifier(AutoML):
1423
1469
  Types: int
1424
1470
 
1425
1471
  max_runtime_secs:
1426
- Optional Arugment.
1472
+ Optional Argument.
1427
1473
  Specifies the time limit in seconds for model training.
1428
1474
  Types: int
1429
1475
 
1430
1476
  stopping_metric:
1431
1477
  Required, when "stopping_tolerance" is set, otherwise optional.
1432
1478
  Specifies the stopping mertics for stopping tolerance in model training.
1433
- Types: str
1434
-
1435
- stopping_tolerance:
1436
- Required, when "stopping_metric" is set, otherwise optional.
1437
- Specifies the stopping tolerance for stopping metrics in model training.
1438
1479
  Permitted Values:
1439
1480
  * For task_type "Regression": "R2", "MAE", "MSE", "MSLE",
1440
1481
  "RMSE", "RMSLE"
@@ -1443,7 +1484,17 @@ class AutoClassifier(AutoML):
1443
1484
  'MICRO-PRECISION', 'MACRO-PRECISION',
1444
1485
  'WEIGHTED-PRECISION','WEIGHTED-RECALL',
1445
1486
  'WEIGHTED-F1', 'ACCURACY'
1487
+ Types: str
1488
+
1489
+ stopping_tolerance:
1490
+ Required, when "stopping_metric" is set, otherwise optional.
1491
+ Specifies the stopping tolerance for stopping metrics in model training.
1446
1492
  Types: float
1493
+
1494
+ max_models:
1495
+ Optional Argument.
1496
+ Specifies the maximum number of models to be trained.
1497
+ Types: int
1447
1498
 
1448
1499
  custom_config_file:
1449
1500
  Optional Argument.
@@ -1570,10 +1621,11 @@ class AutoClassifier(AutoML):
1570
1621
 
1571
1622
  # Create instance of AutoClassifier.
1572
1623
  >>> automl_obj = AutoClassifier(verbose=2,
1573
- >>> exclude="xgboost",
1574
- >>> stopping_metric="MICRO-F1",
1575
- >>> stopping_tolerance=0.7,
1576
- >>> custom_config_file="custom_titanic.json")
1624
+ >>> exclude="xgboost",
1625
+ >>> stopping_metric="MICRO-F1",
1626
+ >>> stopping_tolerance=0.7,
1627
+ >>> max_models=8
1628
+ >>> custom_config_file="custom_titanic.json")
1577
1629
  # Fit the data.
1578
1630
  >>> automl_obj.fit(titanic, titanic.survived)
1579
1631
 
@@ -1590,8 +1642,9 @@ class AutoClassifier(AutoML):
1590
1642
 
1591
1643
  # Create instance of AutoClassifier.
1592
1644
  >>> automl_obj = AutoClassifier(verbose=2,
1593
- >>> exclude="xgboost",
1594
- >>> max_runtime_secs=500)
1645
+ >>> exclude="xgboost",
1646
+ >>> max_runtime_secs=500)
1647
+ >>> max_models=3)
1595
1648
  # Fit the data.
1596
1649
  >>> automl_obj.fit(iris_input, iris_input.species)
1597
1650
 
@@ -1613,6 +1666,7 @@ class AutoClassifier(AutoML):
1613
1666
  self.max_runtime_secs = max_runtime_secs
1614
1667
  self.stopping_metric = stopping_metric
1615
1668
  self.stopping_tolerance = stopping_tolerance
1669
+ self.max_models = max_models
1616
1670
  self.custom_config_file = custom_config_file
1617
1671
  self.task_type = "Classification"
1618
1672
  self.include = include
@@ -1625,4 +1679,5 @@ class AutoClassifier(AutoML):
1625
1679
  max_runtime_secs=self.max_runtime_secs,
1626
1680
  stopping_metric=self.stopping_metric,
1627
1681
  stopping_tolerance=self.stopping_tolerance,
1682
+ max_models=self.max_models,
1628
1683
  custom_config_file=self.custom_config_file)