teradataml 20.0.0.0__py3-none-any.whl → 20.0.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/LICENSE.pdf +0 -0
- teradataml/README.md +71 -0
- teradataml/_version.py +2 -2
- teradataml/analytics/analytic_function_executor.py +51 -24
- teradataml/analytics/json_parser/utils.py +11 -17
- teradataml/automl/__init__.py +103 -48
- teradataml/automl/data_preparation.py +55 -37
- teradataml/automl/data_transformation.py +131 -69
- teradataml/automl/feature_engineering.py +117 -185
- teradataml/automl/feature_exploration.py +9 -2
- teradataml/automl/model_evaluation.py +13 -25
- teradataml/automl/model_training.py +214 -75
- teradataml/catalog/model_cataloging_utils.py +1 -1
- teradataml/clients/auth_client.py +133 -0
- teradataml/common/aed_utils.py +3 -2
- teradataml/common/constants.py +11 -6
- teradataml/common/garbagecollector.py +5 -0
- teradataml/common/messagecodes.py +3 -1
- teradataml/common/messages.py +2 -1
- teradataml/common/utils.py +6 -0
- teradataml/context/context.py +49 -29
- teradataml/data/advertising.csv +201 -0
- teradataml/data/bank_marketing.csv +11163 -0
- teradataml/data/bike_sharing.csv +732 -0
- teradataml/data/boston2cols.csv +721 -0
- teradataml/data/breast_cancer.csv +570 -0
- teradataml/data/customer_segmentation_test.csv +2628 -0
- teradataml/data/customer_segmentation_train.csv +8069 -0
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingFit.py +3 -1
- teradataml/data/docs/sqle/docs_17_10/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_10/OutlierFilterTransform.py +5 -1
- teradataml/data/docs/sqle/docs_17_20/ANOVA.py +61 -1
- teradataml/data/docs/sqle/docs_17_20/ColumnTransformer.py +2 -0
- teradataml/data/docs/sqle/docs_17_20/FTest.py +105 -26
- teradataml/data/docs/sqle/docs_17_20/GLM.py +162 -1
- teradataml/data/docs/sqle/docs_17_20/GetFutileColumns.py +5 -3
- teradataml/data/docs/sqle/docs_17_20/KMeans.py +48 -1
- teradataml/data/docs/sqle/docs_17_20/NonLinearCombineFit.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingFit.py +5 -0
- teradataml/data/docs/sqle/docs_17_20/OneHotEncodingTransform.py +6 -0
- teradataml/data/docs/sqle/docs_17_20/ROC.py +3 -2
- teradataml/data/docs/sqle/docs_17_20/SVMPredict.py +13 -2
- teradataml/data/docs/sqle/docs_17_20/ScaleFit.py +119 -1
- teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py +93 -1
- teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py +163 -1
- teradataml/data/docs/sqle/docs_17_20/XGBoost.py +12 -4
- teradataml/data/docs/sqle/docs_17_20/XGBoostPredict.py +7 -1
- teradataml/data/docs/sqle/docs_17_20/ZTest.py +72 -7
- teradataml/data/glm_example.json +28 -1
- teradataml/data/housing_train_segment.csv +201 -0
- teradataml/data/insect2Cols.csv +61 -0
- teradataml/data/jsons/sqle/17.20/TD_ANOVA.json +99 -27
- teradataml/data/jsons/sqle/17.20/TD_FTest.json +166 -83
- teradataml/data/jsons/sqle/17.20/TD_GLM.json +90 -14
- teradataml/data/jsons/sqle/17.20/TD_GLMPREDICT.json +48 -5
- teradataml/data/jsons/sqle/17.20/TD_GetFutileColumns.json +5 -3
- teradataml/data/jsons/sqle/17.20/TD_KMeans.json +31 -11
- teradataml/data/jsons/sqle/17.20/TD_NonLinearCombineFit.json +3 -2
- teradataml/data/jsons/sqle/17.20/TD_ROC.json +2 -1
- teradataml/data/jsons/sqle/17.20/TD_SVM.json +16 -16
- teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json +19 -1
- teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json +168 -15
- teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json +50 -1
- teradataml/data/jsons/sqle/17.20/TD_XGBoost.json +25 -7
- teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json +17 -4
- teradataml/data/jsons/sqle/17.20/TD_ZTest.json +157 -80
- teradataml/data/kmeans_example.json +5 -0
- teradataml/data/kmeans_table.csv +10 -0
- teradataml/data/onehot_encoder_train.csv +4 -0
- teradataml/data/openml_example.json +29 -0
- teradataml/data/scale_attributes.csv +3 -0
- teradataml/data/scale_example.json +52 -1
- teradataml/data/scale_input_part_sparse.csv +31 -0
- teradataml/data/scale_input_partitioned.csv +16 -0
- teradataml/data/scale_input_sparse.csv +11 -0
- teradataml/data/scale_parameters.csv +3 -0
- teradataml/data/scripts/deploy_script.py +20 -1
- teradataml/data/scripts/sklearn/sklearn_fit.py +23 -27
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py +20 -28
- teradataml/data/scripts/sklearn/sklearn_function.template +13 -18
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +23 -33
- teradataml/data/scripts/sklearn/sklearn_neighbors.py +18 -27
- teradataml/data/scripts/sklearn/sklearn_score.py +20 -29
- teradataml/data/scripts/sklearn/sklearn_transform.py +30 -38
- teradataml/data/teradataml_example.json +77 -0
- teradataml/data/ztest_example.json +16 -0
- teradataml/dataframe/copy_to.py +8 -3
- teradataml/dataframe/data_transfer.py +120 -61
- teradataml/dataframe/dataframe.py +102 -17
- teradataml/dataframe/dataframe_utils.py +47 -9
- teradataml/dataframe/fastload.py +272 -89
- teradataml/dataframe/sql.py +84 -0
- teradataml/dbutils/dbutils.py +2 -2
- teradataml/lib/aed_0_1.dll +0 -0
- teradataml/opensource/sklearn/_sklearn_wrapper.py +102 -55
- teradataml/options/__init__.py +13 -4
- teradataml/options/configure.py +27 -6
- teradataml/scriptmgmt/UserEnv.py +19 -16
- teradataml/scriptmgmt/lls_utils.py +117 -14
- teradataml/table_operators/Script.py +2 -3
- teradataml/table_operators/TableOperator.py +58 -10
- teradataml/utils/validators.py +40 -2
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/METADATA +78 -6
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/RECORD +108 -90
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.0.dist-info → teradataml-20.0.0.1.dist-info}/zip-safe +0 -0
|
@@ -5,35 +5,24 @@ import base64
|
|
|
5
5
|
|
|
6
6
|
DELIMITER = '\t'
|
|
7
7
|
|
|
8
|
-
def
|
|
9
|
-
ret_val = value
|
|
10
|
-
try:
|
|
11
|
-
ret_val = float(value.replace(' ', ''))
|
|
12
|
-
except Exception as ex:
|
|
13
|
-
# If the value can't be converted to float, then it is string.
|
|
14
|
-
pass
|
|
15
|
-
return ret_val
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
def get_values_list(values, ignore_none=True):
|
|
8
|
+
def get_values_list(values, types, model_obj):
|
|
19
9
|
ret_vals = []
|
|
20
|
-
for val in values:
|
|
21
|
-
if
|
|
22
|
-
# Empty cell value in the database table.
|
|
10
|
+
for i, val in enumerate(values):
|
|
11
|
+
if type(model_obj).__name__ == "MultiLabelBinarizer" and val == "":
|
|
23
12
|
continue
|
|
24
|
-
ret_vals.append(
|
|
25
|
-
|
|
13
|
+
ret_vals.append(convert_to_type(val, types[i]))
|
|
26
14
|
return ret_vals
|
|
27
15
|
|
|
28
16
|
def convert_to_type(val, typee):
|
|
29
17
|
if typee == 'int':
|
|
30
|
-
return int(val)
|
|
18
|
+
return int(val) if val != "" else np.nan
|
|
31
19
|
if typee == 'float':
|
|
32
|
-
|
|
33
|
-
|
|
20
|
+
if isinstance(val, str):
|
|
21
|
+
val = val.replace(' ', '')
|
|
22
|
+
return float(val) if val != "" else np.nan
|
|
34
23
|
if typee == 'bool':
|
|
35
|
-
return
|
|
36
|
-
return str(val)
|
|
24
|
+
return eval(val) if val != "" else None
|
|
25
|
+
return str(val) if val != "" else None
|
|
37
26
|
|
|
38
27
|
def get_classes_as_list(classes, actual_type):
|
|
39
28
|
if classes == "None":
|
|
@@ -66,14 +55,14 @@ if len(sys.argv) != 10:
|
|
|
66
55
|
# 3. No of feature columns.
|
|
67
56
|
# 4. No of class labels.
|
|
68
57
|
# 5. Comma separated indices of partition columns.
|
|
69
|
-
# 6. Comma separated types of the
|
|
58
|
+
# 6. Comma separated types of all the data columns.
|
|
70
59
|
# 7. Model file prefix to generated model file using partition columns.
|
|
71
60
|
# 8. classes (separated by '--') - should be converted to list. "None" if no classes exists.
|
|
72
61
|
# 9. type of elements in passed in classes. "None" if no classes exists.
|
|
73
62
|
# 10. Flag to check the system type. True, means Lake, Enterprise otherwise
|
|
74
63
|
sys.exit("10 arguments command line arguments should be passed: file to be run,"
|
|
75
64
|
" function name, no of feature columns, no of class labels, comma separated indices"
|
|
76
|
-
"
|
|
65
|
+
" of partition columns, comma separated types of all columns, model file prefix ,"
|
|
77
66
|
" classes, type of elements in classes and flag to check lake or enterprise.")
|
|
78
67
|
|
|
79
68
|
is_lake_system = eval(sys.argv[9])
|
|
@@ -82,12 +71,14 @@ if not is_lake_system:
|
|
|
82
71
|
function_name = sys.argv[1]
|
|
83
72
|
n_f_cols = int(sys.argv[2])
|
|
84
73
|
n_c_labels = int(sys.argv[3])
|
|
85
|
-
|
|
74
|
+
data_column_types = splitter(sys.argv[5], delim="--")
|
|
86
75
|
data_partition_column_indices = splitter(sys.argv[4], convert_to="int") # indices are integers.
|
|
87
76
|
model_file_prefix = sys.argv[6]
|
|
88
77
|
class_type = sys.argv[8]
|
|
89
78
|
classes = get_classes_as_list(sys.argv[7], class_type)
|
|
90
79
|
|
|
80
|
+
data_partition_column_types = [data_column_types[idx] for idx in data_partition_column_indices]
|
|
81
|
+
|
|
91
82
|
model = None
|
|
92
83
|
|
|
93
84
|
# Data Format (n_features, k_labels, one data_partition_column):
|
|
@@ -108,9 +99,7 @@ while 1:
|
|
|
108
99
|
break
|
|
109
100
|
else:
|
|
110
101
|
values = line.split(DELIMITER)
|
|
111
|
-
|
|
112
|
-
if n_c_labels > 0:
|
|
113
|
-
labels.append(get_values_list(values[n_f_cols:(n_f_cols+n_c_labels)]))
|
|
102
|
+
|
|
114
103
|
if not data_partition_column_values:
|
|
115
104
|
# Partition column values is same for all rows. Hence, only read once.
|
|
116
105
|
for i, val in enumerate(data_partition_column_indices):
|
|
@@ -133,6 +122,13 @@ while 1:
|
|
|
133
122
|
if model is None:
|
|
134
123
|
sys.exit("Model file is not installed in Vantage.")
|
|
135
124
|
|
|
125
|
+
values = get_values_list(values, data_column_types, model)
|
|
126
|
+
values = values[:-len(data_partition_column_indices)] # Already processed partition columns.
|
|
127
|
+
features.append(values[:n_f_cols])
|
|
128
|
+
if n_c_labels > 0:
|
|
129
|
+
labels.append(values[n_f_cols:(n_f_cols+n_c_labels)])
|
|
130
|
+
|
|
131
|
+
|
|
136
132
|
except EOFError: # Exit if reached EOF or CTRL-D
|
|
137
133
|
break
|
|
138
134
|
|
|
@@ -5,33 +5,22 @@ import math
|
|
|
5
5
|
|
|
6
6
|
DELIMITER = '\t'
|
|
7
7
|
|
|
8
|
-
def
|
|
9
|
-
ret_val = value
|
|
10
|
-
try:
|
|
11
|
-
ret_val = float(value.replace(' ', ''))
|
|
12
|
-
except Exception as ex:
|
|
13
|
-
# If the value can't be converted to float, then it is string.
|
|
14
|
-
pass
|
|
15
|
-
return ret_val
|
|
16
|
-
|
|
17
|
-
def get_values_list(values, ignore_none=True):
|
|
8
|
+
def get_values_list(values, types):
|
|
18
9
|
ret_vals = []
|
|
19
|
-
for val in values:
|
|
20
|
-
|
|
21
|
-
# Empty cell value in the database table.
|
|
22
|
-
continue
|
|
23
|
-
ret_vals.append(get_value(val))
|
|
24
|
-
|
|
10
|
+
for i, val in enumerate(values):
|
|
11
|
+
ret_vals.append(convert_to_type(val, types[i]))
|
|
25
12
|
return ret_vals
|
|
26
13
|
|
|
27
14
|
def convert_to_type(val, typee):
|
|
28
15
|
if typee == 'int':
|
|
29
|
-
return int(val)
|
|
16
|
+
return int(val) if val != "" else np.nan
|
|
30
17
|
if typee == 'float':
|
|
31
|
-
|
|
18
|
+
if isinstance(val, str):
|
|
19
|
+
val = val.replace(' ', '')
|
|
20
|
+
return float(val) if val != "" else np.nan
|
|
32
21
|
if typee == 'bool':
|
|
33
|
-
return
|
|
34
|
-
return str(val)
|
|
22
|
+
return eval(val) if val != "" else None
|
|
23
|
+
return str(val) if val != "" else None
|
|
35
24
|
|
|
36
25
|
def splitter(strr, delim=",", convert_to="str"):
|
|
37
26
|
"""
|
|
@@ -48,13 +37,13 @@ if len(sys.argv) != 7:
|
|
|
48
37
|
# 2. No of feature columns.
|
|
49
38
|
# 3. No of class labels.
|
|
50
39
|
# 4. Comma separated indices of partition columns.
|
|
51
|
-
# 5. Comma separated types of the
|
|
40
|
+
# 5. Comma separated types of all the data columns.
|
|
52
41
|
# 6. Model file prefix to generated model file using partition columns.
|
|
53
42
|
# 7. Flag to check the system type. True, means Lake, Enterprise otherwise.
|
|
54
43
|
sys.exit("7 arguments should be passed to this file - file to be run, "\
|
|
55
|
-
"no of feature columns, no of class labels, comma separated indices
|
|
56
|
-
"
|
|
57
|
-
"columns and flag to check lake or enterprise.")
|
|
44
|
+
"no of feature columns, no of class labels, comma separated indices of partition "
|
|
45
|
+
"columns, comma separated types of all columns, model file prefix to generate model "
|
|
46
|
+
"file using partition columns and flag to check lake or enterprise.")
|
|
58
47
|
|
|
59
48
|
is_lake_system = eval(sys.argv[6])
|
|
60
49
|
if not is_lake_system:
|
|
@@ -62,9 +51,11 @@ if not is_lake_system:
|
|
|
62
51
|
n_f_cols = int(sys.argv[1])
|
|
63
52
|
n_c_labels = int(sys.argv[2])
|
|
64
53
|
model_file_prefix = sys.argv[5]
|
|
65
|
-
|
|
54
|
+
data_column_types = splitter(sys.argv[4], delim="--")
|
|
66
55
|
data_partition_column_indices = splitter(sys.argv[3], convert_to="int") # indices are integers.
|
|
67
56
|
|
|
57
|
+
data_partition_column_types = [data_column_types[idx] for idx in data_partition_column_indices]
|
|
58
|
+
|
|
68
59
|
model = None
|
|
69
60
|
|
|
70
61
|
# Data Format (n_features, k_labels, one data_partition_columns):
|
|
@@ -85,9 +76,10 @@ while 1:
|
|
|
85
76
|
break
|
|
86
77
|
else:
|
|
87
78
|
values = line.split(DELIMITER)
|
|
88
|
-
|
|
79
|
+
values = get_values_list(values, data_column_types)
|
|
80
|
+
features.append(values[:n_f_cols])
|
|
89
81
|
if n_c_labels > 0:
|
|
90
|
-
labels.append(
|
|
82
|
+
labels.append(values[n_f_cols:(n_f_cols+n_c_labels)])
|
|
91
83
|
if not data_partition_column_values:
|
|
92
84
|
# Partition column values is same for all rows. Hence, only read once.
|
|
93
85
|
for i, val in enumerate(data_partition_column_indices):
|
|
@@ -130,6 +122,6 @@ for i in range(len(predictions)):
|
|
|
130
122
|
else:
|
|
131
123
|
result_list = features[i] + [predictions[i]]
|
|
132
124
|
print(*(data_partition_column_values +
|
|
133
|
-
['' if (val is None or math.isnan(val) or math.isinf(val))
|
|
125
|
+
['' if (val is None or (not isinstance(val, str) and (math.isnan(val) or math.isinf(val))))
|
|
134
126
|
else val for val in result_list]),
|
|
135
127
|
sep= DELIMITER)
|
|
@@ -8,23 +8,16 @@ params = json.loads('<params>')
|
|
|
8
8
|
|
|
9
9
|
DELIMITER = '\t'
|
|
10
10
|
|
|
11
|
-
def get_value(value):
|
|
12
|
-
ret_val = value
|
|
13
|
-
try:
|
|
14
|
-
ret_val = float(value.replace(' ', ''))
|
|
15
|
-
except Exception as ex:
|
|
16
|
-
# If the value can't be converted to float, then it is string.
|
|
17
|
-
pass
|
|
18
|
-
return ret_val
|
|
19
|
-
|
|
20
11
|
def convert_to_type(val, typee):
|
|
21
12
|
if typee == 'int':
|
|
22
|
-
return int(val)
|
|
13
|
+
return int(val) if val != "" else np.nan
|
|
23
14
|
if typee == 'float':
|
|
24
|
-
|
|
15
|
+
if isinstance(val, str):
|
|
16
|
+
val = val.replace(' ', '')
|
|
17
|
+
return float(val) if val != "" else np.nan
|
|
25
18
|
if typee == 'bool':
|
|
26
|
-
return
|
|
27
|
-
return str(val)
|
|
19
|
+
return eval(val) if val != "" else None
|
|
20
|
+
return str(val) if val != "" else None
|
|
28
21
|
|
|
29
22
|
def splitter(strr, delim=",", convert_to="str"):
|
|
30
23
|
"""
|
|
@@ -39,17 +32,19 @@ if len(sys.argv) != 4:
|
|
|
39
32
|
# 4 arguments command line arguments should be passed to this file.
|
|
40
33
|
# 1: file to be run
|
|
41
34
|
# 2. Comma separated indices of partition columns.
|
|
42
|
-
# 3. Comma separated types of the
|
|
35
|
+
# 3. Comma separated types of all the data columns.
|
|
43
36
|
# 4. Data columns information separted by "--" where each data column information is in the form
|
|
44
37
|
# "<arg_name>-<comma separated data indices>-<comma separated data types>".
|
|
45
38
|
sys.exit("4 arguments command line arguments should be passed: file to be run,"
|
|
46
|
-
" comma separated indices
|
|
47
|
-
" separated by '--' where each data column information is
|
|
48
|
-
" '<arg_name>-<comma separated data indices>-<comma separated data types>'.")
|
|
39
|
+
" comma separated indices of partition columns, comma separated types of all columns,"
|
|
40
|
+
" data columns information separated by '--' where each data column information is"
|
|
41
|
+
" in the form '<arg_name>-<comma separated data indices>-<comma separated data types>'.")
|
|
49
42
|
|
|
50
43
|
db = sys.argv[0].split("/")[1]
|
|
51
44
|
data_partition_column_indices = splitter(sys.argv[1], convert_to="int") # indices are integers.
|
|
52
|
-
|
|
45
|
+
data_column_types = splitter(sys.argv[2], delim="--")
|
|
46
|
+
|
|
47
|
+
data_partition_column_types = [data_column_types[idx] for idx in data_partition_column_indices]
|
|
53
48
|
|
|
54
49
|
# Data related arguments information of indices and types.
|
|
55
50
|
data_args_indices_types = OrderedDict()
|
|
@@ -6,35 +6,22 @@ import base64
|
|
|
6
6
|
|
|
7
7
|
DELIMITER = '\t'
|
|
8
8
|
|
|
9
|
-
|
|
10
|
-
def get_value(value):
|
|
11
|
-
ret_val = value
|
|
12
|
-
try:
|
|
13
|
-
ret_val = round(float("".join(value.split())), 2)
|
|
14
|
-
except Exception as ex:
|
|
15
|
-
# If the value can't be converted to float, then it is string.
|
|
16
|
-
pass
|
|
17
|
-
return ret_val
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
def get_values_list(values, ignore_none=True):
|
|
9
|
+
def get_values_list(values, types):
|
|
21
10
|
ret_vals = []
|
|
22
|
-
for val in values:
|
|
23
|
-
|
|
24
|
-
# Empty cell value in the database table.
|
|
25
|
-
continue
|
|
26
|
-
ret_vals.append(get_value(val))
|
|
27
|
-
|
|
11
|
+
for i, val in enumerate(values):
|
|
12
|
+
ret_vals.append(convert_to_type(val, types[i]))
|
|
28
13
|
return ret_vals
|
|
29
14
|
|
|
30
15
|
def convert_to_type(val, typee):
|
|
31
16
|
if typee == 'int':
|
|
32
|
-
return int(val)
|
|
17
|
+
return int(val) if val != "" else np.nan
|
|
33
18
|
if typee == 'float':
|
|
34
|
-
|
|
19
|
+
if isinstance(val, str):
|
|
20
|
+
val = val.replace(' ', '')
|
|
21
|
+
return float(val) if val != "" else np.nan
|
|
35
22
|
if typee == 'bool':
|
|
36
|
-
return eval(val)
|
|
37
|
-
return str(val)
|
|
23
|
+
return eval(val) if val != "" else None
|
|
24
|
+
return str(val) if val != "" else None
|
|
38
25
|
|
|
39
26
|
def splitter(strr, delim=",", convert_to="str"):
|
|
40
27
|
"""
|
|
@@ -54,13 +41,14 @@ if len(sys.argv) != 9:
|
|
|
54
41
|
# 4. No of class labels.
|
|
55
42
|
# 5. No of group columns.
|
|
56
43
|
# 6. Comma separated indices of partition columns.
|
|
57
|
-
# 7. Comma separated types of the
|
|
44
|
+
# 7. Comma separated types of all the data columns.
|
|
58
45
|
# 8. Model file prefix to generated model file using partition columns.
|
|
59
46
|
# 9. Flag to check the system type. True, means Lake, Enterprise otherwise.
|
|
60
47
|
sys.exit("9 arguments command line arguments should be passed: file to be run,"
|
|
61
48
|
" function name, no of feature columns, no of class labels, no of group columns,"
|
|
62
|
-
" comma separated indices
|
|
63
|
-
" generated model file using partition columns and flag to check
|
|
49
|
+
" comma separated indices of partition columns, comma separated types of all columns,"
|
|
50
|
+
" model file prefix to generated model file using partition columns and flag to check"
|
|
51
|
+
" lake or enterprise.")
|
|
64
52
|
|
|
65
53
|
|
|
66
54
|
is_lake_system = eval(sys.argv[8])
|
|
@@ -70,10 +58,11 @@ function_name = sys.argv[1]
|
|
|
70
58
|
n_f_cols = int(sys.argv[2])
|
|
71
59
|
n_c_labels = int(sys.argv[3])
|
|
72
60
|
n_g_cols = int(sys.argv[4])
|
|
73
|
-
|
|
61
|
+
data_column_types = splitter(sys.argv[6], delim="--")
|
|
74
62
|
data_partition_column_indices = splitter(sys.argv[5], convert_to="int") # indices are integers.
|
|
75
63
|
model_file_prefix = sys.argv[7]
|
|
76
64
|
|
|
65
|
+
data_partition_column_types = [data_column_types[idx] for idx in data_partition_column_indices]
|
|
77
66
|
|
|
78
67
|
model = None
|
|
79
68
|
data_partition_column_values = []
|
|
@@ -93,6 +82,7 @@ while 1:
|
|
|
93
82
|
break
|
|
94
83
|
else:
|
|
95
84
|
values = line.split(DELIMITER)
|
|
85
|
+
values = get_values_list(values, data_column_types)
|
|
96
86
|
if not data_partition_column_values:
|
|
97
87
|
# Partition column values is same for all rows. Hence, only read once.
|
|
98
88
|
for i, val in enumerate(data_partition_column_indices):
|
|
@@ -117,13 +107,13 @@ while 1:
|
|
|
117
107
|
|
|
118
108
|
start = 0
|
|
119
109
|
if n_f_cols > 0:
|
|
120
|
-
features.append(
|
|
110
|
+
features.append(values[:n_f_cols])
|
|
121
111
|
start = start + n_f_cols
|
|
122
112
|
if n_c_labels > 0:
|
|
123
|
-
labels.append(
|
|
113
|
+
labels.append(values[start:(start+n_c_labels)])
|
|
124
114
|
start = start + n_c_labels
|
|
125
115
|
if n_g_cols > 0:
|
|
126
|
-
groups.append(
|
|
116
|
+
groups.append(values[start:(start+n_g_cols)])
|
|
127
117
|
|
|
128
118
|
except EOFError: # Exit if reached EOF or CTRL-D
|
|
129
119
|
break
|
|
@@ -144,14 +134,14 @@ if function_name == "split":
|
|
|
144
134
|
y_train, y_test = labels[train_idx], labels[test_idx]
|
|
145
135
|
for X, y in zip(X_train, y_train):
|
|
146
136
|
print(*(data_partition_column_values + [split_id, "train"] +
|
|
147
|
-
['' if (val is None or math.isnan(val) or math.isinf(val)) else val
|
|
137
|
+
['' if (val is None or (not isinstance(val, str) and (math.isnan(val) or math.isinf(val)))) else val
|
|
148
138
|
for val in X] + [y]
|
|
149
|
-
),sep=DELIMITER)
|
|
139
|
+
), sep=DELIMITER)
|
|
150
140
|
for X, y in zip(X_test, y_test):
|
|
151
141
|
print(*(data_partition_column_values + [split_id, "test"] +
|
|
152
|
-
['' if (val is None or math.isnan(val) or math.isinf(val)) else val
|
|
142
|
+
['' if (val is None or (not isinstance(val, str) and (math.isnan(val) or math.isinf(val)))) else val
|
|
153
143
|
for val in X] + [y]
|
|
154
|
-
),sep=DELIMITER)
|
|
144
|
+
), sep=DELIMITER)
|
|
155
145
|
split_id += 1
|
|
156
146
|
else:
|
|
157
147
|
val = getattr(model, function_name)(features, labels, groups)
|
|
@@ -12,34 +12,22 @@ from scipy.sparse.csr import csr_matrix
|
|
|
12
12
|
DELIMITER = '\t'
|
|
13
13
|
|
|
14
14
|
|
|
15
|
-
def
|
|
16
|
-
ret_val = value
|
|
17
|
-
try:
|
|
18
|
-
ret_val = float(value.replace(' ', ''))
|
|
19
|
-
except Exception as ex:
|
|
20
|
-
# If the value can't be converted to float, then it is string.
|
|
21
|
-
pass
|
|
22
|
-
return ret_val
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
def get_values_list(values, ignore_none=True):
|
|
15
|
+
def get_values_list(values, types):
|
|
26
16
|
ret_vals = []
|
|
27
|
-
for val in values:
|
|
28
|
-
|
|
29
|
-
# Empty cell value in the database table.
|
|
30
|
-
continue
|
|
31
|
-
ret_vals.append(get_value(val))
|
|
32
|
-
|
|
17
|
+
for i, val in enumerate(values):
|
|
18
|
+
ret_vals.append(convert_to_type(val, types[i]))
|
|
33
19
|
return ret_vals
|
|
34
20
|
|
|
35
21
|
def convert_to_type(val, typee):
|
|
36
22
|
if typee == 'int':
|
|
37
|
-
return int(val)
|
|
23
|
+
return int(val) if val != "" else np.nan
|
|
38
24
|
if typee == 'float':
|
|
39
|
-
|
|
25
|
+
if isinstance(val, str):
|
|
26
|
+
val = val.replace(' ', '')
|
|
27
|
+
return float(val) if val != "" else np.nan
|
|
40
28
|
if typee == 'bool':
|
|
41
|
-
return eval(val)
|
|
42
|
-
return str(val)
|
|
29
|
+
return eval(val) if val != "" else None
|
|
30
|
+
return str(val) if val != "" else None
|
|
43
31
|
|
|
44
32
|
def splitter(strr, delim=",", convert_to="str"):
|
|
45
33
|
"""
|
|
@@ -57,15 +45,15 @@ if len(sys.argv) < 7:
|
|
|
57
45
|
# 2. function name.
|
|
58
46
|
# 3. No of feature columns.
|
|
59
47
|
# 4. Comma separated indices of partition columns.
|
|
60
|
-
# 5. Comma separated types of the
|
|
48
|
+
# 5. Comma separated types of all the data columns.
|
|
61
49
|
# 6. Model file prefix to generate model file using partition columns.
|
|
62
50
|
# 7. Flag to check the system type. True, means Lake, Enterprise otherwise.
|
|
63
51
|
# 8. OPTIONAL - Arguments in string format like "return_distance True-bool",
|
|
64
52
|
# "n_neighbors 3-int", "radius 3.4-float" etc.
|
|
65
53
|
sys.exit("At least 7 arguments should be passed to this file - file to be run, function name, "\
|
|
66
|
-
"no of feature columns, comma separated indices
|
|
67
|
-
"model file prefix to generate model file using
|
|
68
|
-
"lake or enterprise and optional arguments in string format.")
|
|
54
|
+
"no of feature columns, comma separated indices of partition columns, comma "\
|
|
55
|
+
"separated types of all columns, model file prefix to generate model file using "\
|
|
56
|
+
"partition columns, flag to check lake or enterprise and optional arguments in string format.")
|
|
69
57
|
|
|
70
58
|
convert_to_int = lambda x: int(x) if x != "None" else None
|
|
71
59
|
|
|
@@ -74,7 +62,7 @@ if not is_lake_system:
|
|
|
74
62
|
db = sys.argv[0].split("/")[1]
|
|
75
63
|
func_name = sys.argv[1]
|
|
76
64
|
n_f_cols = convert_to_int(sys.argv[2])
|
|
77
|
-
|
|
65
|
+
data_column_types = splitter(sys.argv[4], delim="--")
|
|
78
66
|
data_partition_column_indices = splitter(sys.argv[3], convert_to="int") # indices are integers.
|
|
79
67
|
model_file_prefix = sys.argv[5]
|
|
80
68
|
# Extract arguments from string.
|
|
@@ -83,6 +71,8 @@ for i in range(7, len(sys.argv), 2):
|
|
|
83
71
|
value = sys.argv[i + 1].split("-", 1)
|
|
84
72
|
arguments[sys.argv[i]] = convert_to_type(value[0], value[1])
|
|
85
73
|
|
|
74
|
+
data_partition_column_types = [data_column_types[idx] for idx in data_partition_column_indices]
|
|
75
|
+
|
|
86
76
|
model = None
|
|
87
77
|
data_partition_column_values = []
|
|
88
78
|
|
|
@@ -101,6 +91,7 @@ while 1:
|
|
|
101
91
|
break
|
|
102
92
|
else:
|
|
103
93
|
values = line.split(DELIMITER)
|
|
94
|
+
values = get_values_list(values, data_column_types)
|
|
104
95
|
if not data_partition_column_values:
|
|
105
96
|
# Partition column values is same for all rows. Hence, only read once.
|
|
106
97
|
for i, val in enumerate(data_partition_column_indices):
|
|
@@ -123,7 +114,7 @@ while 1:
|
|
|
123
114
|
if not model:
|
|
124
115
|
sys.exit("Model file is not installed in Vantage.")
|
|
125
116
|
|
|
126
|
-
f_ =
|
|
117
|
+
f_ = values[:n_f_cols]
|
|
127
118
|
if f_:
|
|
128
119
|
output = getattr(model, func_name)(np.array([f_]), **arguments)
|
|
129
120
|
else:
|
|
@@ -6,34 +6,22 @@ import numpy as np
|
|
|
6
6
|
DELIMITER = '\t'
|
|
7
7
|
|
|
8
8
|
|
|
9
|
-
def
|
|
10
|
-
ret_val = value
|
|
11
|
-
try:
|
|
12
|
-
ret_val = float("".join(value.split()))
|
|
13
|
-
except Exception as ex:
|
|
14
|
-
# If the value can't be converted to float, then it is string.
|
|
15
|
-
pass
|
|
16
|
-
return ret_val
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def get_values_list(values, ignore_none=True):
|
|
9
|
+
def get_values_list(values, types):
|
|
20
10
|
ret_vals = []
|
|
21
|
-
for val in values:
|
|
22
|
-
|
|
23
|
-
# Empty cell value in the database table.
|
|
24
|
-
continue
|
|
25
|
-
ret_vals.append(get_value(val))
|
|
26
|
-
|
|
11
|
+
for i, val in enumerate(values):
|
|
12
|
+
ret_vals.append(convert_to_type(val, types[i]))
|
|
27
13
|
return ret_vals
|
|
28
14
|
|
|
29
15
|
def convert_to_type(val, typee):
|
|
30
16
|
if typee == 'int':
|
|
31
|
-
return int(val)
|
|
17
|
+
return int(val) if val != "" else np.nan
|
|
32
18
|
if typee == 'float':
|
|
33
|
-
|
|
19
|
+
if isinstance(val, str):
|
|
20
|
+
val = val.replace(' ', '')
|
|
21
|
+
return float(val) if val != "" else np.nan
|
|
34
22
|
if typee == 'bool':
|
|
35
|
-
return
|
|
36
|
-
return str(val)
|
|
23
|
+
return eval(val) if val != "" else None
|
|
24
|
+
return str(val) if val != "" else None
|
|
37
25
|
|
|
38
26
|
def splitter(strr, delim=",", convert_to="str"):
|
|
39
27
|
"""
|
|
@@ -51,13 +39,13 @@ if len(sys.argv) != 8:
|
|
|
51
39
|
# 3. No of feature columns.
|
|
52
40
|
# 4. No of class labels.
|
|
53
41
|
# 5. Comma separated indices of partition columns.
|
|
54
|
-
# 6. Comma separated types of the
|
|
42
|
+
# 6. Comma separated types of all the data columns.
|
|
55
43
|
# 7. Model file prefix to generated model file using partition columns.
|
|
56
44
|
# 8. Flag to check the system type. True, means Lake, Enterprise otherwise.
|
|
57
45
|
sys.exit("8 arguments should be passed to this file - file to be run, function name, "\
|
|
58
|
-
"no of feature columns, no of class labels, comma separated indices
|
|
59
|
-
"partition columns,
|
|
60
|
-
"columns and flag to check lake or enterprise.")
|
|
46
|
+
"no of feature columns, no of class labels, comma separated indices "
|
|
47
|
+
"of partition columns, comma separated types of all columns, model file prefix to "\
|
|
48
|
+
"generate model file using partition columns and flag to check lake or enterprise.")
|
|
61
49
|
|
|
62
50
|
is_lake_system = eval(sys.argv[7])
|
|
63
51
|
if not is_lake_system:
|
|
@@ -65,10 +53,12 @@ if not is_lake_system:
|
|
|
65
53
|
func_name = sys.argv[1]
|
|
66
54
|
n_f_cols = int(sys.argv[2])
|
|
67
55
|
n_c_labels = int(sys.argv[3])
|
|
68
|
-
|
|
56
|
+
data_column_types = splitter(sys.argv[5], delim="--")
|
|
69
57
|
data_partition_column_indices = splitter(sys.argv[4], convert_to="int") # indices are integers.
|
|
70
58
|
model_file_prefix = sys.argv[6]
|
|
71
59
|
|
|
60
|
+
data_partition_column_types = [data_column_types[idx] for idx in data_partition_column_indices]
|
|
61
|
+
|
|
72
62
|
model = None
|
|
73
63
|
|
|
74
64
|
# Data Format (n_features, k_labels, one data_partition_column):
|
|
@@ -87,9 +77,10 @@ while 1:
|
|
|
87
77
|
break
|
|
88
78
|
else:
|
|
89
79
|
values = line.split(DELIMITER)
|
|
90
|
-
|
|
80
|
+
values = get_values_list(values, data_column_types)
|
|
81
|
+
features.append(values[:n_f_cols])
|
|
91
82
|
if n_c_labels > 0:
|
|
92
|
-
labels.append(
|
|
83
|
+
labels.append(values[n_f_cols:(n_f_cols+n_c_labels)])
|
|
93
84
|
|
|
94
85
|
if not data_partition_column_values:
|
|
95
86
|
# Partition column values is same for all rows. Hence, only read once.
|
|
@@ -124,5 +115,5 @@ if labels:
|
|
|
124
115
|
else:
|
|
125
116
|
val = getattr(model, func_name)(np.array(features))
|
|
126
117
|
|
|
127
|
-
result_val = ['' if (val is None or math.isnan(val) or math.isinf(val)) else val]
|
|
118
|
+
result_val = ['' if (val is None or (not isinstance(val, str) and (math.isnan(val) or math.isinf(val)))) else val]
|
|
128
119
|
print(*(data_partition_column_values + result_val), sep=DELIMITER)
|