snowflake-ml-python 1.7.3__py3-none-any.whl → 1.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +19 -0
- snowflake/ml/_internal/platform_capabilities.py +87 -0
- snowflake/ml/dataset/dataset.py +0 -1
- snowflake/ml/fileset/fileset.py +6 -0
- snowflake/ml/jobs/__init__.py +21 -0
- snowflake/ml/jobs/_utils/constants.py +51 -0
- snowflake/ml/jobs/_utils/payload_utils.py +352 -0
- snowflake/ml/jobs/_utils/spec_utils.py +298 -0
- snowflake/ml/jobs/_utils/types.py +39 -0
- snowflake/ml/jobs/decorators.py +91 -0
- snowflake/ml/jobs/job.py +113 -0
- snowflake/ml/jobs/manager.py +298 -0
- snowflake/ml/model/_client/ops/model_ops.py +11 -2
- snowflake/ml/model/_client/ops/service_ops.py +1 -11
- snowflake/ml/model/_client/sql/service.py +13 -6
- snowflake/ml/model/_packager/model_handlers/_utils.py +12 -3
- snowflake/ml/model/_packager/model_handlers/custom.py +1 -2
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +1 -0
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
- snowflake/ml/model/_signatures/base_handler.py +1 -2
- snowflake/ml/model/_signatures/builtins_handler.py +2 -2
- snowflake/ml/model/_signatures/numpy_handler.py +6 -7
- snowflake/ml/model/_signatures/pandas_handler.py +2 -2
- snowflake/ml/model/_signatures/pytorch_handler.py +2 -5
- snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
- snowflake/ml/model/_signatures/tensorflow_handler.py +2 -7
- snowflake/ml/model/model_signature.py +17 -4
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +6 -3
- snowflake/ml/modeling/cluster/affinity_propagation.py +6 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +6 -3
- snowflake/ml/modeling/cluster/birch.py +6 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +6 -3
- snowflake/ml/modeling/cluster/dbscan.py +6 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +6 -3
- snowflake/ml/modeling/cluster/k_means.py +6 -3
- snowflake/ml/modeling/cluster/mean_shift.py +6 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +6 -3
- snowflake/ml/modeling/cluster/optics.py +6 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +6 -3
- snowflake/ml/modeling/compose/column_transformer.py +6 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +6 -3
- snowflake/ml/modeling/covariance/elliptic_envelope.py +6 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +6 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +6 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +6 -3
- snowflake/ml/modeling/covariance/oas.py +6 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +6 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +6 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +6 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +6 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/pca.py +6 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/isolation_forest.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/stacking_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/voting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/voting_regressor.py +6 -3
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fdr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fpr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fwe.py +6 -3
- snowflake/ml/modeling/feature_selection/select_k_best.py +6 -3
- snowflake/ml/modeling/feature_selection/select_percentile.py +6 -3
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +6 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +6 -3
- snowflake/ml/modeling/impute/iterative_imputer.py +6 -3
- snowflake/ml/modeling/impute/knn_imputer.py +6 -3
- snowflake/ml/modeling/impute/missing_indicator.py +6 -3
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +6 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +6 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ard_regression.py +6 -3
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/gamma_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/huber_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/lars.py +6 -3
- snowflake/ml/modeling/linear_model/lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +6 -3
- snowflake/ml/modeling/linear_model/linear_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/perceptron.py +6 -3
- snowflake/ml/modeling/linear_model/poisson_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ransac_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ridge.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_cv.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +6 -3
- snowflake/ml/modeling/manifold/isomap.py +6 -3
- snowflake/ml/modeling/manifold/mds.py +6 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +6 -3
- snowflake/ml/modeling/manifold/tsne.py +6 -3
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +6 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +6 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +17 -2
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +17 -2
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/output_code_classifier.py +6 -3
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/complement_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neighbors/kernel_density.py +6 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +6 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_regressor.py +6 -3
- snowflake/ml/modeling/pipeline/pipeline.py +10 -2
- snowflake/ml/modeling/preprocessing/polynomial_features.py +6 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +6 -3
- snowflake/ml/modeling/semi_supervised/label_spreading.py +6 -3
- snowflake/ml/modeling/svm/linear_svc.py +6 -3
- snowflake/ml/modeling/svm/linear_svr.py +6 -3
- snowflake/ml/modeling/svm/nu_svc.py +6 -3
- snowflake/ml/modeling/svm/nu_svr.py +6 -3
- snowflake/ml/modeling/svm/svc.py +6 -3
- snowflake/ml/modeling/svm/svr.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_regressor.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_regressor.py +6 -3
- snowflake/ml/modeling/xgboost/xgb_classifier.py +6 -3
- snowflake/ml/modeling/xgboost/xgb_regressor.py +6 -3
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +6 -3
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +6 -3
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/METADATA +29 -14
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/RECORD +187 -178
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_ridge".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class KernelRidge(BaseTransformer):
|
61
64
|
r"""Kernel ridge regression
|
62
65
|
For more details on this class, see [sklearn.kernel_ridge.KernelRidge]
|
@@ -449,7 +452,7 @@ class KernelRidge(BaseTransformer):
|
|
449
452
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
450
453
|
expected_dtype = "array"
|
451
454
|
else:
|
452
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
455
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
453
456
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
454
457
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
455
458
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1106,7 +1109,7 @@ class KernelRidge(BaseTransformer):
|
|
1106
1109
|
|
1107
1110
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1108
1111
|
|
1109
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1112
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1110
1113
|
outputs: List[BaseFeatureSpec] = []
|
1111
1114
|
if hasattr(self, "predict"):
|
1112
1115
|
# keep mypy happy
|
@@ -1114,7 +1117,7 @@ class KernelRidge(BaseTransformer):
|
|
1114
1117
|
# For classifier, the type of predict is the same as the type of label
|
1115
1118
|
if self._sklearn_object._estimator_type == "classifier":
|
1116
1119
|
# label columns is the desired type for output
|
1117
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1120
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1118
1121
|
# rename the output columns
|
1119
1122
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1120
1123
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", ""
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class LGBMClassifier(BaseTransformer):
|
61
64
|
r"""LightGBM classifier
|
62
65
|
For more details on this class, see [lightgbm.LGBMClassifier]
|
@@ -436,7 +439,7 @@ class LGBMClassifier(BaseTransformer):
|
|
436
439
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
437
440
|
expected_dtype = "array"
|
438
441
|
else:
|
439
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
442
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
440
443
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
441
444
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
442
445
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1097,7 +1100,7 @@ class LGBMClassifier(BaseTransformer):
|
|
1097
1100
|
|
1098
1101
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1099
1102
|
|
1100
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1103
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1101
1104
|
outputs: List[BaseFeatureSpec] = []
|
1102
1105
|
if hasattr(self, "predict"):
|
1103
1106
|
# keep mypy happy
|
@@ -1105,7 +1108,7 @@ class LGBMClassifier(BaseTransformer):
|
|
1105
1108
|
# For classifier, the type of predict is the same as the type of label
|
1106
1109
|
if self._sklearn_object._estimator_type == "classifier":
|
1107
1110
|
# label columns is the desired type for output
|
1108
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1111
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1109
1112
|
# rename the output columns
|
1110
1113
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1111
1114
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", ""
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class LGBMRegressor(BaseTransformer):
|
61
64
|
r"""LightGBM regressor
|
62
65
|
For more details on this class, see [lightgbm.LGBMRegressor]
|
@@ -436,7 +439,7 @@ class LGBMRegressor(BaseTransformer):
|
|
436
439
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
437
440
|
expected_dtype = "array"
|
438
441
|
else:
|
439
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
442
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
440
443
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
441
444
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
442
445
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1093,7 +1096,7 @@ class LGBMRegressor(BaseTransformer):
|
|
1093
1096
|
|
1094
1097
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1095
1098
|
|
1096
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1099
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1097
1100
|
outputs: List[BaseFeatureSpec] = []
|
1098
1101
|
if hasattr(self, "predict"):
|
1099
1102
|
# keep mypy happy
|
@@ -1101,7 +1104,7 @@ class LGBMRegressor(BaseTransformer):
|
|
1101
1104
|
# For classifier, the type of predict is the same as the type of label
|
1102
1105
|
if self._sklearn_object._estimator_type == "classifier":
|
1103
1106
|
# label columns is the desired type for output
|
1104
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1107
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1105
1108
|
# rename the output columns
|
1106
1109
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1107
1110
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class ARDRegression(BaseTransformer):
|
61
64
|
r"""Bayesian ARD regression
|
62
65
|
For more details on this class, see [sklearn.linear_model.ARDRegression]
|
@@ -458,7 +461,7 @@ class ARDRegression(BaseTransformer):
|
|
458
461
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
459
462
|
expected_dtype = "array"
|
460
463
|
else:
|
461
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
464
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
462
465
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
463
466
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
464
467
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1115,7 +1118,7 @@ class ARDRegression(BaseTransformer):
|
|
1115
1118
|
|
1116
1119
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1117
1120
|
|
1118
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1121
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1119
1122
|
outputs: List[BaseFeatureSpec] = []
|
1120
1123
|
if hasattr(self, "predict"):
|
1121
1124
|
# keep mypy happy
|
@@ -1123,7 +1126,7 @@ class ARDRegression(BaseTransformer):
|
|
1123
1126
|
# For classifier, the type of predict is the same as the type of label
|
1124
1127
|
if self._sklearn_object._estimator_type == "classifier":
|
1125
1128
|
# label columns is the desired type for output
|
1126
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1129
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1127
1130
|
# rename the output columns
|
1128
1131
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1129
1132
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class BayesianRidge(BaseTransformer):
|
61
64
|
r"""Bayesian ridge regression
|
62
65
|
For more details on this class, see [sklearn.linear_model.BayesianRidge]
|
@@ -468,7 +471,7 @@ class BayesianRidge(BaseTransformer):
|
|
468
471
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
469
472
|
expected_dtype = "array"
|
470
473
|
else:
|
471
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
474
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
472
475
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
473
476
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
474
477
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1125,7 +1128,7 @@ class BayesianRidge(BaseTransformer):
|
|
1125
1128
|
|
1126
1129
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1127
1130
|
|
1128
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1131
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1129
1132
|
outputs: List[BaseFeatureSpec] = []
|
1130
1133
|
if hasattr(self, "predict"):
|
1131
1134
|
# keep mypy happy
|
@@ -1133,7 +1136,7 @@ class BayesianRidge(BaseTransformer):
|
|
1133
1136
|
# For classifier, the type of predict is the same as the type of label
|
1134
1137
|
if self._sklearn_object._estimator_type == "classifier":
|
1135
1138
|
# label columns is the desired type for output
|
1136
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1139
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1137
1140
|
# rename the output columns
|
1138
1141
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1139
1142
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class ElasticNet(BaseTransformer):
|
61
64
|
r"""Linear regression with combined L1 and L2 priors as regularizer
|
62
65
|
For more details on this class, see [sklearn.linear_model.ElasticNet]
|
@@ -476,7 +479,7 @@ class ElasticNet(BaseTransformer):
|
|
476
479
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
477
480
|
expected_dtype = "array"
|
478
481
|
else:
|
479
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
482
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
480
483
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
481
484
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
482
485
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1133,7 +1136,7 @@ class ElasticNet(BaseTransformer):
|
|
1133
1136
|
|
1134
1137
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1135
1138
|
|
1136
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1139
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1137
1140
|
outputs: List[BaseFeatureSpec] = []
|
1138
1141
|
if hasattr(self, "predict"):
|
1139
1142
|
# keep mypy happy
|
@@ -1141,7 +1144,7 @@ class ElasticNet(BaseTransformer):
|
|
1141
1144
|
# For classifier, the type of predict is the same as the type of label
|
1142
1145
|
if self._sklearn_object._estimator_type == "classifier":
|
1143
1146
|
# label columns is the desired type for output
|
1144
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1147
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1145
1148
|
# rename the output columns
|
1146
1149
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1147
1150
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class ElasticNetCV(BaseTransformer):
|
61
64
|
r"""Elastic Net model with iterative fitting along a regularization path
|
62
65
|
For more details on this class, see [sklearn.linear_model.ElasticNetCV]
|
@@ -509,7 +512,7 @@ class ElasticNetCV(BaseTransformer):
|
|
509
512
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
510
513
|
expected_dtype = "array"
|
511
514
|
else:
|
512
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
515
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
513
516
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
514
517
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
515
518
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1166,7 +1169,7 @@ class ElasticNetCV(BaseTransformer):
|
|
1166
1169
|
|
1167
1170
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1168
1171
|
|
1169
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1172
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1170
1173
|
outputs: List[BaseFeatureSpec] = []
|
1171
1174
|
if hasattr(self, "predict"):
|
1172
1175
|
# keep mypy happy
|
@@ -1174,7 +1177,7 @@ class ElasticNetCV(BaseTransformer):
|
|
1174
1177
|
# For classifier, the type of predict is the same as the type of label
|
1175
1178
|
if self._sklearn_object._estimator_type == "classifier":
|
1176
1179
|
# label columns is the desired type for output
|
1177
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1180
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1178
1181
|
# rename the output columns
|
1179
1182
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1180
1183
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class GammaRegressor(BaseTransformer):
|
61
64
|
r"""Generalized Linear Model with a Gamma distribution
|
62
65
|
For more details on this class, see [sklearn.linear_model.GammaRegressor]
|
@@ -454,7 +457,7 @@ class GammaRegressor(BaseTransformer):
|
|
454
457
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
455
458
|
expected_dtype = "array"
|
456
459
|
else:
|
457
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
460
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
458
461
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
459
462
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
460
463
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1111,7 +1114,7 @@ class GammaRegressor(BaseTransformer):
|
|
1111
1114
|
|
1112
1115
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1113
1116
|
|
1114
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1117
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1115
1118
|
outputs: List[BaseFeatureSpec] = []
|
1116
1119
|
if hasattr(self, "predict"):
|
1117
1120
|
# keep mypy happy
|
@@ -1119,7 +1122,7 @@ class GammaRegressor(BaseTransformer):
|
|
1119
1122
|
# For classifier, the type of predict is the same as the type of label
|
1120
1123
|
if self._sklearn_object._estimator_type == "classifier":
|
1121
1124
|
# label columns is the desired type for output
|
1122
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1125
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1123
1126
|
# rename the output columns
|
1124
1127
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1125
1128
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class HuberRegressor(BaseTransformer):
|
61
64
|
r"""L2-regularized linear regression model that is robust to outliers
|
62
65
|
For more details on this class, see [sklearn.linear_model.HuberRegressor]
|
@@ -437,7 +440,7 @@ class HuberRegressor(BaseTransformer):
|
|
437
440
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
438
441
|
expected_dtype = "array"
|
439
442
|
else:
|
440
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
443
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
441
444
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
442
445
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
443
446
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1094,7 +1097,7 @@ class HuberRegressor(BaseTransformer):
|
|
1094
1097
|
|
1095
1098
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1096
1099
|
|
1097
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1100
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1098
1101
|
outputs: List[BaseFeatureSpec] = []
|
1099
1102
|
if hasattr(self, "predict"):
|
1100
1103
|
# keep mypy happy
|
@@ -1102,7 +1105,7 @@ class HuberRegressor(BaseTransformer):
|
|
1102
1105
|
# For classifier, the type of predict is the same as the type of label
|
1103
1106
|
if self._sklearn_object._estimator_type == "classifier":
|
1104
1107
|
# label columns is the desired type for output
|
1105
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1108
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1106
1109
|
# rename the output columns
|
1107
1110
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1108
1111
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class Lars(BaseTransformer):
|
61
64
|
r"""Least Angle Regression model a
|
62
65
|
For more details on this class, see [sklearn.linear_model.Lars]
|
@@ -456,7 +459,7 @@ class Lars(BaseTransformer):
|
|
456
459
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
457
460
|
expected_dtype = "array"
|
458
461
|
else:
|
459
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
462
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
460
463
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
461
464
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
462
465
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1113,7 +1116,7 @@ class Lars(BaseTransformer):
|
|
1113
1116
|
|
1114
1117
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1115
1118
|
|
1116
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1119
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1117
1120
|
outputs: List[BaseFeatureSpec] = []
|
1118
1121
|
if hasattr(self, "predict"):
|
1119
1122
|
# keep mypy happy
|
@@ -1121,7 +1124,7 @@ class Lars(BaseTransformer):
|
|
1121
1124
|
# For classifier, the type of predict is the same as the type of label
|
1122
1125
|
if self._sklearn_object._estimator_type == "classifier":
|
1123
1126
|
# label columns is the desired type for output
|
1124
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1127
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1125
1128
|
# rename the output columns
|
1126
1129
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1127
1130
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class LarsCV(BaseTransformer):
|
61
64
|
r"""Cross-validated Least Angle Regression model
|
62
65
|
For more details on this class, see [sklearn.linear_model.LarsCV]
|
@@ -464,7 +467,7 @@ class LarsCV(BaseTransformer):
|
|
464
467
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
465
468
|
expected_dtype = "array"
|
466
469
|
else:
|
467
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
470
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
468
471
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
469
472
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
470
473
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1121,7 +1124,7 @@ class LarsCV(BaseTransformer):
|
|
1121
1124
|
|
1122
1125
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1123
1126
|
|
1124
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1127
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1125
1128
|
outputs: List[BaseFeatureSpec] = []
|
1126
1129
|
if hasattr(self, "predict"):
|
1127
1130
|
# keep mypy happy
|
@@ -1129,7 +1132,7 @@ class LarsCV(BaseTransformer):
|
|
1129
1132
|
# For classifier, the type of predict is the same as the type of label
|
1130
1133
|
if self._sklearn_object._estimator_type == "classifier":
|
1131
1134
|
# label columns is the desired type for output
|
1132
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1135
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1133
1136
|
# rename the output columns
|
1134
1137
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1135
1138
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class Lasso(BaseTransformer):
|
61
64
|
r"""Linear Model trained with L1 prior as regularizer (aka the Lasso)
|
62
65
|
For more details on this class, see [sklearn.linear_model.Lasso]
|
@@ -467,7 +470,7 @@ class Lasso(BaseTransformer):
|
|
467
470
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
468
471
|
expected_dtype = "array"
|
469
472
|
else:
|
470
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
473
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
471
474
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
472
475
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
473
476
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1124,7 +1127,7 @@ class Lasso(BaseTransformer):
|
|
1124
1127
|
|
1125
1128
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1126
1129
|
|
1127
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1130
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1128
1131
|
outputs: List[BaseFeatureSpec] = []
|
1129
1132
|
if hasattr(self, "predict"):
|
1130
1133
|
# keep mypy happy
|
@@ -1132,7 +1135,7 @@ class Lasso(BaseTransformer):
|
|
1132
1135
|
# For classifier, the type of predict is the same as the type of label
|
1133
1136
|
if self._sklearn_object._estimator_type == "classifier":
|
1134
1137
|
# label columns is the desired type for output
|
1135
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1138
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1136
1139
|
# rename the output columns
|
1137
1140
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1138
1141
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class LassoCV(BaseTransformer):
|
61
64
|
r"""Lasso linear model with iterative fitting along a regularization path
|
62
65
|
For more details on this class, see [sklearn.linear_model.LassoCV]
|
@@ -495,7 +498,7 @@ class LassoCV(BaseTransformer):
|
|
495
498
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
496
499
|
expected_dtype = "array"
|
497
500
|
else:
|
498
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
501
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
499
502
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
500
503
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
501
504
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1152,7 +1155,7 @@ class LassoCV(BaseTransformer):
|
|
1152
1155
|
|
1153
1156
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1154
1157
|
|
1155
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1158
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1156
1159
|
outputs: List[BaseFeatureSpec] = []
|
1157
1160
|
if hasattr(self, "predict"):
|
1158
1161
|
# keep mypy happy
|
@@ -1160,7 +1163,7 @@ class LassoCV(BaseTransformer):
|
|
1160
1163
|
# For classifier, the type of predict is the same as the type of label
|
1161
1164
|
if self._sklearn_object._estimator_type == "classifier":
|
1162
1165
|
# label columns is the desired type for output
|
1163
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1166
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1164
1167
|
# rename the output columns
|
1165
1168
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1166
1169
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class LassoLars(BaseTransformer):
|
61
64
|
r"""Lasso model fit with Least Angle Regression a
|
62
65
|
For more details on this class, see [sklearn.linear_model.LassoLars]
|
@@ -477,7 +480,7 @@ class LassoLars(BaseTransformer):
|
|
477
480
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
478
481
|
expected_dtype = "array"
|
479
482
|
else:
|
480
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
483
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
481
484
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
482
485
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
483
486
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1134,7 +1137,7 @@ class LassoLars(BaseTransformer):
|
|
1134
1137
|
|
1135
1138
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1136
1139
|
|
1137
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1140
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1138
1141
|
outputs: List[BaseFeatureSpec] = []
|
1139
1142
|
if hasattr(self, "predict"):
|
1140
1143
|
# keep mypy happy
|
@@ -1142,7 +1145,7 @@ class LassoLars(BaseTransformer):
|
|
1142
1145
|
# For classifier, the type of predict is the same as the type of label
|
1143
1146
|
if self._sklearn_object._estimator_type == "classifier":
|
1144
1147
|
# label columns is the desired type for output
|
1145
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1148
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1146
1149
|
# rename the output columns
|
1147
1150
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1148
1151
|
self._model_signature_dict["predict"] = ModelSignature(
|