snowflake-ml-python 1.7.3__py3-none-any.whl → 1.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (187) hide show
  1. snowflake/cortex/_complete.py +19 -0
  2. snowflake/ml/_internal/platform_capabilities.py +87 -0
  3. snowflake/ml/dataset/dataset.py +0 -1
  4. snowflake/ml/fileset/fileset.py +6 -0
  5. snowflake/ml/jobs/__init__.py +21 -0
  6. snowflake/ml/jobs/_utils/constants.py +51 -0
  7. snowflake/ml/jobs/_utils/payload_utils.py +352 -0
  8. snowflake/ml/jobs/_utils/spec_utils.py +298 -0
  9. snowflake/ml/jobs/_utils/types.py +39 -0
  10. snowflake/ml/jobs/decorators.py +91 -0
  11. snowflake/ml/jobs/job.py +113 -0
  12. snowflake/ml/jobs/manager.py +298 -0
  13. snowflake/ml/model/_client/ops/model_ops.py +11 -2
  14. snowflake/ml/model/_client/ops/service_ops.py +1 -11
  15. snowflake/ml/model/_client/sql/service.py +13 -6
  16. snowflake/ml/model/_packager/model_handlers/_utils.py +12 -3
  17. snowflake/ml/model/_packager/model_handlers/custom.py +1 -2
  18. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +1 -0
  19. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
  20. snowflake/ml/model/_signatures/base_handler.py +1 -2
  21. snowflake/ml/model/_signatures/builtins_handler.py +2 -2
  22. snowflake/ml/model/_signatures/numpy_handler.py +6 -7
  23. snowflake/ml/model/_signatures/pandas_handler.py +2 -2
  24. snowflake/ml/model/_signatures/pytorch_handler.py +2 -5
  25. snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
  26. snowflake/ml/model/_signatures/tensorflow_handler.py +2 -7
  27. snowflake/ml/model/model_signature.py +17 -4
  28. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +6 -3
  29. snowflake/ml/modeling/cluster/affinity_propagation.py +6 -3
  30. snowflake/ml/modeling/cluster/agglomerative_clustering.py +6 -3
  31. snowflake/ml/modeling/cluster/birch.py +6 -3
  32. snowflake/ml/modeling/cluster/bisecting_k_means.py +6 -3
  33. snowflake/ml/modeling/cluster/dbscan.py +6 -3
  34. snowflake/ml/modeling/cluster/feature_agglomeration.py +6 -3
  35. snowflake/ml/modeling/cluster/k_means.py +6 -3
  36. snowflake/ml/modeling/cluster/mean_shift.py +6 -3
  37. snowflake/ml/modeling/cluster/mini_batch_k_means.py +6 -3
  38. snowflake/ml/modeling/cluster/optics.py +6 -3
  39. snowflake/ml/modeling/cluster/spectral_biclustering.py +6 -3
  40. snowflake/ml/modeling/cluster/spectral_clustering.py +6 -3
  41. snowflake/ml/modeling/cluster/spectral_coclustering.py +6 -3
  42. snowflake/ml/modeling/compose/column_transformer.py +6 -3
  43. snowflake/ml/modeling/compose/transformed_target_regressor.py +6 -3
  44. snowflake/ml/modeling/covariance/elliptic_envelope.py +6 -3
  45. snowflake/ml/modeling/covariance/empirical_covariance.py +6 -3
  46. snowflake/ml/modeling/covariance/graphical_lasso.py +6 -3
  47. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +6 -3
  48. snowflake/ml/modeling/covariance/ledoit_wolf.py +6 -3
  49. snowflake/ml/modeling/covariance/min_cov_det.py +6 -3
  50. snowflake/ml/modeling/covariance/oas.py +6 -3
  51. snowflake/ml/modeling/covariance/shrunk_covariance.py +6 -3
  52. snowflake/ml/modeling/decomposition/dictionary_learning.py +6 -3
  53. snowflake/ml/modeling/decomposition/factor_analysis.py +6 -3
  54. snowflake/ml/modeling/decomposition/fast_ica.py +6 -3
  55. snowflake/ml/modeling/decomposition/incremental_pca.py +6 -3
  56. snowflake/ml/modeling/decomposition/kernel_pca.py +6 -3
  57. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +6 -3
  58. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +6 -3
  59. snowflake/ml/modeling/decomposition/pca.py +6 -3
  60. snowflake/ml/modeling/decomposition/sparse_pca.py +6 -3
  61. snowflake/ml/modeling/decomposition/truncated_svd.py +6 -3
  62. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -3
  63. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +6 -3
  64. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +6 -3
  65. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +6 -3
  66. snowflake/ml/modeling/ensemble/bagging_classifier.py +6 -3
  67. snowflake/ml/modeling/ensemble/bagging_regressor.py +6 -3
  68. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +6 -3
  69. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +6 -3
  70. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +6 -3
  71. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +6 -3
  72. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +6 -3
  73. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +6 -3
  74. snowflake/ml/modeling/ensemble/isolation_forest.py +6 -3
  75. snowflake/ml/modeling/ensemble/random_forest_classifier.py +6 -3
  76. snowflake/ml/modeling/ensemble/random_forest_regressor.py +6 -3
  77. snowflake/ml/modeling/ensemble/stacking_regressor.py +6 -3
  78. snowflake/ml/modeling/ensemble/voting_classifier.py +6 -3
  79. snowflake/ml/modeling/ensemble/voting_regressor.py +6 -3
  80. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +6 -3
  81. snowflake/ml/modeling/feature_selection/select_fdr.py +6 -3
  82. snowflake/ml/modeling/feature_selection/select_fpr.py +6 -3
  83. snowflake/ml/modeling/feature_selection/select_fwe.py +6 -3
  84. snowflake/ml/modeling/feature_selection/select_k_best.py +6 -3
  85. snowflake/ml/modeling/feature_selection/select_percentile.py +6 -3
  86. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +6 -3
  87. snowflake/ml/modeling/feature_selection/variance_threshold.py +6 -3
  88. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +6 -3
  89. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +6 -3
  90. snowflake/ml/modeling/impute/iterative_imputer.py +6 -3
  91. snowflake/ml/modeling/impute/knn_imputer.py +6 -3
  92. snowflake/ml/modeling/impute/missing_indicator.py +6 -3
  93. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +6 -3
  94. snowflake/ml/modeling/kernel_approximation/nystroem.py +6 -3
  95. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +6 -3
  96. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +6 -3
  97. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +6 -3
  98. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +6 -3
  99. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +6 -3
  100. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +6 -3
  101. snowflake/ml/modeling/linear_model/ard_regression.py +6 -3
  102. snowflake/ml/modeling/linear_model/bayesian_ridge.py +6 -3
  103. snowflake/ml/modeling/linear_model/elastic_net.py +6 -3
  104. snowflake/ml/modeling/linear_model/elastic_net_cv.py +6 -3
  105. snowflake/ml/modeling/linear_model/gamma_regressor.py +6 -3
  106. snowflake/ml/modeling/linear_model/huber_regressor.py +6 -3
  107. snowflake/ml/modeling/linear_model/lars.py +6 -3
  108. snowflake/ml/modeling/linear_model/lars_cv.py +6 -3
  109. snowflake/ml/modeling/linear_model/lasso.py +6 -3
  110. snowflake/ml/modeling/linear_model/lasso_cv.py +6 -3
  111. snowflake/ml/modeling/linear_model/lasso_lars.py +6 -3
  112. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +6 -3
  113. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +6 -3
  114. snowflake/ml/modeling/linear_model/linear_regression.py +6 -3
  115. snowflake/ml/modeling/linear_model/logistic_regression.py +6 -3
  116. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +6 -3
  117. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +6 -3
  118. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +6 -3
  119. snowflake/ml/modeling/linear_model/multi_task_lasso.py +6 -3
  120. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +6 -3
  121. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +6 -3
  122. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +6 -3
  123. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +6 -3
  124. snowflake/ml/modeling/linear_model/perceptron.py +6 -3
  125. snowflake/ml/modeling/linear_model/poisson_regressor.py +6 -3
  126. snowflake/ml/modeling/linear_model/ransac_regressor.py +6 -3
  127. snowflake/ml/modeling/linear_model/ridge.py +6 -3
  128. snowflake/ml/modeling/linear_model/ridge_classifier.py +6 -3
  129. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +6 -3
  130. snowflake/ml/modeling/linear_model/ridge_cv.py +6 -3
  131. snowflake/ml/modeling/linear_model/sgd_classifier.py +6 -3
  132. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +6 -3
  133. snowflake/ml/modeling/linear_model/sgd_regressor.py +6 -3
  134. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +6 -3
  135. snowflake/ml/modeling/linear_model/tweedie_regressor.py +6 -3
  136. snowflake/ml/modeling/manifold/isomap.py +6 -3
  137. snowflake/ml/modeling/manifold/mds.py +6 -3
  138. snowflake/ml/modeling/manifold/spectral_embedding.py +6 -3
  139. snowflake/ml/modeling/manifold/tsne.py +6 -3
  140. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +6 -3
  141. snowflake/ml/modeling/mixture/gaussian_mixture.py +6 -3
  142. snowflake/ml/modeling/model_selection/grid_search_cv.py +17 -2
  143. snowflake/ml/modeling/model_selection/randomized_search_cv.py +17 -2
  144. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +6 -3
  145. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +6 -3
  146. snowflake/ml/modeling/multiclass/output_code_classifier.py +6 -3
  147. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +6 -3
  148. snowflake/ml/modeling/naive_bayes/categorical_nb.py +6 -3
  149. snowflake/ml/modeling/naive_bayes/complement_nb.py +6 -3
  150. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +6 -3
  151. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +6 -3
  152. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +6 -3
  153. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +6 -3
  154. snowflake/ml/modeling/neighbors/kernel_density.py +6 -3
  155. snowflake/ml/modeling/neighbors/local_outlier_factor.py +6 -3
  156. snowflake/ml/modeling/neighbors/nearest_centroid.py +6 -3
  157. snowflake/ml/modeling/neighbors/nearest_neighbors.py +6 -3
  158. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +6 -3
  159. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -3
  160. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +6 -3
  161. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +6 -3
  162. snowflake/ml/modeling/neural_network/mlp_classifier.py +6 -3
  163. snowflake/ml/modeling/neural_network/mlp_regressor.py +6 -3
  164. snowflake/ml/modeling/pipeline/pipeline.py +10 -2
  165. snowflake/ml/modeling/preprocessing/polynomial_features.py +6 -3
  166. snowflake/ml/modeling/semi_supervised/label_propagation.py +6 -3
  167. snowflake/ml/modeling/semi_supervised/label_spreading.py +6 -3
  168. snowflake/ml/modeling/svm/linear_svc.py +6 -3
  169. snowflake/ml/modeling/svm/linear_svr.py +6 -3
  170. snowflake/ml/modeling/svm/nu_svc.py +6 -3
  171. snowflake/ml/modeling/svm/nu_svr.py +6 -3
  172. snowflake/ml/modeling/svm/svc.py +6 -3
  173. snowflake/ml/modeling/svm/svr.py +6 -3
  174. snowflake/ml/modeling/tree/decision_tree_classifier.py +6 -3
  175. snowflake/ml/modeling/tree/decision_tree_regressor.py +6 -3
  176. snowflake/ml/modeling/tree/extra_tree_classifier.py +6 -3
  177. snowflake/ml/modeling/tree/extra_tree_regressor.py +6 -3
  178. snowflake/ml/modeling/xgboost/xgb_classifier.py +6 -3
  179. snowflake/ml/modeling/xgboost/xgb_regressor.py +6 -3
  180. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +6 -3
  181. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +6 -3
  182. snowflake/ml/version.py +1 -1
  183. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/METADATA +29 -14
  184. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/RECORD +187 -178
  185. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/LICENSE.txt +0 -0
  186. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/WHEEL +0 -0
  187. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  snowflake/cortex/__init__.py,sha256=gboUvJBYzJIq11AK_Qa0ipOUbKctHahNXe1p1Z7j8xY,1032
2
2
  snowflake/cortex/_classify_text.py,sha256=zlAUJXPgcEwmh9KtkqafAD0NRP3UBboCJGVzMylW4Lk,1640
3
- snowflake/cortex/_complete.py,sha256=nzNCsgGQriqz_j7Di6hghMDIiAr3HIjqbDXXx7h6Fa0,15349
3
+ snowflake/cortex/_complete.py,sha256=Oi9wUGYewvO2izBk9wDMBLtvXGm3fgjZ2NUBskRdkP8,16111
4
4
  snowflake/cortex/_embed_text_1024.py,sha256=P3oMsrMol_rTK0lZxDmEBx7XSA9HB2y3AMjaD66LrgY,1651
5
5
  snowflake/cortex/_embed_text_768.py,sha256=_WMt_FHu3n-CKXj8yiposDSi763Sd-NHV9UeGQ7YHaE,1643
6
6
  snowflake/cortex/_extract_answer.py,sha256=7C-23JytRKdZN9ZYY9w10RfAe_GzmvzKAqqUDl3T4aQ,1605
@@ -10,12 +10,13 @@ snowflake/cortex/_sse_client.py,sha256=sLYgqAfTOPADCnaWH2RWAJi8KbU_7gSRsTUDcDD5T
10
10
  snowflake/cortex/_summarize.py,sha256=7GH8zqfIdOiHA5w4b6EvJEKEWhaTrL4YA6iDGbn7BNM,1307
11
11
  snowflake/cortex/_translate.py,sha256=9ZGjvAnJFisbzJ_bXnt4pyug5UzhHJRXW8AhGQEersM,1652
12
12
  snowflake/cortex/_util.py,sha256=cwRGgrcUo3E05ZaIDT9436vXLQ7GfuBVAjR0QeQ2bDE,3320
13
- snowflake/ml/version.py,sha256=EjGGPpU_9NRxpioQOvkyljo3VC0_73xnNfY88al3bzQ,16
13
+ snowflake/ml/version.py,sha256=CI97AHNm7cJe6epn5r3AC6geTNi2-zdhUsgpJvsoNkc,16
14
14
  snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
15
15
  snowflake/ml/_internal/env_utils.py,sha256=6CohPgQoDyWX0cnGT_9jfQCXOsR6qLoRxtyNq0f3_nU,25856
16
16
  snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
17
17
  snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
18
18
  snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
19
+ snowflake/ml/_internal/platform_capabilities.py,sha256=cNa42hB8-aThVlxlKSXNbqlJdWmplbJFKD5mYzmIa8A,3592
19
20
  snowflake/ml/_internal/telemetry.py,sha256=xgpJtUgKNZXrhf9u4G-0IBoSX7QXB5goLC5sHETiJHc,29850
20
21
  snowflake/ml/_internal/type_utils.py,sha256=x0sm7lhpDyjdA1G7KvJb06z4PEGsogWiMwFrskPTWkA,2197
21
22
  snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
@@ -55,7 +56,7 @@ snowflake/ml/data/ingestor_utils.py,sha256=--nEwJHbYqYHpAzR1APgoeVF9CMgq_fDX81X2
55
56
  snowflake/ml/data/torch_utils.py,sha256=6ywrp1BKrkuhmDQLatgT5pRb6bJNKLKbAQNRV6HDEhY,3603
56
57
  snowflake/ml/data/_internal/arrow_ingestor.py,sha256=P7Q975IKkbLWQ7KUMKxkm_Z8yfxnp3ZJN5spsaaTUgo,12110
57
58
  snowflake/ml/dataset/__init__.py,sha256=nESj7YEI2u90Oxyit_hKCQMWb7N1BlEM3Ho2Fm0MfHo,274
58
- snowflake/ml/dataset/dataset.py,sha256=GqdcABGcIlAzPmfTcOC8H_Kw6LNQZ6F_7Ch45hxHOHU,21094
59
+ snowflake/ml/dataset/dataset.py,sha256=eN9hStlwLlWXU3bp7RSruzIgSPEXNunpagCUDRbtz54,21041
59
60
  snowflake/ml/dataset/dataset_factory.py,sha256=Fym4ICK-B1j6Om4ENwWxEvryq3ZKoCslBSZDBenmjOo,1615
60
61
  snowflake/ml/dataset/dataset_metadata.py,sha256=tWR3fa2WG3Kj2btKMbg51l5jX68qm1rfXRswU0IDYTg,4157
61
62
  snowflake/ml/dataset/dataset_reader.py,sha256=e-IRbxbxFfNbsglmqtzhV_wYFsEflBW6-U_krbfXPpw,4371
@@ -87,27 +88,35 @@ snowflake/ml/feature_store/examples/wine_quality_features/source.yaml,sha256=dPs
87
88
  snowflake/ml/feature_store/examples/wine_quality_features/features/managed_wine_features.py,sha256=W58pGmIKV1iehou4Knw_yWJRWKKt_80ZiiMi3C_vwOw,1466
88
89
  snowflake/ml/feature_store/examples/wine_quality_features/features/static_wine_features.py,sha256=ej1_DxD_W4TyqwOJ9T5C6s0S8rE5UPaP-KFzKi5MDWM,1024
89
90
  snowflake/ml/fileset/embedded_stage_fs.py,sha256=fmt8IoYbHtBMjyIC3K87ng-i5uYwE_2XKFQogNkP-nM,6000
90
- snowflake/ml/fileset/fileset.py,sha256=GoCw2VYtKrlE0EKorL4CtKzgE2sLPrKdndsUjQjZymc,26206
91
+ snowflake/ml/fileset/fileset.py,sha256=GSRUBNniScUIDl5f8cHvSn9C62JGBRxkzMs-bj2QkCQ,26416
91
92
  snowflake/ml/fileset/sfcfs.py,sha256=uPn8v5jlC3h_FrNqb4UMRAZjRZLn0I3tzu0sfi5RHik,15542
92
93
  snowflake/ml/fileset/snowfs.py,sha256=uF5QluYtiJ-HezGIhF55dONi3t0E6N7ByaVAIAlM3nk,5133
93
94
  snowflake/ml/fileset/stage_fs.py,sha256=IEVZ6imH77JiSOIRlRHNWalwafoACRgHFr8RAaICSP8,20170
95
+ snowflake/ml/jobs/__init__.py,sha256=ORX_0blPSpl9u5442R-i4e8cqWYfO_vVjFFtX3as184,420
96
+ snowflake/ml/jobs/decorators.py,sha256=Ddop5ZT9cfIitVZdrZkwaHg8q45PC589-vR4vFWnUVg,3658
97
+ snowflake/ml/jobs/job.py,sha256=H4cMk4t23WMW2aJvLbDqWlnb1L1xi_jIDGjLaxJ02lM,4162
98
+ snowflake/ml/jobs/manager.py,sha256=s7plorj3cs6aARxAg_ZRLsZ1OzDTtGFBG5CDooSIlA4,11045
99
+ snowflake/ml/jobs/_utils/constants.py,sha256=QG_9w0SU0Ju5D2nphIjxdG56MfM5bGMQTb1E80YTaVI,2297
100
+ snowflake/ml/jobs/_utils/payload_utils.py,sha256=ZtTQoTGpY1PnA-HasVGwP0pKNtf8DFoMfuCFcQLAbKk,14174
101
+ snowflake/ml/jobs/_utils/spec_utils.py,sha256=YmlzHAyeYKgk_u4oQ_hPSo--v1o4pByQabD0xyzKuVc,10444
102
+ snowflake/ml/jobs/_utils/types.py,sha256=sEV-jCA-0Bb8KdKMBZGrIdqJhSWGb6QI8pYRL56dIDA,874
94
103
  snowflake/ml/lineage/__init__.py,sha256=8p1YGynC-qOxAZ8jZX2z84Reg5bv1NoJMoJmNJCrzI4,65
95
104
  snowflake/ml/lineage/lineage_node.py,sha256=e6L4bdYDSVgTv0BEfqgPQWNoDiTiuI7HmfJ6n-WmNLE,5812
96
105
  snowflake/ml/model/__init__.py,sha256=EvPtblqPN6_T6dyVfaYUxCfo_M7D2CQ1OR5giIH4TsQ,314
97
106
  snowflake/ml/model/custom_model.py,sha256=O60mjz2Vy8A0Rt3obq43zBT3BxkU7CIcN0AkHsOgHZI,11221
98
- snowflake/ml/model/model_signature.py,sha256=gZnZPs9zTCYkeFoiQzoGUQYZMydYjzH-4xPTzfqt4hU,30496
107
+ snowflake/ml/model/model_signature.py,sha256=8i2FWSk4ljrcGMephAtd3MCOjY6OumncG3kN8z2yupo,31298
99
108
  snowflake/ml/model/type_hints.py,sha256=DzavATx7v9iH8gbvYiVMLogB3-sWPtfcE4i6gAJg55s,8916
100
109
  snowflake/ml/model/_client/model/model_impl.py,sha256=pqjK8mSZIQJ_30tRWWFPIo8X35InSVoAunXlQNtSJEM,15369
101
110
  snowflake/ml/model/_client/model/model_version_impl.py,sha256=I_gi90GEQVLMlOO6Y2S0IIreBTn-bHb8rC9o-2-QzBw,40260
102
111
  snowflake/ml/model/_client/ops/metadata_ops.py,sha256=7cGx8zYzye2_cvZnyGxoukPtT6Q-Kexd-s4yeZmpmj8,4890
103
- snowflake/ml/model/_client/ops/model_ops.py,sha256=gdgnT0gUMAUh2aF2XXDSdzVnCL_LTf7zLSJWmlK42bE,43781
104
- snowflake/ml/model/_client/ops/service_ops.py,sha256=t_yLtHlAzHc28XDZ543yAALY5iVsRwVw4i9mtiPaXpQ,19237
112
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=fj5AH7Ot9EmeMfgpuB3sBc3Kk36VpR_ba4fFWXxAjV4,44101
113
+ snowflake/ml/model/_client/ops/service_ops.py,sha256=itoi_3kH2-wEa2wsaqPb51vutGWbmu4UKM_QDWHunoo,18788
105
114
  snowflake/ml/model/_client/service/model_deployment_spec.py,sha256=uyh5k_u8mVP5T4lf0jq8s2cFuiTsbV_nJL6z1Zum2rM,4456
106
115
  snowflake/ml/model/_client/service/model_deployment_spec_schema.py,sha256=eaulF6OFNuDfQz3oPYlDjP26Ww2jWWatm81dCbg602E,825
107
116
  snowflake/ml/model/_client/sql/_base.py,sha256=Qrm8M92g3MHb-QnSLUlbd8iVKCRxLhG_zr5M2qmXwJ8,1473
108
117
  snowflake/ml/model/_client/sql/model.py,sha256=o36oPq4aU9TwahqY2uODYvICxmj1orLztijJ0yMbWnM,5852
109
118
  snowflake/ml/model/_client/sql/model_version.py,sha256=EyMyn0GriurJ-rRd9Fm-Rh8MQlmsQij4qojQJdR6oEY,21288
110
- snowflake/ml/model/_client/sql/service.py,sha256=fvQRhRGU4FBeOBouIoQByTvfQg-qbEQKplCG99BPmL0,10408
119
+ snowflake/ml/model/_client/sql/service.py,sha256=GXYRM2vVIqeDKmVEJ-vI-5HMo5D3MAjFrWiGczU_oI4,10869
111
120
  snowflake/ml/model/_client/sql/stage.py,sha256=165vyAtrScSQWJB8wLXKRUO1QvHTWDmPykeWOyxrDRg,826
112
121
  snowflake/ml/model/_client/sql/tag.py,sha256=pwwrcyPtSnkUfDzL3M8kqM0KSx7CaTtgty3HDhVC9vg,4345
113
122
  snowflake/ml/model/_model_composer/model_composer.py,sha256=iV51I7SK2tPRh0Up3CdCTlhkPTNpEZFthciOGsZhhOg,7021
@@ -124,10 +133,10 @@ snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosd
124
133
  snowflake/ml/model/_packager/model_packager.py,sha256=EhpEmfd2oDYuIrOYFOadI0OOFJa9bleMvI1WTHQqjE8,5806
125
134
  snowflake/ml/model/_packager/model_env/model_env.py,sha256=968vlQJrI2_2rQ88cl3uXe1FP5kG-zG4UkUySRDgFt4,17517
126
135
  snowflake/ml/model/_packager/model_handlers/_base.py,sha256=qQS1ZSz1Ikdj0TvyLU9n8K6KAj-PknL4s801qpnWodo,7164
127
- snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=XoZtHAVQiTD5PtARI-hw46mFebPLWK0jTwnbYvaIX5E,10251
136
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=fFnTuS_1DrIQGDsLvgVy0oAfnl7VHdO55-ysg9B5N3Y,10471
128
137
  snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=vwlKuXwJGYrna7wkXDgEu8-nUNegNhHMCaNQdhL5p44,10677
129
- snowflake/ml/model/_packager/model_handlers/custom.py,sha256=i9jhMzNrgxEdiJLw9ojeiMaCWYk5nVj48JyS_e87RpM,8333
130
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=csqpaLFvuxuqURv8Cso9rAJCxn8hISMklViKRmvkBGw,21539
138
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=Atp6QP_ksRBNXYUEHGe4FykPjEDBR6Fb6E3hWvpsjQI,8302
139
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=TEhA1tZT_JeAYWgB68G7E4H96tZ9ehjZ7fqVvaB6iN0,21575
131
140
  snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=qm_Q7FxD19r1fFnSt25pZJw9sU-jE0Yu2h2qUvOl_qs,11127
132
141
  snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=A3HnCa065jtHsRM40ZxfLv5alk0RYhVmsU4Jt2klRwQ,9189
133
142
  snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=DDcf85xisPLT1PyXdmPrjJpIIepkdmWNXCOpT_dCncw,8294
@@ -145,17 +154,17 @@ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=nMtx4iDksayA
145
154
  snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
146
155
  snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
147
156
  snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
148
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=Md0SSF4y5eG5Kw6S_Hc2GRcHpc85EYcQN1OeIXgeKns,1489
157
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=lfC-2nwfH2ucvOqrQOESYK0_CowmFBuOKMi-ci0ytio,1507
149
158
  snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=G52nrjzcZiWBJaed6Z1qKq-HjqtnG2MnywDdU9lPusg,5051
150
159
  snowflake/ml/model/_packager/model_task/model_task_utils.py,sha256=Lxlw_H2lJQoy-3kpmD9QL4bwYLl1jZj9N8a1SR2gee4,6439
151
- snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
152
- snowflake/ml/model/_signatures/builtins_handler.py,sha256=nF-2ptQjeu7ikO72_d14jk1N6BVbmy-mjtZ9I1c7-Qg,2741
160
+ snowflake/ml/model/_signatures/base_handler.py,sha256=4CTZKKbg4WIz_CmXjyVy8tKZW-5OFcz0J8XVPHm2dfQ,1269
161
+ snowflake/ml/model/_signatures/builtins_handler.py,sha256=eGtGiy81Cs2wHZq69rpvmn3QYBNW17uME-WSrFHzpSc,2713
153
162
  snowflake/ml/model/_signatures/core.py,sha256=C9iTtdaXJVMDkOqCH5Tie7ucib4d0pBJ0oXJWAqur3s,20233
154
- snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
155
- snowflake/ml/model/_signatures/pandas_handler.py,sha256=6u80FV1mWNqRjADef25B1k1A2xZ7lNweC_4tvnxiQmM,11150
156
- snowflake/ml/model/_signatures/pytorch_handler.py,sha256=yEU-V_WRjE8Q7NdHyghl0iYpMiIDzGaIR5Pd_ixB1Hk,4631
157
- snowflake/ml/model/_signatures/snowpark_handler.py,sha256=n4oX8MpHq57UULxei6PRHX8S-y9FbDLW9MKU4BVmf_M,6221
158
- snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=9bUbxtHpl4kEoFzeDJF87bQPb8RdLLm9OV23-aUyW3s,6114
163
+ snowflake/ml/model/_signatures/numpy_handler.py,sha256=B-U2Pqk767KqB6vNP3dhbkpgTLbNDmzmyz5pDQPMp5o,5783
164
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=phmF9BkMZoRg99iXFXDhmOPJTg0PhaNFVDXnS-Su1TU,11120
165
+ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=n3TCNhQJwc5MntRzVipN8_LyJN7lLIzh9xY6EsMHFUY,4560
166
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=HoaCNgN5UFi-X6bMartY_or7czr5gZd_Lhv_O8wvsOQ,6178
167
+ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=gXjn0DYl0HvRXld253LR6Fh-DpMZaqshP7iBigA-3Uw,6014
159
168
  snowflake/ml/model/_signatures/utils.py,sha256=1E_mV1qdUuob8tjB8WaOEfuo2rmQ2FtOgTNyXZGzoJg,13108
160
169
  snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
161
170
  snowflake/ml/modeling/_internal/constants.py,sha256=aJGngY599w3KqN8cDZCYrjbWe6UwYIbgv0gx0Ukdtc0,105
@@ -173,135 +182,135 @@ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sh
173
182
  snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=D4tZY-Fg9U6yY4mkznzzFuf6GmmemS5ZQCUu2yZgDTQ,32259
174
183
  snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=4WP1QVqfSVvziVlQ7k9nWQNCM0GN5kTk4Xnd-9jWTXc,17300
175
184
  snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
176
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=TFIK8t0Q2iWmc7m_Z4RS5NtaFbZ1tXDWoq36lqv0cGs,53602
185
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=JniApR5y_vYUT4vgugsYiOWsXsknIA6uDa5xZohnEr8,53780
177
186
  snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
178
- snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=k1ZND2S4qlc45KxBIUkg5T-ajKJ3VWk-4yayLdv44Zk,51855
179
- snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=IsWA50g9Fxi3ddMluCO1eqbJ3zcXTmM13s4NPDfvzeo,53768
180
- snowflake/ml/modeling/cluster/birch.py,sha256=M1-7YgDw71fCRt_qtzH_OLKmZhuceq8CLqGw5VjF51M,51768
181
- snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=MUoutkGVeTcX1MbXZXqyJh5nR0BWqMvJDoorLoXcYUg,54537
182
- snowflake/ml/modeling/cluster/dbscan.py,sha256=rjplq4RyBsIImQbOO19IbV2zobTPKgUmTRe1grROqiI,52109
183
- snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=89zIYUVfvbJPZJrsjVnzQhRKDY36neIY2pfy4fOaeQE,54062
184
- snowflake/ml/modeling/cluster/k_means.py,sha256=eji_ySSPIrxQAYz8VQ41suLUwP7SdKF33Bt9ySLOdlg,54263
185
- snowflake/ml/modeling/cluster/mean_shift.py,sha256=7F-VD9ElANRiinzpapgvxxs_u1Tg1ennRUVdLQLcQhU,52142
186
- snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=jFxEH4PXcSVuni4xKGbP4OOJNBu-j4P0QLx8u8CRpYQ,55460
187
- snowflake/ml/modeling/cluster/optics.py,sha256=-R9TNtmLPrQF_2d2wCSElnsZOrg2EGvCCTdLqMu3sv0,55319
188
- snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=o8_SbNh3dYEG8BKz0r-0BZkJZOwXv6gx0nNfAEceiks,52152
189
- snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=zL00K8UQSehQMZ-0Aeqw-vzFKqNXrbVwBYdoam0mXOQ,55436
190
- snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=yzrNfxs48JPQPkLdO6So11lJDZKsy8gDD1wlMJ7oxcc,51285
187
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=CqRDwR5AxWtJOc2cJ1NYdwoC-kPq14Ag4hAHbc29fFg,52033
188
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=ms167mkw1TxaQ40RIvOkVCKXnYWZ8T66XOyrq061Wxs,53946
189
+ snowflake/ml/modeling/cluster/birch.py,sha256=WC_bTyytjC0_awNUt6oJianpeJKQPpsgOUZJ1Pzdj5k,51946
190
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=dv3gctgYmzCk1NhKHx__AlhUvSwE2tprnmc3XV66118,54715
191
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=GaeNT3w4yxFPKXj4wg0o24VMc2TlBXbtMuw-Y3awExY,52287
192
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=LVYxbuhcpUD0NAcY-cLp4iW4xNGu3vAQtwCuefAO-gA,54240
193
+ snowflake/ml/modeling/cluster/k_means.py,sha256=lJPWARJRd9TKuj7MSmdwFB1fPXh4Bzx4YuBVe07qLU8,54441
194
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=zVlmKd_5dwhATXcxmTxtmW83kAJO1tBpqZY9WNlyZAY,52320
195
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=Ta4Mk8WvWsmnwAOQhQdV0gi-5S2G6v3X0JgCgMiKYqg,55638
196
+ snowflake/ml/modeling/cluster/optics.py,sha256=Ar1GQGlmjx3ielzstafhTnKL1Fd3WG34AX0TCIFfJx0,55497
197
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=Xyq1AJeJp6tHlYHuF4cqsE2VIHIdk6B0sAalgx9MyzY,52330
198
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=IoHmeovo0ndflgra5WmDL5i26OdFjc6MH76b90mzk2k,55614
199
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=L0FtG9mzUil-5C5bjkCjZaIPFadZ18Ijep3WVDkTvO0,51463
191
200
  snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
192
- snowflake/ml/modeling/compose/column_transformer.py,sha256=LTaCu3U9lqbGbzGlSggzEfmjih_YEDsKAVYEMPWqBD0,54610
193
- snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=hk-g-yJFL4CNlmDhTg6vw-N8N-bg9hZvzh2nWe4Z8rM,51897
201
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=2ipCSOw5v7cFpDNvw2AnxombJFC4cbkW4Hb8_32Z9HY,54788
202
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=Lfa3bfdCvvGaaoZFN39zs-knO-dacR5ifz4JiRhQxtI,52075
194
203
  snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
195
- snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=c-BG_eiC01n2ZN76ZEj80TtQRM9z-GPMWfIVgNnqBLA,52186
196
- snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=hYRitTNwhsY60qpTbUdhNMQkCG2aX2oxFP0trsYyJeA,49984
197
- snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=fsotiESbzirsjULlzda8X0OrJbdCYJjwRUHFsMX5n-4,51843
198
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=WeiQ8WXeDsy3ly6sx6246jq5hFKkAchXLtK4o2RfbYI,53035
199
- snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=GJhlSCGT-nanFY0fAvSCDlfaiiZpOFxeNJ8o54uEFEM,50113
200
- snowflake/ml/modeling/covariance/min_cov_det.py,sha256=wmRlc8MiDOUOVLVKYcdKHs2aHGp45A-7zlWCJ9CDCw8,50880
201
- snowflake/ml/modeling/covariance/oas.py,sha256=RL1L8D-Ed9s1rFVnSn4wPvwQao6jYFhDz5tDq1W_KHg,49727
202
- snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=ULvwAUtaQUSeqQELKhSaa1kfjeXuqgGSdD71X81YjZo,50136
204
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=RaKo_LRGkl4cY0qHDuk8F2MjMIY3FriHL-iIRaoi6YA,52364
205
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=2zXGrOTA2acEJeed-TNnv4SsKYQmUtuZWaJ7vUKPbCA,50162
206
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=05yYxExMUixdKmBVxUa3TEnukdruMzwagXCQT1ln75Y,52021
207
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=8blX9csdbbUJEBmQA_IN31LuGdbKinFoR1MTayffSQI,53213
208
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=M5FLiV8fm9qZhEQXVoEh2N97p6LT05zuXSrrfWMW96A,50291
209
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=DAFJ5PkON4D1fKgnF7ExKqPzbOCrn01K8N8we6p03wM,51058
210
+ snowflake/ml/modeling/covariance/oas.py,sha256=yxUj8dkixKhkCBCc3LhtfqDwactxHnGBX_KaC1jfIuI,49905
211
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=nD7ShDojIk4iAf_YCSKxnl-_kvbL9Zl0FRLtQzcJ3UM,50314
203
212
  snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
204
- snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=AJBcaae1t9R7XAbjLrmYd9U0AHzVoG_5E8ZAbunYWfU,55135
205
- snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=yple9ZHcINCl95OpB0GivWbi-gWC9Q4TW-_YoYg3cNQ,52794
206
- snowflake/ml/modeling/decomposition/fast_ica.py,sha256=lUb88ndGnryU1-jU8ASpG86keTSCZ4zELccg-tfC0Ak,52721
207
- snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=G_buEnTXWdPX-KVR0YRZrm82118_cYWQV8TFl_eBN-A,51088
208
- snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=oiV8XnvFPrYLIpfeh7hzKXaQAZtOZ7fZWA2rh0nOuiA,55078
209
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=QorZjT46Fs3Dm5fkALMWhiY-YA5Aq8GAl6WPrckrR4E,55867
210
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=tWHa8KqsBDnwjWes-hs-qiB-JHPLObbm18UxVUu8w_Q,53130
211
- snowflake/ml/modeling/decomposition/pca.py,sha256=PEUS9WHGS3kFRbyJxgDphJE6gWi5Lpul5pBQ85YfgF8,55298
212
- snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=vMWi3cKMuFrJOlggWPs_vQaC9WF_q4M0XHXPpuR34Vs,52237
213
- snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=oy1k6zTMb5R9_AaYYJeVAS_U3m0zfVwvKGLbVAUeW8A,51863
213
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=Fkg_HYbxx1N5vZ6Jf-dMq-4Q9IGjMmKzGQad8LPsrPg,55313
214
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=xucG_8znJNtZu06tT5G8NoHfPcokXt0XuTuePotydWc,52972
215
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=hnRksLrvlhKzUa4TDDvd01UFea5N21iJDornOrjhKrc,52899
216
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=IFuUgpqxdPcUBCb5vMiNigZ854eJ6Ab4m3h_4qcFvpw,51266
217
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=LqilurNUpzQpfQ5lRe142uX6pemDuSlh6hm_JX_PB6I,55256
218
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=V0jSC1ujjq3Wrn0BA6kvCOFZ9QBVF11Dit02L2k8Eys,56045
219
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=ycjHdaNG5HTIDDH7XoIiY36-MFDYglo_-Ci8IPC0Fz0,53308
220
+ snowflake/ml/modeling/decomposition/pca.py,sha256=EZNn5_LjbbgjXVjx_dlBY-Pn3IP0JAZJDftZgY37caM,55476
221
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=qbHSoABVm_R-SUTky0lNhOYW4WaN6vK5CchYd6Y8mP8,52415
222
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=-ashOOOhiX17jiDsc4EIx6vkSC3TD2wgH-KzzS3Djvs,52041
214
223
  snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
215
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=9JKFvGdCZZEqQvHiJxdHQXMBdqaDfAgKOQEQcZBGzfE,54754
216
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=x536xqmYYQa9n6dJG5uW-kr0Ah-0wIFf5cWq_hlGUCQ,52333
224
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=gv1DuoypM4rJa_W6Fv27x6B8dTP6fX8Z3MykXicb8u8,54932
225
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=90IxGXiskt9SNoRJzR8AvFQnrdDFaDXdKu-6_C87Mys,52511
217
226
  snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
218
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=UdGn1aSInpqsmOCycMaotppJ7oIa7KYzYFKSdcKlra0,52535
219
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=1batkzCn0PHyLk8jdN0n3AY0-PKU7bPdHpAlSV1ew2A,51538
220
- snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=RLOvLvHm-snlgDO8bOywN8K0xsOS7Ay4LEdGg8dooqE,53727
221
- snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=gE1IIkVpPBdnVz2pQp8m6_HuYglRVWSRpR35Gs8oHB0,52962
222
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=0OPcDnZQfYZGxruEkSC5PfJ1bXt8eEqV5qcPxrCiOqQ,59776
223
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=ktX5IdGEZkLg6OsF_XX0CeuBjc_3VzQyyJZihoHGyLU,58229
224
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=MK8hfnMxLONqj4JAmsparVB_lvMre5EswBGDnfxmR5g,60535
225
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=x0_pDhqifw9waPkib-BsNnSwq0_hqjjCtElrLNn-q_g,60127
226
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=GvXqM5VOGw2PdjK7eoO4cFyX09XK60LhSklAP8j8uPA,61021
227
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=6a3LDEOTnDv8VHy5szdauBxXrWjOC8gCJf9q9zvFjqE,59356
228
- snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=bKDKA7N0Cnadd-ed6gcWZLZ-HcA47Z9imUEIURkVOac,53320
229
- snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=P60cup1BdqN3CzNvTxPuJN4fzv5WNZeKB3flh87zlNg,59749
230
- snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=iNJNzWw6Gmp21UmLdNqOVCHfd0rMj7Uor-LYPIls7qw,58202
231
- snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=_7UAkQFzVg86CEVt71flU5vKHPkOwk4OLvnBeqVWy9E,53264
232
- snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=Tp3Bp2t1eiPaZHMSwzVa-F7jwR21EHwxOjwwelQf6Rw,52816
233
- snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=SwoThI21kjcR1SIWGBFfaTBkElC7bT3rYBQPvZjSpxM,51341
227
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=IaX1u3qjLCrTz0-xqEG651M7mMChwzwYg9Yxrn9GRT4,52713
228
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=5LER9dyYnkIDzMTasn66LxpR97HPGb8yxuVkKRNT7x4,51716
229
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=b93ddAeS6Zk_TlbOO8Vov7g3TWccm641uQeC6ydz0IU,53905
230
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=Fj8KZ81GmUDlwpNeIHjD5t_J9BPvAWd53RZiBlQuuPE,53140
231
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=yqHN3SIPg2AJ-6etymTbO2K7qn0RRXBUBoz3VYkLJ6c,59954
232
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=YR6O27rGbZvYOEqzBUphnUopk_A4VufI4vtZuGNAj-M,58407
233
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=_ph-9VAnsyRvCM0I2DLQotbuM3K2NKBYCc9N6agIi3Q,60713
234
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=_i7Px76XlOY1Yh-vz8O4xDibc00LaCqOoQLPjf4qb64,60305
235
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=Kzp78g-bMxFIdvQKzqoe2jOAvyGyNSXnaaxscITPVGU,61199
236
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=Mf2cTmLgENtF-iy4vCDe_AX59rYRIDrGijraOvbWodU,59534
237
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=UydWp5KrT8_FgG29rG_bzr6HOILeykq-3SE_dcIcc_M,53498
238
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=9eWLXEeRem1XDJjEcty7bZV2mT0Akfe76sPDiPvddag,59927
239
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=V4jRwqelQXSfBIYGHkVh2uKCKinHNLa1ssi6icGB_ts,58380
240
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=Z-HTdCSQLTuOdwpe_4ScGHPIcqHTcBDiD80KGep6x00,53442
241
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=NZKRVdo9ZRrvqNspXU_H8KxzqayU6rrBJCrTR__YFjc,52994
242
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=0kwAKXYHJk0REhhAMe0FhYBShd_ysurDV7qP4CWGjOo,51519
234
243
  snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
235
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=VhZLbQDQSlMmVLKUW14T7bS6miRlxbjNLAICDLuSQAw,50811
236
- snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=CU5gCe24cP8GqL2XsVX6eiO3-q2AWnL1uN3kyd9fUDU,50273
237
- snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=-Dw7VTLNUifbSdlYxReKx20oWljAQSJYD62xa1k2XtA,50267
238
- snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=Je3rfzC5lYaFEm5UPVFZL5dHZO4PkNac7jhEzReOFVU,50275
239
- snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=HL44ELYoURu3AAEUVAq4jOLb0PqyPR1xzlupclK1zgU,50368
240
- snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=g7wL2FyLmeBDUy6-3ArkLlbKWkzb49wHCcEgU7cR1o4,50428
241
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=bn_42MIkNfBcRmS_o7csgSq1k8vEmlmjUi-Rrmr8-Y8,53207
242
- snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=Uligo8j5-5A6b9WRmZtiFFgokBl9AlpHhQArCwc67S4,50069
244
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=Y_qauoRdTYV1xMCDTGtCjQ_Gevp9vlxFBygGeE1fQ-I,50989
245
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=ysMpv5h0vjwRP86b96Um69L7YaHdlLhstsYTfO2YkcA,50451
246
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=M328iFSomFmUC1tUwgbS6nqb2QL9lLV7I2N12eIvWVk,50445
247
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=Oi8E53i9ooXZ7aRYGi7y9eCUZQXHupcq7VvQBIHVVDE,50453
248
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=YEYfdIktGtaXEkjo2t2FUHgv274H8qzY6RBXericyAg,50546
249
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=taAIIkUGudZnLDDvyS3Bb59NozewAK60u9etVRRltI4,50606
250
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=W5-NOY5fkDPCXmQoDUTn7t6Up4ayh3PWtf7-35OjfLw,53385
251
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=NcQxu3aTqkZD-DAxalJeGeOlUB6M0XwYtWaQd8zwPB8,50247
243
252
  snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
244
253
  snowflake/ml/modeling/framework/base.py,sha256=Q1Yq8SesnpVWdtRGc6rbuz9T3hcT0eRjl2ZiWGyWAeQ,31954
245
254
  snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
246
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=XhNEhI74o1MIWWdhS6M5VpIi26g4nT3f3q-RFwICu34,55699
247
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=ixMgrUx730ndApkB9AFJoRBgN8VqfYFzH-wYmyuEF5c,54763
255
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=xkWHEGfuQ4ePw1lhEIOpSa4AHrfPehBrbpE0U6GEbP8,55877
256
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=K0g7VbDw8WjiECflDVJqsxDemLiH0cmIdm7Rr7A6xEI,54941
248
257
  snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
249
- snowflake/ml/modeling/impute/iterative_imputer.py,sha256=f6avKsWMH86KMH7dMvFj_JAx6slZk631h3e-jGYo_yY,56592
250
- snowflake/ml/modeling/impute/knn_imputer.py,sha256=7VfopZ9-g_iVsM573g711v86XG7itMNzER2QMBA9nCY,52302
251
- snowflake/ml/modeling/impute/missing_indicator.py,sha256=xFpuMBd2h9yV62MfkKIz6sVS6skOR5Sos5R8xeI8S_k,51165
258
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=ArB7_BNQ1yS13uiFzMaNUbHAEsnBHyafedIFu4UNPiM,56770
259
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=EJAwTGACFByvJgb-EG2jEFEZ5_GOjDCSmltsQ6QsNg4,52480
260
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=P-4XgNFt6jnHwIv65joaU-yy2aLysIjOQoQemXh7JOU,51343
252
261
  snowflake/ml/modeling/impute/simple_imputer.py,sha256=T1niXlhS2vWbhF5IQ2k7qlBXKmvYVC3y1aKq73dCaBs,20946
253
262
  snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
254
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=Wv6Qx-CFff8Fo7f_qGyEU2pg9MDoC6XSUn9qIZGr_k0,50199
255
- snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=Qf9p8v4fE3E3kDxK1MAzE4hQo3UoR5Wglukm9Coj6TM,51959
256
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=_FyxuBoy-0x88etrF2y12uMX_EjscisRYH03y7yqM6w,51220
257
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=meXIcWyEVtHtIjHwqPA-lfE3xgBPRUGrKwYHXeNJyPY,50563
258
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=uFOYWOHEazfgLgWBv7r6cfHOskC81I2z_bkoDWYtK7I,50618
263
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=EmJpDmbQTcsde9lEHCtSmPIrsfGL1ywV1jw-hDvMPzU,50377
264
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=Hw-3MSysDlLLcfh5RaKs2IlvvXgait5dJRdZIy4lQx0,52137
265
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=GVfBpS486ZXYc6AUyTksz19AToDHKFFabiG1-YW82Kg,51398
266
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=I3G5D_64zEypbYywnLcsuXU6MkB6GktdtEDBFHM0QY8,50741
267
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=id6MHaqQd2XRJZtct7FJWgbwWID0Jj4Q-4Cmk0_RNmw,50796
259
268
  snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
260
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=OHjaB-MgZvuYFtQawAC1e5rWw98n2n4jpubjdDxoa6w,52067
269
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=mgIqlhdIeDwM1KZvUhuCnq3amSvG-BJ4pByjTTW9uLc,52245
261
270
  snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
262
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=7Sv6ovpKWEVX9tgo9YgPIRPqHmZ9752PacHzpw8YJpo,51570
263
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=V0EBtok8jgxDlkCR4M8lg2CW_UOVXmMS7AqOH8LNLEY,51072
271
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=bIWtW2FfW5liDQ_sNQ3DqydbAc0-SFTRr-92WW2iFvI,51748
272
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=SC5xBwFNmaHAoZGLiQZGW5Hyhp3LA-WZVg7XDoW97t8,51250
264
273
  snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
265
- snowflake/ml/modeling/linear_model/ard_regression.py,sha256=DEX9-MxB9zuw2kdNZM8fjoUHBwRtmoIxeV6zzDvHIm0,51827
266
- snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=gc8wvc6ewNnA4L0pSRMgI_we8AN-tNl6FxGgb37xArk,52197
267
- snowflake/ml/modeling/linear_model/elastic_net.py,sha256=nGHJOJ5hw_ZLEaMnC8kFFo4emDiTZ6bLKaDmT2hpyMM,53215
268
- snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=thUXXE4ZXvIOCGHwEzgOHfNCQHuoA46OMjEzgS-lr44,54291
269
- snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=uB9Ru3gE1Cex-XyT-yc3qt6uD1XImIjEHkM4gTpFu-E,52080
270
- snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=R9ColYTOXUBiOMj0-onT1Lhb3iSDU9rcXMyyA0spy3k,51277
271
- snowflake/ml/modeling/linear_model/lars.py,sha256=sC5zjOgBSL7QXrHftXla8wiCugE6_Au3Ub2awz9ix7k,51983
272
- snowflake/ml/modeling/linear_model/lars_cv.py,sha256=J-pHwX1MQk7FRWf5xsuoijO-jCBJpIrnFyhNR75sMKA,52231
273
- snowflake/ml/modeling/linear_model/lasso.py,sha256=oCvyY7P6Dqgyyy6IVMjaWPXR9uJXTCSvepjy1o3ylBU,52597
274
- snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=rE1GJOuj0HECA9nJ1SwuOBKqH_Zm4hiDhAQYxN-n_84,53409
275
- snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=Yf1pOMq3SsD-wY_hNmX3f0LEAnUP8Zt5uyS_hoRKM4g,53124
276
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=kKO-V3KYVYqQ3hMy2goGkEdNJFkvwLtaoIMh_d7MWHs,53112
277
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=CC094Ky-JhTsOlTza9ta9UVt4AcspAo3KM84vzeL2_w,52433
278
- snowflake/ml/modeling/linear_model/linear_regression.py,sha256=RgsPYYgUVbU7rDbjIU_SkKQ2b_rLKjhaaibaqPXCowM,50821
279
- snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=yhfiwaya483nUTGTJmpWFkffzTk8-HQwSbgQ7qk8BL8,57586
280
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=sO7Dyt31IxNShhhe9_a-0_LOuqT5aWLre5SBbBIm4sM,58650
281
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=oAQ3x8w1uZNCDqIr-onPSUz2guRihpzKqL9XuILSdhA,52296
282
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LThFnQRTrOejjRf3pa7ztF3CylliSGa8yfcU6ib5_Wo,53961
283
- snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=BfNZNeNC61muK_z6EUJ_5SvDiiUZdoBCO8Jxl-cSxNs,51839
284
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=Ysr8hVUKS5sBPrL84KgCfqwYY5gDvOOk9CZU8G3BwE8,53128
285
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=jvwmMRDbY8ogcAkfvCDKEz1KBhVw2sv8oo5li78vH7U,51044
286
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=hVFlZCRz4-MiwrHck91H_omQg01EKVlYmNvbPjdQcqc,54868
287
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=sU2S8myRWlqohop7OF9tbltPlDt7PGoSN5gWnzAlwCk,53930
288
- snowflake/ml/modeling/linear_model/perceptron.py,sha256=wclJmFgaaS-8r_QWmrbMeKIyAotU_lA05njfrbM7xLM,54185
289
- snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=qZwQ7JeCSP-vQGKwvNXV90UoQQVp8DRLf4P4w8ScAds,52127
290
- snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=PN00XC36LAXoaM8KKRvvL3tbAE-rwi5NfGHo3XYjsVY,55266
291
- snowflake/ml/modeling/linear_model/ridge.py,sha256=wEYZos7SjZeeG7pjLIrGVCLU5AszpGZ2s0lmfqlBbTw,54141
292
- snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=WkbmCDR-cTO-_ICx-sTPjiUxT5kHIsymk-J5kJSxMnw,54539
293
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=_QX8WSk_I9lHQhvd0U5p6YXYnTN3zLUSdpQLNI26FzY,53004
294
- snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=TbM4YPZeF0LLy_PFSsUqGlvLssS0FLG-kD6PIt36fzA,53611
295
- snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=Tw9spCSfC5X6q5kCQeZyu_2ZnxFdBUUaj5BwPSbkup8,59596
296
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=47xgTQbKcX_SGb9wXphB8zOgSfdl_SF7webdmuZsT2I,54678
297
- snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=13qYk0V_Z0T-qfRRhHyRQG1nA8NveRfW2XAYpcoCWS8,57573
298
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=e9BOBoW54yN1-MN4Qi8gzNgbTc-88kljQdIT81SPQwI,52563
299
- snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=9c2cjDRbNGGIhizmC6S-NDZWpeZz8PefjXyq4JLEJtE,53518
274
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=W6SyRk2kvzWiN-0RhNVVMk_1GkhRT9Jat3kxzz5wJcw,52005
275
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=vZh4blm7vn5F8z-mVtMNeR-xLJpGAHL3P-ewwhRsED8,52375
276
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=Dyn5umhvXZkC0uI-VyoffP117Lqlr-1FEOkq3jJ21JA,53393
277
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=IyPiRLxt5af6Uu7yZuPBZY5KDGM4o5e2wffN3_HdZ3M,54469
278
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=McjqipVmPyorLES6iMFNF10yobOG7vA8eiZNurlyrYY,52258
279
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=6NHnX8MDh-FAhvLjX-TubKE5WAEFu6Mb7NcUn7OPq6s,51455
280
+ snowflake/ml/modeling/linear_model/lars.py,sha256=1xB2sbv34CMgKYAcWXyBkAN2mpVaLVFgFT94UdrjLbM,52161
281
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=vJuyOfcR_A696KArAVV5jl7oyI9NEmYZzRyw_iYDWeM,52409
282
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=d76NzkhiSD4j5kSbb4xdlj1nPQP2ER-QixoNavwe2k4,52775
283
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=8phiWXGY7KjL2m935jpbW4qHd5JJCv7OQ67sgZsMSoE,53587
284
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=coX9bBN0neDpWLUJSs8_Zs9ubWNS5BempBKnIJAofrQ,53302
285
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=59oby9-ru7oxiPbZfOaher9B7ZchNjc0sl79k8Z2RE8,53290
286
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=2oXUE3-lDogfiUI6T4vNukOQBxHmMkJ70tspc4y3kao,52611
287
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=acHXbvXwxbscaoZPEs6Ub30Ed65XjH5tcHgaBXb7gxg,50999
288
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=OyxunEwnb_cFeZ5nmeatKd86csPQTO_JTZV4O-8qDEY,57764
289
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=MDJS8GlgMc6YrtAfTonM5p_FmhVJyp7M35lb2by8f1s,58828
290
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=DBZtxHsVoHNrW1_N0Nfd0fQN0rrSpYoqSkguSncqs5Q,52474
291
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=X6839FIO3uc9ss6D1a9Mt-zKE2FBI4HsIuaO0-oEgDs,54139
292
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=Fxkx3JNOONdxNONxxKMyATYlJ6ZdvLOBJLBgj1ADcVM,52017
293
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=pBNV_Ki7WDLu6K2XqPGtreSM6Yq7wXne2RZi5_lGNQ8,53306
294
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=Pv0GnwY66yeMAxzVNM2255Qy57Rhb9y9i0rXWR86I0g,51222
295
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=fPEAy-fc6SU3hgHMaKTmdgMIJj6jf4-W0tU0POl7_fQ,55046
296
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=INRSP-tdqg2c4pyszqapNXfFj24zwUNUxp4a64KvrC0,54108
297
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=AC3OuZlOx9R0sXlUzRW1-R-6i9S4gQv5k3hS3ZUr_As,54363
298
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=Q6LsupHo14hEmSWaRFLp9j52EiiY3kMfi2mu-6oUq24,52305
299
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=WO8UB74kp_4X35zSn-vjM2axKNh_n3ErsFJLX5zXPH4,55444
300
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=qazKXGMSPby5CkD_hNQ5YjJ-__roQoAmlPf5wu9W7-U,54319
301
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=UlHCBQ23BwxujKIYzgfMYZ6d5qcC9T1lITkhW3uhk8c,54717
302
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=mP7wndBMpMwSlyheKq_mOvMvk6yUkjvid_zYasqQMbw,53182
303
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=RkjQXV9dpZCXQqON_dZ7DCtef9DNkmXixVxVETH4ehA,53789
304
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=_uM9aLbRU4UEGbXmK-YV1E6v0H1T96QZ9zcbHoit7_w,59774
305
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=3v6_WrIeV4mtUzz4Go8o05XgiyEKqtBgC2rJj1zfjeg,54856
306
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=AEcu_eOtTx5okgvf_KLsETmuTF7G6hpRKEBk1cs2_AY,57751
307
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=EEghjoAWCuFuIIy2y4E-ydXhEPNKq9WbpBlQpXbPRvY,52741
308
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=y6DNiZ_aE__t9UicC-saQPjooTL86Rg8uFNzukM9-Gc,53696
300
309
  snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
301
- snowflake/ml/modeling/manifold/isomap.py,sha256=aO4wy-iEjn3meu2ktJO65qDZvSfgblnldzZAjJKgECU,52821
302
- snowflake/ml/modeling/manifold/mds.py,sha256=Mmgl3nRyd8QTwXCqPh3pUz9rjHAUl0PeHLcmRLC0_30,52037
303
- snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=B09ygJjIA49hYV-Y4w1-hnMoWs4z12Xgmun5XBz5pzQ,52901
304
- snowflake/ml/modeling/manifold/tsne.py,sha256=Go_P0kHMAlXBtm9DCubNI3oufPEBnR4eKYVf6sSfGcw,56024
310
+ snowflake/ml/modeling/manifold/isomap.py,sha256=6vV6UxfDtG6XdfuRHP7RuFy5z5JVhmx-uF4Vx370rEE,52999
311
+ snowflake/ml/modeling/manifold/mds.py,sha256=R8Vcoq6Pil8rIMa4rfP7fWQJ4rGO5_VyqA8OAF6ttn4,52215
312
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=Eq4Qlti2yur3shm-WtmA4X8_NrqXHLUujXDEXPdzyys,53079
313
+ snowflake/ml/modeling/manifold/tsne.py,sha256=ufxDqlE1lwEAYY6n8n8ESCg8bw5n1DL9bz-RLYXenvY,56202
305
314
  snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
306
315
  snowflake/ml/modeling/metrics/classification.py,sha256=MrEHOQ6EmfeDl_5t4n1fcE_SQOm8i5jbRSaxcN9s-II,66435
307
316
  snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
@@ -310,40 +319,40 @@ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=9tZQ_Mu6jTWHztwqkPSrFWY_LP
310
319
  snowflake/ml/modeling/metrics/ranking.py,sha256=5aqY9bi38vSLrfEeInIJMkzL-3Jm8nv1pQNX5onE9EA,17653
311
320
  snowflake/ml/modeling/metrics/regression.py,sha256=0vQuk2mLJSWfwnhImT3Uz8e_xjNxYFJlDxb89xaQHJk,25929
312
321
  snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
313
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=jx5fKk0dnQYUERg4pACPZlFi-N9soXciNHXoBX-IKb0,57409
314
- snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=FTH60ckoW3cyJCfiX5tN73K4S0SKZlfBJHT8hoGxifM,55302
322
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=qT01m49GVLSA0YgK7uFCWj9ivacr-X50dtZA6uhotKk,57587
323
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=Qd2WXZIzwhJKxISyMR58uln30TPtKj-VI3IS1eoRKyM,55480
315
324
  snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
316
- snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=K8edz_VVGTWezSxeq5EeReKSrFkgZfmw-5fg5LuD_Bo,38021
317
- snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=gPnJ3_YL_QasD6dx2YSDBltDErylZjYSKNKXBus448c,38763
325
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=KYbdVlluEErygi2cIrO7NnfVLHBDsd-pj35B-qPBRRI,38375
326
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=iQ6vlOWyVs74hPMsiYlvqMC0Gq_2kDxEah2af7jsrIA,39117
318
327
  snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
319
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=r2gUV5EVWnZiIJe41MN_4VHOEyhdkAyDgDLs-fOtFL0,50823
320
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=2B0w-gj1nnmCj3ZacJgsaWQA3ArL3Zv_y8fH_hHkZfo,51758
321
- snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=RvF9JB11gsk9a7dsuCAvH18lMANj1XgSaxJ1QrJON1U,51095
328
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=d-rMWrJgFc8FQDczE7jhL1EqWzn7cw-P0wvF2Ouke1A,51001
329
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=NxHBfHMH4e1u_P0oLb_5SBpSOoP05WX2SsSc9Ke14NY,51936
330
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=MU20m10b4TbgsGiLXTc0i2Mx3R8_it-qg58BSvN4OqA,51273
322
331
  snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
323
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=83IgSrW3GgxiuMF_8XgxaUAkBuKTK8X1w76lWnFx3bA,51350
324
- snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=0xxdKLFwUfdPdlmlNZ6VisPYgvA671ZDCW5CIQux0k4,51687
325
- snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=rhzL4TQc874fm9EdU6B1KZtOdtFI_FI9mDW7ZJSCo28,51366
326
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=fadqQU8Iy3U_ZNyyKZL0JkBLsMT23NLA7YbSyIvq_QA,50498
327
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=mpZx0HIIcK5s9DWFL2bc1qb3OETx0acAejcavGC-Ib8,51132
332
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=NknEgL-CJXBTcFhqZcl6B-QCM-82tbebdmPjsBcGTfE,51528
333
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=aOcI4oZ55BUJ9E8HaTVH6W0GTlfWH3EBnHe8kZNYN34,51865
334
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=2pkgOKdf4NWEFplAAD8eZAWgPBSp0Z1wIATYhvoL7j4,51544
335
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=d_CO11bj35yvC9lPQKhIaHb5KVR_sIb7iwI0uRIJ0i4,50676
336
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=1TxZJMhpeoWf5AcEF6dRWL6wo3tRjGB8vL-2ektgbPs,51310
328
337
  snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
329
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=307GwV6gukR7eG5y768O6D08ek9ao7cOViSU2A-XSZs,54464
330
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=_R9KDDEZ1oe9Ia6Me5pYaifZYXHLszfjn3Mg8IpjZ_8,53830
331
- snowflake/ml/modeling/neighbors/kernel_density.py,sha256=-1nhtIF8jiBi0ecJU3yxSMpy_enDBnh_-yMWBeCFg5Q,52119
332
- snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=g7OOJYSTQBpYATZhB08lxY-Ird17c35Z0SfxNW3_P8k,54695
333
- snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=rj0arB6SElA_yynxrBGSzXioC1nBFe96wtNB1nAJ-F0,50283
334
- snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=xow3kFE1nZX8IeKAacDV7mpWF4cnWb5JbJM4T0EuqWk,52602
335
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=e5LvLURwNDdFGUqFZZlpCaczWC1wtPzW8IR1llR3cbI,54184
336
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=6m2TeZhPrqYN88qONR1LgYuclapd3Oqtj4naeSbKtBY,54913
337
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=gSUNGHJOHIv11HZghrSOcN8Sqjr2djUdYiXMSg7ph6o,53513
338
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=-Lw3Tj1YksHExlOz694PInABD0j5tMmwh4fMOWZSTLY,54642
339
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=6DAR9iSF2D8lgQ7YM8112Ec0UW05iFNFnwqddkcU7rc,54008
340
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=XIVWCoS0wPaibTfwUmFVszbK3YeI65AYsWMch1mcNjI,52297
341
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=Lm1WQBljRWI2dfC47u8kVGwqyQK3muwSIjSGodAZPaU,54873
342
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=Bik3QQh5SA4g7TE0k8h9BUo5X2EYR3NU1loJJ7loMDI,50461
343
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=1JYMwd3S__GF5IyC7lSKh6O2gZn_pkhp7sFN4AGWNqQ,52780
344
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=fW5eoEljvwjcCYn6aUc1NKIXCgeyIBJY4XzvKbCMMfw,54362
345
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=neVDWJ8V1xZdF0gntrjvSjPZPkf9dS8oe0KpFk2yJTg,55091
346
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=NTGYoDVdM8ICki2y5q45ARHKlRWpvMuqgQyfQiuWUUc,53691
338
347
  snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
339
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=novw3YKaMmdblfTz6MeBjU7xXrL8Gh51dknXyYV2Flo,51326
340
- snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=SVvJ33chdtNsSIYccwM5t_QG4g-ijyKPMONzpFHTHco,58880
341
- snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=mhCxHQrzqd8kJlF7kOIchwUDv8v7mgTYJsymqsQfzss,57992
348
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=U0Q9HMcZK2NTzBO-POL7wjmf68uUQz7-oiPbe0PIrmU,51504
349
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=CeIglosQLNRE9uk00qw7KQfroHQpTJBEuKMi9CPtia0,59058
350
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=1qWTOJni734BzrPvbmVpBvpSWKrspyvookgOdisAo74,58170
342
351
  snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
343
352
  snowflake/ml/modeling/parameters/disable_model_tracer.py,sha256=uj6SZz7HQpThGLs90zfUDcNMChxf0C6DKRN2xOfjmvI,203
344
353
  snowflake/ml/modeling/parameters/enable_anonymous_sproc.py,sha256=7FUdfhLbEGEocdd5XZ-7MFYMzOva58qI1dPDurPt7fw,207
345
354
  snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
346
- snowflake/ml/modeling/pipeline/pipeline.py,sha256=V3rXkbz27aLv87haBPQ3BqqlVZTMNvPZuH8XhXWqRy4,39556
355
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=Z_JMAEuunJwQU_M3h7hK-wHCitqUXhjs9HsaZ3xuUz0,39685
347
356
  snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
348
357
  snowflake/ml/modeling/preprocessing/binarizer.py,sha256=MrgSVTw9RpajyYe0dzai-qnpdOb3Zq0SfJRpHJjpnoY,7383
349
358
  snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=FdIy8mpjsiMqWsUL07S27T-JNDVgE2bvNUJf4HcBik4,21533
@@ -353,29 +362,29 @@ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=leLeIrVsXn08agPqL-N
353
362
  snowflake/ml/modeling/preprocessing/normalizer.py,sha256=0VmTIwldr3F3KQC--6RsYkybWjWuiqtxn4PuWinH0ME,6997
354
363
  snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=BW4T4u7EnN62jBOd9pc5UsNVT1_7HzIJJtnUYFLRYtA,75172
355
364
  snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=CfY50IV-akM1hhmt9A05IlgXEdMuRQsHE8PLkOxKUsM,35319
356
- snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=RFn6ECCYuCK9kMqPv67uXph2zE872_loKw6jLJGN570,51258
365
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=q1RyaVKiDCwrCbcFQ9JHLdIu10rX3eQrYqTNfnwVpaA,51436
357
366
  snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=Dp58jHxBdGdiFQAYmFW39JUdaPHO7dKfMy3KREtKAy0,12653
358
367
  snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=ui5pWnt2dL2VTTzCWikY8siG3fh_R9J1Wk_VZCHU-rA,11773
359
368
  snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
360
- snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=rZ3qjcpXNq1dYweHFAPhrbvOBZw-3wcKegen75I5dXQ,51597
361
- snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=8PHYgqhhINa7fEPPzRsbQFSkvG2nlfFlks7Yd0t-fuU,51944
369
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=1dZ1FdTslUwnXlztJJF8wQsUo5u743OLtinsFDLU7aM,51775
370
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=s3-pdgqAAH0PKBCF2z_J6_iext2QrQoFsEbdszQ5DK4,52122
362
371
  snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
363
- snowflake/ml/modeling/svm/linear_svc.py,sha256=OcXLU66uy-QvYw7-A41L1DeIZ5xkgAkWqLKz0s0dX2E,55169
364
- snowflake/ml/modeling/svm/linear_svr.py,sha256=xGGCMlP8_XNjTqyXdg3OEOLr8TEd72rO3h3qplKU-tQ,53352
365
- snowflake/ml/modeling/svm/nu_svc.py,sha256=IM4cxpv2DObfp_dQMU8hTSwQ3fUp4WSGnENo9-vNL9Y,54837
366
- snowflake/ml/modeling/svm/nu_svr.py,sha256=ZI-XO8aTkG5hr-zCF_98ENEjTeLS7kZPj7WsNQHterg,51951
367
- snowflake/ml/modeling/svm/svc.py,sha256=XuU-zhPmo0CupeLBgl5gO487r5cE50fK8zcD0Qc9I_A,55151
368
- snowflake/ml/modeling/svm/svr.py,sha256=pIUkD6kKW8inUKIFb9Nt1n6N0HK05Njz6F9bIzpTCdU,52130
372
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=mgwUa_S2F8bCzYYiMvv5lwL2DwEJSJ6pHErAMrab8MQ,55347
373
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=bksG2eKvC4usWMOPUx_6-sYuSQ1zYaVeFOUe7n39k74,53530
374
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=8KRVjB1dtwVBQ_ese9LaCIO9UH16d9tTZFCwTWuJuRI,55015
375
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=8J1huYpx9hMkNeRGGKwpJet8WmJbV_r99T_g3NaWNZU,52129
376
+ snowflake/ml/modeling/svm/svc.py,sha256=Rw5sqJUZZOTpExLYUBow9xG5G2tBEG7ZxANTWzLdAl4,55329
377
+ snowflake/ml/modeling/svm/svr.py,sha256=8RLXSgSCdrcny5zdZAxFIwbDxVu6HwX1_jjWeec_Ra0,52308
369
378
  snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
370
- snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=MmvRKdYqG5zQ_kB1ADOfn45KynYuFv3Z_R-yVY0qHt4,57937
371
- snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=5eE6INs96PvqqAGgk-gNtZdbCP6_fJ8BFsvv61f6kJk,56485
372
- snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=GacBZnYfIFmce00DR4mEBpGRcyOgUDDPWhcGLd47BMc,57248
373
- snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=dretp3_soBuChs_3u2FTT1a00xOtwh0FqacgeKnt41E,55833
379
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=SuXlnQA8BJezz5BTAthaFYtMnclXXYQxfQgsBTxcoVc,58115
380
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=Q1ngJLdJAsy5Q_PCiPtlLW9ZBkF0eodvU5F6rWEx7k0,56663
381
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=LmCt0EUXYWsGYC7D2djxphHZW01xyLOx8JUsaEO3yPM,57426
382
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=O2syhYHAZfd6LzO3HtAb_kPk6KFj3SZUmcKd8phF-GY,56011
374
383
  snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
375
- snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=E3q6Lkz2XYJT9xf4n9JxkKys4QAk2EP0A_uyp5vBFMs,63402
376
- snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=x9XLGj3PG0cKjIIUTLXVxJh2u5HS87g43c6uAKAmIAg,63005
377
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=hUfss6zvZnPFeqc1mq9xxKSxYYMA_KtpzXI9iQFwaaY,63678
378
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=ShWVwjFv1gl4rC8v6djyxsPkW5hrVxIgikpUNMMkX0I,63203
384
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=a3Fb1QquZ-jAlHA89duy9f3Z43kMcYoiN2d1eNF5r0g,63580
385
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=O5e6nJEGyEBgEfSIeuKJ2MwIiyVRJzoKrZM-tfUBtJs,63183
386
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=PskavP_1rg-bzi8naADViV3alnLEBa7phtYHMwSWGkA,63856
387
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=8umj4GSb8Txu5RmvWjjYb_qYd0cPe7vDb8jg6NB0As0,63381
379
388
  snowflake/ml/monitoring/model_monitor.py,sha256=8vJf1YROmJgBLUtpaH-lGKSSJv9R7PxPaQnOdr_j5YE,2200
380
389
  snowflake/ml/monitoring/model_monitor_version.py,sha256=TlmDJZDE0lCVatRaBRgXIjzDF538nrMIc-zWj9MM_nk,46
381
390
  snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
@@ -391,8 +400,8 @@ snowflake/ml/utils/authentication.py,sha256=Wx1kVBZ9XBDuKkRHpPEB2pBxpiJepVLFAirD
391
400
  snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
392
401
  snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
393
402
  snowflake/ml/utils/sql_client.py,sha256=z4Rhi7pQz3s9cyu_Uzfr3deCnrkCdFh9IYIvicsuwdc,692
394
- snowflake_ml_python-1.7.3.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
395
- snowflake_ml_python-1.7.3.dist-info/METADATA,sha256=o8FlhVw_eClA0OTiyUojXojdJZshHNSD4jYKg3hpRr0,68958
396
- snowflake_ml_python-1.7.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
397
- snowflake_ml_python-1.7.3.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
398
- snowflake_ml_python-1.7.3.dist-info/RECORD,,
403
+ snowflake_ml_python-1.7.4.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
404
+ snowflake_ml_python-1.7.4.dist-info/METADATA,sha256=6AiHRpZ3qdnMrcezQjKTrBsTNy1RQhmhC7PMSyUjmwE,70195
405
+ snowflake_ml_python-1.7.4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
406
+ snowflake_ml_python-1.7.4.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
407
+ snowflake_ml_python-1.7.4.dist-info/RECORD,,