snowflake-ml-python 1.7.3__py3-none-any.whl → 1.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +19 -0
- snowflake/ml/_internal/platform_capabilities.py +87 -0
- snowflake/ml/dataset/dataset.py +0 -1
- snowflake/ml/fileset/fileset.py +6 -0
- snowflake/ml/jobs/__init__.py +21 -0
- snowflake/ml/jobs/_utils/constants.py +51 -0
- snowflake/ml/jobs/_utils/payload_utils.py +352 -0
- snowflake/ml/jobs/_utils/spec_utils.py +298 -0
- snowflake/ml/jobs/_utils/types.py +39 -0
- snowflake/ml/jobs/decorators.py +91 -0
- snowflake/ml/jobs/job.py +113 -0
- snowflake/ml/jobs/manager.py +298 -0
- snowflake/ml/model/_client/ops/model_ops.py +11 -2
- snowflake/ml/model/_client/ops/service_ops.py +1 -11
- snowflake/ml/model/_client/sql/service.py +13 -6
- snowflake/ml/model/_packager/model_handlers/_utils.py +12 -3
- snowflake/ml/model/_packager/model_handlers/custom.py +1 -2
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +1 -0
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
- snowflake/ml/model/_signatures/base_handler.py +1 -2
- snowflake/ml/model/_signatures/builtins_handler.py +2 -2
- snowflake/ml/model/_signatures/numpy_handler.py +6 -7
- snowflake/ml/model/_signatures/pandas_handler.py +2 -2
- snowflake/ml/model/_signatures/pytorch_handler.py +2 -5
- snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
- snowflake/ml/model/_signatures/tensorflow_handler.py +2 -7
- snowflake/ml/model/model_signature.py +17 -4
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +6 -3
- snowflake/ml/modeling/cluster/affinity_propagation.py +6 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +6 -3
- snowflake/ml/modeling/cluster/birch.py +6 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +6 -3
- snowflake/ml/modeling/cluster/dbscan.py +6 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +6 -3
- snowflake/ml/modeling/cluster/k_means.py +6 -3
- snowflake/ml/modeling/cluster/mean_shift.py +6 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +6 -3
- snowflake/ml/modeling/cluster/optics.py +6 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +6 -3
- snowflake/ml/modeling/compose/column_transformer.py +6 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +6 -3
- snowflake/ml/modeling/covariance/elliptic_envelope.py +6 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +6 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +6 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +6 -3
- snowflake/ml/modeling/covariance/oas.py +6 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +6 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +6 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +6 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +6 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/pca.py +6 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/isolation_forest.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/stacking_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/voting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/voting_regressor.py +6 -3
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fdr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fpr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fwe.py +6 -3
- snowflake/ml/modeling/feature_selection/select_k_best.py +6 -3
- snowflake/ml/modeling/feature_selection/select_percentile.py +6 -3
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +6 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +6 -3
- snowflake/ml/modeling/impute/iterative_imputer.py +6 -3
- snowflake/ml/modeling/impute/knn_imputer.py +6 -3
- snowflake/ml/modeling/impute/missing_indicator.py +6 -3
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +6 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +6 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ard_regression.py +6 -3
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/gamma_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/huber_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/lars.py +6 -3
- snowflake/ml/modeling/linear_model/lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +6 -3
- snowflake/ml/modeling/linear_model/linear_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/perceptron.py +6 -3
- snowflake/ml/modeling/linear_model/poisson_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ransac_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ridge.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_cv.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +6 -3
- snowflake/ml/modeling/manifold/isomap.py +6 -3
- snowflake/ml/modeling/manifold/mds.py +6 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +6 -3
- snowflake/ml/modeling/manifold/tsne.py +6 -3
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +6 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +6 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +17 -2
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +17 -2
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/output_code_classifier.py +6 -3
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/complement_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neighbors/kernel_density.py +6 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +6 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_regressor.py +6 -3
- snowflake/ml/modeling/pipeline/pipeline.py +10 -2
- snowflake/ml/modeling/preprocessing/polynomial_features.py +6 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +6 -3
- snowflake/ml/modeling/semi_supervised/label_spreading.py +6 -3
- snowflake/ml/modeling/svm/linear_svc.py +6 -3
- snowflake/ml/modeling/svm/linear_svr.py +6 -3
- snowflake/ml/modeling/svm/nu_svc.py +6 -3
- snowflake/ml/modeling/svm/nu_svr.py +6 -3
- snowflake/ml/modeling/svm/svc.py +6 -3
- snowflake/ml/modeling/svm/svr.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_regressor.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_regressor.py +6 -3
- snowflake/ml/modeling/xgboost/xgb_classifier.py +6 -3
- snowflake/ml/modeling/xgboost/xgb_regressor.py +6 -3
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +6 -3
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +6 -3
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/METADATA +29 -14
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/RECORD +187 -178
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.mixture".replace("sklear
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class BayesianGaussianMixture(BaseTransformer):
|
61
64
|
r"""Variational Bayesian estimation of a Gaussian mixture
|
62
65
|
For more details on this class, see [sklearn.mixture.BayesianGaussianMixture]
|
@@ -532,7 +535,7 @@ class BayesianGaussianMixture(BaseTransformer):
|
|
532
535
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
533
536
|
expected_dtype = "array"
|
534
537
|
else:
|
535
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
538
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
536
539
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
537
540
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
538
541
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1197,7 +1200,7 @@ class BayesianGaussianMixture(BaseTransformer):
|
|
1197
1200
|
|
1198
1201
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1199
1202
|
|
1200
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1203
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1201
1204
|
outputs: List[BaseFeatureSpec] = []
|
1202
1205
|
if hasattr(self, "predict"):
|
1203
1206
|
# keep mypy happy
|
@@ -1205,7 +1208,7 @@ class BayesianGaussianMixture(BaseTransformer):
|
|
1205
1208
|
# For classifier, the type of predict is the same as the type of label
|
1206
1209
|
if self._sklearn_object._estimator_type == "classifier":
|
1207
1210
|
# label columns is the desired type for output
|
1208
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1211
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1209
1212
|
# rename the output columns
|
1210
1213
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1211
1214
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.mixture".replace("sklear
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class GaussianMixture(BaseTransformer):
|
61
64
|
r"""Gaussian Mixture
|
62
65
|
For more details on this class, see [sklearn.mixture.GaussianMixture]
|
@@ -505,7 +508,7 @@ class GaussianMixture(BaseTransformer):
|
|
505
508
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
506
509
|
expected_dtype = "array"
|
507
510
|
else:
|
508
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
511
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
509
512
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
510
513
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
511
514
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1170,7 +1173,7 @@ class GaussianMixture(BaseTransformer):
|
|
1170
1173
|
|
1171
1174
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1172
1175
|
|
1173
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1176
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1174
1177
|
outputs: List[BaseFeatureSpec] = []
|
1175
1178
|
if hasattr(self, "predict"):
|
1176
1179
|
# keep mypy happy
|
@@ -1178,7 +1181,7 @@ class GaussianMixture(BaseTransformer):
|
|
1178
1181
|
# For classifier, the type of predict is the same as the type of label
|
1179
1182
|
if self._sklearn_object._estimator_type == "classifier":
|
1180
1183
|
# label columns is the desired type for output
|
1181
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1184
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1182
1185
|
# rename the output columns
|
1183
1186
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1184
1187
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -21,6 +21,7 @@ from snowflake.ml.model.model_signature import (
|
|
21
21
|
ModelSignature,
|
22
22
|
_infer_signature,
|
23
23
|
_rename_signature_with_snowflake_identifiers,
|
24
|
+
_truncate_data,
|
24
25
|
)
|
25
26
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
26
27
|
gather_dependencies,
|
@@ -47,6 +48,8 @@ _PROJECT = "ModelDevelopment"
|
|
47
48
|
_SUBPROJECT = "ModelSelection"
|
48
49
|
DEFAULT_UDTF_NJOBS = 3
|
49
50
|
|
51
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
52
|
+
|
50
53
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
51
54
|
|
52
55
|
|
@@ -810,7 +813,13 @@ class GridSearchCV(BaseTransformer):
|
|
810
813
|
|
811
814
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
812
815
|
|
813
|
-
inputs = list(
|
816
|
+
inputs = list(
|
817
|
+
_infer_signature(
|
818
|
+
_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS),
|
819
|
+
"input",
|
820
|
+
use_snowflake_identifiers=True,
|
821
|
+
)
|
822
|
+
)
|
814
823
|
outputs: List[BaseFeatureSpec] = []
|
815
824
|
if hasattr(self, "predict"):
|
816
825
|
# keep mypy happy
|
@@ -818,7 +827,13 @@ class GridSearchCV(BaseTransformer):
|
|
818
827
|
# For classifier, the type of predict is the same as the type of label
|
819
828
|
if self._sklearn_object._estimator_type == "classifier":
|
820
829
|
# label columns is the desired type for output
|
821
|
-
outputs = list(
|
830
|
+
outputs = list(
|
831
|
+
_infer_signature(
|
832
|
+
_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS),
|
833
|
+
"output",
|
834
|
+
use_snowflake_identifiers=True,
|
835
|
+
)
|
836
|
+
)
|
822
837
|
# rename the output columns
|
823
838
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
824
839
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -18,6 +18,7 @@ from snowflake.ml.model.model_signature import (
|
|
18
18
|
ModelSignature,
|
19
19
|
_infer_signature,
|
20
20
|
_rename_signature_with_snowflake_identifiers,
|
21
|
+
_truncate_data,
|
21
22
|
)
|
22
23
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
23
24
|
gather_dependencies,
|
@@ -44,6 +45,8 @@ _PROJECT = "ModelDevelopment"
|
|
44
45
|
_SUBPROJECT = "ModelSelection"
|
45
46
|
DEFAULT_UDTF_NJOBS = 3
|
46
47
|
|
48
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
49
|
+
|
47
50
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
48
51
|
|
49
52
|
|
@@ -825,7 +828,13 @@ class RandomizedSearchCV(BaseTransformer):
|
|
825
828
|
|
826
829
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
827
830
|
|
828
|
-
inputs = list(
|
831
|
+
inputs = list(
|
832
|
+
_infer_signature(
|
833
|
+
_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS),
|
834
|
+
"input",
|
835
|
+
use_snowflake_identifiers=True,
|
836
|
+
)
|
837
|
+
)
|
829
838
|
outputs: List[BaseFeatureSpec] = []
|
830
839
|
if hasattr(self, "predict"):
|
831
840
|
# keep mypy happy
|
@@ -833,7 +842,13 @@ class RandomizedSearchCV(BaseTransformer):
|
|
833
842
|
# For classifier, the type of predict is the same as the type of label
|
834
843
|
if self._sklearn_object._estimator_type == "classifier":
|
835
844
|
# label columns is the desired type for output
|
836
|
-
outputs = list(
|
845
|
+
outputs = list(
|
846
|
+
_infer_signature(
|
847
|
+
_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS),
|
848
|
+
"output",
|
849
|
+
use_snowflake_identifiers=True,
|
850
|
+
)
|
851
|
+
)
|
837
852
|
# rename the output columns
|
838
853
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
839
854
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class OneVsOneClassifier(BaseTransformer):
|
61
64
|
r"""One-vs-one multiclass strategy
|
62
65
|
For more details on this class, see [sklearn.multiclass.OneVsOneClassifier]
|
@@ -415,7 +418,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
415
418
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
416
419
|
expected_dtype = "array"
|
417
420
|
else:
|
418
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
421
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
419
422
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
420
423
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
421
424
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1074,7 +1077,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
1074
1077
|
|
1075
1078
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1076
1079
|
|
1077
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1080
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1078
1081
|
outputs: List[BaseFeatureSpec] = []
|
1079
1082
|
if hasattr(self, "predict"):
|
1080
1083
|
# keep mypy happy
|
@@ -1082,7 +1085,7 @@ class OneVsOneClassifier(BaseTransformer):
|
|
1082
1085
|
# For classifier, the type of predict is the same as the type of label
|
1083
1086
|
if self._sklearn_object._estimator_type == "classifier":
|
1084
1087
|
# label columns is the desired type for output
|
1085
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1088
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1086
1089
|
# rename the output columns
|
1087
1090
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1088
1091
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class OneVsRestClassifier(BaseTransformer):
|
61
64
|
r"""One-vs-the-rest (OvR) multiclass strategy
|
62
65
|
For more details on this class, see [sklearn.multiclass.OneVsRestClassifier]
|
@@ -424,7 +427,7 @@ class OneVsRestClassifier(BaseTransformer):
|
|
424
427
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
425
428
|
expected_dtype = "array"
|
426
429
|
else:
|
427
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
430
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
428
431
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
429
432
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
430
433
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1087,7 +1090,7 @@ class OneVsRestClassifier(BaseTransformer):
|
|
1087
1090
|
|
1088
1091
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1089
1092
|
|
1090
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1093
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1091
1094
|
outputs: List[BaseFeatureSpec] = []
|
1092
1095
|
if hasattr(self, "predict"):
|
1093
1096
|
# keep mypy happy
|
@@ -1095,7 +1098,7 @@ class OneVsRestClassifier(BaseTransformer):
|
|
1095
1098
|
# For classifier, the type of predict is the same as the type of label
|
1096
1099
|
if self._sklearn_object._estimator_type == "classifier":
|
1097
1100
|
# label columns is the desired type for output
|
1098
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1101
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1099
1102
|
# rename the output columns
|
1100
1103
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1101
1104
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("skl
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class OutputCodeClassifier(BaseTransformer):
|
61
64
|
r"""(Error-Correcting) Output-Code multiclass strategy
|
62
65
|
For more details on this class, see [sklearn.multiclass.OutputCodeClassifier]
|
@@ -427,7 +430,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
427
430
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
428
431
|
expected_dtype = "array"
|
429
432
|
else:
|
430
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
433
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
431
434
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
432
435
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
433
436
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1084,7 +1087,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
1084
1087
|
|
1085
1088
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1086
1089
|
|
1087
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1090
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1088
1091
|
outputs: List[BaseFeatureSpec] = []
|
1089
1092
|
if hasattr(self, "predict"):
|
1090
1093
|
# keep mypy happy
|
@@ -1092,7 +1095,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
1092
1095
|
# For classifier, the type of predict is the same as the type of label
|
1093
1096
|
if self._sklearn_object._estimator_type == "classifier":
|
1094
1097
|
# label columns is the desired type for output
|
1095
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1098
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1096
1099
|
# rename the output columns
|
1097
1100
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1098
1101
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sk
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class BernoulliNB(BaseTransformer):
|
61
64
|
r"""Naive Bayes classifier for multivariate Bernoulli models
|
62
65
|
For more details on this class, see [sklearn.naive_bayes.BernoulliNB]
|
@@ -427,7 +430,7 @@ class BernoulliNB(BaseTransformer):
|
|
427
430
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
428
431
|
expected_dtype = "array"
|
429
432
|
else:
|
430
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
433
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
431
434
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
432
435
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
433
436
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1088,7 +1091,7 @@ class BernoulliNB(BaseTransformer):
|
|
1088
1091
|
|
1089
1092
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1090
1093
|
|
1091
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1094
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1092
1095
|
outputs: List[BaseFeatureSpec] = []
|
1093
1096
|
if hasattr(self, "predict"):
|
1094
1097
|
# keep mypy happy
|
@@ -1096,7 +1099,7 @@ class BernoulliNB(BaseTransformer):
|
|
1096
1099
|
# For classifier, the type of predict is the same as the type of label
|
1097
1100
|
if self._sklearn_object._estimator_type == "classifier":
|
1098
1101
|
# label columns is the desired type for output
|
1099
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1102
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1100
1103
|
# rename the output columns
|
1101
1104
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1102
1105
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sk
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class CategoricalNB(BaseTransformer):
|
61
64
|
r"""Naive Bayes classifier for categorical features
|
62
65
|
For more details on this class, see [sklearn.naive_bayes.CategoricalNB]
|
@@ -433,7 +436,7 @@ class CategoricalNB(BaseTransformer):
|
|
433
436
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
434
437
|
expected_dtype = "array"
|
435
438
|
else:
|
436
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
439
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
437
440
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
438
441
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
439
442
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1094,7 +1097,7 @@ class CategoricalNB(BaseTransformer):
|
|
1094
1097
|
|
1095
1098
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1096
1099
|
|
1097
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1100
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1098
1101
|
outputs: List[BaseFeatureSpec] = []
|
1099
1102
|
if hasattr(self, "predict"):
|
1100
1103
|
# keep mypy happy
|
@@ -1102,7 +1105,7 @@ class CategoricalNB(BaseTransformer):
|
|
1102
1105
|
# For classifier, the type of predict is the same as the type of label
|
1103
1106
|
if self._sklearn_object._estimator_type == "classifier":
|
1104
1107
|
# label columns is the desired type for output
|
1105
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1108
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1106
1109
|
# rename the output columns
|
1107
1110
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1108
1111
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sk
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class ComplementNB(BaseTransformer):
|
61
64
|
r"""The Complement Naive Bayes classifier described in Rennie et al
|
62
65
|
For more details on this class, see [sklearn.naive_bayes.ComplementNB]
|
@@ -427,7 +430,7 @@ class ComplementNB(BaseTransformer):
|
|
427
430
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
428
431
|
expected_dtype = "array"
|
429
432
|
else:
|
430
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
433
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
431
434
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
432
435
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
433
436
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1088,7 +1091,7 @@ class ComplementNB(BaseTransformer):
|
|
1088
1091
|
|
1089
1092
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1090
1093
|
|
1091
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1094
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1092
1095
|
outputs: List[BaseFeatureSpec] = []
|
1093
1096
|
if hasattr(self, "predict"):
|
1094
1097
|
# keep mypy happy
|
@@ -1096,7 +1099,7 @@ class ComplementNB(BaseTransformer):
|
|
1096
1099
|
# For classifier, the type of predict is the same as the type of label
|
1097
1100
|
if self._sklearn_object._estimator_type == "classifier":
|
1098
1101
|
# label columns is the desired type for output
|
1099
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1102
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1100
1103
|
# rename the output columns
|
1101
1104
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1102
1105
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sk
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class GaussianNB(BaseTransformer):
|
61
64
|
r"""Gaussian Naive Bayes (GaussianNB)
|
62
65
|
For more details on this class, see [sklearn.naive_bayes.GaussianNB]
|
@@ -408,7 +411,7 @@ class GaussianNB(BaseTransformer):
|
|
408
411
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
409
412
|
expected_dtype = "array"
|
410
413
|
else:
|
411
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
414
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
412
415
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
413
416
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
414
417
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1069,7 +1072,7 @@ class GaussianNB(BaseTransformer):
|
|
1069
1072
|
|
1070
1073
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1071
1074
|
|
1072
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1075
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1073
1076
|
outputs: List[BaseFeatureSpec] = []
|
1074
1077
|
if hasattr(self, "predict"):
|
1075
1078
|
# keep mypy happy
|
@@ -1077,7 +1080,7 @@ class GaussianNB(BaseTransformer):
|
|
1077
1080
|
# For classifier, the type of predict is the same as the type of label
|
1078
1081
|
if self._sklearn_object._estimator_type == "classifier":
|
1079
1082
|
# label columns is the desired type for output
|
1080
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1083
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1081
1084
|
# rename the output columns
|
1082
1085
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1083
1086
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sk
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class MultinomialNB(BaseTransformer):
|
61
64
|
r"""Naive Bayes classifier for multinomial models
|
62
65
|
For more details on this class, see [sklearn.naive_bayes.MultinomialNB]
|
@@ -421,7 +424,7 @@ class MultinomialNB(BaseTransformer):
|
|
421
424
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
422
425
|
expected_dtype = "array"
|
423
426
|
else:
|
424
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
427
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
425
428
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
426
429
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
427
430
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1082,7 +1085,7 @@ class MultinomialNB(BaseTransformer):
|
|
1082
1085
|
|
1083
1086
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1084
1087
|
|
1085
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1088
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1086
1089
|
outputs: List[BaseFeatureSpec] = []
|
1087
1090
|
if hasattr(self, "predict"):
|
1088
1091
|
# keep mypy happy
|
@@ -1090,7 +1093,7 @@ class MultinomialNB(BaseTransformer):
|
|
1090
1093
|
# For classifier, the type of predict is the same as the type of label
|
1091
1094
|
if self._sklearn_object._estimator_type == "classifier":
|
1092
1095
|
# label columns is the desired type for output
|
1093
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1096
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1094
1097
|
# rename the output columns
|
1095
1098
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1096
1099
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class KNeighborsClassifier(BaseTransformer):
|
61
64
|
r"""Classifier implementing the k-nearest neighbors vote
|
62
65
|
For more details on this class, see [sklearn.neighbors.KNeighborsClassifier]
|
@@ -484,7 +487,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
484
487
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
485
488
|
expected_dtype = "array"
|
486
489
|
else:
|
487
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
490
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
488
491
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
489
492
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
490
493
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1147,7 +1150,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1147
1150
|
|
1148
1151
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1149
1152
|
|
1150
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1153
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1151
1154
|
outputs: List[BaseFeatureSpec] = []
|
1152
1155
|
if hasattr(self, "predict"):
|
1153
1156
|
# keep mypy happy
|
@@ -1155,7 +1158,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1155
1158
|
# For classifier, the type of predict is the same as the type of label
|
1156
1159
|
if self._sklearn_object._estimator_type == "classifier":
|
1157
1160
|
# label columns is the desired type for output
|
1158
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1161
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1159
1162
|
# rename the output columns
|
1160
1163
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1161
1164
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class KNeighborsRegressor(BaseTransformer):
|
61
64
|
r"""Regression based on k-nearest neighbors
|
62
65
|
For more details on this class, see [sklearn.neighbors.KNeighborsRegressor]
|
@@ -483,7 +486,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
483
486
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
484
487
|
expected_dtype = "array"
|
485
488
|
else:
|
486
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
489
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
487
490
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
488
491
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
489
492
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1142,7 +1145,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1142
1145
|
|
1143
1146
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1144
1147
|
|
1145
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1148
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1146
1149
|
outputs: List[BaseFeatureSpec] = []
|
1147
1150
|
if hasattr(self, "predict"):
|
1148
1151
|
# keep mypy happy
|
@@ -1150,7 +1153,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1150
1153
|
# For classifier, the type of predict is the same as the type of label
|
1151
1154
|
if self._sklearn_object._estimator_type == "classifier":
|
1152
1155
|
# label columns is the desired type for output
|
1153
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1156
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1154
1157
|
# rename the output columns
|
1155
1158
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1156
1159
|
self._model_signature_dict["predict"] = ModelSignature(
|