snowflake-ml-python 1.7.3__py3-none-any.whl → 1.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (187) hide show
  1. snowflake/cortex/_complete.py +19 -0
  2. snowflake/ml/_internal/platform_capabilities.py +87 -0
  3. snowflake/ml/dataset/dataset.py +0 -1
  4. snowflake/ml/fileset/fileset.py +6 -0
  5. snowflake/ml/jobs/__init__.py +21 -0
  6. snowflake/ml/jobs/_utils/constants.py +51 -0
  7. snowflake/ml/jobs/_utils/payload_utils.py +352 -0
  8. snowflake/ml/jobs/_utils/spec_utils.py +298 -0
  9. snowflake/ml/jobs/_utils/types.py +39 -0
  10. snowflake/ml/jobs/decorators.py +91 -0
  11. snowflake/ml/jobs/job.py +113 -0
  12. snowflake/ml/jobs/manager.py +298 -0
  13. snowflake/ml/model/_client/ops/model_ops.py +11 -2
  14. snowflake/ml/model/_client/ops/service_ops.py +1 -11
  15. snowflake/ml/model/_client/sql/service.py +13 -6
  16. snowflake/ml/model/_packager/model_handlers/_utils.py +12 -3
  17. snowflake/ml/model/_packager/model_handlers/custom.py +1 -2
  18. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +1 -0
  19. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
  20. snowflake/ml/model/_signatures/base_handler.py +1 -2
  21. snowflake/ml/model/_signatures/builtins_handler.py +2 -2
  22. snowflake/ml/model/_signatures/numpy_handler.py +6 -7
  23. snowflake/ml/model/_signatures/pandas_handler.py +2 -2
  24. snowflake/ml/model/_signatures/pytorch_handler.py +2 -5
  25. snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
  26. snowflake/ml/model/_signatures/tensorflow_handler.py +2 -7
  27. snowflake/ml/model/model_signature.py +17 -4
  28. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +6 -3
  29. snowflake/ml/modeling/cluster/affinity_propagation.py +6 -3
  30. snowflake/ml/modeling/cluster/agglomerative_clustering.py +6 -3
  31. snowflake/ml/modeling/cluster/birch.py +6 -3
  32. snowflake/ml/modeling/cluster/bisecting_k_means.py +6 -3
  33. snowflake/ml/modeling/cluster/dbscan.py +6 -3
  34. snowflake/ml/modeling/cluster/feature_agglomeration.py +6 -3
  35. snowflake/ml/modeling/cluster/k_means.py +6 -3
  36. snowflake/ml/modeling/cluster/mean_shift.py +6 -3
  37. snowflake/ml/modeling/cluster/mini_batch_k_means.py +6 -3
  38. snowflake/ml/modeling/cluster/optics.py +6 -3
  39. snowflake/ml/modeling/cluster/spectral_biclustering.py +6 -3
  40. snowflake/ml/modeling/cluster/spectral_clustering.py +6 -3
  41. snowflake/ml/modeling/cluster/spectral_coclustering.py +6 -3
  42. snowflake/ml/modeling/compose/column_transformer.py +6 -3
  43. snowflake/ml/modeling/compose/transformed_target_regressor.py +6 -3
  44. snowflake/ml/modeling/covariance/elliptic_envelope.py +6 -3
  45. snowflake/ml/modeling/covariance/empirical_covariance.py +6 -3
  46. snowflake/ml/modeling/covariance/graphical_lasso.py +6 -3
  47. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +6 -3
  48. snowflake/ml/modeling/covariance/ledoit_wolf.py +6 -3
  49. snowflake/ml/modeling/covariance/min_cov_det.py +6 -3
  50. snowflake/ml/modeling/covariance/oas.py +6 -3
  51. snowflake/ml/modeling/covariance/shrunk_covariance.py +6 -3
  52. snowflake/ml/modeling/decomposition/dictionary_learning.py +6 -3
  53. snowflake/ml/modeling/decomposition/factor_analysis.py +6 -3
  54. snowflake/ml/modeling/decomposition/fast_ica.py +6 -3
  55. snowflake/ml/modeling/decomposition/incremental_pca.py +6 -3
  56. snowflake/ml/modeling/decomposition/kernel_pca.py +6 -3
  57. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +6 -3
  58. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +6 -3
  59. snowflake/ml/modeling/decomposition/pca.py +6 -3
  60. snowflake/ml/modeling/decomposition/sparse_pca.py +6 -3
  61. snowflake/ml/modeling/decomposition/truncated_svd.py +6 -3
  62. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -3
  63. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +6 -3
  64. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +6 -3
  65. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +6 -3
  66. snowflake/ml/modeling/ensemble/bagging_classifier.py +6 -3
  67. snowflake/ml/modeling/ensemble/bagging_regressor.py +6 -3
  68. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +6 -3
  69. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +6 -3
  70. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +6 -3
  71. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +6 -3
  72. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +6 -3
  73. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +6 -3
  74. snowflake/ml/modeling/ensemble/isolation_forest.py +6 -3
  75. snowflake/ml/modeling/ensemble/random_forest_classifier.py +6 -3
  76. snowflake/ml/modeling/ensemble/random_forest_regressor.py +6 -3
  77. snowflake/ml/modeling/ensemble/stacking_regressor.py +6 -3
  78. snowflake/ml/modeling/ensemble/voting_classifier.py +6 -3
  79. snowflake/ml/modeling/ensemble/voting_regressor.py +6 -3
  80. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +6 -3
  81. snowflake/ml/modeling/feature_selection/select_fdr.py +6 -3
  82. snowflake/ml/modeling/feature_selection/select_fpr.py +6 -3
  83. snowflake/ml/modeling/feature_selection/select_fwe.py +6 -3
  84. snowflake/ml/modeling/feature_selection/select_k_best.py +6 -3
  85. snowflake/ml/modeling/feature_selection/select_percentile.py +6 -3
  86. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +6 -3
  87. snowflake/ml/modeling/feature_selection/variance_threshold.py +6 -3
  88. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +6 -3
  89. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +6 -3
  90. snowflake/ml/modeling/impute/iterative_imputer.py +6 -3
  91. snowflake/ml/modeling/impute/knn_imputer.py +6 -3
  92. snowflake/ml/modeling/impute/missing_indicator.py +6 -3
  93. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +6 -3
  94. snowflake/ml/modeling/kernel_approximation/nystroem.py +6 -3
  95. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +6 -3
  96. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +6 -3
  97. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +6 -3
  98. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +6 -3
  99. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +6 -3
  100. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +6 -3
  101. snowflake/ml/modeling/linear_model/ard_regression.py +6 -3
  102. snowflake/ml/modeling/linear_model/bayesian_ridge.py +6 -3
  103. snowflake/ml/modeling/linear_model/elastic_net.py +6 -3
  104. snowflake/ml/modeling/linear_model/elastic_net_cv.py +6 -3
  105. snowflake/ml/modeling/linear_model/gamma_regressor.py +6 -3
  106. snowflake/ml/modeling/linear_model/huber_regressor.py +6 -3
  107. snowflake/ml/modeling/linear_model/lars.py +6 -3
  108. snowflake/ml/modeling/linear_model/lars_cv.py +6 -3
  109. snowflake/ml/modeling/linear_model/lasso.py +6 -3
  110. snowflake/ml/modeling/linear_model/lasso_cv.py +6 -3
  111. snowflake/ml/modeling/linear_model/lasso_lars.py +6 -3
  112. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +6 -3
  113. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +6 -3
  114. snowflake/ml/modeling/linear_model/linear_regression.py +6 -3
  115. snowflake/ml/modeling/linear_model/logistic_regression.py +6 -3
  116. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +6 -3
  117. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +6 -3
  118. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +6 -3
  119. snowflake/ml/modeling/linear_model/multi_task_lasso.py +6 -3
  120. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +6 -3
  121. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +6 -3
  122. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +6 -3
  123. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +6 -3
  124. snowflake/ml/modeling/linear_model/perceptron.py +6 -3
  125. snowflake/ml/modeling/linear_model/poisson_regressor.py +6 -3
  126. snowflake/ml/modeling/linear_model/ransac_regressor.py +6 -3
  127. snowflake/ml/modeling/linear_model/ridge.py +6 -3
  128. snowflake/ml/modeling/linear_model/ridge_classifier.py +6 -3
  129. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +6 -3
  130. snowflake/ml/modeling/linear_model/ridge_cv.py +6 -3
  131. snowflake/ml/modeling/linear_model/sgd_classifier.py +6 -3
  132. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +6 -3
  133. snowflake/ml/modeling/linear_model/sgd_regressor.py +6 -3
  134. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +6 -3
  135. snowflake/ml/modeling/linear_model/tweedie_regressor.py +6 -3
  136. snowflake/ml/modeling/manifold/isomap.py +6 -3
  137. snowflake/ml/modeling/manifold/mds.py +6 -3
  138. snowflake/ml/modeling/manifold/spectral_embedding.py +6 -3
  139. snowflake/ml/modeling/manifold/tsne.py +6 -3
  140. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +6 -3
  141. snowflake/ml/modeling/mixture/gaussian_mixture.py +6 -3
  142. snowflake/ml/modeling/model_selection/grid_search_cv.py +17 -2
  143. snowflake/ml/modeling/model_selection/randomized_search_cv.py +17 -2
  144. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +6 -3
  145. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +6 -3
  146. snowflake/ml/modeling/multiclass/output_code_classifier.py +6 -3
  147. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +6 -3
  148. snowflake/ml/modeling/naive_bayes/categorical_nb.py +6 -3
  149. snowflake/ml/modeling/naive_bayes/complement_nb.py +6 -3
  150. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +6 -3
  151. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +6 -3
  152. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +6 -3
  153. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +6 -3
  154. snowflake/ml/modeling/neighbors/kernel_density.py +6 -3
  155. snowflake/ml/modeling/neighbors/local_outlier_factor.py +6 -3
  156. snowflake/ml/modeling/neighbors/nearest_centroid.py +6 -3
  157. snowflake/ml/modeling/neighbors/nearest_neighbors.py +6 -3
  158. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +6 -3
  159. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -3
  160. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +6 -3
  161. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +6 -3
  162. snowflake/ml/modeling/neural_network/mlp_classifier.py +6 -3
  163. snowflake/ml/modeling/neural_network/mlp_regressor.py +6 -3
  164. snowflake/ml/modeling/pipeline/pipeline.py +10 -2
  165. snowflake/ml/modeling/preprocessing/polynomial_features.py +6 -3
  166. snowflake/ml/modeling/semi_supervised/label_propagation.py +6 -3
  167. snowflake/ml/modeling/semi_supervised/label_spreading.py +6 -3
  168. snowflake/ml/modeling/svm/linear_svc.py +6 -3
  169. snowflake/ml/modeling/svm/linear_svr.py +6 -3
  170. snowflake/ml/modeling/svm/nu_svc.py +6 -3
  171. snowflake/ml/modeling/svm/nu_svr.py +6 -3
  172. snowflake/ml/modeling/svm/svc.py +6 -3
  173. snowflake/ml/modeling/svm/svr.py +6 -3
  174. snowflake/ml/modeling/tree/decision_tree_classifier.py +6 -3
  175. snowflake/ml/modeling/tree/decision_tree_regressor.py +6 -3
  176. snowflake/ml/modeling/tree/extra_tree_classifier.py +6 -3
  177. snowflake/ml/modeling/tree/extra_tree_regressor.py +6 -3
  178. snowflake/ml/modeling/xgboost/xgb_classifier.py +6 -3
  179. snowflake/ml/modeling/xgboost/xgb_regressor.py +6 -3
  180. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +6 -3
  181. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +6 -3
  182. snowflake/ml/version.py +1 -1
  183. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/METADATA +29 -14
  184. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/RECORD +187 -178
  185. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/LICENSE.txt +0 -0
  186. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/WHEEL +0 -0
  187. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class KernelPCA(BaseTransformer):
61
64
  r"""Kernel Principal component analysis (KPCA)
62
65
  For more details on this class, see [sklearn.decomposition.KernelPCA]
@@ -524,7 +527,7 @@ class KernelPCA(BaseTransformer):
524
527
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
525
528
  expected_dtype = "array"
526
529
  else:
527
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
530
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
528
531
  # We can only infer the output types from the input types if the following two statemetns are true:
529
532
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
530
533
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1181,7 +1184,7 @@ class KernelPCA(BaseTransformer):
1181
1184
 
1182
1185
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1183
1186
 
1184
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1187
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1185
1188
  outputs: List[BaseFeatureSpec] = []
1186
1189
  if hasattr(self, "predict"):
1187
1190
  # keep mypy happy
@@ -1189,7 +1192,7 @@ class KernelPCA(BaseTransformer):
1189
1192
  # For classifier, the type of predict is the same as the type of label
1190
1193
  if self._sklearn_object._estimator_type == "classifier":
1191
1194
  # label columns is the desired type for output
1192
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1195
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1193
1196
  # rename the output columns
1194
1197
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1195
1198
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class MiniBatchDictionaryLearning(BaseTransformer):
61
64
  r"""Mini-batch dictionary learning
62
65
  For more details on this class, see [sklearn.decomposition.MiniBatchDictionaryLearning]
@@ -539,7 +542,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
539
542
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
540
543
  expected_dtype = "array"
541
544
  else:
542
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
545
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
543
546
  # We can only infer the output types from the input types if the following two statemetns are true:
544
547
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
545
548
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1196,7 +1199,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1196
1199
 
1197
1200
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1198
1201
 
1199
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1202
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1200
1203
  outputs: List[BaseFeatureSpec] = []
1201
1204
  if hasattr(self, "predict"):
1202
1205
  # keep mypy happy
@@ -1204,7 +1207,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1204
1207
  # For classifier, the type of predict is the same as the type of label
1205
1208
  if self._sklearn_object._estimator_type == "classifier":
1206
1209
  # label columns is the desired type for output
1207
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1210
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1208
1211
  # rename the output columns
1209
1212
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1210
1213
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class MiniBatchSparsePCA(BaseTransformer):
61
64
  r"""Mini-batch Sparse Principal Components Analysis
62
65
  For more details on this class, see [sklearn.decomposition.MiniBatchSparsePCA]
@@ -484,7 +487,7 @@ class MiniBatchSparsePCA(BaseTransformer):
484
487
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
485
488
  expected_dtype = "array"
486
489
  else:
487
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
490
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
488
491
  # We can only infer the output types from the input types if the following two statemetns are true:
489
492
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
490
493
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1141,7 +1144,7 @@ class MiniBatchSparsePCA(BaseTransformer):
1141
1144
 
1142
1145
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1143
1146
 
1144
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1147
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1145
1148
  outputs: List[BaseFeatureSpec] = []
1146
1149
  if hasattr(self, "predict"):
1147
1150
  # keep mypy happy
@@ -1149,7 +1152,7 @@ class MiniBatchSparsePCA(BaseTransformer):
1149
1152
  # For classifier, the type of predict is the same as the type of label
1150
1153
  if self._sklearn_object._estimator_type == "classifier":
1151
1154
  # label columns is the desired type for output
1152
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1155
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1153
1156
  # rename the output columns
1154
1157
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1155
1158
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class PCA(BaseTransformer):
61
64
  r"""Principal component analysis (PCA)
62
65
  For more details on this class, see [sklearn.decomposition.PCA]
@@ -506,7 +509,7 @@ class PCA(BaseTransformer):
506
509
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
507
510
  expected_dtype = "array"
508
511
  else:
509
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
512
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
510
513
  # We can only infer the output types from the input types if the following two statemetns are true:
511
514
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
512
515
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1167,7 +1170,7 @@ class PCA(BaseTransformer):
1167
1170
 
1168
1171
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1169
1172
 
1170
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1173
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1171
1174
  outputs: List[BaseFeatureSpec] = []
1172
1175
  if hasattr(self, "predict"):
1173
1176
  # keep mypy happy
@@ -1175,7 +1178,7 @@ class PCA(BaseTransformer):
1175
1178
  # For classifier, the type of predict is the same as the type of label
1176
1179
  if self._sklearn_object._estimator_type == "classifier":
1177
1180
  # label columns is the desired type for output
1178
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1181
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1179
1182
  # rename the output columns
1180
1183
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1181
1184
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class SparsePCA(BaseTransformer):
61
64
  r"""Sparse Principal Components Analysis (SparsePCA)
62
65
  For more details on this class, see [sklearn.decomposition.SparsePCA]
@@ -466,7 +469,7 @@ class SparsePCA(BaseTransformer):
466
469
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
467
470
  expected_dtype = "array"
468
471
  else:
469
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
472
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
470
473
  # We can only infer the output types from the input types if the following two statemetns are true:
471
474
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
472
475
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1123,7 +1126,7 @@ class SparsePCA(BaseTransformer):
1123
1126
 
1124
1127
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1125
1128
 
1126
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1129
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1127
1130
  outputs: List[BaseFeatureSpec] = []
1128
1131
  if hasattr(self, "predict"):
1129
1132
  # keep mypy happy
@@ -1131,7 +1134,7 @@ class SparsePCA(BaseTransformer):
1131
1134
  # For classifier, the type of predict is the same as the type of label
1132
1135
  if self._sklearn_object._estimator_type == "classifier":
1133
1136
  # label columns is the desired type for output
1134
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1137
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1135
1138
  # rename the output columns
1136
1139
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1137
1140
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class TruncatedSVD(BaseTransformer):
61
64
  r"""Dimensionality reduction using truncated SVD (aka LSA)
62
65
  For more details on this class, see [sklearn.decomposition.TruncatedSVD]
@@ -447,7 +450,7 @@ class TruncatedSVD(BaseTransformer):
447
450
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
448
451
  expected_dtype = "array"
449
452
  else:
450
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
453
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
451
454
  # We can only infer the output types from the input types if the following two statemetns are true:
452
455
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
453
456
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1104,7 +1107,7 @@ class TruncatedSVD(BaseTransformer):
1104
1107
 
1105
1108
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1106
1109
 
1107
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1110
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1108
1111
  outputs: List[BaseFeatureSpec] = []
1109
1112
  if hasattr(self, "predict"):
1110
1113
  # keep mypy happy
@@ -1112,7 +1115,7 @@ class TruncatedSVD(BaseTransformer):
1112
1115
  # For classifier, the type of predict is the same as the type of label
1113
1116
  if self._sklearn_object._estimator_type == "classifier":
1114
1117
  # label columns is the desired type for output
1115
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1118
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1116
1119
  # rename the output columns
1117
1120
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1118
1121
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.discriminant_analysis".r
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class LinearDiscriminantAnalysis(BaseTransformer):
61
64
  r"""Linear Discriminant Analysis
62
65
  For more details on this class, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis]
@@ -470,7 +473,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
470
473
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
471
474
  expected_dtype = "array"
472
475
  else:
473
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
476
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
474
477
  # We can only infer the output types from the input types if the following two statemetns are true:
475
478
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
476
479
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1135,7 +1138,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
1135
1138
 
1136
1139
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1137
1140
 
1138
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1141
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1139
1142
  outputs: List[BaseFeatureSpec] = []
1140
1143
  if hasattr(self, "predict"):
1141
1144
  # keep mypy happy
@@ -1143,7 +1146,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
1143
1146
  # For classifier, the type of predict is the same as the type of label
1144
1147
  if self._sklearn_object._estimator_type == "classifier":
1145
1148
  # label columns is the desired type for output
1146
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1149
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1147
1150
  # rename the output columns
1148
1151
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1149
1152
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.discriminant_analysis".r
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class QuadraticDiscriminantAnalysis(BaseTransformer):
61
64
  r"""Quadratic Discriminant Analysis
62
65
  For more details on this class, see [sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis]
@@ -424,7 +427,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
424
427
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
425
428
  expected_dtype = "array"
426
429
  else:
427
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
430
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
428
431
  # We can only infer the output types from the input types if the following two statemetns are true:
429
432
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
430
433
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1087,7 +1090,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
1087
1090
 
1088
1091
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1089
1092
 
1090
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1093
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1091
1094
  outputs: List[BaseFeatureSpec] = []
1092
1095
  if hasattr(self, "predict"):
1093
1096
  # keep mypy happy
@@ -1095,7 +1098,7 @@ class QuadraticDiscriminantAnalysis(BaseTransformer):
1095
1098
  # For classifier, the type of predict is the same as the type of label
1096
1099
  if self._sklearn_object._estimator_type == "classifier":
1097
1100
  # label columns is the desired type for output
1098
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1101
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1099
1102
  # rename the output columns
1100
1103
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1101
1104
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class AdaBoostClassifier(BaseTransformer):
61
64
  r"""An AdaBoost classifier
62
65
  For more details on this class, see [sklearn.ensemble.AdaBoostClassifier]
@@ -438,7 +441,7 @@ class AdaBoostClassifier(BaseTransformer):
438
441
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
439
442
  expected_dtype = "array"
440
443
  else:
441
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
444
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
442
445
  # We can only infer the output types from the input types if the following two statemetns are true:
443
446
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
444
447
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1101,7 +1104,7 @@ class AdaBoostClassifier(BaseTransformer):
1101
1104
 
1102
1105
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1103
1106
 
1104
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1107
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1105
1108
  outputs: List[BaseFeatureSpec] = []
1106
1109
  if hasattr(self, "predict"):
1107
1110
  # keep mypy happy
@@ -1109,7 +1112,7 @@ class AdaBoostClassifier(BaseTransformer):
1109
1112
  # For classifier, the type of predict is the same as the type of label
1110
1113
  if self._sklearn_object._estimator_type == "classifier":
1111
1114
  # label columns is the desired type for output
1112
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1115
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1113
1116
  # rename the output columns
1114
1117
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1115
1118
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class AdaBoostRegressor(BaseTransformer):
61
64
  r"""An AdaBoost regressor
62
65
  For more details on this class, see [sklearn.ensemble.AdaBoostRegressor]
@@ -436,7 +439,7 @@ class AdaBoostRegressor(BaseTransformer):
436
439
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
437
440
  expected_dtype = "array"
438
441
  else:
439
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
442
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
440
443
  # We can only infer the output types from the input types if the following two statemetns are true:
441
444
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
442
445
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1093,7 +1096,7 @@ class AdaBoostRegressor(BaseTransformer):
1093
1096
 
1094
1097
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1095
1098
 
1096
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1099
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1097
1100
  outputs: List[BaseFeatureSpec] = []
1098
1101
  if hasattr(self, "predict"):
1099
1102
  # keep mypy happy
@@ -1101,7 +1104,7 @@ class AdaBoostRegressor(BaseTransformer):
1101
1104
  # For classifier, the type of predict is the same as the type of label
1102
1105
  if self._sklearn_object._estimator_type == "classifier":
1103
1106
  # label columns is the desired type for output
1104
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1107
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1105
1108
  # rename the output columns
1106
1109
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1107
1110
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class BaggingClassifier(BaseTransformer):
61
64
  r"""A Bagging classifier
62
65
  For more details on this class, see [sklearn.ensemble.BaggingClassifier]
@@ -474,7 +477,7 @@ class BaggingClassifier(BaseTransformer):
474
477
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
475
478
  expected_dtype = "array"
476
479
  else:
477
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
480
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
478
481
  # We can only infer the output types from the input types if the following two statemetns are true:
479
482
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
480
483
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1137,7 +1140,7 @@ class BaggingClassifier(BaseTransformer):
1137
1140
 
1138
1141
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1139
1142
 
1140
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1143
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1141
1144
  outputs: List[BaseFeatureSpec] = []
1142
1145
  if hasattr(self, "predict"):
1143
1146
  # keep mypy happy
@@ -1145,7 +1148,7 @@ class BaggingClassifier(BaseTransformer):
1145
1148
  # For classifier, the type of predict is the same as the type of label
1146
1149
  if self._sklearn_object._estimator_type == "classifier":
1147
1150
  # label columns is the desired type for output
1148
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1151
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1149
1152
  # rename the output columns
1150
1153
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1151
1154
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class BaggingRegressor(BaseTransformer):
61
64
  r"""A Bagging regressor
62
65
  For more details on this class, see [sklearn.ensemble.BaggingRegressor]
@@ -474,7 +477,7 @@ class BaggingRegressor(BaseTransformer):
474
477
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
475
478
  expected_dtype = "array"
476
479
  else:
477
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
480
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
478
481
  # We can only infer the output types from the input types if the following two statemetns are true:
479
482
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
480
483
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1131,7 +1134,7 @@ class BaggingRegressor(BaseTransformer):
1131
1134
 
1132
1135
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1133
1136
 
1134
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1137
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1135
1138
  outputs: List[BaseFeatureSpec] = []
1136
1139
  if hasattr(self, "predict"):
1137
1140
  # keep mypy happy
@@ -1139,7 +1142,7 @@ class BaggingRegressor(BaseTransformer):
1139
1142
  # For classifier, the type of predict is the same as the type of label
1140
1143
  if self._sklearn_object._estimator_type == "classifier":
1141
1144
  # label columns is the desired type for output
1142
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1145
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1143
1146
  # rename the output columns
1144
1147
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1145
1148
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class ExtraTreesClassifier(BaseTransformer):
61
64
  r"""An extra-trees classifier
62
65
  For more details on this class, see [sklearn.ensemble.ExtraTreesClassifier]
@@ -603,7 +606,7 @@ class ExtraTreesClassifier(BaseTransformer):
603
606
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
604
607
  expected_dtype = "array"
605
608
  else:
606
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
609
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
607
610
  # We can only infer the output types from the input types if the following two statemetns are true:
608
611
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
609
612
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1264,7 +1267,7 @@ class ExtraTreesClassifier(BaseTransformer):
1264
1267
 
1265
1268
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1266
1269
 
1267
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1270
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1268
1271
  outputs: List[BaseFeatureSpec] = []
1269
1272
  if hasattr(self, "predict"):
1270
1273
  # keep mypy happy
@@ -1272,7 +1275,7 @@ class ExtraTreesClassifier(BaseTransformer):
1272
1275
  # For classifier, the type of predict is the same as the type of label
1273
1276
  if self._sklearn_object._estimator_type == "classifier":
1274
1277
  # label columns is the desired type for output
1275
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1278
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1276
1279
  # rename the output columns
1277
1280
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1278
1281
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class ExtraTreesRegressor(BaseTransformer):
61
64
  r"""An extra-trees regressor
62
65
  For more details on this class, see [sklearn.ensemble.ExtraTreesRegressor]
@@ -579,7 +582,7 @@ class ExtraTreesRegressor(BaseTransformer):
579
582
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
580
583
  expected_dtype = "array"
581
584
  else:
582
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
585
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
583
586
  # We can only infer the output types from the input types if the following two statemetns are true:
584
587
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
585
588
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1236,7 +1239,7 @@ class ExtraTreesRegressor(BaseTransformer):
1236
1239
 
1237
1240
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1238
1241
 
1239
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1242
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1240
1243
  outputs: List[BaseFeatureSpec] = []
1241
1244
  if hasattr(self, "predict"):
1242
1245
  # keep mypy happy
@@ -1244,7 +1247,7 @@ class ExtraTreesRegressor(BaseTransformer):
1244
1247
  # For classifier, the type of predict is the same as the type of label
1245
1248
  if self._sklearn_object._estimator_type == "classifier":
1246
1249
  # label columns is the desired type for output
1247
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1250
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1248
1251
  # rename the output columns
1249
1252
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1250
1253
  self._model_signature_dict["predict"] = ModelSignature(