snowflake-ml-python 1.7.3__py3-none-any.whl → 1.7.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +19 -0
- snowflake/ml/_internal/platform_capabilities.py +87 -0
- snowflake/ml/dataset/dataset.py +0 -1
- snowflake/ml/fileset/fileset.py +6 -0
- snowflake/ml/jobs/__init__.py +21 -0
- snowflake/ml/jobs/_utils/constants.py +51 -0
- snowflake/ml/jobs/_utils/payload_utils.py +352 -0
- snowflake/ml/jobs/_utils/spec_utils.py +298 -0
- snowflake/ml/jobs/_utils/types.py +39 -0
- snowflake/ml/jobs/decorators.py +91 -0
- snowflake/ml/jobs/job.py +113 -0
- snowflake/ml/jobs/manager.py +298 -0
- snowflake/ml/model/_client/ops/model_ops.py +11 -2
- snowflake/ml/model/_client/ops/service_ops.py +1 -11
- snowflake/ml/model/_client/sql/service.py +13 -6
- snowflake/ml/model/_packager/model_handlers/_utils.py +12 -3
- snowflake/ml/model/_packager/model_handlers/custom.py +1 -2
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +1 -0
- snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
- snowflake/ml/model/_signatures/base_handler.py +1 -2
- snowflake/ml/model/_signatures/builtins_handler.py +2 -2
- snowflake/ml/model/_signatures/numpy_handler.py +6 -7
- snowflake/ml/model/_signatures/pandas_handler.py +2 -2
- snowflake/ml/model/_signatures/pytorch_handler.py +2 -5
- snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
- snowflake/ml/model/_signatures/tensorflow_handler.py +2 -7
- snowflake/ml/model/model_signature.py +17 -4
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +6 -3
- snowflake/ml/modeling/cluster/affinity_propagation.py +6 -3
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +6 -3
- snowflake/ml/modeling/cluster/birch.py +6 -3
- snowflake/ml/modeling/cluster/bisecting_k_means.py +6 -3
- snowflake/ml/modeling/cluster/dbscan.py +6 -3
- snowflake/ml/modeling/cluster/feature_agglomeration.py +6 -3
- snowflake/ml/modeling/cluster/k_means.py +6 -3
- snowflake/ml/modeling/cluster/mean_shift.py +6 -3
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +6 -3
- snowflake/ml/modeling/cluster/optics.py +6 -3
- snowflake/ml/modeling/cluster/spectral_biclustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_clustering.py +6 -3
- snowflake/ml/modeling/cluster/spectral_coclustering.py +6 -3
- snowflake/ml/modeling/compose/column_transformer.py +6 -3
- snowflake/ml/modeling/compose/transformed_target_regressor.py +6 -3
- snowflake/ml/modeling/covariance/elliptic_envelope.py +6 -3
- snowflake/ml/modeling/covariance/empirical_covariance.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso.py +6 -3
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +6 -3
- snowflake/ml/modeling/covariance/ledoit_wolf.py +6 -3
- snowflake/ml/modeling/covariance/min_cov_det.py +6 -3
- snowflake/ml/modeling/covariance/oas.py +6 -3
- snowflake/ml/modeling/covariance/shrunk_covariance.py +6 -3
- snowflake/ml/modeling/decomposition/dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/factor_analysis.py +6 -3
- snowflake/ml/modeling/decomposition/fast_ica.py +6 -3
- snowflake/ml/modeling/decomposition/incremental_pca.py +6 -3
- snowflake/ml/modeling/decomposition/kernel_pca.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +6 -3
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/pca.py +6 -3
- snowflake/ml/modeling/decomposition/sparse_pca.py +6 -3
- snowflake/ml/modeling/decomposition/truncated_svd.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/bagging_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/isolation_forest.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/stacking_regressor.py +6 -3
- snowflake/ml/modeling/ensemble/voting_classifier.py +6 -3
- snowflake/ml/modeling/ensemble/voting_regressor.py +6 -3
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fdr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fpr.py +6 -3
- snowflake/ml/modeling/feature_selection/select_fwe.py +6 -3
- snowflake/ml/modeling/feature_selection/select_k_best.py +6 -3
- snowflake/ml/modeling/feature_selection/select_percentile.py +6 -3
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +6 -3
- snowflake/ml/modeling/feature_selection/variance_threshold.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +6 -3
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +6 -3
- snowflake/ml/modeling/impute/iterative_imputer.py +6 -3
- snowflake/ml/modeling/impute/knn_imputer.py +6 -3
- snowflake/ml/modeling/impute/missing_indicator.py +6 -3
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/nystroem.py +6 -3
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +6 -3
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +6 -3
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +6 -3
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +6 -3
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ard_regression.py +6 -3
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/gamma_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/huber_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/lars.py +6 -3
- snowflake/ml/modeling/linear_model/lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +6 -3
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +6 -3
- snowflake/ml/modeling/linear_model/linear_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression.py +6 -3
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +6 -3
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +6 -3
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/perceptron.py +6 -3
- snowflake/ml/modeling/linear_model/poisson_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ransac_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/ridge.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +6 -3
- snowflake/ml/modeling/linear_model/ridge_cv.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_classifier.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +6 -3
- snowflake/ml/modeling/linear_model/sgd_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +6 -3
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +6 -3
- snowflake/ml/modeling/manifold/isomap.py +6 -3
- snowflake/ml/modeling/manifold/mds.py +6 -3
- snowflake/ml/modeling/manifold/spectral_embedding.py +6 -3
- snowflake/ml/modeling/manifold/tsne.py +6 -3
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +6 -3
- snowflake/ml/modeling/mixture/gaussian_mixture.py +6 -3
- snowflake/ml/modeling/model_selection/grid_search_cv.py +17 -2
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +17 -2
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +6 -3
- snowflake/ml/modeling/multiclass/output_code_classifier.py +6 -3
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/complement_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +6 -3
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neighbors/kernel_density.py +6 -3
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_centroid.py +6 -3
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +6 -3
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -3
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +6 -3
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_classifier.py +6 -3
- snowflake/ml/modeling/neural_network/mlp_regressor.py +6 -3
- snowflake/ml/modeling/pipeline/pipeline.py +10 -2
- snowflake/ml/modeling/preprocessing/polynomial_features.py +6 -3
- snowflake/ml/modeling/semi_supervised/label_propagation.py +6 -3
- snowflake/ml/modeling/semi_supervised/label_spreading.py +6 -3
- snowflake/ml/modeling/svm/linear_svc.py +6 -3
- snowflake/ml/modeling/svm/linear_svr.py +6 -3
- snowflake/ml/modeling/svm/nu_svc.py +6 -3
- snowflake/ml/modeling/svm/nu_svr.py +6 -3
- snowflake/ml/modeling/svm/svc.py +6 -3
- snowflake/ml/modeling/svm/svr.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/decision_tree_regressor.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_classifier.py +6 -3
- snowflake/ml/modeling/tree/extra_tree_regressor.py +6 -3
- snowflake/ml/modeling/xgboost/xgb_classifier.py +6 -3
- snowflake/ml/modeling/xgboost/xgb_regressor.py +6 -3
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +6 -3
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +6 -3
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/METADATA +29 -14
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/RECORD +187 -178
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class KernelDensity(BaseTransformer):
|
61
64
|
r"""Kernel Density Estimation
|
62
65
|
For more details on this class, see [sklearn.neighbors.KernelDensity]
|
@@ -457,7 +460,7 @@ class KernelDensity(BaseTransformer):
|
|
457
460
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
458
461
|
expected_dtype = "array"
|
459
462
|
else:
|
460
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
463
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
461
464
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
462
465
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
463
466
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1116,7 +1119,7 @@ class KernelDensity(BaseTransformer):
|
|
1116
1119
|
|
1117
1120
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1118
1121
|
|
1119
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1122
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1120
1123
|
outputs: List[BaseFeatureSpec] = []
|
1121
1124
|
if hasattr(self, "predict"):
|
1122
1125
|
# keep mypy happy
|
@@ -1124,7 +1127,7 @@ class KernelDensity(BaseTransformer):
|
|
1124
1127
|
# For classifier, the type of predict is the same as the type of label
|
1125
1128
|
if self._sklearn_object._estimator_type == "classifier":
|
1126
1129
|
# label columns is the desired type for output
|
1127
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1130
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1128
1131
|
# rename the output columns
|
1129
1132
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1130
1133
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class LocalOutlierFactor(BaseTransformer):
|
61
64
|
r"""Unsupervised Outlier Detection using the Local Outlier Factor (LOF)
|
62
65
|
For more details on this class, see [sklearn.neighbors.LocalOutlierFactor]
|
@@ -487,7 +490,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
487
490
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
488
491
|
expected_dtype = "array"
|
489
492
|
else:
|
490
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
493
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
491
494
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
492
495
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
493
496
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1150,7 +1153,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
1150
1153
|
|
1151
1154
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1152
1155
|
|
1153
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1156
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1154
1157
|
outputs: List[BaseFeatureSpec] = []
|
1155
1158
|
if hasattr(self, "predict"):
|
1156
1159
|
# keep mypy happy
|
@@ -1158,7 +1161,7 @@ class LocalOutlierFactor(BaseTransformer):
|
|
1158
1161
|
# For classifier, the type of predict is the same as the type of label
|
1159
1162
|
if self._sklearn_object._estimator_type == "classifier":
|
1160
1163
|
# label columns is the desired type for output
|
1161
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1164
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1162
1165
|
# rename the output columns
|
1163
1166
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1164
1167
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class NearestCentroid(BaseTransformer):
|
61
64
|
r"""Nearest centroid classifier
|
62
65
|
For more details on this class, see [sklearn.neighbors.NearestCentroid]
|
@@ -411,7 +414,7 @@ class NearestCentroid(BaseTransformer):
|
|
411
414
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
412
415
|
expected_dtype = "array"
|
413
416
|
else:
|
414
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
417
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
415
418
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
416
419
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
417
420
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1068,7 +1071,7 @@ class NearestCentroid(BaseTransformer):
|
|
1068
1071
|
|
1069
1072
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1070
1073
|
|
1071
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1074
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1072
1075
|
outputs: List[BaseFeatureSpec] = []
|
1073
1076
|
if hasattr(self, "predict"):
|
1074
1077
|
# keep mypy happy
|
@@ -1076,7 +1079,7 @@ class NearestCentroid(BaseTransformer):
|
|
1076
1079
|
# For classifier, the type of predict is the same as the type of label
|
1077
1080
|
if self._sklearn_object._estimator_type == "classifier":
|
1078
1081
|
# label columns is the desired type for output
|
1079
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1082
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1080
1083
|
# rename the output columns
|
1081
1084
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1082
1085
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class NearestNeighbors(BaseTransformer):
|
61
64
|
r"""Unsupervised learner for implementing neighbor searches
|
62
65
|
For more details on this class, see [sklearn.neighbors.NearestNeighbors]
|
@@ -468,7 +471,7 @@ class NearestNeighbors(BaseTransformer):
|
|
468
471
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
469
472
|
expected_dtype = "array"
|
470
473
|
else:
|
471
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
474
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
472
475
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
473
476
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
474
477
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1125,7 +1128,7 @@ class NearestNeighbors(BaseTransformer):
|
|
1125
1128
|
|
1126
1129
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1127
1130
|
|
1128
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1131
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1129
1132
|
outputs: List[BaseFeatureSpec] = []
|
1130
1133
|
if hasattr(self, "predict"):
|
1131
1134
|
# keep mypy happy
|
@@ -1133,7 +1136,7 @@ class NearestNeighbors(BaseTransformer):
|
|
1133
1136
|
# For classifier, the type of predict is the same as the type of label
|
1134
1137
|
if self._sklearn_object._estimator_type == "classifier":
|
1135
1138
|
# label columns is the desired type for output
|
1136
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1139
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1137
1140
|
# rename the output columns
|
1138
1141
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1139
1142
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class NeighborhoodComponentsAnalysis(BaseTransformer):
|
61
64
|
r"""Neighborhood Components Analysis
|
62
65
|
For more details on this class, see [sklearn.neighbors.NeighborhoodComponentsAnalysis]
|
@@ -489,7 +492,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
489
492
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
490
493
|
expected_dtype = "array"
|
491
494
|
else:
|
492
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
495
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
493
496
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
494
497
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
495
498
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1146,7 +1149,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
1146
1149
|
|
1147
1150
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1148
1151
|
|
1149
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1152
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1150
1153
|
outputs: List[BaseFeatureSpec] = []
|
1151
1154
|
if hasattr(self, "predict"):
|
1152
1155
|
# keep mypy happy
|
@@ -1154,7 +1157,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
|
|
1154
1157
|
# For classifier, the type of predict is the same as the type of label
|
1155
1158
|
if self._sklearn_object._estimator_type == "classifier":
|
1156
1159
|
# label columns is the desired type for output
|
1157
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1160
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1158
1161
|
# rename the output columns
|
1159
1162
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1160
1163
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class RadiusNeighborsClassifier(BaseTransformer):
|
61
64
|
r"""Classifier implementing a vote among neighbors within a given radius
|
62
65
|
For more details on this class, see [sklearn.neighbors.RadiusNeighborsClassifier]
|
@@ -495,7 +498,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
495
498
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
496
499
|
expected_dtype = "array"
|
497
500
|
else:
|
498
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
501
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
499
502
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
500
503
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
501
504
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1156,7 +1159,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
1156
1159
|
|
1157
1160
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1158
1161
|
|
1159
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1162
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1160
1163
|
outputs: List[BaseFeatureSpec] = []
|
1161
1164
|
if hasattr(self, "predict"):
|
1162
1165
|
# keep mypy happy
|
@@ -1164,7 +1167,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
|
|
1164
1167
|
# For classifier, the type of predict is the same as the type of label
|
1165
1168
|
if self._sklearn_object._estimator_type == "classifier":
|
1166
1169
|
# label columns is the desired type for output
|
1167
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1170
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1168
1171
|
# rename the output columns
|
1169
1172
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1170
1173
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class RadiusNeighborsRegressor(BaseTransformer):
|
61
64
|
r"""Regression based on neighbors within a fixed radius
|
62
65
|
For more details on this class, see [sklearn.neighbors.RadiusNeighborsRegressor]
|
@@ -480,7 +483,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
480
483
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
481
484
|
expected_dtype = "array"
|
482
485
|
else:
|
483
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
486
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
484
487
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
485
488
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
486
489
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1137,7 +1140,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
1137
1140
|
|
1138
1141
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1139
1142
|
|
1140
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1143
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1141
1144
|
outputs: List[BaseFeatureSpec] = []
|
1142
1145
|
if hasattr(self, "predict"):
|
1143
1146
|
# keep mypy happy
|
@@ -1145,7 +1148,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
1145
1148
|
# For classifier, the type of predict is the same as the type of label
|
1146
1149
|
if self._sklearn_object._estimator_type == "classifier":
|
1147
1150
|
# label columns is the desired type for output
|
1148
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1151
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1149
1152
|
# rename the output columns
|
1150
1153
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1151
1154
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace(
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class BernoulliRBM(BaseTransformer):
|
61
64
|
r"""Bernoulli Restricted Boltzmann Machine (RBM)
|
62
65
|
For more details on this class, see [sklearn.neural_network.BernoulliRBM]
|
@@ -439,7 +442,7 @@ class BernoulliRBM(BaseTransformer):
|
|
439
442
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
440
443
|
expected_dtype = "array"
|
441
444
|
else:
|
442
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
445
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
443
446
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
444
447
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
445
448
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1098,7 +1101,7 @@ class BernoulliRBM(BaseTransformer):
|
|
1098
1101
|
|
1099
1102
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1100
1103
|
|
1101
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1104
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1102
1105
|
outputs: List[BaseFeatureSpec] = []
|
1103
1106
|
if hasattr(self, "predict"):
|
1104
1107
|
# keep mypy happy
|
@@ -1106,7 +1109,7 @@ class BernoulliRBM(BaseTransformer):
|
|
1106
1109
|
# For classifier, the type of predict is the same as the type of label
|
1107
1110
|
if self._sklearn_object._estimator_type == "classifier":
|
1108
1111
|
# label columns is the desired type for output
|
1109
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1112
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1110
1113
|
# rename the output columns
|
1111
1114
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1112
1115
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace(
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class MLPClassifier(BaseTransformer):
|
61
64
|
r"""Multi-layer Perceptron classifier
|
62
65
|
For more details on this class, see [sklearn.neural_network.MLPClassifier]
|
@@ -598,7 +601,7 @@ class MLPClassifier(BaseTransformer):
|
|
598
601
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
599
602
|
expected_dtype = "array"
|
600
603
|
else:
|
601
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
604
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
602
605
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
603
606
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
604
607
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1259,7 +1262,7 @@ class MLPClassifier(BaseTransformer):
|
|
1259
1262
|
|
1260
1263
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1261
1264
|
|
1262
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1265
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1263
1266
|
outputs: List[BaseFeatureSpec] = []
|
1264
1267
|
if hasattr(self, "predict"):
|
1265
1268
|
# keep mypy happy
|
@@ -1267,7 +1270,7 @@ class MLPClassifier(BaseTransformer):
|
|
1267
1270
|
# For classifier, the type of predict is the same as the type of label
|
1268
1271
|
if self._sklearn_object._estimator_type == "classifier":
|
1269
1272
|
# label columns is the desired type for output
|
1270
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1273
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1271
1274
|
# rename the output columns
|
1272
1275
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1273
1276
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace(
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class MLPRegressor(BaseTransformer):
|
61
64
|
r"""Multi-layer Perceptron regressor
|
62
65
|
For more details on this class, see [sklearn.neural_network.MLPRegressor]
|
@@ -591,7 +594,7 @@ class MLPRegressor(BaseTransformer):
|
|
591
594
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
592
595
|
expected_dtype = "array"
|
593
596
|
else:
|
594
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
597
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
595
598
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
596
599
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
597
600
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1248,7 +1251,7 @@ class MLPRegressor(BaseTransformer):
|
|
1248
1251
|
|
1249
1252
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1250
1253
|
|
1251
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1254
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1252
1255
|
outputs: List[BaseFeatureSpec] = []
|
1253
1256
|
if hasattr(self, "predict"):
|
1254
1257
|
# keep mypy happy
|
@@ -1256,7 +1259,7 @@ class MLPRegressor(BaseTransformer):
|
|
1256
1259
|
# For classifier, the type of predict is the same as the type of label
|
1257
1260
|
if self._sklearn_object._estimator_type == "classifier":
|
1258
1261
|
# label columns is the desired type for output
|
1259
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1262
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1260
1263
|
# rename the output columns
|
1261
1264
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1262
1265
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -20,7 +20,11 @@ from snowflake.ml._internal.exceptions import error_codes, exceptions
|
|
20
20
|
from snowflake.ml._internal.lineage import lineage_utils
|
21
21
|
from snowflake.ml._internal.utils import snowpark_dataframe_utils, temp_file_utils
|
22
22
|
from snowflake.ml.data import data_source
|
23
|
-
from snowflake.ml.model.model_signature import
|
23
|
+
from snowflake.ml.model.model_signature import (
|
24
|
+
ModelSignature,
|
25
|
+
_infer_signature,
|
26
|
+
_truncate_data,
|
27
|
+
)
|
24
28
|
from snowflake.ml.modeling._internal.model_transformer_builder import (
|
25
29
|
ModelTransformerBuilder,
|
26
30
|
)
|
@@ -31,6 +35,8 @@ from snowflake.snowpark._internal import utils as snowpark_utils
|
|
31
35
|
_PROJECT = "ModelDevelopment"
|
32
36
|
_SUBPROJECT = "Framework"
|
33
37
|
|
38
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
39
|
+
|
34
40
|
|
35
41
|
def _final_step_has(attr: str) -> Callable[..., bool]:
|
36
42
|
"""Check that final_estimator has `attr`. Used together with `available_if` in `Pipeline`."""
|
@@ -885,7 +891,9 @@ class Pipeline(base.BaseTransformer):
|
|
885
891
|
self._model_signature_dict = dict()
|
886
892
|
|
887
893
|
input_columns = self._get_sanitized_list_of_columns(dataset.columns)
|
888
|
-
inputs_signature = _infer_signature(
|
894
|
+
inputs_signature = _infer_signature(
|
895
|
+
_truncate_data(dataset[input_columns], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True
|
896
|
+
)
|
889
897
|
|
890
898
|
estimator_step = self._get_estimator()
|
891
899
|
if estimator_step:
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.preprocessing".replace("
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class PolynomialFeatures(BaseTransformer):
|
61
64
|
r"""Generate polynomial and interaction features
|
62
65
|
For more details on this class, see [sklearn.preprocessing.PolynomialFeatures]
|
@@ -429,7 +432,7 @@ class PolynomialFeatures(BaseTransformer):
|
|
429
432
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
430
433
|
expected_dtype = "array"
|
431
434
|
else:
|
432
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
435
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
433
436
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
434
437
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
435
438
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1086,7 +1089,7 @@ class PolynomialFeatures(BaseTransformer):
|
|
1086
1089
|
|
1087
1090
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1088
1091
|
|
1089
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1092
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1090
1093
|
outputs: List[BaseFeatureSpec] = []
|
1091
1094
|
if hasattr(self, "predict"):
|
1092
1095
|
# keep mypy happy
|
@@ -1094,7 +1097,7 @@ class PolynomialFeatures(BaseTransformer):
|
|
1094
1097
|
# For classifier, the type of predict is the same as the type of label
|
1095
1098
|
if self._sklearn_object._estimator_type == "classifier":
|
1096
1099
|
# label columns is the desired type for output
|
1097
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1100
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1098
1101
|
# rename the output columns
|
1099
1102
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1100
1103
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.semi_supervised".replace
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class LabelPropagation(BaseTransformer):
|
61
64
|
r"""Label Propagation classifier
|
62
65
|
For more details on this class, see [sklearn.semi_supervised.LabelPropagation]
|
@@ -433,7 +436,7 @@ class LabelPropagation(BaseTransformer):
|
|
433
436
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
434
437
|
expected_dtype = "array"
|
435
438
|
else:
|
436
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
439
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
437
440
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
438
441
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
439
442
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1094,7 +1097,7 @@ class LabelPropagation(BaseTransformer):
|
|
1094
1097
|
|
1095
1098
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1096
1099
|
|
1097
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1100
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1098
1101
|
outputs: List[BaseFeatureSpec] = []
|
1099
1102
|
if hasattr(self, "predict"):
|
1100
1103
|
# keep mypy happy
|
@@ -1102,7 +1105,7 @@ class LabelPropagation(BaseTransformer):
|
|
1102
1105
|
# For classifier, the type of predict is the same as the type of label
|
1103
1106
|
if self._sklearn_object._estimator_type == "classifier":
|
1104
1107
|
# label columns is the desired type for output
|
1105
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1108
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1106
1109
|
# rename the output columns
|
1107
1110
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1108
1111
|
self._model_signature_dict["predict"] = ModelSignature(
|
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
|
|
37
37
|
FeatureSpec,
|
38
38
|
ModelSignature,
|
39
39
|
_infer_signature,
|
40
|
+
_truncate_data,
|
40
41
|
_rename_signature_with_snowflake_identifiers,
|
41
42
|
)
|
42
43
|
|
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.semi_supervised".replace
|
|
57
58
|
|
58
59
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
59
60
|
|
61
|
+
INFER_SIGNATURE_MAX_ROWS = 100
|
62
|
+
|
60
63
|
class LabelSpreading(BaseTransformer):
|
61
64
|
r"""LabelSpreading model for semi-supervised learning
|
62
65
|
For more details on this class, see [sklearn.semi_supervised.LabelSpreading]
|
@@ -442,7 +445,7 @@ class LabelSpreading(BaseTransformer):
|
|
442
445
|
elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
|
443
446
|
expected_dtype = "array"
|
444
447
|
else:
|
445
|
-
output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
|
448
|
+
output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
|
446
449
|
# We can only infer the output types from the input types if the following two statemetns are true:
|
447
450
|
# 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
|
448
451
|
# 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
|
@@ -1103,7 +1106,7 @@ class LabelSpreading(BaseTransformer):
|
|
1103
1106
|
|
1104
1107
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1105
1108
|
|
1106
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1109
|
+
inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
|
1107
1110
|
outputs: List[BaseFeatureSpec] = []
|
1108
1111
|
if hasattr(self, "predict"):
|
1109
1112
|
# keep mypy happy
|
@@ -1111,7 +1114,7 @@ class LabelSpreading(BaseTransformer):
|
|
1111
1114
|
# For classifier, the type of predict is the same as the type of label
|
1112
1115
|
if self._sklearn_object._estimator_type == "classifier":
|
1113
1116
|
# label columns is the desired type for output
|
1114
|
-
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1117
|
+
outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
|
1115
1118
|
# rename the output columns
|
1116
1119
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1117
1120
|
self._model_signature_dict["predict"] = ModelSignature(
|