snowflake-ml-python 1.7.3__py3-none-any.whl → 1.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (187) hide show
  1. snowflake/cortex/_complete.py +19 -0
  2. snowflake/ml/_internal/platform_capabilities.py +87 -0
  3. snowflake/ml/dataset/dataset.py +0 -1
  4. snowflake/ml/fileset/fileset.py +6 -0
  5. snowflake/ml/jobs/__init__.py +21 -0
  6. snowflake/ml/jobs/_utils/constants.py +51 -0
  7. snowflake/ml/jobs/_utils/payload_utils.py +352 -0
  8. snowflake/ml/jobs/_utils/spec_utils.py +298 -0
  9. snowflake/ml/jobs/_utils/types.py +39 -0
  10. snowflake/ml/jobs/decorators.py +91 -0
  11. snowflake/ml/jobs/job.py +113 -0
  12. snowflake/ml/jobs/manager.py +298 -0
  13. snowflake/ml/model/_client/ops/model_ops.py +11 -2
  14. snowflake/ml/model/_client/ops/service_ops.py +1 -11
  15. snowflake/ml/model/_client/sql/service.py +13 -6
  16. snowflake/ml/model/_packager/model_handlers/_utils.py +12 -3
  17. snowflake/ml/model/_packager/model_handlers/custom.py +1 -2
  18. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +1 -0
  19. snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py +2 -2
  20. snowflake/ml/model/_signatures/base_handler.py +1 -2
  21. snowflake/ml/model/_signatures/builtins_handler.py +2 -2
  22. snowflake/ml/model/_signatures/numpy_handler.py +6 -7
  23. snowflake/ml/model/_signatures/pandas_handler.py +2 -2
  24. snowflake/ml/model/_signatures/pytorch_handler.py +2 -5
  25. snowflake/ml/model/_signatures/snowpark_handler.py +3 -3
  26. snowflake/ml/model/_signatures/tensorflow_handler.py +2 -7
  27. snowflake/ml/model/model_signature.py +17 -4
  28. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +6 -3
  29. snowflake/ml/modeling/cluster/affinity_propagation.py +6 -3
  30. snowflake/ml/modeling/cluster/agglomerative_clustering.py +6 -3
  31. snowflake/ml/modeling/cluster/birch.py +6 -3
  32. snowflake/ml/modeling/cluster/bisecting_k_means.py +6 -3
  33. snowflake/ml/modeling/cluster/dbscan.py +6 -3
  34. snowflake/ml/modeling/cluster/feature_agglomeration.py +6 -3
  35. snowflake/ml/modeling/cluster/k_means.py +6 -3
  36. snowflake/ml/modeling/cluster/mean_shift.py +6 -3
  37. snowflake/ml/modeling/cluster/mini_batch_k_means.py +6 -3
  38. snowflake/ml/modeling/cluster/optics.py +6 -3
  39. snowflake/ml/modeling/cluster/spectral_biclustering.py +6 -3
  40. snowflake/ml/modeling/cluster/spectral_clustering.py +6 -3
  41. snowflake/ml/modeling/cluster/spectral_coclustering.py +6 -3
  42. snowflake/ml/modeling/compose/column_transformer.py +6 -3
  43. snowflake/ml/modeling/compose/transformed_target_regressor.py +6 -3
  44. snowflake/ml/modeling/covariance/elliptic_envelope.py +6 -3
  45. snowflake/ml/modeling/covariance/empirical_covariance.py +6 -3
  46. snowflake/ml/modeling/covariance/graphical_lasso.py +6 -3
  47. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +6 -3
  48. snowflake/ml/modeling/covariance/ledoit_wolf.py +6 -3
  49. snowflake/ml/modeling/covariance/min_cov_det.py +6 -3
  50. snowflake/ml/modeling/covariance/oas.py +6 -3
  51. snowflake/ml/modeling/covariance/shrunk_covariance.py +6 -3
  52. snowflake/ml/modeling/decomposition/dictionary_learning.py +6 -3
  53. snowflake/ml/modeling/decomposition/factor_analysis.py +6 -3
  54. snowflake/ml/modeling/decomposition/fast_ica.py +6 -3
  55. snowflake/ml/modeling/decomposition/incremental_pca.py +6 -3
  56. snowflake/ml/modeling/decomposition/kernel_pca.py +6 -3
  57. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +6 -3
  58. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +6 -3
  59. snowflake/ml/modeling/decomposition/pca.py +6 -3
  60. snowflake/ml/modeling/decomposition/sparse_pca.py +6 -3
  61. snowflake/ml/modeling/decomposition/truncated_svd.py +6 -3
  62. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +6 -3
  63. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +6 -3
  64. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +6 -3
  65. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +6 -3
  66. snowflake/ml/modeling/ensemble/bagging_classifier.py +6 -3
  67. snowflake/ml/modeling/ensemble/bagging_regressor.py +6 -3
  68. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +6 -3
  69. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +6 -3
  70. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +6 -3
  71. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +6 -3
  72. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +6 -3
  73. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +6 -3
  74. snowflake/ml/modeling/ensemble/isolation_forest.py +6 -3
  75. snowflake/ml/modeling/ensemble/random_forest_classifier.py +6 -3
  76. snowflake/ml/modeling/ensemble/random_forest_regressor.py +6 -3
  77. snowflake/ml/modeling/ensemble/stacking_regressor.py +6 -3
  78. snowflake/ml/modeling/ensemble/voting_classifier.py +6 -3
  79. snowflake/ml/modeling/ensemble/voting_regressor.py +6 -3
  80. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +6 -3
  81. snowflake/ml/modeling/feature_selection/select_fdr.py +6 -3
  82. snowflake/ml/modeling/feature_selection/select_fpr.py +6 -3
  83. snowflake/ml/modeling/feature_selection/select_fwe.py +6 -3
  84. snowflake/ml/modeling/feature_selection/select_k_best.py +6 -3
  85. snowflake/ml/modeling/feature_selection/select_percentile.py +6 -3
  86. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +6 -3
  87. snowflake/ml/modeling/feature_selection/variance_threshold.py +6 -3
  88. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +6 -3
  89. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +6 -3
  90. snowflake/ml/modeling/impute/iterative_imputer.py +6 -3
  91. snowflake/ml/modeling/impute/knn_imputer.py +6 -3
  92. snowflake/ml/modeling/impute/missing_indicator.py +6 -3
  93. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +6 -3
  94. snowflake/ml/modeling/kernel_approximation/nystroem.py +6 -3
  95. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +6 -3
  96. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +6 -3
  97. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +6 -3
  98. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +6 -3
  99. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +6 -3
  100. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +6 -3
  101. snowflake/ml/modeling/linear_model/ard_regression.py +6 -3
  102. snowflake/ml/modeling/linear_model/bayesian_ridge.py +6 -3
  103. snowflake/ml/modeling/linear_model/elastic_net.py +6 -3
  104. snowflake/ml/modeling/linear_model/elastic_net_cv.py +6 -3
  105. snowflake/ml/modeling/linear_model/gamma_regressor.py +6 -3
  106. snowflake/ml/modeling/linear_model/huber_regressor.py +6 -3
  107. snowflake/ml/modeling/linear_model/lars.py +6 -3
  108. snowflake/ml/modeling/linear_model/lars_cv.py +6 -3
  109. snowflake/ml/modeling/linear_model/lasso.py +6 -3
  110. snowflake/ml/modeling/linear_model/lasso_cv.py +6 -3
  111. snowflake/ml/modeling/linear_model/lasso_lars.py +6 -3
  112. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +6 -3
  113. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +6 -3
  114. snowflake/ml/modeling/linear_model/linear_regression.py +6 -3
  115. snowflake/ml/modeling/linear_model/logistic_regression.py +6 -3
  116. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +6 -3
  117. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +6 -3
  118. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +6 -3
  119. snowflake/ml/modeling/linear_model/multi_task_lasso.py +6 -3
  120. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +6 -3
  121. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +6 -3
  122. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +6 -3
  123. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +6 -3
  124. snowflake/ml/modeling/linear_model/perceptron.py +6 -3
  125. snowflake/ml/modeling/linear_model/poisson_regressor.py +6 -3
  126. snowflake/ml/modeling/linear_model/ransac_regressor.py +6 -3
  127. snowflake/ml/modeling/linear_model/ridge.py +6 -3
  128. snowflake/ml/modeling/linear_model/ridge_classifier.py +6 -3
  129. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +6 -3
  130. snowflake/ml/modeling/linear_model/ridge_cv.py +6 -3
  131. snowflake/ml/modeling/linear_model/sgd_classifier.py +6 -3
  132. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +6 -3
  133. snowflake/ml/modeling/linear_model/sgd_regressor.py +6 -3
  134. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +6 -3
  135. snowflake/ml/modeling/linear_model/tweedie_regressor.py +6 -3
  136. snowflake/ml/modeling/manifold/isomap.py +6 -3
  137. snowflake/ml/modeling/manifold/mds.py +6 -3
  138. snowflake/ml/modeling/manifold/spectral_embedding.py +6 -3
  139. snowflake/ml/modeling/manifold/tsne.py +6 -3
  140. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +6 -3
  141. snowflake/ml/modeling/mixture/gaussian_mixture.py +6 -3
  142. snowflake/ml/modeling/model_selection/grid_search_cv.py +17 -2
  143. snowflake/ml/modeling/model_selection/randomized_search_cv.py +17 -2
  144. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +6 -3
  145. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +6 -3
  146. snowflake/ml/modeling/multiclass/output_code_classifier.py +6 -3
  147. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +6 -3
  148. snowflake/ml/modeling/naive_bayes/categorical_nb.py +6 -3
  149. snowflake/ml/modeling/naive_bayes/complement_nb.py +6 -3
  150. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +6 -3
  151. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +6 -3
  152. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +6 -3
  153. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +6 -3
  154. snowflake/ml/modeling/neighbors/kernel_density.py +6 -3
  155. snowflake/ml/modeling/neighbors/local_outlier_factor.py +6 -3
  156. snowflake/ml/modeling/neighbors/nearest_centroid.py +6 -3
  157. snowflake/ml/modeling/neighbors/nearest_neighbors.py +6 -3
  158. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +6 -3
  159. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +6 -3
  160. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +6 -3
  161. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +6 -3
  162. snowflake/ml/modeling/neural_network/mlp_classifier.py +6 -3
  163. snowflake/ml/modeling/neural_network/mlp_regressor.py +6 -3
  164. snowflake/ml/modeling/pipeline/pipeline.py +10 -2
  165. snowflake/ml/modeling/preprocessing/polynomial_features.py +6 -3
  166. snowflake/ml/modeling/semi_supervised/label_propagation.py +6 -3
  167. snowflake/ml/modeling/semi_supervised/label_spreading.py +6 -3
  168. snowflake/ml/modeling/svm/linear_svc.py +6 -3
  169. snowflake/ml/modeling/svm/linear_svr.py +6 -3
  170. snowflake/ml/modeling/svm/nu_svc.py +6 -3
  171. snowflake/ml/modeling/svm/nu_svr.py +6 -3
  172. snowflake/ml/modeling/svm/svc.py +6 -3
  173. snowflake/ml/modeling/svm/svr.py +6 -3
  174. snowflake/ml/modeling/tree/decision_tree_classifier.py +6 -3
  175. snowflake/ml/modeling/tree/decision_tree_regressor.py +6 -3
  176. snowflake/ml/modeling/tree/extra_tree_classifier.py +6 -3
  177. snowflake/ml/modeling/tree/extra_tree_regressor.py +6 -3
  178. snowflake/ml/modeling/xgboost/xgb_classifier.py +6 -3
  179. snowflake/ml/modeling/xgboost/xgb_regressor.py +6 -3
  180. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +6 -3
  181. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +6 -3
  182. snowflake/ml/version.py +1 -1
  183. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/METADATA +29 -14
  184. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/RECORD +187 -178
  185. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/LICENSE.txt +0 -0
  186. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/WHEEL +0 -0
  187. {snowflake_ml_python-1.7.3.dist-info → snowflake_ml_python-1.7.4.dist-info}/top_level.txt +0 -0
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class KernelDensity(BaseTransformer):
61
64
  r"""Kernel Density Estimation
62
65
  For more details on this class, see [sklearn.neighbors.KernelDensity]
@@ -457,7 +460,7 @@ class KernelDensity(BaseTransformer):
457
460
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
458
461
  expected_dtype = "array"
459
462
  else:
460
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
463
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
461
464
  # We can only infer the output types from the input types if the following two statemetns are true:
462
465
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
463
466
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1116,7 +1119,7 @@ class KernelDensity(BaseTransformer):
1116
1119
 
1117
1120
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1118
1121
 
1119
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1122
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1120
1123
  outputs: List[BaseFeatureSpec] = []
1121
1124
  if hasattr(self, "predict"):
1122
1125
  # keep mypy happy
@@ -1124,7 +1127,7 @@ class KernelDensity(BaseTransformer):
1124
1127
  # For classifier, the type of predict is the same as the type of label
1125
1128
  if self._sklearn_object._estimator_type == "classifier":
1126
1129
  # label columns is the desired type for output
1127
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1130
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1128
1131
  # rename the output columns
1129
1132
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1130
1133
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class LocalOutlierFactor(BaseTransformer):
61
64
  r"""Unsupervised Outlier Detection using the Local Outlier Factor (LOF)
62
65
  For more details on this class, see [sklearn.neighbors.LocalOutlierFactor]
@@ -487,7 +490,7 @@ class LocalOutlierFactor(BaseTransformer):
487
490
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
488
491
  expected_dtype = "array"
489
492
  else:
490
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
493
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
491
494
  # We can only infer the output types from the input types if the following two statemetns are true:
492
495
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
493
496
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1150,7 +1153,7 @@ class LocalOutlierFactor(BaseTransformer):
1150
1153
 
1151
1154
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1152
1155
 
1153
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1156
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1154
1157
  outputs: List[BaseFeatureSpec] = []
1155
1158
  if hasattr(self, "predict"):
1156
1159
  # keep mypy happy
@@ -1158,7 +1161,7 @@ class LocalOutlierFactor(BaseTransformer):
1158
1161
  # For classifier, the type of predict is the same as the type of label
1159
1162
  if self._sklearn_object._estimator_type == "classifier":
1160
1163
  # label columns is the desired type for output
1161
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1164
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1162
1165
  # rename the output columns
1163
1166
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1164
1167
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class NearestCentroid(BaseTransformer):
61
64
  r"""Nearest centroid classifier
62
65
  For more details on this class, see [sklearn.neighbors.NearestCentroid]
@@ -411,7 +414,7 @@ class NearestCentroid(BaseTransformer):
411
414
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
412
415
  expected_dtype = "array"
413
416
  else:
414
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
417
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
415
418
  # We can only infer the output types from the input types if the following two statemetns are true:
416
419
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
417
420
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1068,7 +1071,7 @@ class NearestCentroid(BaseTransformer):
1068
1071
 
1069
1072
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1070
1073
 
1071
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1074
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1072
1075
  outputs: List[BaseFeatureSpec] = []
1073
1076
  if hasattr(self, "predict"):
1074
1077
  # keep mypy happy
@@ -1076,7 +1079,7 @@ class NearestCentroid(BaseTransformer):
1076
1079
  # For classifier, the type of predict is the same as the type of label
1077
1080
  if self._sklearn_object._estimator_type == "classifier":
1078
1081
  # label columns is the desired type for output
1079
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1082
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1080
1083
  # rename the output columns
1081
1084
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1082
1085
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class NearestNeighbors(BaseTransformer):
61
64
  r"""Unsupervised learner for implementing neighbor searches
62
65
  For more details on this class, see [sklearn.neighbors.NearestNeighbors]
@@ -468,7 +471,7 @@ class NearestNeighbors(BaseTransformer):
468
471
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
469
472
  expected_dtype = "array"
470
473
  else:
471
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
474
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
472
475
  # We can only infer the output types from the input types if the following two statemetns are true:
473
476
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
474
477
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1125,7 +1128,7 @@ class NearestNeighbors(BaseTransformer):
1125
1128
 
1126
1129
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1127
1130
 
1128
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1131
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1129
1132
  outputs: List[BaseFeatureSpec] = []
1130
1133
  if hasattr(self, "predict"):
1131
1134
  # keep mypy happy
@@ -1133,7 +1136,7 @@ class NearestNeighbors(BaseTransformer):
1133
1136
  # For classifier, the type of predict is the same as the type of label
1134
1137
  if self._sklearn_object._estimator_type == "classifier":
1135
1138
  # label columns is the desired type for output
1136
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1139
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1137
1140
  # rename the output columns
1138
1141
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1139
1142
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class NeighborhoodComponentsAnalysis(BaseTransformer):
61
64
  r"""Neighborhood Components Analysis
62
65
  For more details on this class, see [sklearn.neighbors.NeighborhoodComponentsAnalysis]
@@ -489,7 +492,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
489
492
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
490
493
  expected_dtype = "array"
491
494
  else:
492
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
495
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
493
496
  # We can only infer the output types from the input types if the following two statemetns are true:
494
497
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
495
498
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1146,7 +1149,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
1146
1149
 
1147
1150
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1148
1151
 
1149
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1152
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1150
1153
  outputs: List[BaseFeatureSpec] = []
1151
1154
  if hasattr(self, "predict"):
1152
1155
  # keep mypy happy
@@ -1154,7 +1157,7 @@ class NeighborhoodComponentsAnalysis(BaseTransformer):
1154
1157
  # For classifier, the type of predict is the same as the type of label
1155
1158
  if self._sklearn_object._estimator_type == "classifier":
1156
1159
  # label columns is the desired type for output
1157
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1160
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1158
1161
  # rename the output columns
1159
1162
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1160
1163
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class RadiusNeighborsClassifier(BaseTransformer):
61
64
  r"""Classifier implementing a vote among neighbors within a given radius
62
65
  For more details on this class, see [sklearn.neighbors.RadiusNeighborsClassifier]
@@ -495,7 +498,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
495
498
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
496
499
  expected_dtype = "array"
497
500
  else:
498
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
501
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
499
502
  # We can only infer the output types from the input types if the following two statemetns are true:
500
503
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
501
504
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1156,7 +1159,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
1156
1159
 
1157
1160
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1158
1161
 
1159
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1162
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1160
1163
  outputs: List[BaseFeatureSpec] = []
1161
1164
  if hasattr(self, "predict"):
1162
1165
  # keep mypy happy
@@ -1164,7 +1167,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
1164
1167
  # For classifier, the type of predict is the same as the type of label
1165
1168
  if self._sklearn_object._estimator_type == "classifier":
1166
1169
  # label columns is the desired type for output
1167
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1170
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1168
1171
  # rename the output columns
1169
1172
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1170
1173
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class RadiusNeighborsRegressor(BaseTransformer):
61
64
  r"""Regression based on neighbors within a fixed radius
62
65
  For more details on this class, see [sklearn.neighbors.RadiusNeighborsRegressor]
@@ -480,7 +483,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
480
483
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
481
484
  expected_dtype = "array"
482
485
  else:
483
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
486
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
484
487
  # We can only infer the output types from the input types if the following two statemetns are true:
485
488
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
486
489
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1137,7 +1140,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
1137
1140
 
1138
1141
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1139
1142
 
1140
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1143
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1141
1144
  outputs: List[BaseFeatureSpec] = []
1142
1145
  if hasattr(self, "predict"):
1143
1146
  # keep mypy happy
@@ -1145,7 +1148,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
1145
1148
  # For classifier, the type of predict is the same as the type of label
1146
1149
  if self._sklearn_object._estimator_type == "classifier":
1147
1150
  # label columns is the desired type for output
1148
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1151
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1149
1152
  # rename the output columns
1150
1153
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1151
1154
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace(
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class BernoulliRBM(BaseTransformer):
61
64
  r"""Bernoulli Restricted Boltzmann Machine (RBM)
62
65
  For more details on this class, see [sklearn.neural_network.BernoulliRBM]
@@ -439,7 +442,7 @@ class BernoulliRBM(BaseTransformer):
439
442
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
440
443
  expected_dtype = "array"
441
444
  else:
442
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
445
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
443
446
  # We can only infer the output types from the input types if the following two statemetns are true:
444
447
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
445
448
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1098,7 +1101,7 @@ class BernoulliRBM(BaseTransformer):
1098
1101
 
1099
1102
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1100
1103
 
1101
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1104
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1102
1105
  outputs: List[BaseFeatureSpec] = []
1103
1106
  if hasattr(self, "predict"):
1104
1107
  # keep mypy happy
@@ -1106,7 +1109,7 @@ class BernoulliRBM(BaseTransformer):
1106
1109
  # For classifier, the type of predict is the same as the type of label
1107
1110
  if self._sklearn_object._estimator_type == "classifier":
1108
1111
  # label columns is the desired type for output
1109
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1112
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1110
1113
  # rename the output columns
1111
1114
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1112
1115
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace(
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class MLPClassifier(BaseTransformer):
61
64
  r"""Multi-layer Perceptron classifier
62
65
  For more details on this class, see [sklearn.neural_network.MLPClassifier]
@@ -598,7 +601,7 @@ class MLPClassifier(BaseTransformer):
598
601
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
599
602
  expected_dtype = "array"
600
603
  else:
601
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
604
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
602
605
  # We can only infer the output types from the input types if the following two statemetns are true:
603
606
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
604
607
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1259,7 +1262,7 @@ class MLPClassifier(BaseTransformer):
1259
1262
 
1260
1263
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1261
1264
 
1262
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1265
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1263
1266
  outputs: List[BaseFeatureSpec] = []
1264
1267
  if hasattr(self, "predict"):
1265
1268
  # keep mypy happy
@@ -1267,7 +1270,7 @@ class MLPClassifier(BaseTransformer):
1267
1270
  # For classifier, the type of predict is the same as the type of label
1268
1271
  if self._sklearn_object._estimator_type == "classifier":
1269
1272
  # label columns is the desired type for output
1270
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1273
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1271
1274
  # rename the output columns
1272
1275
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1273
1276
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace(
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class MLPRegressor(BaseTransformer):
61
64
  r"""Multi-layer Perceptron regressor
62
65
  For more details on this class, see [sklearn.neural_network.MLPRegressor]
@@ -591,7 +594,7 @@ class MLPRegressor(BaseTransformer):
591
594
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
592
595
  expected_dtype = "array"
593
596
  else:
594
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
597
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
595
598
  # We can only infer the output types from the input types if the following two statemetns are true:
596
599
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
597
600
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1248,7 +1251,7 @@ class MLPRegressor(BaseTransformer):
1248
1251
 
1249
1252
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1250
1253
 
1251
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1254
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1252
1255
  outputs: List[BaseFeatureSpec] = []
1253
1256
  if hasattr(self, "predict"):
1254
1257
  # keep mypy happy
@@ -1256,7 +1259,7 @@ class MLPRegressor(BaseTransformer):
1256
1259
  # For classifier, the type of predict is the same as the type of label
1257
1260
  if self._sklearn_object._estimator_type == "classifier":
1258
1261
  # label columns is the desired type for output
1259
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1262
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1260
1263
  # rename the output columns
1261
1264
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1262
1265
  self._model_signature_dict["predict"] = ModelSignature(
@@ -20,7 +20,11 @@ from snowflake.ml._internal.exceptions import error_codes, exceptions
20
20
  from snowflake.ml._internal.lineage import lineage_utils
21
21
  from snowflake.ml._internal.utils import snowpark_dataframe_utils, temp_file_utils
22
22
  from snowflake.ml.data import data_source
23
- from snowflake.ml.model.model_signature import ModelSignature, _infer_signature
23
+ from snowflake.ml.model.model_signature import (
24
+ ModelSignature,
25
+ _infer_signature,
26
+ _truncate_data,
27
+ )
24
28
  from snowflake.ml.modeling._internal.model_transformer_builder import (
25
29
  ModelTransformerBuilder,
26
30
  )
@@ -31,6 +35,8 @@ from snowflake.snowpark._internal import utils as snowpark_utils
31
35
  _PROJECT = "ModelDevelopment"
32
36
  _SUBPROJECT = "Framework"
33
37
 
38
+ INFER_SIGNATURE_MAX_ROWS = 100
39
+
34
40
 
35
41
  def _final_step_has(attr: str) -> Callable[..., bool]:
36
42
  """Check that final_estimator has `attr`. Used together with `available_if` in `Pipeline`."""
@@ -885,7 +891,9 @@ class Pipeline(base.BaseTransformer):
885
891
  self._model_signature_dict = dict()
886
892
 
887
893
  input_columns = self._get_sanitized_list_of_columns(dataset.columns)
888
- inputs_signature = _infer_signature(dataset[input_columns], "input", use_snowflake_identifiers=True)
894
+ inputs_signature = _infer_signature(
895
+ _truncate_data(dataset[input_columns], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True
896
+ )
889
897
 
890
898
  estimator_step = self._get_estimator()
891
899
  if estimator_step:
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.preprocessing".replace("
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class PolynomialFeatures(BaseTransformer):
61
64
  r"""Generate polynomial and interaction features
62
65
  For more details on this class, see [sklearn.preprocessing.PolynomialFeatures]
@@ -429,7 +432,7 @@ class PolynomialFeatures(BaseTransformer):
429
432
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
430
433
  expected_dtype = "array"
431
434
  else:
432
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
435
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
433
436
  # We can only infer the output types from the input types if the following two statemetns are true:
434
437
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
435
438
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1086,7 +1089,7 @@ class PolynomialFeatures(BaseTransformer):
1086
1089
 
1087
1090
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1088
1091
 
1089
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1092
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1090
1093
  outputs: List[BaseFeatureSpec] = []
1091
1094
  if hasattr(self, "predict"):
1092
1095
  # keep mypy happy
@@ -1094,7 +1097,7 @@ class PolynomialFeatures(BaseTransformer):
1094
1097
  # For classifier, the type of predict is the same as the type of label
1095
1098
  if self._sklearn_object._estimator_type == "classifier":
1096
1099
  # label columns is the desired type for output
1097
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1100
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1098
1101
  # rename the output columns
1099
1102
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1100
1103
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.semi_supervised".replace
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class LabelPropagation(BaseTransformer):
61
64
  r"""Label Propagation classifier
62
65
  For more details on this class, see [sklearn.semi_supervised.LabelPropagation]
@@ -433,7 +436,7 @@ class LabelPropagation(BaseTransformer):
433
436
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
434
437
  expected_dtype = "array"
435
438
  else:
436
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
439
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
437
440
  # We can only infer the output types from the input types if the following two statemetns are true:
438
441
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
439
442
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1094,7 +1097,7 @@ class LabelPropagation(BaseTransformer):
1094
1097
 
1095
1098
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1096
1099
 
1097
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1100
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1098
1101
  outputs: List[BaseFeatureSpec] = []
1099
1102
  if hasattr(self, "predict"):
1100
1103
  # keep mypy happy
@@ -1102,7 +1105,7 @@ class LabelPropagation(BaseTransformer):
1102
1105
  # For classifier, the type of predict is the same as the type of label
1103
1106
  if self._sklearn_object._estimator_type == "classifier":
1104
1107
  # label columns is the desired type for output
1105
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1108
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1106
1109
  # rename the output columns
1107
1110
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1108
1111
  self._model_signature_dict["predict"] = ModelSignature(
@@ -37,6 +37,7 @@ from snowflake.ml.model.model_signature import (
37
37
  FeatureSpec,
38
38
  ModelSignature,
39
39
  _infer_signature,
40
+ _truncate_data,
40
41
  _rename_signature_with_snowflake_identifiers,
41
42
  )
42
43
 
@@ -57,6 +58,8 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.semi_supervised".replace
57
58
 
58
59
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
59
60
 
61
+ INFER_SIGNATURE_MAX_ROWS = 100
62
+
60
63
  class LabelSpreading(BaseTransformer):
61
64
  r"""LabelSpreading model for semi-supervised learning
62
65
  For more details on this class, see [sklearn.semi_supervised.LabelSpreading]
@@ -442,7 +445,7 @@ class LabelSpreading(BaseTransformer):
442
445
  elif hasattr(self._sklearn_object, "n_components") and getattr(self._sklearn_object, "n_components") != len(self.output_cols):
443
446
  expected_dtype = "array"
444
447
  else:
445
- output_types = [signature.as_snowpark_type() for signature in _infer_signature(dataset[self.input_cols], "output", use_snowflake_identifiers=True)]
448
+ output_types = [signature.as_snowpark_type() for signature in _infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True)]
446
449
  # We can only infer the output types from the input types if the following two statemetns are true:
447
450
  # 1) All of the output types are the same. Otherwise, we still have to fall back to variant because `_sklearn_inference` only accepts one type.
448
451
  # 2) The length of the input columns equals the length of the output columns. Otherwise the transform will likely result in an `ARRAY`.
@@ -1103,7 +1106,7 @@ class LabelSpreading(BaseTransformer):
1103
1106
 
1104
1107
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1105
1108
 
1106
- inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1109
+ inputs = list(_infer_signature(_truncate_data(dataset[self.input_cols], INFER_SIGNATURE_MAX_ROWS), "input", use_snowflake_identifiers=True))
1107
1110
  outputs: List[BaseFeatureSpec] = []
1108
1111
  if hasattr(self, "predict"):
1109
1112
  # keep mypy happy
@@ -1111,7 +1114,7 @@ class LabelSpreading(BaseTransformer):
1111
1114
  # For classifier, the type of predict is the same as the type of label
1112
1115
  if self._sklearn_object._estimator_type == "classifier":
1113
1116
  # label columns is the desired type for output
1114
- outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1117
+ outputs = list(_infer_signature(_truncate_data(dataset[self.label_cols], INFER_SIGNATURE_MAX_ROWS), "output", use_snowflake_identifiers=True))
1115
1118
  # rename the output columns
1116
1119
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1117
1120
  self._model_signature_dict["predict"] = ModelSignature(