shaped 2.0.0__py3-none-any.whl → 2.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (323) hide show
  1. shaped/__init__.py +54 -4
  2. shaped/autogen/__init__.py +541 -66
  3. shaped/autogen/api/__init__.py +4 -3
  4. shaped/autogen/api/engine_api.py +1467 -0
  5. shaped/autogen/api/{dataset_api.py → query_api.py} +219 -194
  6. shaped/autogen/api/table_api.py +1494 -0
  7. shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
  8. shaped/autogen/api_client.py +15 -8
  9. shaped/autogen/configuration.py +20 -9
  10. shaped/autogen/exceptions.py +19 -2
  11. shaped/autogen/models/__init__.py +254 -52
  12. shaped/autogen/models/ai_enrichment_view_config.py +123 -0
  13. shaped/autogen/models/{path.py → algorithm.py} +19 -19
  14. shaped/autogen/models/amplitude_table_config.py +106 -0
  15. shaped/autogen/models/ascending.py +136 -0
  16. shaped/autogen/models/attn_dropout_prob.py +136 -0
  17. shaped/autogen/models/attribute_journey.py +124 -0
  18. shaped/autogen/models/attribute_value.py +178 -0
  19. shaped/autogen/models/autoscaling_config.py +95 -0
  20. shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
  21. shaped/autogen/models/batch_size.py +136 -0
  22. shaped/autogen/models/batch_size1.py +136 -0
  23. shaped/autogen/models/batch_size2.py +136 -0
  24. shaped/autogen/models/big_query_table_config.py +147 -0
  25. shaped/autogen/models/bm25.py +136 -0
  26. shaped/autogen/models/boosted_reorder_step.py +125 -0
  27. shaped/autogen/models/canary_rollout.py +99 -0
  28. shaped/autogen/models/candidate_attributes_retrieve_step.py +126 -0
  29. shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
  30. shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
  31. shaped/autogen/models/clickhouse_table_config.py +146 -0
  32. shaped/autogen/models/column_order_retrieve_step.py +123 -0
  33. shaped/autogen/models/column_ordering.py +91 -0
  34. shaped/autogen/models/create_table_response.py +87 -0
  35. shaped/autogen/models/create_view_response.py +87 -0
  36. shaped/autogen/models/custom_table_config.py +135 -0
  37. shaped/autogen/models/data_compute_config.py +89 -0
  38. shaped/autogen/models/data_config.py +145 -0
  39. shaped/autogen/models/data_config_interaction_table.py +146 -0
  40. shaped/autogen/models/data_split_config.py +88 -0
  41. shaped/autogen/models/data_split_strategy.py +37 -0
  42. shaped/autogen/models/data_tier.py +37 -0
  43. shaped/autogen/models/default.py +246 -0
  44. shaped/autogen/models/delete_engine_response.py +87 -0
  45. shaped/autogen/models/delete_table_response.py +87 -0
  46. shaped/autogen/models/delete_view_response.py +87 -0
  47. shaped/autogen/models/deployment_config.py +123 -0
  48. shaped/autogen/models/distance_function.py +38 -0
  49. shaped/autogen/models/diversity_reorder_step.py +137 -0
  50. shaped/autogen/models/dropout_rate.py +136 -0
  51. shaped/autogen/models/dynamo_db_table_config.py +160 -0
  52. shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
  53. shaped/autogen/models/embedder_batch_size.py +136 -0
  54. shaped/autogen/models/embedding_config.py +93 -0
  55. shaped/autogen/models/embedding_dim.py +136 -0
  56. shaped/autogen/models/embedding_dims.py +136 -0
  57. shaped/autogen/models/embedding_size.py +136 -0
  58. shaped/autogen/models/encoder.py +140 -0
  59. shaped/autogen/models/encoding_pooling_strategy.py +38 -0
  60. shaped/autogen/models/engine.py +109 -0
  61. shaped/autogen/models/engine_config_v2.py +152 -0
  62. shaped/autogen/models/engine_details_response.py +120 -0
  63. shaped/autogen/models/engine_schema.py +113 -0
  64. shaped/autogen/models/engine_schema_user_inner.py +134 -0
  65. shaped/autogen/models/entity_config.py +109 -0
  66. shaped/autogen/models/entity_journey.py +152 -0
  67. shaped/autogen/models/entity_type.py +38 -0
  68. shaped/autogen/models/evaluation_config.py +92 -0
  69. shaped/autogen/models/exploration_reorder_step.py +125 -0
  70. shaped/autogen/models/expression_filter_step.py +106 -0
  71. shaped/autogen/models/factors.py +136 -0
  72. shaped/autogen/models/factors1.py +136 -0
  73. shaped/autogen/models/feature.py +90 -0
  74. shaped/autogen/models/feature_type.py +60 -0
  75. shaped/autogen/models/file_table_config.py +112 -0
  76. shaped/autogen/models/filter_config.py +99 -0
  77. shaped/autogen/models/filter_dataset.py +140 -0
  78. shaped/autogen/models/filter_index_type.py +36 -0
  79. shaped/autogen/models/filter_retrieve_step.py +113 -0
  80. shaped/autogen/models/global_filter.py +102 -0
  81. shaped/autogen/models/hidden_dropout_prob.py +136 -0
  82. shaped/autogen/models/hidden_size.py +136 -0
  83. shaped/autogen/models/hidden_size1.py +136 -0
  84. shaped/autogen/models/http_problem_response.py +115 -0
  85. shaped/autogen/models/http_validation_error.py +2 -2
  86. shaped/autogen/models/hugging_face_encoder.py +113 -0
  87. shaped/autogen/models/iceberg_table_config.py +154 -0
  88. shaped/autogen/models/index_config.py +101 -0
  89. shaped/autogen/models/inner_size.py +136 -0
  90. shaped/autogen/models/inner_size1.py +136 -0
  91. shaped/autogen/models/interaction_config.py +122 -0
  92. shaped/autogen/models/interaction_pooling_encoder.py +104 -0
  93. shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
  94. shaped/autogen/models/item_attribute_pooling_encoder.py +124 -0
  95. shaped/autogen/models/journey.py +140 -0
  96. shaped/autogen/models/kafka_table_config.py +129 -0
  97. shaped/autogen/models/kinesis_table_config.py +140 -0
  98. shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
  99. shaped/autogen/models/label.py +90 -0
  100. shaped/autogen/models/label_type.py +37 -0
  101. shaped/autogen/models/laplace_smoothing.py +136 -0
  102. shaped/autogen/models/latency_scaling_policy.py +112 -0
  103. shaped/autogen/models/learning_rate.py +136 -0
  104. shaped/autogen/models/learning_rate1.py +136 -0
  105. shaped/autogen/models/learning_rate2.py +136 -0
  106. shaped/autogen/models/learning_rate3.py +136 -0
  107. shaped/autogen/models/lexical_search_mode.py +99 -0
  108. shaped/autogen/models/list_engines_response.py +95 -0
  109. shaped/autogen/models/list_tables_response.py +95 -0
  110. shaped/autogen/models/list_views_response.py +95 -0
  111. shaped/autogen/models/loss_types.py +37 -0
  112. shaped/autogen/models/lr.py +136 -0
  113. shaped/autogen/models/lr1.py +136 -0
  114. shaped/autogen/models/lr2.py +136 -0
  115. shaped/autogen/models/max_depth.py +136 -0
  116. shaped/autogen/models/max_leaves.py +136 -0
  117. shaped/autogen/models/max_seq_length.py +136 -0
  118. shaped/autogen/models/max_seq_length1.py +136 -0
  119. shaped/autogen/models/max_seq_length2.py +136 -0
  120. shaped/autogen/models/mode.py +134 -0
  121. shaped/autogen/models/mode1.py +134 -0
  122. shaped/autogen/models/mode2.py +136 -0
  123. shaped/autogen/models/mongo_db_table_config.py +147 -0
  124. shaped/autogen/models/mssql_table_config.py +155 -0
  125. shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
  126. shaped/autogen/models/n_epochs.py +136 -0
  127. shaped/autogen/models/n_epochs1.py +136 -0
  128. shaped/autogen/models/n_epochs2.py +136 -0
  129. shaped/autogen/models/n_estimators.py +136 -0
  130. shaped/autogen/models/n_heads.py +136 -0
  131. shaped/autogen/models/n_layers.py +136 -0
  132. shaped/autogen/models/neg_per_positive.py +136 -0
  133. shaped/autogen/models/negative_samples_count.py +136 -0
  134. shaped/autogen/models/ngram_tokenizer.py +103 -0
  135. shaped/autogen/models/no_op_config.py +117 -0
  136. shaped/autogen/models/num_blocks.py +136 -0
  137. shaped/autogen/models/num_heads.py +136 -0
  138. shaped/autogen/models/num_leaves.py +136 -0
  139. shaped/autogen/models/objective.py +40 -0
  140. shaped/autogen/models/objective1.py +134 -0
  141. shaped/autogen/models/online_store_config.py +89 -0
  142. shaped/autogen/models/pagination_config.py +87 -0
  143. shaped/autogen/models/parameter_definition.py +96 -0
  144. shaped/autogen/models/parameters_value.py +240 -0
  145. shaped/autogen/models/passthrough_score.py +104 -0
  146. shaped/autogen/models/personal_filter.py +104 -0
  147. shaped/autogen/models/pipeline_stage_explanation.py +118 -0
  148. shaped/autogen/models/policy.py +134 -0
  149. shaped/autogen/models/pool_fn.py +134 -0
  150. shaped/autogen/models/pooling_function.py +37 -0
  151. shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
  152. shaped/autogen/models/posthog_table_config.py +133 -0
  153. shaped/autogen/models/prebuilt_filter_step.py +113 -0
  154. shaped/autogen/models/precomputed_item_embedding.py +99 -0
  155. shaped/autogen/models/precomputed_user_embedding.py +99 -0
  156. shaped/autogen/models/query.py +136 -0
  157. shaped/autogen/models/query1.py +136 -0
  158. shaped/autogen/models/query_any_of.py +140 -0
  159. shaped/autogen/models/query_definition.py +106 -0
  160. shaped/autogen/models/query_encoder.py +194 -0
  161. shaped/autogen/models/query_explanation.py +197 -0
  162. shaped/autogen/models/query_request.py +121 -0
  163. shaped/autogen/models/query_result.py +113 -0
  164. shaped/autogen/models/query_table_config.py +99 -0
  165. shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
  166. shaped/autogen/models/rank_query_config.py +167 -0
  167. shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
  168. shaped/autogen/models/rank_query_config_reorder_inner.py +149 -0
  169. shaped/autogen/models/rank_query_config_retrieve_inner.py +196 -0
  170. shaped/autogen/models/recreate_rollout.py +97 -0
  171. shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
  172. shaped/autogen/models/reference_table_config.py +113 -0
  173. shaped/autogen/models/regularization.py +136 -0
  174. shaped/autogen/models/request.py +378 -0
  175. shaped/autogen/models/request1.py +140 -0
  176. shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
  177. shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
  178. shaped/autogen/models/result.py +145 -0
  179. shaped/autogen/models/result_embeddings_value.py +127 -0
  180. shaped/autogen/models/retriever.py +196 -0
  181. shaped/autogen/models/retriever1.py +196 -0
  182. shaped/autogen/models/rollout_config.py +91 -0
  183. shaped/autogen/models/rudderstack_table_config.py +106 -0
  184. shaped/autogen/models/sampling_strategy.py +36 -0
  185. shaped/autogen/models/saved_query_info_response.py +89 -0
  186. shaped/autogen/models/saved_query_list_response.py +87 -0
  187. shaped/autogen/models/saved_query_request.py +115 -0
  188. shaped/autogen/models/schema_config.py +117 -0
  189. shaped/autogen/models/score.py +134 -0
  190. shaped/autogen/models/score_ensemble.py +140 -0
  191. shaped/autogen/models/score_ensemble_policy_config.py +141 -0
  192. shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +422 -0
  193. shaped/autogen/models/search_config.py +105 -0
  194. shaped/autogen/models/segment_table_config.py +106 -0
  195. shaped/autogen/models/sequence_length.py +136 -0
  196. shaped/autogen/models/server_config.py +87 -0
  197. shaped/autogen/models/setup_engine_response.py +87 -0
  198. shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +148 -0
  199. shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +154 -0
  200. shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +209 -0
  201. shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +137 -0
  202. shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +139 -0
  203. shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +205 -0
  204. shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
  205. shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +152 -0
  206. shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +239 -0
  207. shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
  208. shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +137 -0
  209. shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +104 -0
  210. shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +130 -0
  211. shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
  212. shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +224 -0
  213. shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
  214. shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +159 -0
  215. shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +131 -0
  216. shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +131 -0
  217. shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +149 -0
  218. shaped/autogen/models/shopify_table_config.py +156 -0
  219. shaped/autogen/models/similarity_retrieve_step.py +121 -0
  220. shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
  221. shaped/autogen/models/sql_transform_type.py +37 -0
  222. shaped/autogen/models/sql_view_config.py +111 -0
  223. shaped/autogen/models/stemmer_tokenizer.py +105 -0
  224. shaped/autogen/models/step_explanation.py +137 -0
  225. shaped/autogen/models/strategy.py +134 -0
  226. shaped/autogen/models/table.py +102 -0
  227. shaped/autogen/models/table_deployment_type.py +38 -0
  228. shaped/autogen/models/table_insert_arguments.py +87 -0
  229. shaped/autogen/models/table_insert_response.py +87 -0
  230. shaped/autogen/models/text_encoding.py +136 -0
  231. shaped/autogen/models/text_search_retrieve_step.py +121 -0
  232. shaped/autogen/models/time_frequency.py +136 -0
  233. shaped/autogen/models/time_window.py +136 -0
  234. shaped/autogen/models/time_window_in_days.py +142 -0
  235. shaped/autogen/models/tokenizer.py +149 -0
  236. shaped/autogen/models/trained_model_encoder.py +99 -0
  237. shaped/autogen/models/training_compute_config.py +99 -0
  238. shaped/autogen/models/training_config.py +121 -0
  239. shaped/autogen/models/training_config_models_inner.py +308 -0
  240. shaped/autogen/models/training_strategy.py +37 -0
  241. shaped/autogen/models/trending_mode.py +37 -0
  242. shaped/autogen/models/truncate_filter_step.py +106 -0
  243. shaped/autogen/models/tunable_bool.py +97 -0
  244. shaped/autogen/models/tunable_float.py +118 -0
  245. shaped/autogen/models/tunable_int.py +118 -0
  246. shaped/autogen/models/tunable_int_categorical.py +99 -0
  247. shaped/autogen/models/tunable_string.py +99 -0
  248. shaped/autogen/models/tuning_config.py +89 -0
  249. shaped/autogen/models/type.py +134 -0
  250. shaped/autogen/models/update_table_response.py +87 -0
  251. shaped/autogen/models/update_view_response.py +87 -0
  252. shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
  253. shaped/autogen/models/val_split.py +136 -0
  254. shaped/autogen/models/validation_error.py +13 -3
  255. shaped/autogen/models/validation_error_loc_inner.py +138 -0
  256. shaped/autogen/models/value_type.py +7 -5
  257. shaped/autogen/models/vector_search_mode.py +99 -0
  258. shaped/autogen/models/view.py +104 -0
  259. shaped/autogen/models/view_details_ai.py +140 -0
  260. shaped/autogen/models/view_details_ai_schema_value.py +153 -0
  261. shaped/autogen/models/view_details_sql.py +140 -0
  262. shaped/autogen/models/view_status.py +41 -0
  263. shaped/autogen/models/weight_decay.py +136 -0
  264. shaped/autogen/models/whitespace_tokenizer.py +97 -0
  265. shaped/autogen/models/window_size.py +136 -0
  266. shaped/autogen/rest.py +8 -2
  267. shaped/cli/shaped_cli.py +12 -7
  268. shaped/client.py +587 -174
  269. shaped/config_builders.py +695 -0
  270. shaped/query_builder.py +774 -0
  271. {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/METADATA +119 -56
  272. shaped-2.0.2.dist-info/RECORD +278 -0
  273. shaped-2.0.2.dist-info/entry_points.txt +2 -0
  274. shaped/autogen/api/model_inference_api.py +0 -2825
  275. shaped/autogen/models/amplitude_dataset_config.py +0 -96
  276. shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
  277. shaped/autogen/models/big_query_dataset_config.py +0 -114
  278. shaped/autogen/models/complement_items_request.py +0 -99
  279. shaped/autogen/models/complement_items_response.py +0 -89
  280. shaped/autogen/models/connectors_inner.py +0 -134
  281. shaped/autogen/models/create_dataset_arguments.py +0 -263
  282. shaped/autogen/models/create_embedding_response.py +0 -87
  283. shaped/autogen/models/create_item_embedding_request.py +0 -89
  284. shaped/autogen/models/create_model_arguments.py +0 -107
  285. shaped/autogen/models/create_model_response.py +0 -87
  286. shaped/autogen/models/create_user_embedding_request.py +0 -89
  287. shaped/autogen/models/custom_dataset_config.py +0 -115
  288. shaped/autogen/models/dataset_config.py +0 -101
  289. shaped/autogen/models/dataset_schema_type.py +0 -47
  290. shaped/autogen/models/datasets_inner.py +0 -91
  291. shaped/autogen/models/delete_model_response.py +0 -87
  292. shaped/autogen/models/fetch_config.py +0 -95
  293. shaped/autogen/models/file_config.py +0 -105
  294. shaped/autogen/models/file_source_config.py +0 -89
  295. shaped/autogen/models/inference_config.py +0 -101
  296. shaped/autogen/models/insert_model_response.py +0 -87
  297. shaped/autogen/models/interaction.py +0 -87
  298. shaped/autogen/models/list_datasets_response.py +0 -95
  299. shaped/autogen/models/list_models_response.py +0 -95
  300. shaped/autogen/models/model_config.py +0 -99
  301. shaped/autogen/models/model_response.py +0 -95
  302. shaped/autogen/models/mongo_db_dataset_config.py +0 -119
  303. shaped/autogen/models/post_rank_request.py +0 -117
  304. shaped/autogen/models/rank_attribute_response.py +0 -89
  305. shaped/autogen/models/rank_grid_attribute_request.py +0 -91
  306. shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
  307. shaped/autogen/models/rank_grid_attribute_response.py +0 -91
  308. shaped/autogen/models/rank_response.py +0 -91
  309. shaped/autogen/models/retrieve_request.py +0 -101
  310. shaped/autogen/models/retrieve_response.py +0 -91
  311. shaped/autogen/models/retriever_top_k_override.py +0 -97
  312. shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
  313. shaped/autogen/models/segment_dataset_config.py +0 -96
  314. shaped/autogen/models/similar_item_request.py +0 -101
  315. shaped/autogen/models/similar_response.py +0 -89
  316. shaped/autogen/models/similar_users_request.py +0 -99
  317. shaped/autogen/models/successful_response.py +0 -87
  318. shaped/autogen/models/view_model_response.py +0 -99
  319. shaped-2.0.0.dist-info/RECORD +0 -73
  320. shaped-2.0.0.dist-info/entry_points.txt +0 -2
  321. {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/WHEEL +0 -0
  322. {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/top_level.txt +0 -0
  323. {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/zip-safe +0 -0
@@ -1,89 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictInt, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class CreateUserEmbeddingRequest(BaseModel):
26
- """
27
- CreateUserEmbeddingRequest
28
- """ # noqa: E501
29
- user_ids: List[StrictStr]
30
- dimension: Optional[StrictInt] = None
31
- __properties: ClassVar[List[str]] = ["user_ids", "dimension"]
32
-
33
- model_config = ConfigDict(
34
- populate_by_name=True,
35
- validate_assignment=True,
36
- protected_namespaces=(),
37
- )
38
-
39
-
40
- def to_str(self) -> str:
41
- """Returns the string representation of the model using alias"""
42
- return pprint.pformat(self.model_dump(by_alias=True))
43
-
44
- def to_json(self) -> str:
45
- """Returns the JSON representation of the model using alias"""
46
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
47
- return json.dumps(self.to_dict())
48
-
49
- @classmethod
50
- def from_json(cls, json_str: str) -> Optional[Self]:
51
- """Create an instance of CreateUserEmbeddingRequest from a JSON string"""
52
- return cls.from_dict(json.loads(json_str))
53
-
54
- def to_dict(self) -> Dict[str, Any]:
55
- """Return the dictionary representation of the model using alias.
56
-
57
- This has the following differences from calling pydantic's
58
- `self.model_dump(by_alias=True)`:
59
-
60
- * `None` is only added to the output dict for nullable fields that
61
- were set at model initialization. Other fields with value `None`
62
- are ignored.
63
- """
64
- excluded_fields: Set[str] = set([
65
- ])
66
-
67
- _dict = self.model_dump(
68
- by_alias=True,
69
- exclude=excluded_fields,
70
- exclude_none=True,
71
- )
72
- return _dict
73
-
74
- @classmethod
75
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
76
- """Create an instance of CreateUserEmbeddingRequest from a dict"""
77
- if obj is None:
78
- return None
79
-
80
- if not isinstance(obj, dict):
81
- return cls.model_validate(obj)
82
-
83
- _obj = cls.model_validate({
84
- "user_ids": obj.get("user_ids"),
85
- "dimension": obj.get("dimension")
86
- })
87
- return _obj
88
-
89
-
@@ -1,115 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr, field_validator
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from shaped.autogen.models.value_type import ValueType
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class CustomDatasetConfig(BaseModel):
27
- """
28
- CustomDatasetConfig
29
- """ # noqa: E501
30
- name: Optional[StrictStr] = None
31
- deploy_realtime: StrictBool
32
- tenant_aws_account_id: Optional[StrictStr] = None
33
- schedule_interval: Optional[StrictStr] = '@hourly'
34
- schema_type: StrictStr
35
- column_schema: Optional[Dict[str, ValueType]] = Field(default=None, description="Defines the schema for the dataset where the keys of the object are the data tables columns and the values are the data types. ")
36
- __properties: ClassVar[List[str]] = ["name", "deploy_realtime", "tenant_aws_account_id", "schedule_interval", "schema_type", "column_schema"]
37
-
38
- @field_validator('schema_type')
39
- def schema_type_validate_enum(cls, value):
40
- """Validates the enum"""
41
- if value not in set(['CUSTOM']):
42
- raise ValueError("must be one of enum values ('CUSTOM')")
43
- return value
44
-
45
- model_config = ConfigDict(
46
- populate_by_name=True,
47
- validate_assignment=True,
48
- protected_namespaces=(),
49
- )
50
-
51
-
52
- def to_str(self) -> str:
53
- """Returns the string representation of the model using alias"""
54
- return pprint.pformat(self.model_dump(by_alias=True))
55
-
56
- def to_json(self) -> str:
57
- """Returns the JSON representation of the model using alias"""
58
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
59
- return json.dumps(self.to_dict())
60
-
61
- @classmethod
62
- def from_json(cls, json_str: str) -> Optional[Self]:
63
- """Create an instance of CustomDatasetConfig from a JSON string"""
64
- return cls.from_dict(json.loads(json_str))
65
-
66
- def to_dict(self) -> Dict[str, Any]:
67
- """Return the dictionary representation of the model using alias.
68
-
69
- This has the following differences from calling pydantic's
70
- `self.model_dump(by_alias=True)`:
71
-
72
- * `None` is only added to the output dict for nullable fields that
73
- were set at model initialization. Other fields with value `None`
74
- are ignored.
75
- """
76
- excluded_fields: Set[str] = set([
77
- ])
78
-
79
- _dict = self.model_dump(
80
- by_alias=True,
81
- exclude=excluded_fields,
82
- exclude_none=True,
83
- )
84
- # set to None if tenant_aws_account_id (nullable) is None
85
- # and model_fields_set contains the field
86
- if self.tenant_aws_account_id is None and "tenant_aws_account_id" in self.model_fields_set:
87
- _dict['tenant_aws_account_id'] = None
88
-
89
- # set to None if column_schema (nullable) is None
90
- # and model_fields_set contains the field
91
- if self.column_schema is None and "column_schema" in self.model_fields_set:
92
- _dict['column_schema'] = None
93
-
94
- return _dict
95
-
96
- @classmethod
97
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
98
- """Create an instance of CustomDatasetConfig from a dict"""
99
- if obj is None:
100
- return None
101
-
102
- if not isinstance(obj, dict):
103
- return cls.model_validate(obj)
104
-
105
- _obj = cls.model_validate({
106
- "name": obj.get("name"),
107
- "deploy_realtime": obj.get("deploy_realtime") if obj.get("deploy_realtime") is not None else False,
108
- "tenant_aws_account_id": obj.get("tenant_aws_account_id"),
109
- "schedule_interval": obj.get("schedule_interval") if obj.get("schedule_interval") is not None else '@hourly',
110
- "schema_type": obj.get("schema_type"),
111
- "column_schema": dict((_k, _v) for _k, _v in obj.get("column_schema").items())
112
- })
113
- return _obj
114
-
115
-
@@ -1,101 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class DatasetConfig(BaseModel):
26
- """
27
- Creates a Shaped Dataset source that can be used in the fetch queries.
28
- """ # noqa: E501
29
- type: Optional[StrictStr] = 'Dataset'
30
- id: StrictStr
31
- name: StrictStr = Field(description="This is used to identify the dataset in the fetch queries.")
32
- __properties: ClassVar[List[str]] = ["type", "id", "name"]
33
-
34
- @field_validator('type')
35
- def type_validate_enum(cls, value):
36
- """Validates the enum"""
37
- if value is None:
38
- return value
39
-
40
- if value not in set(['Dataset']):
41
- raise ValueError("must be one of enum values ('Dataset')")
42
- return value
43
-
44
- model_config = ConfigDict(
45
- populate_by_name=True,
46
- validate_assignment=True,
47
- protected_namespaces=(),
48
- )
49
-
50
-
51
- def to_str(self) -> str:
52
- """Returns the string representation of the model using alias"""
53
- return pprint.pformat(self.model_dump(by_alias=True))
54
-
55
- def to_json(self) -> str:
56
- """Returns the JSON representation of the model using alias"""
57
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
58
- return json.dumps(self.to_dict())
59
-
60
- @classmethod
61
- def from_json(cls, json_str: str) -> Optional[Self]:
62
- """Create an instance of DatasetConfig from a JSON string"""
63
- return cls.from_dict(json.loads(json_str))
64
-
65
- def to_dict(self) -> Dict[str, Any]:
66
- """Return the dictionary representation of the model using alias.
67
-
68
- This has the following differences from calling pydantic's
69
- `self.model_dump(by_alias=True)`:
70
-
71
- * `None` is only added to the output dict for nullable fields that
72
- were set at model initialization. Other fields with value `None`
73
- are ignored.
74
- """
75
- excluded_fields: Set[str] = set([
76
- ])
77
-
78
- _dict = self.model_dump(
79
- by_alias=True,
80
- exclude=excluded_fields,
81
- exclude_none=True,
82
- )
83
- return _dict
84
-
85
- @classmethod
86
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
87
- """Create an instance of DatasetConfig from a dict"""
88
- if obj is None:
89
- return None
90
-
91
- if not isinstance(obj, dict):
92
- return cls.model_validate(obj)
93
-
94
- _obj = cls.model_validate({
95
- "type": obj.get("type") if obj.get("type") is not None else 'Dataset',
96
- "id": obj.get("id"),
97
- "name": obj.get("name")
98
- })
99
- return _obj
100
-
101
-
@@ -1,47 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import json
17
- from enum import Enum
18
- from typing_extensions import Self
19
-
20
-
21
- class DatasetSchemaType(str, Enum):
22
- """
23
- The schema type defines the type of the dataset. This is used to provision the correct data ingestion pipeline for the dataset.
24
- """
25
-
26
- """
27
- allowed enum values
28
- """
29
- BIGQUERY = 'BIGQUERY'
30
- MONGODB = 'MONGODB'
31
- SNOWFLAKE = 'SNOWFLAKE'
32
- POSTGRES = 'POSTGRES'
33
- MYSQL = 'MYSQL'
34
- SEGMENT = 'SEGMENT'
35
- RUDDERSTACK = 'RUDDERSTACK'
36
- AMPLITUDE = 'AMPLITUDE'
37
- AWS_PINPOINT = 'AWS_PINPOINT'
38
- REDSHIFT = 'REDSHIFT'
39
- KINESIS = 'KINESIS'
40
- CUSTOM = 'CUSTOM'
41
-
42
- @classmethod
43
- def from_json(cls, json_str: str) -> Self:
44
- """Create an instance of DatasetSchemaType from a JSON string"""
45
- return cls(json.loads(json_str))
46
-
47
-
@@ -1,91 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class DatasetsInner(BaseModel):
26
- """
27
- DatasetsInner
28
- """ # noqa: E501
29
- dataset_name: Optional[StrictStr] = None
30
- schema_type: Optional[StrictStr] = None
31
- status: Optional[StrictStr] = None
32
- __properties: ClassVar[List[str]] = ["dataset_name", "schema_type", "status"]
33
-
34
- model_config = ConfigDict(
35
- populate_by_name=True,
36
- validate_assignment=True,
37
- protected_namespaces=(),
38
- )
39
-
40
-
41
- def to_str(self) -> str:
42
- """Returns the string representation of the model using alias"""
43
- return pprint.pformat(self.model_dump(by_alias=True))
44
-
45
- def to_json(self) -> str:
46
- """Returns the JSON representation of the model using alias"""
47
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
48
- return json.dumps(self.to_dict())
49
-
50
- @classmethod
51
- def from_json(cls, json_str: str) -> Optional[Self]:
52
- """Create an instance of DatasetsInner from a JSON string"""
53
- return cls.from_dict(json.loads(json_str))
54
-
55
- def to_dict(self) -> Dict[str, Any]:
56
- """Return the dictionary representation of the model using alias.
57
-
58
- This has the following differences from calling pydantic's
59
- `self.model_dump(by_alias=True)`:
60
-
61
- * `None` is only added to the output dict for nullable fields that
62
- were set at model initialization. Other fields with value `None`
63
- are ignored.
64
- """
65
- excluded_fields: Set[str] = set([
66
- ])
67
-
68
- _dict = self.model_dump(
69
- by_alias=True,
70
- exclude=excluded_fields,
71
- exclude_none=True,
72
- )
73
- return _dict
74
-
75
- @classmethod
76
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
77
- """Create an instance of DatasetsInner from a dict"""
78
- if obj is None:
79
- return None
80
-
81
- if not isinstance(obj, dict):
82
- return cls.model_validate(obj)
83
-
84
- _obj = cls.model_validate({
85
- "dataset_name": obj.get("dataset_name"),
86
- "schema_type": obj.get("schema_type"),
87
- "status": obj.get("status")
88
- })
89
- return _obj
90
-
91
-
@@ -1,87 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class DeleteModelResponse(BaseModel):
26
- """
27
- DeleteModelResponse
28
- """ # noqa: E501
29
- message: Optional[StrictStr] = None
30
- __properties: ClassVar[List[str]] = ["message"]
31
-
32
- model_config = ConfigDict(
33
- populate_by_name=True,
34
- validate_assignment=True,
35
- protected_namespaces=(),
36
- )
37
-
38
-
39
- def to_str(self) -> str:
40
- """Returns the string representation of the model using alias"""
41
- return pprint.pformat(self.model_dump(by_alias=True))
42
-
43
- def to_json(self) -> str:
44
- """Returns the JSON representation of the model using alias"""
45
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
- return json.dumps(self.to_dict())
47
-
48
- @classmethod
49
- def from_json(cls, json_str: str) -> Optional[Self]:
50
- """Create an instance of DeleteModelResponse from a JSON string"""
51
- return cls.from_dict(json.loads(json_str))
52
-
53
- def to_dict(self) -> Dict[str, Any]:
54
- """Return the dictionary representation of the model using alias.
55
-
56
- This has the following differences from calling pydantic's
57
- `self.model_dump(by_alias=True)`:
58
-
59
- * `None` is only added to the output dict for nullable fields that
60
- were set at model initialization. Other fields with value `None`
61
- are ignored.
62
- """
63
- excluded_fields: Set[str] = set([
64
- ])
65
-
66
- _dict = self.model_dump(
67
- by_alias=True,
68
- exclude=excluded_fields,
69
- exclude_none=True,
70
- )
71
- return _dict
72
-
73
- @classmethod
74
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
- """Create an instance of DeleteModelResponse from a dict"""
76
- if obj is None:
77
- return None
78
-
79
- if not isinstance(obj, dict):
80
- return cls.model_validate(obj)
81
-
82
- _obj = cls.model_validate({
83
- "message": obj.get("message")
84
- })
85
- return _obj
86
-
87
-
@@ -1,95 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class FetchConfig(BaseModel):
26
- """
27
- The fetch queries describe the SQL transforms needed to retrieve the data from the connectors into the specified data views required by Shaped. All queries use DuckDB sequence and can reference the connector sources directly as: '... from {connector_id}.{table_id}'.
28
- """ # noqa: E501
29
- events: StrictStr = Field(description="Selects the events used to train your model. The selected sql view must have the following columns: user_id, item_id, label, created_at. Any other columns found are used as features. ")
30
- users: Optional[StrictStr] = Field(default=None, description="Selects the user attributes used to train your model. The selected sql view must have the following columns: user_id. Any other columns found are used as features. ")
31
- items: Optional[StrictStr] = Field(default=None, description="Selects the items attributes used to train your model and used when ranking. The selected sql view must have the following columns: item_id. Any other columns found are used as features. ")
32
- global_filters: Optional[StrictStr] = Field(default=None, description="Selects the items that should be filtered out when ranking for all requests. The selected sql view must have the following columns: item_id. ")
33
- personal_filters: Optional[StrictStr] = Field(default=None, description="Selects user and item pairs that will be filtered out when ranking. The selected sql view must have the following columns: item_id, user_id. ")
34
- __properties: ClassVar[List[str]] = ["events", "users", "items", "global_filters", "personal_filters"]
35
-
36
- model_config = ConfigDict(
37
- populate_by_name=True,
38
- validate_assignment=True,
39
- protected_namespaces=(),
40
- )
41
-
42
-
43
- def to_str(self) -> str:
44
- """Returns the string representation of the model using alias"""
45
- return pprint.pformat(self.model_dump(by_alias=True))
46
-
47
- def to_json(self) -> str:
48
- """Returns the JSON representation of the model using alias"""
49
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
50
- return json.dumps(self.to_dict())
51
-
52
- @classmethod
53
- def from_json(cls, json_str: str) -> Optional[Self]:
54
- """Create an instance of FetchConfig from a JSON string"""
55
- return cls.from_dict(json.loads(json_str))
56
-
57
- def to_dict(self) -> Dict[str, Any]:
58
- """Return the dictionary representation of the model using alias.
59
-
60
- This has the following differences from calling pydantic's
61
- `self.model_dump(by_alias=True)`:
62
-
63
- * `None` is only added to the output dict for nullable fields that
64
- were set at model initialization. Other fields with value `None`
65
- are ignored.
66
- """
67
- excluded_fields: Set[str] = set([
68
- ])
69
-
70
- _dict = self.model_dump(
71
- by_alias=True,
72
- exclude=excluded_fields,
73
- exclude_none=True,
74
- )
75
- return _dict
76
-
77
- @classmethod
78
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
79
- """Create an instance of FetchConfig from a dict"""
80
- if obj is None:
81
- return None
82
-
83
- if not isinstance(obj, dict):
84
- return cls.model_validate(obj)
85
-
86
- _obj = cls.model_validate({
87
- "events": obj.get("events"),
88
- "users": obj.get("users"),
89
- "items": obj.get("items"),
90
- "global_filters": obj.get("global_filters"),
91
- "personal_filters": obj.get("personal_filters")
92
- })
93
- return _obj
94
-
95
-