shaped 2.0.0__py3-none-any.whl → 2.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- shaped/__init__.py +54 -4
- shaped/autogen/__init__.py +541 -66
- shaped/autogen/api/__init__.py +4 -3
- shaped/autogen/api/engine_api.py +1467 -0
- shaped/autogen/api/{dataset_api.py → query_api.py} +219 -194
- shaped/autogen/api/table_api.py +1494 -0
- shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
- shaped/autogen/api_client.py +15 -8
- shaped/autogen/configuration.py +20 -9
- shaped/autogen/exceptions.py +19 -2
- shaped/autogen/models/__init__.py +254 -52
- shaped/autogen/models/ai_enrichment_view_config.py +123 -0
- shaped/autogen/models/{path.py → algorithm.py} +19 -19
- shaped/autogen/models/amplitude_table_config.py +106 -0
- shaped/autogen/models/ascending.py +136 -0
- shaped/autogen/models/attn_dropout_prob.py +136 -0
- shaped/autogen/models/attribute_journey.py +124 -0
- shaped/autogen/models/attribute_value.py +178 -0
- shaped/autogen/models/autoscaling_config.py +95 -0
- shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
- shaped/autogen/models/batch_size.py +136 -0
- shaped/autogen/models/batch_size1.py +136 -0
- shaped/autogen/models/batch_size2.py +136 -0
- shaped/autogen/models/big_query_table_config.py +147 -0
- shaped/autogen/models/bm25.py +136 -0
- shaped/autogen/models/boosted_reorder_step.py +125 -0
- shaped/autogen/models/canary_rollout.py +99 -0
- shaped/autogen/models/candidate_attributes_retrieve_step.py +126 -0
- shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
- shaped/autogen/models/clickhouse_table_config.py +146 -0
- shaped/autogen/models/column_order_retrieve_step.py +123 -0
- shaped/autogen/models/column_ordering.py +91 -0
- shaped/autogen/models/create_table_response.py +87 -0
- shaped/autogen/models/create_view_response.py +87 -0
- shaped/autogen/models/custom_table_config.py +135 -0
- shaped/autogen/models/data_compute_config.py +89 -0
- shaped/autogen/models/data_config.py +145 -0
- shaped/autogen/models/data_config_interaction_table.py +146 -0
- shaped/autogen/models/data_split_config.py +88 -0
- shaped/autogen/models/data_split_strategy.py +37 -0
- shaped/autogen/models/data_tier.py +37 -0
- shaped/autogen/models/default.py +246 -0
- shaped/autogen/models/delete_engine_response.py +87 -0
- shaped/autogen/models/delete_table_response.py +87 -0
- shaped/autogen/models/delete_view_response.py +87 -0
- shaped/autogen/models/deployment_config.py +123 -0
- shaped/autogen/models/distance_function.py +38 -0
- shaped/autogen/models/diversity_reorder_step.py +137 -0
- shaped/autogen/models/dropout_rate.py +136 -0
- shaped/autogen/models/dynamo_db_table_config.py +160 -0
- shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
- shaped/autogen/models/embedder_batch_size.py +136 -0
- shaped/autogen/models/embedding_config.py +93 -0
- shaped/autogen/models/embedding_dim.py +136 -0
- shaped/autogen/models/embedding_dims.py +136 -0
- shaped/autogen/models/embedding_size.py +136 -0
- shaped/autogen/models/encoder.py +140 -0
- shaped/autogen/models/encoding_pooling_strategy.py +38 -0
- shaped/autogen/models/engine.py +109 -0
- shaped/autogen/models/engine_config_v2.py +152 -0
- shaped/autogen/models/engine_details_response.py +120 -0
- shaped/autogen/models/engine_schema.py +113 -0
- shaped/autogen/models/engine_schema_user_inner.py +134 -0
- shaped/autogen/models/entity_config.py +109 -0
- shaped/autogen/models/entity_journey.py +152 -0
- shaped/autogen/models/entity_type.py +38 -0
- shaped/autogen/models/evaluation_config.py +92 -0
- shaped/autogen/models/exploration_reorder_step.py +125 -0
- shaped/autogen/models/expression_filter_step.py +106 -0
- shaped/autogen/models/factors.py +136 -0
- shaped/autogen/models/factors1.py +136 -0
- shaped/autogen/models/feature.py +90 -0
- shaped/autogen/models/feature_type.py +60 -0
- shaped/autogen/models/file_table_config.py +112 -0
- shaped/autogen/models/filter_config.py +99 -0
- shaped/autogen/models/filter_dataset.py +140 -0
- shaped/autogen/models/filter_index_type.py +36 -0
- shaped/autogen/models/filter_retrieve_step.py +113 -0
- shaped/autogen/models/global_filter.py +102 -0
- shaped/autogen/models/hidden_dropout_prob.py +136 -0
- shaped/autogen/models/hidden_size.py +136 -0
- shaped/autogen/models/hidden_size1.py +136 -0
- shaped/autogen/models/http_problem_response.py +115 -0
- shaped/autogen/models/http_validation_error.py +2 -2
- shaped/autogen/models/hugging_face_encoder.py +113 -0
- shaped/autogen/models/iceberg_table_config.py +154 -0
- shaped/autogen/models/index_config.py +101 -0
- shaped/autogen/models/inner_size.py +136 -0
- shaped/autogen/models/inner_size1.py +136 -0
- shaped/autogen/models/interaction_config.py +122 -0
- shaped/autogen/models/interaction_pooling_encoder.py +104 -0
- shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
- shaped/autogen/models/item_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/journey.py +140 -0
- shaped/autogen/models/kafka_table_config.py +129 -0
- shaped/autogen/models/kinesis_table_config.py +140 -0
- shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
- shaped/autogen/models/label.py +90 -0
- shaped/autogen/models/label_type.py +37 -0
- shaped/autogen/models/laplace_smoothing.py +136 -0
- shaped/autogen/models/latency_scaling_policy.py +112 -0
- shaped/autogen/models/learning_rate.py +136 -0
- shaped/autogen/models/learning_rate1.py +136 -0
- shaped/autogen/models/learning_rate2.py +136 -0
- shaped/autogen/models/learning_rate3.py +136 -0
- shaped/autogen/models/lexical_search_mode.py +99 -0
- shaped/autogen/models/list_engines_response.py +95 -0
- shaped/autogen/models/list_tables_response.py +95 -0
- shaped/autogen/models/list_views_response.py +95 -0
- shaped/autogen/models/loss_types.py +37 -0
- shaped/autogen/models/lr.py +136 -0
- shaped/autogen/models/lr1.py +136 -0
- shaped/autogen/models/lr2.py +136 -0
- shaped/autogen/models/max_depth.py +136 -0
- shaped/autogen/models/max_leaves.py +136 -0
- shaped/autogen/models/max_seq_length.py +136 -0
- shaped/autogen/models/max_seq_length1.py +136 -0
- shaped/autogen/models/max_seq_length2.py +136 -0
- shaped/autogen/models/mode.py +134 -0
- shaped/autogen/models/mode1.py +134 -0
- shaped/autogen/models/mode2.py +136 -0
- shaped/autogen/models/mongo_db_table_config.py +147 -0
- shaped/autogen/models/mssql_table_config.py +155 -0
- shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
- shaped/autogen/models/n_epochs.py +136 -0
- shaped/autogen/models/n_epochs1.py +136 -0
- shaped/autogen/models/n_epochs2.py +136 -0
- shaped/autogen/models/n_estimators.py +136 -0
- shaped/autogen/models/n_heads.py +136 -0
- shaped/autogen/models/n_layers.py +136 -0
- shaped/autogen/models/neg_per_positive.py +136 -0
- shaped/autogen/models/negative_samples_count.py +136 -0
- shaped/autogen/models/ngram_tokenizer.py +103 -0
- shaped/autogen/models/no_op_config.py +117 -0
- shaped/autogen/models/num_blocks.py +136 -0
- shaped/autogen/models/num_heads.py +136 -0
- shaped/autogen/models/num_leaves.py +136 -0
- shaped/autogen/models/objective.py +40 -0
- shaped/autogen/models/objective1.py +134 -0
- shaped/autogen/models/online_store_config.py +89 -0
- shaped/autogen/models/pagination_config.py +87 -0
- shaped/autogen/models/parameter_definition.py +96 -0
- shaped/autogen/models/parameters_value.py +240 -0
- shaped/autogen/models/passthrough_score.py +104 -0
- shaped/autogen/models/personal_filter.py +104 -0
- shaped/autogen/models/pipeline_stage_explanation.py +118 -0
- shaped/autogen/models/policy.py +134 -0
- shaped/autogen/models/pool_fn.py +134 -0
- shaped/autogen/models/pooling_function.py +37 -0
- shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
- shaped/autogen/models/posthog_table_config.py +133 -0
- shaped/autogen/models/prebuilt_filter_step.py +113 -0
- shaped/autogen/models/precomputed_item_embedding.py +99 -0
- shaped/autogen/models/precomputed_user_embedding.py +99 -0
- shaped/autogen/models/query.py +136 -0
- shaped/autogen/models/query1.py +136 -0
- shaped/autogen/models/query_any_of.py +140 -0
- shaped/autogen/models/query_definition.py +106 -0
- shaped/autogen/models/query_encoder.py +194 -0
- shaped/autogen/models/query_explanation.py +197 -0
- shaped/autogen/models/query_request.py +121 -0
- shaped/autogen/models/query_result.py +113 -0
- shaped/autogen/models/query_table_config.py +99 -0
- shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
- shaped/autogen/models/rank_query_config.py +167 -0
- shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
- shaped/autogen/models/rank_query_config_reorder_inner.py +149 -0
- shaped/autogen/models/rank_query_config_retrieve_inner.py +196 -0
- shaped/autogen/models/recreate_rollout.py +97 -0
- shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
- shaped/autogen/models/reference_table_config.py +113 -0
- shaped/autogen/models/regularization.py +136 -0
- shaped/autogen/models/request.py +378 -0
- shaped/autogen/models/request1.py +140 -0
- shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
- shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
- shaped/autogen/models/result.py +145 -0
- shaped/autogen/models/result_embeddings_value.py +127 -0
- shaped/autogen/models/retriever.py +196 -0
- shaped/autogen/models/retriever1.py +196 -0
- shaped/autogen/models/rollout_config.py +91 -0
- shaped/autogen/models/rudderstack_table_config.py +106 -0
- shaped/autogen/models/sampling_strategy.py +36 -0
- shaped/autogen/models/saved_query_info_response.py +89 -0
- shaped/autogen/models/saved_query_list_response.py +87 -0
- shaped/autogen/models/saved_query_request.py +115 -0
- shaped/autogen/models/schema_config.py +117 -0
- shaped/autogen/models/score.py +134 -0
- shaped/autogen/models/score_ensemble.py +140 -0
- shaped/autogen/models/score_ensemble_policy_config.py +141 -0
- shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +422 -0
- shaped/autogen/models/search_config.py +105 -0
- shaped/autogen/models/segment_table_config.py +106 -0
- shaped/autogen/models/sequence_length.py +136 -0
- shaped/autogen/models/server_config.py +87 -0
- shaped/autogen/models/setup_engine_response.py +87 -0
- shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +148 -0
- shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +154 -0
- shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +209 -0
- shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +139 -0
- shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +205 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +152 -0
- shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +239 -0
- shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +104 -0
- shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +130 -0
- shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
- shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +224 -0
- shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +159 -0
- shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +131 -0
- shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +131 -0
- shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +149 -0
- shaped/autogen/models/shopify_table_config.py +156 -0
- shaped/autogen/models/similarity_retrieve_step.py +121 -0
- shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
- shaped/autogen/models/sql_transform_type.py +37 -0
- shaped/autogen/models/sql_view_config.py +111 -0
- shaped/autogen/models/stemmer_tokenizer.py +105 -0
- shaped/autogen/models/step_explanation.py +137 -0
- shaped/autogen/models/strategy.py +134 -0
- shaped/autogen/models/table.py +102 -0
- shaped/autogen/models/table_deployment_type.py +38 -0
- shaped/autogen/models/table_insert_arguments.py +87 -0
- shaped/autogen/models/table_insert_response.py +87 -0
- shaped/autogen/models/text_encoding.py +136 -0
- shaped/autogen/models/text_search_retrieve_step.py +121 -0
- shaped/autogen/models/time_frequency.py +136 -0
- shaped/autogen/models/time_window.py +136 -0
- shaped/autogen/models/time_window_in_days.py +142 -0
- shaped/autogen/models/tokenizer.py +149 -0
- shaped/autogen/models/trained_model_encoder.py +99 -0
- shaped/autogen/models/training_compute_config.py +99 -0
- shaped/autogen/models/training_config.py +121 -0
- shaped/autogen/models/training_config_models_inner.py +308 -0
- shaped/autogen/models/training_strategy.py +37 -0
- shaped/autogen/models/trending_mode.py +37 -0
- shaped/autogen/models/truncate_filter_step.py +106 -0
- shaped/autogen/models/tunable_bool.py +97 -0
- shaped/autogen/models/tunable_float.py +118 -0
- shaped/autogen/models/tunable_int.py +118 -0
- shaped/autogen/models/tunable_int_categorical.py +99 -0
- shaped/autogen/models/tunable_string.py +99 -0
- shaped/autogen/models/tuning_config.py +89 -0
- shaped/autogen/models/type.py +134 -0
- shaped/autogen/models/update_table_response.py +87 -0
- shaped/autogen/models/update_view_response.py +87 -0
- shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/val_split.py +136 -0
- shaped/autogen/models/validation_error.py +13 -3
- shaped/autogen/models/validation_error_loc_inner.py +138 -0
- shaped/autogen/models/value_type.py +7 -5
- shaped/autogen/models/vector_search_mode.py +99 -0
- shaped/autogen/models/view.py +104 -0
- shaped/autogen/models/view_details_ai.py +140 -0
- shaped/autogen/models/view_details_ai_schema_value.py +153 -0
- shaped/autogen/models/view_details_sql.py +140 -0
- shaped/autogen/models/view_status.py +41 -0
- shaped/autogen/models/weight_decay.py +136 -0
- shaped/autogen/models/whitespace_tokenizer.py +97 -0
- shaped/autogen/models/window_size.py +136 -0
- shaped/autogen/rest.py +8 -2
- shaped/cli/shaped_cli.py +12 -7
- shaped/client.py +587 -174
- shaped/config_builders.py +695 -0
- shaped/query_builder.py +774 -0
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/METADATA +119 -56
- shaped-2.0.2.dist-info/RECORD +278 -0
- shaped-2.0.2.dist-info/entry_points.txt +2 -0
- shaped/autogen/api/model_inference_api.py +0 -2825
- shaped/autogen/models/amplitude_dataset_config.py +0 -96
- shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
- shaped/autogen/models/big_query_dataset_config.py +0 -114
- shaped/autogen/models/complement_items_request.py +0 -99
- shaped/autogen/models/complement_items_response.py +0 -89
- shaped/autogen/models/connectors_inner.py +0 -134
- shaped/autogen/models/create_dataset_arguments.py +0 -263
- shaped/autogen/models/create_embedding_response.py +0 -87
- shaped/autogen/models/create_item_embedding_request.py +0 -89
- shaped/autogen/models/create_model_arguments.py +0 -107
- shaped/autogen/models/create_model_response.py +0 -87
- shaped/autogen/models/create_user_embedding_request.py +0 -89
- shaped/autogen/models/custom_dataset_config.py +0 -115
- shaped/autogen/models/dataset_config.py +0 -101
- shaped/autogen/models/dataset_schema_type.py +0 -47
- shaped/autogen/models/datasets_inner.py +0 -91
- shaped/autogen/models/delete_model_response.py +0 -87
- shaped/autogen/models/fetch_config.py +0 -95
- shaped/autogen/models/file_config.py +0 -105
- shaped/autogen/models/file_source_config.py +0 -89
- shaped/autogen/models/inference_config.py +0 -101
- shaped/autogen/models/insert_model_response.py +0 -87
- shaped/autogen/models/interaction.py +0 -87
- shaped/autogen/models/list_datasets_response.py +0 -95
- shaped/autogen/models/list_models_response.py +0 -95
- shaped/autogen/models/model_config.py +0 -99
- shaped/autogen/models/model_response.py +0 -95
- shaped/autogen/models/mongo_db_dataset_config.py +0 -119
- shaped/autogen/models/post_rank_request.py +0 -117
- shaped/autogen/models/rank_attribute_response.py +0 -89
- shaped/autogen/models/rank_grid_attribute_request.py +0 -91
- shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
- shaped/autogen/models/rank_grid_attribute_response.py +0 -91
- shaped/autogen/models/rank_response.py +0 -91
- shaped/autogen/models/retrieve_request.py +0 -101
- shaped/autogen/models/retrieve_response.py +0 -91
- shaped/autogen/models/retriever_top_k_override.py +0 -97
- shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
- shaped/autogen/models/segment_dataset_config.py +0 -96
- shaped/autogen/models/similar_item_request.py +0 -101
- shaped/autogen/models/similar_response.py +0 -89
- shaped/autogen/models/similar_users_request.py +0 -99
- shaped/autogen/models/successful_response.py +0 -87
- shaped/autogen/models/view_model_response.py +0 -99
- shaped-2.0.0.dist-info/RECORD +0 -73
- shaped-2.0.0.dist-info/entry_points.txt +0 -2
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/WHEEL +0 -0
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/top_level.txt +0 -0
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,154 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictInt, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from shaped.autogen.models.embedder_batch_size import EmbedderBatchSize
|
|
23
|
+
from shaped.autogen.models.lr import Lr
|
|
24
|
+
from shaped.autogen.models.max_seq_length import MaxSeqLength
|
|
25
|
+
from typing import Optional, Set
|
|
26
|
+
from typing_extensions import Self
|
|
27
|
+
|
|
28
|
+
class ShapedInternalRecsysPoliciesBeeformerModelPolicyBeeformerModelPolicyBeeformerModelPolicyConfig(BaseModel):
|
|
29
|
+
"""
|
|
30
|
+
ShapedInternalRecsysPoliciesBeeformerModelPolicyBeeformerModelPolicyBeeformerModelPolicyConfig
|
|
31
|
+
""" # noqa: E501
|
|
32
|
+
policy_type: Optional[StrictStr] = 'beeformer'
|
|
33
|
+
name: Optional[StrictStr] = None
|
|
34
|
+
event_values: Optional[List[StrictStr]] = None
|
|
35
|
+
device: Optional[StrictStr] = None
|
|
36
|
+
seed: Optional[StrictInt] = Field(default=42, description="Random seed for reproducibility.")
|
|
37
|
+
lr: Optional[Lr] = None
|
|
38
|
+
use_scheduler: Optional[StrictBool] = Field(default=False, description="Whether to use a learning rate scheduler.")
|
|
39
|
+
epochs: Optional[StrictInt] = Field(default=1, description="Number of complete passes through the training dataset.")
|
|
40
|
+
max_output: Optional[StrictInt] = Field(default=1, description="Negative sampling hyperparameter, uniform.")
|
|
41
|
+
batch_size: Optional[StrictInt] = Field(default=1024, description="Number of samples processed before updating model weights.")
|
|
42
|
+
top_k: Optional[StrictInt] = Field(default=0, description="Optimize only for top-k predictions on the output.")
|
|
43
|
+
embedder: Optional[StrictStr] = 'all-mpnet-base-v2'
|
|
44
|
+
use_images: Optional[StrictBool] = Field(default=False, description="Use image features.")
|
|
45
|
+
max_seq_length: Optional[MaxSeqLength] = None
|
|
46
|
+
embedder_batch_size: Optional[EmbedderBatchSize] = None
|
|
47
|
+
train_distributed: Optional[StrictBool] = Field(default=False, description="Train on multiple devices.")
|
|
48
|
+
__properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "device", "seed", "lr", "use_scheduler", "epochs", "max_output", "batch_size", "top_k", "embedder", "use_images", "max_seq_length", "embedder_batch_size", "train_distributed"]
|
|
49
|
+
|
|
50
|
+
@field_validator('policy_type')
|
|
51
|
+
def policy_type_validate_enum(cls, value):
|
|
52
|
+
"""Validates the enum"""
|
|
53
|
+
if value is None:
|
|
54
|
+
return value
|
|
55
|
+
|
|
56
|
+
if value not in set(['beeformer']):
|
|
57
|
+
raise ValueError("must be one of enum values ('beeformer')")
|
|
58
|
+
return value
|
|
59
|
+
|
|
60
|
+
model_config = ConfigDict(
|
|
61
|
+
populate_by_name=True,
|
|
62
|
+
validate_assignment=True,
|
|
63
|
+
protected_namespaces=(),
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def to_str(self) -> str:
|
|
68
|
+
"""Returns the string representation of the model using alias"""
|
|
69
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
70
|
+
|
|
71
|
+
def to_json(self) -> str:
|
|
72
|
+
"""Returns the JSON representation of the model using alias"""
|
|
73
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
74
|
+
return json.dumps(self.to_dict())
|
|
75
|
+
|
|
76
|
+
@classmethod
|
|
77
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
78
|
+
"""Create an instance of ShapedInternalRecsysPoliciesBeeformerModelPolicyBeeformerModelPolicyBeeformerModelPolicyConfig from a JSON string"""
|
|
79
|
+
return cls.from_dict(json.loads(json_str))
|
|
80
|
+
|
|
81
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
82
|
+
"""Return the dictionary representation of the model using alias.
|
|
83
|
+
|
|
84
|
+
This has the following differences from calling pydantic's
|
|
85
|
+
`self.model_dump(by_alias=True)`:
|
|
86
|
+
|
|
87
|
+
* `None` is only added to the output dict for nullable fields that
|
|
88
|
+
were set at model initialization. Other fields with value `None`
|
|
89
|
+
are ignored.
|
|
90
|
+
"""
|
|
91
|
+
excluded_fields: Set[str] = set([
|
|
92
|
+
])
|
|
93
|
+
|
|
94
|
+
_dict = self.model_dump(
|
|
95
|
+
by_alias=True,
|
|
96
|
+
exclude=excluded_fields,
|
|
97
|
+
exclude_none=True,
|
|
98
|
+
)
|
|
99
|
+
# override the default output from pydantic by calling `to_dict()` of lr
|
|
100
|
+
if self.lr:
|
|
101
|
+
_dict['lr'] = self.lr.to_dict()
|
|
102
|
+
# override the default output from pydantic by calling `to_dict()` of max_seq_length
|
|
103
|
+
if self.max_seq_length:
|
|
104
|
+
_dict['max_seq_length'] = self.max_seq_length.to_dict()
|
|
105
|
+
# override the default output from pydantic by calling `to_dict()` of embedder_batch_size
|
|
106
|
+
if self.embedder_batch_size:
|
|
107
|
+
_dict['embedder_batch_size'] = self.embedder_batch_size.to_dict()
|
|
108
|
+
# set to None if name (nullable) is None
|
|
109
|
+
# and model_fields_set contains the field
|
|
110
|
+
if self.name is None and "name" in self.model_fields_set:
|
|
111
|
+
_dict['name'] = None
|
|
112
|
+
|
|
113
|
+
# set to None if event_values (nullable) is None
|
|
114
|
+
# and model_fields_set contains the field
|
|
115
|
+
if self.event_values is None and "event_values" in self.model_fields_set:
|
|
116
|
+
_dict['event_values'] = None
|
|
117
|
+
|
|
118
|
+
# set to None if device (nullable) is None
|
|
119
|
+
# and model_fields_set contains the field
|
|
120
|
+
if self.device is None and "device" in self.model_fields_set:
|
|
121
|
+
_dict['device'] = None
|
|
122
|
+
|
|
123
|
+
return _dict
|
|
124
|
+
|
|
125
|
+
@classmethod
|
|
126
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
127
|
+
"""Create an instance of ShapedInternalRecsysPoliciesBeeformerModelPolicyBeeformerModelPolicyBeeformerModelPolicyConfig from a dict"""
|
|
128
|
+
if obj is None:
|
|
129
|
+
return None
|
|
130
|
+
|
|
131
|
+
if not isinstance(obj, dict):
|
|
132
|
+
return cls.model_validate(obj)
|
|
133
|
+
|
|
134
|
+
_obj = cls.model_validate({
|
|
135
|
+
"policy_type": obj.get("policy_type") if obj.get("policy_type") is not None else 'beeformer',
|
|
136
|
+
"name": obj.get("name"),
|
|
137
|
+
"event_values": obj.get("event_values"),
|
|
138
|
+
"device": obj.get("device"),
|
|
139
|
+
"seed": obj.get("seed") if obj.get("seed") is not None else 42,
|
|
140
|
+
"lr": Lr.from_dict(obj["lr"]) if obj.get("lr") is not None else None,
|
|
141
|
+
"use_scheduler": obj.get("use_scheduler") if obj.get("use_scheduler") is not None else False,
|
|
142
|
+
"epochs": obj.get("epochs") if obj.get("epochs") is not None else 1,
|
|
143
|
+
"max_output": obj.get("max_output") if obj.get("max_output") is not None else 1,
|
|
144
|
+
"batch_size": obj.get("batch_size") if obj.get("batch_size") is not None else 1024,
|
|
145
|
+
"top_k": obj.get("top_k") if obj.get("top_k") is not None else 0,
|
|
146
|
+
"embedder": obj.get("embedder") if obj.get("embedder") is not None else 'all-mpnet-base-v2',
|
|
147
|
+
"use_images": obj.get("use_images") if obj.get("use_images") is not None else False,
|
|
148
|
+
"max_seq_length": MaxSeqLength.from_dict(obj["max_seq_length"]) if obj.get("max_seq_length") is not None else None,
|
|
149
|
+
"embedder_batch_size": EmbedderBatchSize.from_dict(obj["embedder_batch_size"]) if obj.get("embedder_batch_size") is not None else None,
|
|
150
|
+
"train_distributed": obj.get("train_distributed") if obj.get("train_distributed") is not None else False
|
|
151
|
+
})
|
|
152
|
+
return _obj
|
|
153
|
+
|
|
154
|
+
|
|
@@ -0,0 +1,209 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictFloat, StrictInt, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional, Union
|
|
22
|
+
from shaped.autogen.models.attn_dropout_prob import AttnDropoutProb
|
|
23
|
+
from shaped.autogen.models.batch_size import BatchSize
|
|
24
|
+
from shaped.autogen.models.hidden_dropout_prob import HiddenDropoutProb
|
|
25
|
+
from shaped.autogen.models.hidden_size import HiddenSize
|
|
26
|
+
from shaped.autogen.models.inner_size import InnerSize
|
|
27
|
+
from shaped.autogen.models.learning_rate import LearningRate
|
|
28
|
+
from shaped.autogen.models.loss_types import LossTypes
|
|
29
|
+
from shaped.autogen.models.max_seq_length1 import MaxSeqLength1
|
|
30
|
+
from shaped.autogen.models.n_epochs import NEpochs
|
|
31
|
+
from shaped.autogen.models.n_heads import NHeads
|
|
32
|
+
from shaped.autogen.models.n_layers import NLayers
|
|
33
|
+
from shaped.autogen.models.sampling_strategy import SamplingStrategy
|
|
34
|
+
from typing import Optional, Set
|
|
35
|
+
from typing_extensions import Self
|
|
36
|
+
|
|
37
|
+
class ShapedInternalRecsysPoliciesBertModelPolicyBertModelPolicyBERTModelPolicyConfig(BaseModel):
|
|
38
|
+
"""
|
|
39
|
+
ShapedInternalRecsysPoliciesBertModelPolicyBertModelPolicyBERTModelPolicyConfig
|
|
40
|
+
""" # noqa: E501
|
|
41
|
+
policy_type: Optional[StrictStr] = 'bert4rec'
|
|
42
|
+
name: Optional[StrictStr] = None
|
|
43
|
+
event_values: Optional[List[StrictStr]] = None
|
|
44
|
+
batch_size: Optional[BatchSize] = None
|
|
45
|
+
eval_batch_size: Optional[StrictInt] = Field(default=1000, description="Batch size used during model evaluation.")
|
|
46
|
+
n_epochs: Optional[NEpochs] = None
|
|
47
|
+
negative_samples_count: Optional[StrictInt] = Field(default=2, description="Number of negative samples per positive sample for contrastive learning.")
|
|
48
|
+
device: Optional[StrictStr] = None
|
|
49
|
+
hidden_size: Optional[HiddenSize] = None
|
|
50
|
+
inner_size: Optional[InnerSize] = None
|
|
51
|
+
learning_rate: Optional[LearningRate] = None
|
|
52
|
+
attn_dropout_prob: Optional[AttnDropoutProb] = None
|
|
53
|
+
hidden_act: Optional[StrictStr] = 'gelu'
|
|
54
|
+
hidden_dropout_prob: Optional[HiddenDropoutProb] = None
|
|
55
|
+
n_heads: Optional[NHeads] = None
|
|
56
|
+
n_layers: Optional[NLayers] = None
|
|
57
|
+
layer_norm_eps: Optional[Union[StrictFloat, StrictInt]] = 1.0E-12
|
|
58
|
+
initializer_range: Optional[Union[StrictFloat, StrictInt]] = 0.02
|
|
59
|
+
mask_rate: Optional[Union[StrictFloat, StrictInt]] = Field(default=0.2, description="Fraction of tokens to mask during training.")
|
|
60
|
+
loss_type: Optional[LossTypes] = None
|
|
61
|
+
max_seq_length: Optional[MaxSeqLength1] = None
|
|
62
|
+
sample_strategy: Optional[SamplingStrategy] = None
|
|
63
|
+
sample_seed: Optional[StrictInt] = 42
|
|
64
|
+
sample_ratio: Optional[Union[StrictFloat, StrictInt]] = 0.8
|
|
65
|
+
eval_step: Optional[StrictInt] = 1
|
|
66
|
+
early_stopping_step: Optional[StrictInt] = 5
|
|
67
|
+
__properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "batch_size", "eval_batch_size", "n_epochs", "negative_samples_count", "device", "hidden_size", "inner_size", "learning_rate", "attn_dropout_prob", "hidden_act", "hidden_dropout_prob", "n_heads", "n_layers", "layer_norm_eps", "initializer_range", "mask_rate", "loss_type", "max_seq_length", "sample_strategy", "sample_seed", "sample_ratio", "eval_step", "early_stopping_step"]
|
|
68
|
+
|
|
69
|
+
@field_validator('policy_type')
|
|
70
|
+
def policy_type_validate_enum(cls, value):
|
|
71
|
+
"""Validates the enum"""
|
|
72
|
+
if value is None:
|
|
73
|
+
return value
|
|
74
|
+
|
|
75
|
+
if value not in set(['bert4rec']):
|
|
76
|
+
raise ValueError("must be one of enum values ('bert4rec')")
|
|
77
|
+
return value
|
|
78
|
+
|
|
79
|
+
model_config = ConfigDict(
|
|
80
|
+
populate_by_name=True,
|
|
81
|
+
validate_assignment=True,
|
|
82
|
+
protected_namespaces=(),
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def to_str(self) -> str:
|
|
87
|
+
"""Returns the string representation of the model using alias"""
|
|
88
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
89
|
+
|
|
90
|
+
def to_json(self) -> str:
|
|
91
|
+
"""Returns the JSON representation of the model using alias"""
|
|
92
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
93
|
+
return json.dumps(self.to_dict())
|
|
94
|
+
|
|
95
|
+
@classmethod
|
|
96
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
97
|
+
"""Create an instance of ShapedInternalRecsysPoliciesBertModelPolicyBertModelPolicyBERTModelPolicyConfig from a JSON string"""
|
|
98
|
+
return cls.from_dict(json.loads(json_str))
|
|
99
|
+
|
|
100
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
101
|
+
"""Return the dictionary representation of the model using alias.
|
|
102
|
+
|
|
103
|
+
This has the following differences from calling pydantic's
|
|
104
|
+
`self.model_dump(by_alias=True)`:
|
|
105
|
+
|
|
106
|
+
* `None` is only added to the output dict for nullable fields that
|
|
107
|
+
were set at model initialization. Other fields with value `None`
|
|
108
|
+
are ignored.
|
|
109
|
+
"""
|
|
110
|
+
excluded_fields: Set[str] = set([
|
|
111
|
+
])
|
|
112
|
+
|
|
113
|
+
_dict = self.model_dump(
|
|
114
|
+
by_alias=True,
|
|
115
|
+
exclude=excluded_fields,
|
|
116
|
+
exclude_none=True,
|
|
117
|
+
)
|
|
118
|
+
# override the default output from pydantic by calling `to_dict()` of batch_size
|
|
119
|
+
if self.batch_size:
|
|
120
|
+
_dict['batch_size'] = self.batch_size.to_dict()
|
|
121
|
+
# override the default output from pydantic by calling `to_dict()` of n_epochs
|
|
122
|
+
if self.n_epochs:
|
|
123
|
+
_dict['n_epochs'] = self.n_epochs.to_dict()
|
|
124
|
+
# override the default output from pydantic by calling `to_dict()` of hidden_size
|
|
125
|
+
if self.hidden_size:
|
|
126
|
+
_dict['hidden_size'] = self.hidden_size.to_dict()
|
|
127
|
+
# override the default output from pydantic by calling `to_dict()` of inner_size
|
|
128
|
+
if self.inner_size:
|
|
129
|
+
_dict['inner_size'] = self.inner_size.to_dict()
|
|
130
|
+
# override the default output from pydantic by calling `to_dict()` of learning_rate
|
|
131
|
+
if self.learning_rate:
|
|
132
|
+
_dict['learning_rate'] = self.learning_rate.to_dict()
|
|
133
|
+
# override the default output from pydantic by calling `to_dict()` of attn_dropout_prob
|
|
134
|
+
if self.attn_dropout_prob:
|
|
135
|
+
_dict['attn_dropout_prob'] = self.attn_dropout_prob.to_dict()
|
|
136
|
+
# override the default output from pydantic by calling `to_dict()` of hidden_dropout_prob
|
|
137
|
+
if self.hidden_dropout_prob:
|
|
138
|
+
_dict['hidden_dropout_prob'] = self.hidden_dropout_prob.to_dict()
|
|
139
|
+
# override the default output from pydantic by calling `to_dict()` of n_heads
|
|
140
|
+
if self.n_heads:
|
|
141
|
+
_dict['n_heads'] = self.n_heads.to_dict()
|
|
142
|
+
# override the default output from pydantic by calling `to_dict()` of n_layers
|
|
143
|
+
if self.n_layers:
|
|
144
|
+
_dict['n_layers'] = self.n_layers.to_dict()
|
|
145
|
+
# override the default output from pydantic by calling `to_dict()` of max_seq_length
|
|
146
|
+
if self.max_seq_length:
|
|
147
|
+
_dict['max_seq_length'] = self.max_seq_length.to_dict()
|
|
148
|
+
# set to None if name (nullable) is None
|
|
149
|
+
# and model_fields_set contains the field
|
|
150
|
+
if self.name is None and "name" in self.model_fields_set:
|
|
151
|
+
_dict['name'] = None
|
|
152
|
+
|
|
153
|
+
# set to None if event_values (nullable) is None
|
|
154
|
+
# and model_fields_set contains the field
|
|
155
|
+
if self.event_values is None and "event_values" in self.model_fields_set:
|
|
156
|
+
_dict['event_values'] = None
|
|
157
|
+
|
|
158
|
+
# set to None if device (nullable) is None
|
|
159
|
+
# and model_fields_set contains the field
|
|
160
|
+
if self.device is None and "device" in self.model_fields_set:
|
|
161
|
+
_dict['device'] = None
|
|
162
|
+
|
|
163
|
+
# set to None if sample_strategy (nullable) is None
|
|
164
|
+
# and model_fields_set contains the field
|
|
165
|
+
if self.sample_strategy is None and "sample_strategy" in self.model_fields_set:
|
|
166
|
+
_dict['sample_strategy'] = None
|
|
167
|
+
|
|
168
|
+
return _dict
|
|
169
|
+
|
|
170
|
+
@classmethod
|
|
171
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
172
|
+
"""Create an instance of ShapedInternalRecsysPoliciesBertModelPolicyBertModelPolicyBERTModelPolicyConfig from a dict"""
|
|
173
|
+
if obj is None:
|
|
174
|
+
return None
|
|
175
|
+
|
|
176
|
+
if not isinstance(obj, dict):
|
|
177
|
+
return cls.model_validate(obj)
|
|
178
|
+
|
|
179
|
+
_obj = cls.model_validate({
|
|
180
|
+
"policy_type": obj.get("policy_type") if obj.get("policy_type") is not None else 'bert4rec',
|
|
181
|
+
"name": obj.get("name"),
|
|
182
|
+
"event_values": obj.get("event_values"),
|
|
183
|
+
"batch_size": BatchSize.from_dict(obj["batch_size"]) if obj.get("batch_size") is not None else None,
|
|
184
|
+
"eval_batch_size": obj.get("eval_batch_size") if obj.get("eval_batch_size") is not None else 1000,
|
|
185
|
+
"n_epochs": NEpochs.from_dict(obj["n_epochs"]) if obj.get("n_epochs") is not None else None,
|
|
186
|
+
"negative_samples_count": obj.get("negative_samples_count") if obj.get("negative_samples_count") is not None else 2,
|
|
187
|
+
"device": obj.get("device"),
|
|
188
|
+
"hidden_size": HiddenSize.from_dict(obj["hidden_size"]) if obj.get("hidden_size") is not None else None,
|
|
189
|
+
"inner_size": InnerSize.from_dict(obj["inner_size"]) if obj.get("inner_size") is not None else None,
|
|
190
|
+
"learning_rate": LearningRate.from_dict(obj["learning_rate"]) if obj.get("learning_rate") is not None else None,
|
|
191
|
+
"attn_dropout_prob": AttnDropoutProb.from_dict(obj["attn_dropout_prob"]) if obj.get("attn_dropout_prob") is not None else None,
|
|
192
|
+
"hidden_act": obj.get("hidden_act") if obj.get("hidden_act") is not None else 'gelu',
|
|
193
|
+
"hidden_dropout_prob": HiddenDropoutProb.from_dict(obj["hidden_dropout_prob"]) if obj.get("hidden_dropout_prob") is not None else None,
|
|
194
|
+
"n_heads": NHeads.from_dict(obj["n_heads"]) if obj.get("n_heads") is not None else None,
|
|
195
|
+
"n_layers": NLayers.from_dict(obj["n_layers"]) if obj.get("n_layers") is not None else None,
|
|
196
|
+
"layer_norm_eps": obj.get("layer_norm_eps") if obj.get("layer_norm_eps") is not None else 1.0E-12,
|
|
197
|
+
"initializer_range": obj.get("initializer_range") if obj.get("initializer_range") is not None else 0.02,
|
|
198
|
+
"mask_rate": obj.get("mask_rate") if obj.get("mask_rate") is not None else 0.2,
|
|
199
|
+
"loss_type": obj.get("loss_type"),
|
|
200
|
+
"max_seq_length": MaxSeqLength1.from_dict(obj["max_seq_length"]) if obj.get("max_seq_length") is not None else None,
|
|
201
|
+
"sample_strategy": obj.get("sample_strategy"),
|
|
202
|
+
"sample_seed": obj.get("sample_seed") if obj.get("sample_seed") is not None else 42,
|
|
203
|
+
"sample_ratio": obj.get("sample_ratio") if obj.get("sample_ratio") is not None else 0.8,
|
|
204
|
+
"eval_step": obj.get("eval_step") if obj.get("eval_step") is not None else 1,
|
|
205
|
+
"early_stopping_step": obj.get("early_stopping_step") if obj.get("early_stopping_step") is not None else 5
|
|
206
|
+
})
|
|
207
|
+
return _obj
|
|
208
|
+
|
|
209
|
+
|
|
@@ -0,0 +1,137 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from shaped.autogen.models.ascending import Ascending
|
|
23
|
+
from typing import Optional, Set
|
|
24
|
+
from typing_extensions import Self
|
|
25
|
+
|
|
26
|
+
class ShapedInternalRecsysPoliciesChronologicalModelPolicyChronologicalModelPolicyConfig(BaseModel):
|
|
27
|
+
"""
|
|
28
|
+
ShapedInternalRecsysPoliciesChronologicalModelPolicyChronologicalModelPolicyConfig
|
|
29
|
+
""" # noqa: E501
|
|
30
|
+
policy_type: Optional[StrictStr] = 'chronological'
|
|
31
|
+
name: Optional[StrictStr] = None
|
|
32
|
+
event_values: Optional[List[StrictStr]] = None
|
|
33
|
+
time_col: Optional[StrictStr] = None
|
|
34
|
+
ascending: Optional[Ascending] = None
|
|
35
|
+
additional_properties: Dict[str, Any] = {}
|
|
36
|
+
__properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "time_col", "ascending"]
|
|
37
|
+
|
|
38
|
+
@field_validator('policy_type')
|
|
39
|
+
def policy_type_validate_enum(cls, value):
|
|
40
|
+
"""Validates the enum"""
|
|
41
|
+
if value is None:
|
|
42
|
+
return value
|
|
43
|
+
|
|
44
|
+
if value not in set(['chronological']):
|
|
45
|
+
raise ValueError("must be one of enum values ('chronological')")
|
|
46
|
+
return value
|
|
47
|
+
|
|
48
|
+
model_config = ConfigDict(
|
|
49
|
+
populate_by_name=True,
|
|
50
|
+
validate_assignment=True,
|
|
51
|
+
protected_namespaces=(),
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def to_str(self) -> str:
|
|
56
|
+
"""Returns the string representation of the model using alias"""
|
|
57
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
58
|
+
|
|
59
|
+
def to_json(self) -> str:
|
|
60
|
+
"""Returns the JSON representation of the model using alias"""
|
|
61
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
62
|
+
return json.dumps(self.to_dict())
|
|
63
|
+
|
|
64
|
+
@classmethod
|
|
65
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
66
|
+
"""Create an instance of ShapedInternalRecsysPoliciesChronologicalModelPolicyChronologicalModelPolicyConfig from a JSON string"""
|
|
67
|
+
return cls.from_dict(json.loads(json_str))
|
|
68
|
+
|
|
69
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
70
|
+
"""Return the dictionary representation of the model using alias.
|
|
71
|
+
|
|
72
|
+
This has the following differences from calling pydantic's
|
|
73
|
+
`self.model_dump(by_alias=True)`:
|
|
74
|
+
|
|
75
|
+
* `None` is only added to the output dict for nullable fields that
|
|
76
|
+
were set at model initialization. Other fields with value `None`
|
|
77
|
+
are ignored.
|
|
78
|
+
* Fields in `self.additional_properties` are added to the output dict.
|
|
79
|
+
"""
|
|
80
|
+
excluded_fields: Set[str] = set([
|
|
81
|
+
"additional_properties",
|
|
82
|
+
])
|
|
83
|
+
|
|
84
|
+
_dict = self.model_dump(
|
|
85
|
+
by_alias=True,
|
|
86
|
+
exclude=excluded_fields,
|
|
87
|
+
exclude_none=True,
|
|
88
|
+
)
|
|
89
|
+
# override the default output from pydantic by calling `to_dict()` of ascending
|
|
90
|
+
if self.ascending:
|
|
91
|
+
_dict['ascending'] = self.ascending.to_dict()
|
|
92
|
+
# puts key-value pairs in additional_properties in the top level
|
|
93
|
+
if self.additional_properties is not None:
|
|
94
|
+
for _key, _value in self.additional_properties.items():
|
|
95
|
+
_dict[_key] = _value
|
|
96
|
+
|
|
97
|
+
# set to None if name (nullable) is None
|
|
98
|
+
# and model_fields_set contains the field
|
|
99
|
+
if self.name is None and "name" in self.model_fields_set:
|
|
100
|
+
_dict['name'] = None
|
|
101
|
+
|
|
102
|
+
# set to None if event_values (nullable) is None
|
|
103
|
+
# and model_fields_set contains the field
|
|
104
|
+
if self.event_values is None and "event_values" in self.model_fields_set:
|
|
105
|
+
_dict['event_values'] = None
|
|
106
|
+
|
|
107
|
+
# set to None if time_col (nullable) is None
|
|
108
|
+
# and model_fields_set contains the field
|
|
109
|
+
if self.time_col is None and "time_col" in self.model_fields_set:
|
|
110
|
+
_dict['time_col'] = None
|
|
111
|
+
|
|
112
|
+
return _dict
|
|
113
|
+
|
|
114
|
+
@classmethod
|
|
115
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
116
|
+
"""Create an instance of ShapedInternalRecsysPoliciesChronologicalModelPolicyChronologicalModelPolicyConfig from a dict"""
|
|
117
|
+
if obj is None:
|
|
118
|
+
return None
|
|
119
|
+
|
|
120
|
+
if not isinstance(obj, dict):
|
|
121
|
+
return cls.model_validate(obj)
|
|
122
|
+
|
|
123
|
+
_obj = cls.model_validate({
|
|
124
|
+
"policy_type": obj.get("policy_type") if obj.get("policy_type") is not None else 'chronological',
|
|
125
|
+
"name": obj.get("name"),
|
|
126
|
+
"event_values": obj.get("event_values"),
|
|
127
|
+
"time_col": obj.get("time_col"),
|
|
128
|
+
"ascending": Ascending.from_dict(obj["ascending"]) if obj.get("ascending") is not None else None
|
|
129
|
+
})
|
|
130
|
+
# store additional fields in additional_properties
|
|
131
|
+
for _key in obj.keys():
|
|
132
|
+
if _key not in cls.__properties:
|
|
133
|
+
_obj.additional_properties[_key] = obj.get(_key)
|
|
134
|
+
|
|
135
|
+
return _obj
|
|
136
|
+
|
|
137
|
+
|
|
@@ -0,0 +1,139 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from shaped.autogen.models.factors import Factors
|
|
23
|
+
from shaped.autogen.models.lr1 import Lr1
|
|
24
|
+
from shaped.autogen.models.training_strategy import TrainingStrategy
|
|
25
|
+
from typing import Optional, Set
|
|
26
|
+
from typing_extensions import Self
|
|
27
|
+
|
|
28
|
+
class ShapedInternalRecsysPoliciesElsaModelPolicyElsaModelPolicyELSAModelPolicyConfig(BaseModel):
|
|
29
|
+
"""
|
|
30
|
+
ShapedInternalRecsysPoliciesElsaModelPolicyElsaModelPolicyELSAModelPolicyConfig
|
|
31
|
+
""" # noqa: E501
|
|
32
|
+
policy_type: Optional[StrictStr] = 'elsa'
|
|
33
|
+
name: Optional[StrictStr] = None
|
|
34
|
+
event_values: Optional[List[StrictStr]] = None
|
|
35
|
+
batch_size: Optional[StrictInt] = Field(default=512, description="Number of samples processed before updating model weights.")
|
|
36
|
+
n_epochs: Optional[StrictInt] = Field(default=1, description="Number of complete passes through the training dataset.")
|
|
37
|
+
factors: Optional[Factors] = None
|
|
38
|
+
lr: Optional[Lr1] = None
|
|
39
|
+
device: Optional[StrictStr] = None
|
|
40
|
+
strategy: Optional[TrainingStrategy] = None
|
|
41
|
+
patience: Optional[StrictInt] = Field(default=3, description="Number of epochs to wait without improvement before early stopping.")
|
|
42
|
+
__properties: ClassVar[List[str]] = ["policy_type", "name", "event_values", "batch_size", "n_epochs", "factors", "lr", "device", "strategy", "patience"]
|
|
43
|
+
|
|
44
|
+
@field_validator('policy_type')
|
|
45
|
+
def policy_type_validate_enum(cls, value):
|
|
46
|
+
"""Validates the enum"""
|
|
47
|
+
if value is None:
|
|
48
|
+
return value
|
|
49
|
+
|
|
50
|
+
if value not in set(['elsa']):
|
|
51
|
+
raise ValueError("must be one of enum values ('elsa')")
|
|
52
|
+
return value
|
|
53
|
+
|
|
54
|
+
model_config = ConfigDict(
|
|
55
|
+
populate_by_name=True,
|
|
56
|
+
validate_assignment=True,
|
|
57
|
+
protected_namespaces=(),
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def to_str(self) -> str:
|
|
62
|
+
"""Returns the string representation of the model using alias"""
|
|
63
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
64
|
+
|
|
65
|
+
def to_json(self) -> str:
|
|
66
|
+
"""Returns the JSON representation of the model using alias"""
|
|
67
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
68
|
+
return json.dumps(self.to_dict())
|
|
69
|
+
|
|
70
|
+
@classmethod
|
|
71
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
72
|
+
"""Create an instance of ShapedInternalRecsysPoliciesElsaModelPolicyElsaModelPolicyELSAModelPolicyConfig from a JSON string"""
|
|
73
|
+
return cls.from_dict(json.loads(json_str))
|
|
74
|
+
|
|
75
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
76
|
+
"""Return the dictionary representation of the model using alias.
|
|
77
|
+
|
|
78
|
+
This has the following differences from calling pydantic's
|
|
79
|
+
`self.model_dump(by_alias=True)`:
|
|
80
|
+
|
|
81
|
+
* `None` is only added to the output dict for nullable fields that
|
|
82
|
+
were set at model initialization. Other fields with value `None`
|
|
83
|
+
are ignored.
|
|
84
|
+
"""
|
|
85
|
+
excluded_fields: Set[str] = set([
|
|
86
|
+
])
|
|
87
|
+
|
|
88
|
+
_dict = self.model_dump(
|
|
89
|
+
by_alias=True,
|
|
90
|
+
exclude=excluded_fields,
|
|
91
|
+
exclude_none=True,
|
|
92
|
+
)
|
|
93
|
+
# override the default output from pydantic by calling `to_dict()` of factors
|
|
94
|
+
if self.factors:
|
|
95
|
+
_dict['factors'] = self.factors.to_dict()
|
|
96
|
+
# override the default output from pydantic by calling `to_dict()` of lr
|
|
97
|
+
if self.lr:
|
|
98
|
+
_dict['lr'] = self.lr.to_dict()
|
|
99
|
+
# set to None if name (nullable) is None
|
|
100
|
+
# and model_fields_set contains the field
|
|
101
|
+
if self.name is None and "name" in self.model_fields_set:
|
|
102
|
+
_dict['name'] = None
|
|
103
|
+
|
|
104
|
+
# set to None if event_values (nullable) is None
|
|
105
|
+
# and model_fields_set contains the field
|
|
106
|
+
if self.event_values is None and "event_values" in self.model_fields_set:
|
|
107
|
+
_dict['event_values'] = None
|
|
108
|
+
|
|
109
|
+
# set to None if device (nullable) is None
|
|
110
|
+
# and model_fields_set contains the field
|
|
111
|
+
if self.device is None and "device" in self.model_fields_set:
|
|
112
|
+
_dict['device'] = None
|
|
113
|
+
|
|
114
|
+
return _dict
|
|
115
|
+
|
|
116
|
+
@classmethod
|
|
117
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
118
|
+
"""Create an instance of ShapedInternalRecsysPoliciesElsaModelPolicyElsaModelPolicyELSAModelPolicyConfig from a dict"""
|
|
119
|
+
if obj is None:
|
|
120
|
+
return None
|
|
121
|
+
|
|
122
|
+
if not isinstance(obj, dict):
|
|
123
|
+
return cls.model_validate(obj)
|
|
124
|
+
|
|
125
|
+
_obj = cls.model_validate({
|
|
126
|
+
"policy_type": obj.get("policy_type") if obj.get("policy_type") is not None else 'elsa',
|
|
127
|
+
"name": obj.get("name"),
|
|
128
|
+
"event_values": obj.get("event_values"),
|
|
129
|
+
"batch_size": obj.get("batch_size") if obj.get("batch_size") is not None else 512,
|
|
130
|
+
"n_epochs": obj.get("n_epochs") if obj.get("n_epochs") is not None else 1,
|
|
131
|
+
"factors": Factors.from_dict(obj["factors"]) if obj.get("factors") is not None else None,
|
|
132
|
+
"lr": Lr1.from_dict(obj["lr"]) if obj.get("lr") is not None else None,
|
|
133
|
+
"device": obj.get("device"),
|
|
134
|
+
"strategy": obj.get("strategy"),
|
|
135
|
+
"patience": obj.get("patience") if obj.get("patience") is not None else 3
|
|
136
|
+
})
|
|
137
|
+
return _obj
|
|
138
|
+
|
|
139
|
+
|