shaped 2.0.0__py3-none-any.whl → 2.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- shaped/__init__.py +54 -4
- shaped/autogen/__init__.py +541 -66
- shaped/autogen/api/__init__.py +4 -3
- shaped/autogen/api/engine_api.py +1467 -0
- shaped/autogen/api/{dataset_api.py → query_api.py} +219 -194
- shaped/autogen/api/table_api.py +1494 -0
- shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
- shaped/autogen/api_client.py +15 -8
- shaped/autogen/configuration.py +20 -9
- shaped/autogen/exceptions.py +19 -2
- shaped/autogen/models/__init__.py +254 -52
- shaped/autogen/models/ai_enrichment_view_config.py +123 -0
- shaped/autogen/models/{path.py → algorithm.py} +19 -19
- shaped/autogen/models/amplitude_table_config.py +106 -0
- shaped/autogen/models/ascending.py +136 -0
- shaped/autogen/models/attn_dropout_prob.py +136 -0
- shaped/autogen/models/attribute_journey.py +124 -0
- shaped/autogen/models/attribute_value.py +178 -0
- shaped/autogen/models/autoscaling_config.py +95 -0
- shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
- shaped/autogen/models/batch_size.py +136 -0
- shaped/autogen/models/batch_size1.py +136 -0
- shaped/autogen/models/batch_size2.py +136 -0
- shaped/autogen/models/big_query_table_config.py +147 -0
- shaped/autogen/models/bm25.py +136 -0
- shaped/autogen/models/boosted_reorder_step.py +125 -0
- shaped/autogen/models/canary_rollout.py +99 -0
- shaped/autogen/models/candidate_attributes_retrieve_step.py +126 -0
- shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
- shaped/autogen/models/clickhouse_table_config.py +146 -0
- shaped/autogen/models/column_order_retrieve_step.py +123 -0
- shaped/autogen/models/column_ordering.py +91 -0
- shaped/autogen/models/create_table_response.py +87 -0
- shaped/autogen/models/create_view_response.py +87 -0
- shaped/autogen/models/custom_table_config.py +135 -0
- shaped/autogen/models/data_compute_config.py +89 -0
- shaped/autogen/models/data_config.py +145 -0
- shaped/autogen/models/data_config_interaction_table.py +146 -0
- shaped/autogen/models/data_split_config.py +88 -0
- shaped/autogen/models/data_split_strategy.py +37 -0
- shaped/autogen/models/data_tier.py +37 -0
- shaped/autogen/models/default.py +246 -0
- shaped/autogen/models/delete_engine_response.py +87 -0
- shaped/autogen/models/delete_table_response.py +87 -0
- shaped/autogen/models/delete_view_response.py +87 -0
- shaped/autogen/models/deployment_config.py +123 -0
- shaped/autogen/models/distance_function.py +38 -0
- shaped/autogen/models/diversity_reorder_step.py +137 -0
- shaped/autogen/models/dropout_rate.py +136 -0
- shaped/autogen/models/dynamo_db_table_config.py +160 -0
- shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
- shaped/autogen/models/embedder_batch_size.py +136 -0
- shaped/autogen/models/embedding_config.py +93 -0
- shaped/autogen/models/embedding_dim.py +136 -0
- shaped/autogen/models/embedding_dims.py +136 -0
- shaped/autogen/models/embedding_size.py +136 -0
- shaped/autogen/models/encoder.py +140 -0
- shaped/autogen/models/encoding_pooling_strategy.py +38 -0
- shaped/autogen/models/engine.py +109 -0
- shaped/autogen/models/engine_config_v2.py +152 -0
- shaped/autogen/models/engine_details_response.py +120 -0
- shaped/autogen/models/engine_schema.py +113 -0
- shaped/autogen/models/engine_schema_user_inner.py +134 -0
- shaped/autogen/models/entity_config.py +109 -0
- shaped/autogen/models/entity_journey.py +152 -0
- shaped/autogen/models/entity_type.py +38 -0
- shaped/autogen/models/evaluation_config.py +92 -0
- shaped/autogen/models/exploration_reorder_step.py +125 -0
- shaped/autogen/models/expression_filter_step.py +106 -0
- shaped/autogen/models/factors.py +136 -0
- shaped/autogen/models/factors1.py +136 -0
- shaped/autogen/models/feature.py +90 -0
- shaped/autogen/models/feature_type.py +60 -0
- shaped/autogen/models/file_table_config.py +112 -0
- shaped/autogen/models/filter_config.py +99 -0
- shaped/autogen/models/filter_dataset.py +140 -0
- shaped/autogen/models/filter_index_type.py +36 -0
- shaped/autogen/models/filter_retrieve_step.py +113 -0
- shaped/autogen/models/global_filter.py +102 -0
- shaped/autogen/models/hidden_dropout_prob.py +136 -0
- shaped/autogen/models/hidden_size.py +136 -0
- shaped/autogen/models/hidden_size1.py +136 -0
- shaped/autogen/models/http_problem_response.py +115 -0
- shaped/autogen/models/http_validation_error.py +2 -2
- shaped/autogen/models/hugging_face_encoder.py +113 -0
- shaped/autogen/models/iceberg_table_config.py +154 -0
- shaped/autogen/models/index_config.py +101 -0
- shaped/autogen/models/inner_size.py +136 -0
- shaped/autogen/models/inner_size1.py +136 -0
- shaped/autogen/models/interaction_config.py +122 -0
- shaped/autogen/models/interaction_pooling_encoder.py +104 -0
- shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
- shaped/autogen/models/item_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/journey.py +140 -0
- shaped/autogen/models/kafka_table_config.py +129 -0
- shaped/autogen/models/kinesis_table_config.py +140 -0
- shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
- shaped/autogen/models/label.py +90 -0
- shaped/autogen/models/label_type.py +37 -0
- shaped/autogen/models/laplace_smoothing.py +136 -0
- shaped/autogen/models/latency_scaling_policy.py +112 -0
- shaped/autogen/models/learning_rate.py +136 -0
- shaped/autogen/models/learning_rate1.py +136 -0
- shaped/autogen/models/learning_rate2.py +136 -0
- shaped/autogen/models/learning_rate3.py +136 -0
- shaped/autogen/models/lexical_search_mode.py +99 -0
- shaped/autogen/models/list_engines_response.py +95 -0
- shaped/autogen/models/list_tables_response.py +95 -0
- shaped/autogen/models/list_views_response.py +95 -0
- shaped/autogen/models/loss_types.py +37 -0
- shaped/autogen/models/lr.py +136 -0
- shaped/autogen/models/lr1.py +136 -0
- shaped/autogen/models/lr2.py +136 -0
- shaped/autogen/models/max_depth.py +136 -0
- shaped/autogen/models/max_leaves.py +136 -0
- shaped/autogen/models/max_seq_length.py +136 -0
- shaped/autogen/models/max_seq_length1.py +136 -0
- shaped/autogen/models/max_seq_length2.py +136 -0
- shaped/autogen/models/mode.py +134 -0
- shaped/autogen/models/mode1.py +134 -0
- shaped/autogen/models/mode2.py +136 -0
- shaped/autogen/models/mongo_db_table_config.py +147 -0
- shaped/autogen/models/mssql_table_config.py +155 -0
- shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
- shaped/autogen/models/n_epochs.py +136 -0
- shaped/autogen/models/n_epochs1.py +136 -0
- shaped/autogen/models/n_epochs2.py +136 -0
- shaped/autogen/models/n_estimators.py +136 -0
- shaped/autogen/models/n_heads.py +136 -0
- shaped/autogen/models/n_layers.py +136 -0
- shaped/autogen/models/neg_per_positive.py +136 -0
- shaped/autogen/models/negative_samples_count.py +136 -0
- shaped/autogen/models/ngram_tokenizer.py +103 -0
- shaped/autogen/models/no_op_config.py +117 -0
- shaped/autogen/models/num_blocks.py +136 -0
- shaped/autogen/models/num_heads.py +136 -0
- shaped/autogen/models/num_leaves.py +136 -0
- shaped/autogen/models/objective.py +40 -0
- shaped/autogen/models/objective1.py +134 -0
- shaped/autogen/models/online_store_config.py +89 -0
- shaped/autogen/models/pagination_config.py +87 -0
- shaped/autogen/models/parameter_definition.py +96 -0
- shaped/autogen/models/parameters_value.py +240 -0
- shaped/autogen/models/passthrough_score.py +104 -0
- shaped/autogen/models/personal_filter.py +104 -0
- shaped/autogen/models/pipeline_stage_explanation.py +118 -0
- shaped/autogen/models/policy.py +134 -0
- shaped/autogen/models/pool_fn.py +134 -0
- shaped/autogen/models/pooling_function.py +37 -0
- shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
- shaped/autogen/models/posthog_table_config.py +133 -0
- shaped/autogen/models/prebuilt_filter_step.py +113 -0
- shaped/autogen/models/precomputed_item_embedding.py +99 -0
- shaped/autogen/models/precomputed_user_embedding.py +99 -0
- shaped/autogen/models/query.py +136 -0
- shaped/autogen/models/query1.py +136 -0
- shaped/autogen/models/query_any_of.py +140 -0
- shaped/autogen/models/query_definition.py +106 -0
- shaped/autogen/models/query_encoder.py +194 -0
- shaped/autogen/models/query_explanation.py +197 -0
- shaped/autogen/models/query_request.py +121 -0
- shaped/autogen/models/query_result.py +113 -0
- shaped/autogen/models/query_table_config.py +99 -0
- shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
- shaped/autogen/models/rank_query_config.py +167 -0
- shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
- shaped/autogen/models/rank_query_config_reorder_inner.py +149 -0
- shaped/autogen/models/rank_query_config_retrieve_inner.py +196 -0
- shaped/autogen/models/recreate_rollout.py +97 -0
- shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
- shaped/autogen/models/reference_table_config.py +113 -0
- shaped/autogen/models/regularization.py +136 -0
- shaped/autogen/models/request.py +378 -0
- shaped/autogen/models/request1.py +140 -0
- shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
- shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
- shaped/autogen/models/result.py +145 -0
- shaped/autogen/models/result_embeddings_value.py +127 -0
- shaped/autogen/models/retriever.py +196 -0
- shaped/autogen/models/retriever1.py +196 -0
- shaped/autogen/models/rollout_config.py +91 -0
- shaped/autogen/models/rudderstack_table_config.py +106 -0
- shaped/autogen/models/sampling_strategy.py +36 -0
- shaped/autogen/models/saved_query_info_response.py +89 -0
- shaped/autogen/models/saved_query_list_response.py +87 -0
- shaped/autogen/models/saved_query_request.py +115 -0
- shaped/autogen/models/schema_config.py +117 -0
- shaped/autogen/models/score.py +134 -0
- shaped/autogen/models/score_ensemble.py +140 -0
- shaped/autogen/models/score_ensemble_policy_config.py +141 -0
- shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +422 -0
- shaped/autogen/models/search_config.py +105 -0
- shaped/autogen/models/segment_table_config.py +106 -0
- shaped/autogen/models/sequence_length.py +136 -0
- shaped/autogen/models/server_config.py +87 -0
- shaped/autogen/models/setup_engine_response.py +87 -0
- shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +148 -0
- shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +154 -0
- shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +209 -0
- shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +139 -0
- shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +205 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +152 -0
- shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +239 -0
- shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +104 -0
- shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +130 -0
- shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
- shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +224 -0
- shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +159 -0
- shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +131 -0
- shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +131 -0
- shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +149 -0
- shaped/autogen/models/shopify_table_config.py +156 -0
- shaped/autogen/models/similarity_retrieve_step.py +121 -0
- shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
- shaped/autogen/models/sql_transform_type.py +37 -0
- shaped/autogen/models/sql_view_config.py +111 -0
- shaped/autogen/models/stemmer_tokenizer.py +105 -0
- shaped/autogen/models/step_explanation.py +137 -0
- shaped/autogen/models/strategy.py +134 -0
- shaped/autogen/models/table.py +102 -0
- shaped/autogen/models/table_deployment_type.py +38 -0
- shaped/autogen/models/table_insert_arguments.py +87 -0
- shaped/autogen/models/table_insert_response.py +87 -0
- shaped/autogen/models/text_encoding.py +136 -0
- shaped/autogen/models/text_search_retrieve_step.py +121 -0
- shaped/autogen/models/time_frequency.py +136 -0
- shaped/autogen/models/time_window.py +136 -0
- shaped/autogen/models/time_window_in_days.py +142 -0
- shaped/autogen/models/tokenizer.py +149 -0
- shaped/autogen/models/trained_model_encoder.py +99 -0
- shaped/autogen/models/training_compute_config.py +99 -0
- shaped/autogen/models/training_config.py +121 -0
- shaped/autogen/models/training_config_models_inner.py +308 -0
- shaped/autogen/models/training_strategy.py +37 -0
- shaped/autogen/models/trending_mode.py +37 -0
- shaped/autogen/models/truncate_filter_step.py +106 -0
- shaped/autogen/models/tunable_bool.py +97 -0
- shaped/autogen/models/tunable_float.py +118 -0
- shaped/autogen/models/tunable_int.py +118 -0
- shaped/autogen/models/tunable_int_categorical.py +99 -0
- shaped/autogen/models/tunable_string.py +99 -0
- shaped/autogen/models/tuning_config.py +89 -0
- shaped/autogen/models/type.py +134 -0
- shaped/autogen/models/update_table_response.py +87 -0
- shaped/autogen/models/update_view_response.py +87 -0
- shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/val_split.py +136 -0
- shaped/autogen/models/validation_error.py +13 -3
- shaped/autogen/models/validation_error_loc_inner.py +138 -0
- shaped/autogen/models/value_type.py +7 -5
- shaped/autogen/models/vector_search_mode.py +99 -0
- shaped/autogen/models/view.py +104 -0
- shaped/autogen/models/view_details_ai.py +140 -0
- shaped/autogen/models/view_details_ai_schema_value.py +153 -0
- shaped/autogen/models/view_details_sql.py +140 -0
- shaped/autogen/models/view_status.py +41 -0
- shaped/autogen/models/weight_decay.py +136 -0
- shaped/autogen/models/whitespace_tokenizer.py +97 -0
- shaped/autogen/models/window_size.py +136 -0
- shaped/autogen/rest.py +8 -2
- shaped/cli/shaped_cli.py +12 -7
- shaped/client.py +587 -174
- shaped/config_builders.py +695 -0
- shaped/query_builder.py +774 -0
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/METADATA +119 -56
- shaped-2.0.2.dist-info/RECORD +278 -0
- shaped-2.0.2.dist-info/entry_points.txt +2 -0
- shaped/autogen/api/model_inference_api.py +0 -2825
- shaped/autogen/models/amplitude_dataset_config.py +0 -96
- shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
- shaped/autogen/models/big_query_dataset_config.py +0 -114
- shaped/autogen/models/complement_items_request.py +0 -99
- shaped/autogen/models/complement_items_response.py +0 -89
- shaped/autogen/models/connectors_inner.py +0 -134
- shaped/autogen/models/create_dataset_arguments.py +0 -263
- shaped/autogen/models/create_embedding_response.py +0 -87
- shaped/autogen/models/create_item_embedding_request.py +0 -89
- shaped/autogen/models/create_model_arguments.py +0 -107
- shaped/autogen/models/create_model_response.py +0 -87
- shaped/autogen/models/create_user_embedding_request.py +0 -89
- shaped/autogen/models/custom_dataset_config.py +0 -115
- shaped/autogen/models/dataset_config.py +0 -101
- shaped/autogen/models/dataset_schema_type.py +0 -47
- shaped/autogen/models/datasets_inner.py +0 -91
- shaped/autogen/models/delete_model_response.py +0 -87
- shaped/autogen/models/fetch_config.py +0 -95
- shaped/autogen/models/file_config.py +0 -105
- shaped/autogen/models/file_source_config.py +0 -89
- shaped/autogen/models/inference_config.py +0 -101
- shaped/autogen/models/insert_model_response.py +0 -87
- shaped/autogen/models/interaction.py +0 -87
- shaped/autogen/models/list_datasets_response.py +0 -95
- shaped/autogen/models/list_models_response.py +0 -95
- shaped/autogen/models/model_config.py +0 -99
- shaped/autogen/models/model_response.py +0 -95
- shaped/autogen/models/mongo_db_dataset_config.py +0 -119
- shaped/autogen/models/post_rank_request.py +0 -117
- shaped/autogen/models/rank_attribute_response.py +0 -89
- shaped/autogen/models/rank_grid_attribute_request.py +0 -91
- shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
- shaped/autogen/models/rank_grid_attribute_response.py +0 -91
- shaped/autogen/models/rank_response.py +0 -91
- shaped/autogen/models/retrieve_request.py +0 -101
- shaped/autogen/models/retrieve_response.py +0 -91
- shaped/autogen/models/retriever_top_k_override.py +0 -97
- shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
- shaped/autogen/models/segment_dataset_config.py +0 -96
- shaped/autogen/models/similar_item_request.py +0 -101
- shaped/autogen/models/similar_response.py +0 -89
- shaped/autogen/models/similar_users_request.py +0 -99
- shaped/autogen/models/successful_response.py +0 -87
- shaped/autogen/models/view_model_response.py +0 -99
- shaped-2.0.0.dist-info/RECORD +0 -73
- shaped-2.0.0.dist-info/entry_points.txt +0 -2
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/WHEEL +0 -0
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/top_level.txt +0 -0
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,140 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
from inspect import getfullargspec
|
|
17
|
+
import json
|
|
18
|
+
import pprint
|
|
19
|
+
import re # noqa: F401
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictStr, ValidationError, field_validator
|
|
21
|
+
from typing import Optional
|
|
22
|
+
from shaped.autogen.models.attribute_journey import AttributeJourney
|
|
23
|
+
from shaped.autogen.models.entity_journey import EntityJourney
|
|
24
|
+
from typing import Union, Any, List, Set, TYPE_CHECKING, Optional, Dict
|
|
25
|
+
from typing_extensions import Literal, Self
|
|
26
|
+
from pydantic import Field
|
|
27
|
+
|
|
28
|
+
JOURNEY_ANY_OF_SCHEMAS = ["AttributeJourney", "EntityJourney"]
|
|
29
|
+
|
|
30
|
+
class Journey(BaseModel):
|
|
31
|
+
"""
|
|
32
|
+
Per-entity journey tracking showing how this entity moved through the query pipeline. Includes retrieval sources, filtering results, scoring details, and reordering changes. Only included if return_journey_explanations is true.
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
# data type: EntityJourney
|
|
36
|
+
anyof_schema_1_validator: Optional[EntityJourney] = None
|
|
37
|
+
# data type: AttributeJourney
|
|
38
|
+
anyof_schema_2_validator: Optional[AttributeJourney] = None
|
|
39
|
+
if TYPE_CHECKING:
|
|
40
|
+
actual_instance: Optional[Union[AttributeJourney, EntityJourney]] = None
|
|
41
|
+
else:
|
|
42
|
+
actual_instance: Any = None
|
|
43
|
+
any_of_schemas: Set[str] = { "AttributeJourney", "EntityJourney" }
|
|
44
|
+
|
|
45
|
+
model_config = {
|
|
46
|
+
"validate_assignment": True,
|
|
47
|
+
"protected_namespaces": (),
|
|
48
|
+
}
|
|
49
|
+
|
|
50
|
+
def __init__(self, *args, **kwargs) -> None:
|
|
51
|
+
if args:
|
|
52
|
+
if len(args) > 1:
|
|
53
|
+
raise ValueError("If a position argument is used, only 1 is allowed to set `actual_instance`")
|
|
54
|
+
if kwargs:
|
|
55
|
+
raise ValueError("If a position argument is used, keyword arguments cannot be used.")
|
|
56
|
+
super().__init__(actual_instance=args[0])
|
|
57
|
+
else:
|
|
58
|
+
super().__init__(**kwargs)
|
|
59
|
+
|
|
60
|
+
@field_validator('actual_instance')
|
|
61
|
+
def actual_instance_must_validate_anyof(cls, v):
|
|
62
|
+
if v is None:
|
|
63
|
+
return v
|
|
64
|
+
|
|
65
|
+
instance = Journey.model_construct()
|
|
66
|
+
error_messages = []
|
|
67
|
+
# validate data type: EntityJourney
|
|
68
|
+
if not isinstance(v, EntityJourney):
|
|
69
|
+
error_messages.append(f"Error! Input type `{type(v)}` is not `EntityJourney`")
|
|
70
|
+
else:
|
|
71
|
+
return v
|
|
72
|
+
|
|
73
|
+
# validate data type: AttributeJourney
|
|
74
|
+
if not isinstance(v, AttributeJourney):
|
|
75
|
+
error_messages.append(f"Error! Input type `{type(v)}` is not `AttributeJourney`")
|
|
76
|
+
else:
|
|
77
|
+
return v
|
|
78
|
+
|
|
79
|
+
if error_messages:
|
|
80
|
+
# no match
|
|
81
|
+
raise ValueError("No match found when setting the actual_instance in Journey with anyOf schemas: AttributeJourney, EntityJourney. Details: " + ", ".join(error_messages))
|
|
82
|
+
else:
|
|
83
|
+
return v
|
|
84
|
+
|
|
85
|
+
@classmethod
|
|
86
|
+
def from_dict(cls, obj: Dict[str, Any]) -> Self:
|
|
87
|
+
return cls.from_json(json.dumps(obj))
|
|
88
|
+
|
|
89
|
+
@classmethod
|
|
90
|
+
def from_json(cls, json_str: str) -> Self:
|
|
91
|
+
"""Returns the object represented by the json string"""
|
|
92
|
+
instance = cls.model_construct()
|
|
93
|
+
if json_str is None:
|
|
94
|
+
return instance
|
|
95
|
+
|
|
96
|
+
error_messages = []
|
|
97
|
+
# anyof_schema_1_validator: Optional[EntityJourney] = None
|
|
98
|
+
try:
|
|
99
|
+
instance.actual_instance = EntityJourney.from_json(json_str)
|
|
100
|
+
return instance
|
|
101
|
+
except (ValidationError, ValueError) as e:
|
|
102
|
+
error_messages.append(str(e))
|
|
103
|
+
# anyof_schema_2_validator: Optional[AttributeJourney] = None
|
|
104
|
+
try:
|
|
105
|
+
instance.actual_instance = AttributeJourney.from_json(json_str)
|
|
106
|
+
return instance
|
|
107
|
+
except (ValidationError, ValueError) as e:
|
|
108
|
+
error_messages.append(str(e))
|
|
109
|
+
|
|
110
|
+
if error_messages:
|
|
111
|
+
# no match
|
|
112
|
+
raise ValueError("No match found when deserializing the JSON string into Journey with anyOf schemas: AttributeJourney, EntityJourney. Details: " + ", ".join(error_messages))
|
|
113
|
+
else:
|
|
114
|
+
return instance
|
|
115
|
+
|
|
116
|
+
def to_json(self) -> str:
|
|
117
|
+
"""Returns the JSON representation of the actual instance"""
|
|
118
|
+
if self.actual_instance is None:
|
|
119
|
+
return "null"
|
|
120
|
+
|
|
121
|
+
if hasattr(self.actual_instance, "to_json") and callable(self.actual_instance.to_json):
|
|
122
|
+
return self.actual_instance.to_json()
|
|
123
|
+
else:
|
|
124
|
+
return json.dumps(self.actual_instance)
|
|
125
|
+
|
|
126
|
+
def to_dict(self) -> Optional[Union[Dict[str, Any], AttributeJourney, EntityJourney]]:
|
|
127
|
+
"""Returns the dict representation of the actual instance"""
|
|
128
|
+
if self.actual_instance is None:
|
|
129
|
+
return None
|
|
130
|
+
|
|
131
|
+
if hasattr(self.actual_instance, "to_dict") and callable(self.actual_instance.to_dict):
|
|
132
|
+
return self.actual_instance.to_dict()
|
|
133
|
+
else:
|
|
134
|
+
return self.actual_instance
|
|
135
|
+
|
|
136
|
+
def to_str(self) -> str:
|
|
137
|
+
"""Returns the string representation of the actual instance"""
|
|
138
|
+
return pprint.pformat(self.model_dump())
|
|
139
|
+
|
|
140
|
+
|
|
@@ -0,0 +1,129 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from shaped.autogen.models.value_type import ValueType
|
|
23
|
+
from typing import Optional, Set
|
|
24
|
+
from typing_extensions import Self
|
|
25
|
+
|
|
26
|
+
class KafkaTableConfig(BaseModel):
|
|
27
|
+
"""
|
|
28
|
+
KafkaTableConfig
|
|
29
|
+
""" # noqa: E501
|
|
30
|
+
schema_type: Optional[StrictStr] = Field(default='KAFKA', description="Schema type discriminator for Kafka datasets.")
|
|
31
|
+
name: StrictStr = Field(description="Unique identifier for the Kafka dataset.")
|
|
32
|
+
description: Optional[StrictStr] = None
|
|
33
|
+
topic: StrictStr = Field(description="Kafka topic name to consume from.")
|
|
34
|
+
bootstrap_server: StrictStr = Field(description="Kafka bootstrap server address (host:port).")
|
|
35
|
+
username: StrictStr = Field(description="Kafka username for authentication.")
|
|
36
|
+
password: StrictStr = Field(description="Kafka password for authentication.")
|
|
37
|
+
unique_keys: Optional[List[StrictStr]] = None
|
|
38
|
+
column_schema: Optional[Dict[str, ValueType]] = None
|
|
39
|
+
__properties: ClassVar[List[str]] = ["schema_type", "name", "description", "topic", "bootstrap_server", "username", "password", "unique_keys", "column_schema"]
|
|
40
|
+
|
|
41
|
+
@field_validator('schema_type')
|
|
42
|
+
def schema_type_validate_enum(cls, value):
|
|
43
|
+
"""Validates the enum"""
|
|
44
|
+
if value is None:
|
|
45
|
+
return value
|
|
46
|
+
|
|
47
|
+
if value not in set(['KAFKA']):
|
|
48
|
+
raise ValueError("must be one of enum values ('KAFKA')")
|
|
49
|
+
return value
|
|
50
|
+
|
|
51
|
+
model_config = ConfigDict(
|
|
52
|
+
populate_by_name=True,
|
|
53
|
+
validate_assignment=True,
|
|
54
|
+
protected_namespaces=(),
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def to_str(self) -> str:
|
|
59
|
+
"""Returns the string representation of the model using alias"""
|
|
60
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
61
|
+
|
|
62
|
+
def to_json(self) -> str:
|
|
63
|
+
"""Returns the JSON representation of the model using alias"""
|
|
64
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
65
|
+
return json.dumps(self.to_dict())
|
|
66
|
+
|
|
67
|
+
@classmethod
|
|
68
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
69
|
+
"""Create an instance of KafkaTableConfig from a JSON string"""
|
|
70
|
+
return cls.from_dict(json.loads(json_str))
|
|
71
|
+
|
|
72
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
73
|
+
"""Return the dictionary representation of the model using alias.
|
|
74
|
+
|
|
75
|
+
This has the following differences from calling pydantic's
|
|
76
|
+
`self.model_dump(by_alias=True)`:
|
|
77
|
+
|
|
78
|
+
* `None` is only added to the output dict for nullable fields that
|
|
79
|
+
were set at model initialization. Other fields with value `None`
|
|
80
|
+
are ignored.
|
|
81
|
+
"""
|
|
82
|
+
excluded_fields: Set[str] = set([
|
|
83
|
+
])
|
|
84
|
+
|
|
85
|
+
_dict = self.model_dump(
|
|
86
|
+
by_alias=True,
|
|
87
|
+
exclude=excluded_fields,
|
|
88
|
+
exclude_none=True,
|
|
89
|
+
)
|
|
90
|
+
# set to None if description (nullable) is None
|
|
91
|
+
# and model_fields_set contains the field
|
|
92
|
+
if self.description is None and "description" in self.model_fields_set:
|
|
93
|
+
_dict['description'] = None
|
|
94
|
+
|
|
95
|
+
# set to None if unique_keys (nullable) is None
|
|
96
|
+
# and model_fields_set contains the field
|
|
97
|
+
if self.unique_keys is None and "unique_keys" in self.model_fields_set:
|
|
98
|
+
_dict['unique_keys'] = None
|
|
99
|
+
|
|
100
|
+
# set to None if column_schema (nullable) is None
|
|
101
|
+
# and model_fields_set contains the field
|
|
102
|
+
if self.column_schema is None and "column_schema" in self.model_fields_set:
|
|
103
|
+
_dict['column_schema'] = None
|
|
104
|
+
|
|
105
|
+
return _dict
|
|
106
|
+
|
|
107
|
+
@classmethod
|
|
108
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
109
|
+
"""Create an instance of KafkaTableConfig from a dict"""
|
|
110
|
+
if obj is None:
|
|
111
|
+
return None
|
|
112
|
+
|
|
113
|
+
if not isinstance(obj, dict):
|
|
114
|
+
return cls.model_validate(obj)
|
|
115
|
+
|
|
116
|
+
_obj = cls.model_validate({
|
|
117
|
+
"schema_type": obj.get("schema_type") if obj.get("schema_type") is not None else 'KAFKA',
|
|
118
|
+
"name": obj.get("name"),
|
|
119
|
+
"description": obj.get("description"),
|
|
120
|
+
"topic": obj.get("topic"),
|
|
121
|
+
"bootstrap_server": obj.get("bootstrap_server"),
|
|
122
|
+
"username": obj.get("username"),
|
|
123
|
+
"password": obj.get("password"),
|
|
124
|
+
"unique_keys": obj.get("unique_keys"),
|
|
125
|
+
"column_schema": dict((_k, _v) for _k, _v in obj.get("column_schema").items()) if obj.get("column_schema") is not None else None
|
|
126
|
+
})
|
|
127
|
+
return _obj
|
|
128
|
+
|
|
129
|
+
|
|
@@ -0,0 +1,140 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from shaped.autogen.models.kinesis_table_config_column_schema_value import KinesisTableConfigColumnSchemaValue
|
|
23
|
+
from typing import Optional, Set
|
|
24
|
+
from typing_extensions import Self
|
|
25
|
+
|
|
26
|
+
class KinesisTableConfig(BaseModel):
|
|
27
|
+
"""
|
|
28
|
+
KinesisTableConfig
|
|
29
|
+
""" # noqa: E501
|
|
30
|
+
schema_type: Optional[StrictStr] = Field(default='KINESIS', description="Schema type discriminator for Kinesis datasets.")
|
|
31
|
+
name: StrictStr = Field(description="Unique identifier for the Kinesis dataset.")
|
|
32
|
+
description: Optional[StrictStr] = None
|
|
33
|
+
unique_keys: Optional[List[StrictStr]] = None
|
|
34
|
+
column_schema: Optional[Dict[str, KinesisTableConfigColumnSchemaValue]] = None
|
|
35
|
+
tenant_aws_account_id: Optional[StrictStr] = None
|
|
36
|
+
__properties: ClassVar[List[str]] = ["schema_type", "name", "description", "unique_keys", "column_schema", "tenant_aws_account_id"]
|
|
37
|
+
|
|
38
|
+
@field_validator('schema_type')
|
|
39
|
+
def schema_type_validate_enum(cls, value):
|
|
40
|
+
"""Validates the enum"""
|
|
41
|
+
if value is None:
|
|
42
|
+
return value
|
|
43
|
+
|
|
44
|
+
if value not in set(['KINESIS']):
|
|
45
|
+
raise ValueError("must be one of enum values ('KINESIS')")
|
|
46
|
+
return value
|
|
47
|
+
|
|
48
|
+
model_config = ConfigDict(
|
|
49
|
+
populate_by_name=True,
|
|
50
|
+
validate_assignment=True,
|
|
51
|
+
protected_namespaces=(),
|
|
52
|
+
)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def to_str(self) -> str:
|
|
56
|
+
"""Returns the string representation of the model using alias"""
|
|
57
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
58
|
+
|
|
59
|
+
def to_json(self) -> str:
|
|
60
|
+
"""Returns the JSON representation of the model using alias"""
|
|
61
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
62
|
+
return json.dumps(self.to_dict())
|
|
63
|
+
|
|
64
|
+
@classmethod
|
|
65
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
66
|
+
"""Create an instance of KinesisTableConfig from a JSON string"""
|
|
67
|
+
return cls.from_dict(json.loads(json_str))
|
|
68
|
+
|
|
69
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
70
|
+
"""Return the dictionary representation of the model using alias.
|
|
71
|
+
|
|
72
|
+
This has the following differences from calling pydantic's
|
|
73
|
+
`self.model_dump(by_alias=True)`:
|
|
74
|
+
|
|
75
|
+
* `None` is only added to the output dict for nullable fields that
|
|
76
|
+
were set at model initialization. Other fields with value `None`
|
|
77
|
+
are ignored.
|
|
78
|
+
"""
|
|
79
|
+
excluded_fields: Set[str] = set([
|
|
80
|
+
])
|
|
81
|
+
|
|
82
|
+
_dict = self.model_dump(
|
|
83
|
+
by_alias=True,
|
|
84
|
+
exclude=excluded_fields,
|
|
85
|
+
exclude_none=True,
|
|
86
|
+
)
|
|
87
|
+
# override the default output from pydantic by calling `to_dict()` of each value in column_schema (dict)
|
|
88
|
+
_field_dict = {}
|
|
89
|
+
if self.column_schema:
|
|
90
|
+
for _key_column_schema in self.column_schema:
|
|
91
|
+
if self.column_schema[_key_column_schema]:
|
|
92
|
+
_field_dict[_key_column_schema] = self.column_schema[_key_column_schema].to_dict()
|
|
93
|
+
_dict['column_schema'] = _field_dict
|
|
94
|
+
# set to None if description (nullable) is None
|
|
95
|
+
# and model_fields_set contains the field
|
|
96
|
+
if self.description is None and "description" in self.model_fields_set:
|
|
97
|
+
_dict['description'] = None
|
|
98
|
+
|
|
99
|
+
# set to None if unique_keys (nullable) is None
|
|
100
|
+
# and model_fields_set contains the field
|
|
101
|
+
if self.unique_keys is None and "unique_keys" in self.model_fields_set:
|
|
102
|
+
_dict['unique_keys'] = None
|
|
103
|
+
|
|
104
|
+
# set to None if column_schema (nullable) is None
|
|
105
|
+
# and model_fields_set contains the field
|
|
106
|
+
if self.column_schema is None and "column_schema" in self.model_fields_set:
|
|
107
|
+
_dict['column_schema'] = None
|
|
108
|
+
|
|
109
|
+
# set to None if tenant_aws_account_id (nullable) is None
|
|
110
|
+
# and model_fields_set contains the field
|
|
111
|
+
if self.tenant_aws_account_id is None and "tenant_aws_account_id" in self.model_fields_set:
|
|
112
|
+
_dict['tenant_aws_account_id'] = None
|
|
113
|
+
|
|
114
|
+
return _dict
|
|
115
|
+
|
|
116
|
+
@classmethod
|
|
117
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
118
|
+
"""Create an instance of KinesisTableConfig from a dict"""
|
|
119
|
+
if obj is None:
|
|
120
|
+
return None
|
|
121
|
+
|
|
122
|
+
if not isinstance(obj, dict):
|
|
123
|
+
return cls.model_validate(obj)
|
|
124
|
+
|
|
125
|
+
_obj = cls.model_validate({
|
|
126
|
+
"schema_type": obj.get("schema_type") if obj.get("schema_type") is not None else 'KINESIS',
|
|
127
|
+
"name": obj.get("name"),
|
|
128
|
+
"description": obj.get("description"),
|
|
129
|
+
"unique_keys": obj.get("unique_keys"),
|
|
130
|
+
"column_schema": dict(
|
|
131
|
+
(_k, KinesisTableConfigColumnSchemaValue.from_dict(_v))
|
|
132
|
+
for _k, _v in obj["column_schema"].items()
|
|
133
|
+
)
|
|
134
|
+
if obj.get("column_schema") is not None
|
|
135
|
+
else None,
|
|
136
|
+
"tenant_aws_account_id": obj.get("tenant_aws_account_id")
|
|
137
|
+
})
|
|
138
|
+
return _obj
|
|
139
|
+
|
|
140
|
+
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
from inspect import getfullargspec
|
|
17
|
+
import json
|
|
18
|
+
import pprint
|
|
19
|
+
import re # noqa: F401
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictStr, ValidationError, field_validator
|
|
21
|
+
from typing import Dict, Optional
|
|
22
|
+
from shaped.autogen.models.value_type import ValueType
|
|
23
|
+
from typing import Union, Any, List, Set, TYPE_CHECKING, Optional, Dict
|
|
24
|
+
from typing_extensions import Literal, Self
|
|
25
|
+
from pydantic import Field
|
|
26
|
+
|
|
27
|
+
KINESISTABLECONFIGCOLUMNSCHEMAVALUE_ANY_OF_SCHEMAS = ["Dict[str, ValueType]", "ValueType"]
|
|
28
|
+
|
|
29
|
+
class KinesisTableConfigColumnSchemaValue(BaseModel):
|
|
30
|
+
"""
|
|
31
|
+
KinesisTableConfigColumnSchemaValue
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
# data type: ValueType
|
|
35
|
+
anyof_schema_1_validator: Optional[ValueType] = None
|
|
36
|
+
# data type: Dict[str, ValueType]
|
|
37
|
+
anyof_schema_2_validator: Optional[Dict[str, ValueType]] = None
|
|
38
|
+
if TYPE_CHECKING:
|
|
39
|
+
actual_instance: Optional[Union[Dict[str, ValueType], ValueType]] = None
|
|
40
|
+
else:
|
|
41
|
+
actual_instance: Any = None
|
|
42
|
+
any_of_schemas: Set[str] = { "Dict[str, ValueType]", "ValueType" }
|
|
43
|
+
|
|
44
|
+
model_config = {
|
|
45
|
+
"validate_assignment": True,
|
|
46
|
+
"protected_namespaces": (),
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
def __init__(self, *args, **kwargs) -> None:
|
|
50
|
+
if args:
|
|
51
|
+
if len(args) > 1:
|
|
52
|
+
raise ValueError("If a position argument is used, only 1 is allowed to set `actual_instance`")
|
|
53
|
+
if kwargs:
|
|
54
|
+
raise ValueError("If a position argument is used, keyword arguments cannot be used.")
|
|
55
|
+
super().__init__(actual_instance=args[0])
|
|
56
|
+
else:
|
|
57
|
+
super().__init__(**kwargs)
|
|
58
|
+
|
|
59
|
+
@field_validator('actual_instance')
|
|
60
|
+
def actual_instance_must_validate_anyof(cls, v):
|
|
61
|
+
instance = KinesisTableConfigColumnSchemaValue.model_construct()
|
|
62
|
+
error_messages = []
|
|
63
|
+
# validate data type: ValueType
|
|
64
|
+
if not isinstance(v, ValueType):
|
|
65
|
+
error_messages.append(f"Error! Input type `{type(v)}` is not `ValueType`")
|
|
66
|
+
else:
|
|
67
|
+
return v
|
|
68
|
+
|
|
69
|
+
# validate data type: Dict[str, ValueType]
|
|
70
|
+
try:
|
|
71
|
+
instance.anyof_schema_2_validator = v
|
|
72
|
+
return v
|
|
73
|
+
except (ValidationError, ValueError) as e:
|
|
74
|
+
error_messages.append(str(e))
|
|
75
|
+
if error_messages:
|
|
76
|
+
# no match
|
|
77
|
+
raise ValueError("No match found when setting the actual_instance in KinesisTableConfigColumnSchemaValue with anyOf schemas: Dict[str, ValueType], ValueType. Details: " + ", ".join(error_messages))
|
|
78
|
+
else:
|
|
79
|
+
return v
|
|
80
|
+
|
|
81
|
+
@classmethod
|
|
82
|
+
def from_dict(cls, obj: Dict[str, Any]) -> Self:
|
|
83
|
+
return cls.from_json(json.dumps(obj))
|
|
84
|
+
|
|
85
|
+
@classmethod
|
|
86
|
+
def from_json(cls, json_str: str) -> Self:
|
|
87
|
+
"""Returns the object represented by the json string"""
|
|
88
|
+
instance = cls.model_construct()
|
|
89
|
+
error_messages = []
|
|
90
|
+
# anyof_schema_1_validator: Optional[ValueType] = None
|
|
91
|
+
try:
|
|
92
|
+
instance.actual_instance = ValueType.from_json(json_str)
|
|
93
|
+
return instance
|
|
94
|
+
except (ValidationError, ValueError) as e:
|
|
95
|
+
error_messages.append(str(e))
|
|
96
|
+
# deserialize data into Dict[str, ValueType]
|
|
97
|
+
try:
|
|
98
|
+
# validation
|
|
99
|
+
instance.anyof_schema_2_validator = json.loads(json_str)
|
|
100
|
+
# assign value to actual_instance
|
|
101
|
+
instance.actual_instance = instance.anyof_schema_2_validator
|
|
102
|
+
return instance
|
|
103
|
+
except (ValidationError, ValueError) as e:
|
|
104
|
+
error_messages.append(str(e))
|
|
105
|
+
|
|
106
|
+
if error_messages:
|
|
107
|
+
# no match
|
|
108
|
+
raise ValueError("No match found when deserializing the JSON string into KinesisTableConfigColumnSchemaValue with anyOf schemas: Dict[str, ValueType], ValueType. Details: " + ", ".join(error_messages))
|
|
109
|
+
else:
|
|
110
|
+
return instance
|
|
111
|
+
|
|
112
|
+
def to_json(self) -> str:
|
|
113
|
+
"""Returns the JSON representation of the actual instance"""
|
|
114
|
+
if self.actual_instance is None:
|
|
115
|
+
return "null"
|
|
116
|
+
|
|
117
|
+
if hasattr(self.actual_instance, "to_json") and callable(self.actual_instance.to_json):
|
|
118
|
+
return self.actual_instance.to_json()
|
|
119
|
+
else:
|
|
120
|
+
return json.dumps(self.actual_instance)
|
|
121
|
+
|
|
122
|
+
def to_dict(self) -> Optional[Union[Dict[str, Any], Dict[str, ValueType], ValueType]]:
|
|
123
|
+
"""Returns the dict representation of the actual instance"""
|
|
124
|
+
if self.actual_instance is None:
|
|
125
|
+
return None
|
|
126
|
+
|
|
127
|
+
if hasattr(self.actual_instance, "to_dict") and callable(self.actual_instance.to_dict):
|
|
128
|
+
return self.actual_instance.to_dict()
|
|
129
|
+
else:
|
|
130
|
+
return self.actual_instance
|
|
131
|
+
|
|
132
|
+
def to_str(self) -> str:
|
|
133
|
+
"""Returns the string representation of the actual instance"""
|
|
134
|
+
return pprint.pformat(self.model_dump())
|
|
135
|
+
|
|
136
|
+
|
|
@@ -0,0 +1,90 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, StrictStr
|
|
21
|
+
from typing import Any, ClassVar, Dict, List
|
|
22
|
+
from shaped.autogen.models.label_type import LabelType
|
|
23
|
+
from typing import Optional, Set
|
|
24
|
+
from typing_extensions import Self
|
|
25
|
+
|
|
26
|
+
class Label(BaseModel):
|
|
27
|
+
"""
|
|
28
|
+
Label
|
|
29
|
+
""" # noqa: E501
|
|
30
|
+
name: StrictStr
|
|
31
|
+
type: LabelType
|
|
32
|
+
__properties: ClassVar[List[str]] = ["name", "type"]
|
|
33
|
+
|
|
34
|
+
model_config = ConfigDict(
|
|
35
|
+
populate_by_name=True,
|
|
36
|
+
validate_assignment=True,
|
|
37
|
+
protected_namespaces=(),
|
|
38
|
+
)
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def to_str(self) -> str:
|
|
42
|
+
"""Returns the string representation of the model using alias"""
|
|
43
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
44
|
+
|
|
45
|
+
def to_json(self) -> str:
|
|
46
|
+
"""Returns the JSON representation of the model using alias"""
|
|
47
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
48
|
+
return json.dumps(self.to_dict())
|
|
49
|
+
|
|
50
|
+
@classmethod
|
|
51
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
52
|
+
"""Create an instance of Label from a JSON string"""
|
|
53
|
+
return cls.from_dict(json.loads(json_str))
|
|
54
|
+
|
|
55
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
56
|
+
"""Return the dictionary representation of the model using alias.
|
|
57
|
+
|
|
58
|
+
This has the following differences from calling pydantic's
|
|
59
|
+
`self.model_dump(by_alias=True)`:
|
|
60
|
+
|
|
61
|
+
* `None` is only added to the output dict for nullable fields that
|
|
62
|
+
were set at model initialization. Other fields with value `None`
|
|
63
|
+
are ignored.
|
|
64
|
+
"""
|
|
65
|
+
excluded_fields: Set[str] = set([
|
|
66
|
+
])
|
|
67
|
+
|
|
68
|
+
_dict = self.model_dump(
|
|
69
|
+
by_alias=True,
|
|
70
|
+
exclude=excluded_fields,
|
|
71
|
+
exclude_none=True,
|
|
72
|
+
)
|
|
73
|
+
return _dict
|
|
74
|
+
|
|
75
|
+
@classmethod
|
|
76
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
77
|
+
"""Create an instance of Label from a dict"""
|
|
78
|
+
if obj is None:
|
|
79
|
+
return None
|
|
80
|
+
|
|
81
|
+
if not isinstance(obj, dict):
|
|
82
|
+
return cls.model_validate(obj)
|
|
83
|
+
|
|
84
|
+
_obj = cls.model_validate({
|
|
85
|
+
"name": obj.get("name"),
|
|
86
|
+
"type": obj.get("type")
|
|
87
|
+
})
|
|
88
|
+
return _obj
|
|
89
|
+
|
|
90
|
+
|
|
@@ -0,0 +1,37 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import json
|
|
17
|
+
from enum import Enum
|
|
18
|
+
from typing_extensions import Self
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class LabelType(str, Enum):
|
|
22
|
+
"""
|
|
23
|
+
LabelType
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
"""
|
|
27
|
+
allowed enum values
|
|
28
|
+
"""
|
|
29
|
+
RATINGLABEL = 'RatingLabel'
|
|
30
|
+
BINARYLABEL = 'BinaryLabel'
|
|
31
|
+
|
|
32
|
+
@classmethod
|
|
33
|
+
def from_json(cls, json_str: str) -> Self:
|
|
34
|
+
"""Create an instance of LabelType from a JSON string"""
|
|
35
|
+
return cls(json.loads(json_str))
|
|
36
|
+
|
|
37
|
+
|