shaped 2.0.0__py3-none-any.whl → 2.0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- shaped/__init__.py +54 -4
- shaped/autogen/__init__.py +541 -66
- shaped/autogen/api/__init__.py +4 -3
- shaped/autogen/api/engine_api.py +1467 -0
- shaped/autogen/api/{dataset_api.py → query_api.py} +219 -194
- shaped/autogen/api/table_api.py +1494 -0
- shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
- shaped/autogen/api_client.py +15 -8
- shaped/autogen/configuration.py +20 -9
- shaped/autogen/exceptions.py +19 -2
- shaped/autogen/models/__init__.py +254 -52
- shaped/autogen/models/ai_enrichment_view_config.py +123 -0
- shaped/autogen/models/{path.py → algorithm.py} +19 -19
- shaped/autogen/models/amplitude_table_config.py +106 -0
- shaped/autogen/models/ascending.py +136 -0
- shaped/autogen/models/attn_dropout_prob.py +136 -0
- shaped/autogen/models/attribute_journey.py +124 -0
- shaped/autogen/models/attribute_value.py +178 -0
- shaped/autogen/models/autoscaling_config.py +95 -0
- shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
- shaped/autogen/models/batch_size.py +136 -0
- shaped/autogen/models/batch_size1.py +136 -0
- shaped/autogen/models/batch_size2.py +136 -0
- shaped/autogen/models/big_query_table_config.py +147 -0
- shaped/autogen/models/bm25.py +136 -0
- shaped/autogen/models/boosted_reorder_step.py +125 -0
- shaped/autogen/models/canary_rollout.py +99 -0
- shaped/autogen/models/candidate_attributes_retrieve_step.py +126 -0
- shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
- shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
- shaped/autogen/models/clickhouse_table_config.py +146 -0
- shaped/autogen/models/column_order_retrieve_step.py +123 -0
- shaped/autogen/models/column_ordering.py +91 -0
- shaped/autogen/models/create_table_response.py +87 -0
- shaped/autogen/models/create_view_response.py +87 -0
- shaped/autogen/models/custom_table_config.py +135 -0
- shaped/autogen/models/data_compute_config.py +89 -0
- shaped/autogen/models/data_config.py +145 -0
- shaped/autogen/models/data_config_interaction_table.py +146 -0
- shaped/autogen/models/data_split_config.py +88 -0
- shaped/autogen/models/data_split_strategy.py +37 -0
- shaped/autogen/models/data_tier.py +37 -0
- shaped/autogen/models/default.py +246 -0
- shaped/autogen/models/delete_engine_response.py +87 -0
- shaped/autogen/models/delete_table_response.py +87 -0
- shaped/autogen/models/delete_view_response.py +87 -0
- shaped/autogen/models/deployment_config.py +123 -0
- shaped/autogen/models/distance_function.py +38 -0
- shaped/autogen/models/diversity_reorder_step.py +137 -0
- shaped/autogen/models/dropout_rate.py +136 -0
- shaped/autogen/models/dynamo_db_table_config.py +160 -0
- shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
- shaped/autogen/models/embedder_batch_size.py +136 -0
- shaped/autogen/models/embedding_config.py +93 -0
- shaped/autogen/models/embedding_dim.py +136 -0
- shaped/autogen/models/embedding_dims.py +136 -0
- shaped/autogen/models/embedding_size.py +136 -0
- shaped/autogen/models/encoder.py +140 -0
- shaped/autogen/models/encoding_pooling_strategy.py +38 -0
- shaped/autogen/models/engine.py +109 -0
- shaped/autogen/models/engine_config_v2.py +152 -0
- shaped/autogen/models/engine_details_response.py +120 -0
- shaped/autogen/models/engine_schema.py +113 -0
- shaped/autogen/models/engine_schema_user_inner.py +134 -0
- shaped/autogen/models/entity_config.py +109 -0
- shaped/autogen/models/entity_journey.py +152 -0
- shaped/autogen/models/entity_type.py +38 -0
- shaped/autogen/models/evaluation_config.py +92 -0
- shaped/autogen/models/exploration_reorder_step.py +125 -0
- shaped/autogen/models/expression_filter_step.py +106 -0
- shaped/autogen/models/factors.py +136 -0
- shaped/autogen/models/factors1.py +136 -0
- shaped/autogen/models/feature.py +90 -0
- shaped/autogen/models/feature_type.py +60 -0
- shaped/autogen/models/file_table_config.py +112 -0
- shaped/autogen/models/filter_config.py +99 -0
- shaped/autogen/models/filter_dataset.py +140 -0
- shaped/autogen/models/filter_index_type.py +36 -0
- shaped/autogen/models/filter_retrieve_step.py +113 -0
- shaped/autogen/models/global_filter.py +102 -0
- shaped/autogen/models/hidden_dropout_prob.py +136 -0
- shaped/autogen/models/hidden_size.py +136 -0
- shaped/autogen/models/hidden_size1.py +136 -0
- shaped/autogen/models/http_problem_response.py +115 -0
- shaped/autogen/models/http_validation_error.py +2 -2
- shaped/autogen/models/hugging_face_encoder.py +113 -0
- shaped/autogen/models/iceberg_table_config.py +154 -0
- shaped/autogen/models/index_config.py +101 -0
- shaped/autogen/models/inner_size.py +136 -0
- shaped/autogen/models/inner_size1.py +136 -0
- shaped/autogen/models/interaction_config.py +122 -0
- shaped/autogen/models/interaction_pooling_encoder.py +104 -0
- shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
- shaped/autogen/models/item_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/journey.py +140 -0
- shaped/autogen/models/kafka_table_config.py +129 -0
- shaped/autogen/models/kinesis_table_config.py +140 -0
- shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
- shaped/autogen/models/label.py +90 -0
- shaped/autogen/models/label_type.py +37 -0
- shaped/autogen/models/laplace_smoothing.py +136 -0
- shaped/autogen/models/latency_scaling_policy.py +112 -0
- shaped/autogen/models/learning_rate.py +136 -0
- shaped/autogen/models/learning_rate1.py +136 -0
- shaped/autogen/models/learning_rate2.py +136 -0
- shaped/autogen/models/learning_rate3.py +136 -0
- shaped/autogen/models/lexical_search_mode.py +99 -0
- shaped/autogen/models/list_engines_response.py +95 -0
- shaped/autogen/models/list_tables_response.py +95 -0
- shaped/autogen/models/list_views_response.py +95 -0
- shaped/autogen/models/loss_types.py +37 -0
- shaped/autogen/models/lr.py +136 -0
- shaped/autogen/models/lr1.py +136 -0
- shaped/autogen/models/lr2.py +136 -0
- shaped/autogen/models/max_depth.py +136 -0
- shaped/autogen/models/max_leaves.py +136 -0
- shaped/autogen/models/max_seq_length.py +136 -0
- shaped/autogen/models/max_seq_length1.py +136 -0
- shaped/autogen/models/max_seq_length2.py +136 -0
- shaped/autogen/models/mode.py +134 -0
- shaped/autogen/models/mode1.py +134 -0
- shaped/autogen/models/mode2.py +136 -0
- shaped/autogen/models/mongo_db_table_config.py +147 -0
- shaped/autogen/models/mssql_table_config.py +155 -0
- shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
- shaped/autogen/models/n_epochs.py +136 -0
- shaped/autogen/models/n_epochs1.py +136 -0
- shaped/autogen/models/n_epochs2.py +136 -0
- shaped/autogen/models/n_estimators.py +136 -0
- shaped/autogen/models/n_heads.py +136 -0
- shaped/autogen/models/n_layers.py +136 -0
- shaped/autogen/models/neg_per_positive.py +136 -0
- shaped/autogen/models/negative_samples_count.py +136 -0
- shaped/autogen/models/ngram_tokenizer.py +103 -0
- shaped/autogen/models/no_op_config.py +117 -0
- shaped/autogen/models/num_blocks.py +136 -0
- shaped/autogen/models/num_heads.py +136 -0
- shaped/autogen/models/num_leaves.py +136 -0
- shaped/autogen/models/objective.py +40 -0
- shaped/autogen/models/objective1.py +134 -0
- shaped/autogen/models/online_store_config.py +89 -0
- shaped/autogen/models/pagination_config.py +87 -0
- shaped/autogen/models/parameter_definition.py +96 -0
- shaped/autogen/models/parameters_value.py +240 -0
- shaped/autogen/models/passthrough_score.py +104 -0
- shaped/autogen/models/personal_filter.py +104 -0
- shaped/autogen/models/pipeline_stage_explanation.py +118 -0
- shaped/autogen/models/policy.py +134 -0
- shaped/autogen/models/pool_fn.py +134 -0
- shaped/autogen/models/pooling_function.py +37 -0
- shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
- shaped/autogen/models/posthog_table_config.py +133 -0
- shaped/autogen/models/prebuilt_filter_step.py +113 -0
- shaped/autogen/models/precomputed_item_embedding.py +99 -0
- shaped/autogen/models/precomputed_user_embedding.py +99 -0
- shaped/autogen/models/query.py +136 -0
- shaped/autogen/models/query1.py +136 -0
- shaped/autogen/models/query_any_of.py +140 -0
- shaped/autogen/models/query_definition.py +106 -0
- shaped/autogen/models/query_encoder.py +194 -0
- shaped/autogen/models/query_explanation.py +197 -0
- shaped/autogen/models/query_request.py +121 -0
- shaped/autogen/models/query_result.py +113 -0
- shaped/autogen/models/query_table_config.py +99 -0
- shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
- shaped/autogen/models/rank_query_config.py +167 -0
- shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
- shaped/autogen/models/rank_query_config_reorder_inner.py +149 -0
- shaped/autogen/models/rank_query_config_retrieve_inner.py +196 -0
- shaped/autogen/models/recreate_rollout.py +97 -0
- shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
- shaped/autogen/models/reference_table_config.py +113 -0
- shaped/autogen/models/regularization.py +136 -0
- shaped/autogen/models/request.py +378 -0
- shaped/autogen/models/request1.py +140 -0
- shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
- shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
- shaped/autogen/models/result.py +145 -0
- shaped/autogen/models/result_embeddings_value.py +127 -0
- shaped/autogen/models/retriever.py +196 -0
- shaped/autogen/models/retriever1.py +196 -0
- shaped/autogen/models/rollout_config.py +91 -0
- shaped/autogen/models/rudderstack_table_config.py +106 -0
- shaped/autogen/models/sampling_strategy.py +36 -0
- shaped/autogen/models/saved_query_info_response.py +89 -0
- shaped/autogen/models/saved_query_list_response.py +87 -0
- shaped/autogen/models/saved_query_request.py +115 -0
- shaped/autogen/models/schema_config.py +117 -0
- shaped/autogen/models/score.py +134 -0
- shaped/autogen/models/score_ensemble.py +140 -0
- shaped/autogen/models/score_ensemble_policy_config.py +141 -0
- shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +422 -0
- shaped/autogen/models/search_config.py +105 -0
- shaped/autogen/models/segment_table_config.py +106 -0
- shaped/autogen/models/sequence_length.py +136 -0
- shaped/autogen/models/server_config.py +87 -0
- shaped/autogen/models/setup_engine_response.py +87 -0
- shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +148 -0
- shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +154 -0
- shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +209 -0
- shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +139 -0
- shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +205 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
- shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +152 -0
- shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +239 -0
- shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +137 -0
- shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +104 -0
- shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +130 -0
- shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
- shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +224 -0
- shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
- shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +159 -0
- shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +131 -0
- shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +131 -0
- shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +149 -0
- shaped/autogen/models/shopify_table_config.py +156 -0
- shaped/autogen/models/similarity_retrieve_step.py +121 -0
- shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
- shaped/autogen/models/sql_transform_type.py +37 -0
- shaped/autogen/models/sql_view_config.py +111 -0
- shaped/autogen/models/stemmer_tokenizer.py +105 -0
- shaped/autogen/models/step_explanation.py +137 -0
- shaped/autogen/models/strategy.py +134 -0
- shaped/autogen/models/table.py +102 -0
- shaped/autogen/models/table_deployment_type.py +38 -0
- shaped/autogen/models/table_insert_arguments.py +87 -0
- shaped/autogen/models/table_insert_response.py +87 -0
- shaped/autogen/models/text_encoding.py +136 -0
- shaped/autogen/models/text_search_retrieve_step.py +121 -0
- shaped/autogen/models/time_frequency.py +136 -0
- shaped/autogen/models/time_window.py +136 -0
- shaped/autogen/models/time_window_in_days.py +142 -0
- shaped/autogen/models/tokenizer.py +149 -0
- shaped/autogen/models/trained_model_encoder.py +99 -0
- shaped/autogen/models/training_compute_config.py +99 -0
- shaped/autogen/models/training_config.py +121 -0
- shaped/autogen/models/training_config_models_inner.py +308 -0
- shaped/autogen/models/training_strategy.py +37 -0
- shaped/autogen/models/trending_mode.py +37 -0
- shaped/autogen/models/truncate_filter_step.py +106 -0
- shaped/autogen/models/tunable_bool.py +97 -0
- shaped/autogen/models/tunable_float.py +118 -0
- shaped/autogen/models/tunable_int.py +118 -0
- shaped/autogen/models/tunable_int_categorical.py +99 -0
- shaped/autogen/models/tunable_string.py +99 -0
- shaped/autogen/models/tuning_config.py +89 -0
- shaped/autogen/models/type.py +134 -0
- shaped/autogen/models/update_table_response.py +87 -0
- shaped/autogen/models/update_view_response.py +87 -0
- shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
- shaped/autogen/models/val_split.py +136 -0
- shaped/autogen/models/validation_error.py +13 -3
- shaped/autogen/models/validation_error_loc_inner.py +138 -0
- shaped/autogen/models/value_type.py +7 -5
- shaped/autogen/models/vector_search_mode.py +99 -0
- shaped/autogen/models/view.py +104 -0
- shaped/autogen/models/view_details_ai.py +140 -0
- shaped/autogen/models/view_details_ai_schema_value.py +153 -0
- shaped/autogen/models/view_details_sql.py +140 -0
- shaped/autogen/models/view_status.py +41 -0
- shaped/autogen/models/weight_decay.py +136 -0
- shaped/autogen/models/whitespace_tokenizer.py +97 -0
- shaped/autogen/models/window_size.py +136 -0
- shaped/autogen/rest.py +8 -2
- shaped/cli/shaped_cli.py +12 -7
- shaped/client.py +587 -174
- shaped/config_builders.py +695 -0
- shaped/query_builder.py +774 -0
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/METADATA +119 -56
- shaped-2.0.2.dist-info/RECORD +278 -0
- shaped-2.0.2.dist-info/entry_points.txt +2 -0
- shaped/autogen/api/model_inference_api.py +0 -2825
- shaped/autogen/models/amplitude_dataset_config.py +0 -96
- shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
- shaped/autogen/models/big_query_dataset_config.py +0 -114
- shaped/autogen/models/complement_items_request.py +0 -99
- shaped/autogen/models/complement_items_response.py +0 -89
- shaped/autogen/models/connectors_inner.py +0 -134
- shaped/autogen/models/create_dataset_arguments.py +0 -263
- shaped/autogen/models/create_embedding_response.py +0 -87
- shaped/autogen/models/create_item_embedding_request.py +0 -89
- shaped/autogen/models/create_model_arguments.py +0 -107
- shaped/autogen/models/create_model_response.py +0 -87
- shaped/autogen/models/create_user_embedding_request.py +0 -89
- shaped/autogen/models/custom_dataset_config.py +0 -115
- shaped/autogen/models/dataset_config.py +0 -101
- shaped/autogen/models/dataset_schema_type.py +0 -47
- shaped/autogen/models/datasets_inner.py +0 -91
- shaped/autogen/models/delete_model_response.py +0 -87
- shaped/autogen/models/fetch_config.py +0 -95
- shaped/autogen/models/file_config.py +0 -105
- shaped/autogen/models/file_source_config.py +0 -89
- shaped/autogen/models/inference_config.py +0 -101
- shaped/autogen/models/insert_model_response.py +0 -87
- shaped/autogen/models/interaction.py +0 -87
- shaped/autogen/models/list_datasets_response.py +0 -95
- shaped/autogen/models/list_models_response.py +0 -95
- shaped/autogen/models/model_config.py +0 -99
- shaped/autogen/models/model_response.py +0 -95
- shaped/autogen/models/mongo_db_dataset_config.py +0 -119
- shaped/autogen/models/post_rank_request.py +0 -117
- shaped/autogen/models/rank_attribute_response.py +0 -89
- shaped/autogen/models/rank_grid_attribute_request.py +0 -91
- shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
- shaped/autogen/models/rank_grid_attribute_response.py +0 -91
- shaped/autogen/models/rank_response.py +0 -91
- shaped/autogen/models/retrieve_request.py +0 -101
- shaped/autogen/models/retrieve_response.py +0 -91
- shaped/autogen/models/retriever_top_k_override.py +0 -97
- shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
- shaped/autogen/models/segment_dataset_config.py +0 -96
- shaped/autogen/models/similar_item_request.py +0 -101
- shaped/autogen/models/similar_response.py +0 -89
- shaped/autogen/models/similar_users_request.py +0 -99
- shaped/autogen/models/successful_response.py +0 -87
- shaped/autogen/models/view_model_response.py +0 -99
- shaped-2.0.0.dist-info/RECORD +0 -73
- shaped-2.0.0.dist-info/entry_points.txt +0 -2
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/WHEEL +0 -0
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/top_level.txt +0 -0
- {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/zip-safe +0 -0
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
from inspect import getfullargspec
|
|
17
|
+
import json
|
|
18
|
+
import pprint
|
|
19
|
+
import re # noqa: F401
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr, ValidationError, field_validator
|
|
21
|
+
from typing import Optional
|
|
22
|
+
from shaped.autogen.models.tunable_int_categorical import TunableIntCategorical
|
|
23
|
+
from typing import Union, Any, List, Set, TYPE_CHECKING, Optional, Dict
|
|
24
|
+
from typing_extensions import Literal, Self
|
|
25
|
+
from pydantic import Field
|
|
26
|
+
|
|
27
|
+
INNERSIZE1_ANY_OF_SCHEMAS = ["TunableIntCategorical", "int"]
|
|
28
|
+
|
|
29
|
+
class InnerSize1(BaseModel):
|
|
30
|
+
"""
|
|
31
|
+
Size of the feed-forward network inner layer.
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
# data type: int
|
|
35
|
+
anyof_schema_1_validator: Optional[StrictInt] = None
|
|
36
|
+
# data type: TunableIntCategorical
|
|
37
|
+
anyof_schema_2_validator: Optional[TunableIntCategorical] = None
|
|
38
|
+
if TYPE_CHECKING:
|
|
39
|
+
actual_instance: Optional[Union[TunableIntCategorical, int]] = None
|
|
40
|
+
else:
|
|
41
|
+
actual_instance: Any = None
|
|
42
|
+
any_of_schemas: Set[str] = { "TunableIntCategorical", "int" }
|
|
43
|
+
|
|
44
|
+
model_config = {
|
|
45
|
+
"validate_assignment": True,
|
|
46
|
+
"protected_namespaces": (),
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
def __init__(self, *args, **kwargs) -> None:
|
|
50
|
+
if args:
|
|
51
|
+
if len(args) > 1:
|
|
52
|
+
raise ValueError("If a position argument is used, only 1 is allowed to set `actual_instance`")
|
|
53
|
+
if kwargs:
|
|
54
|
+
raise ValueError("If a position argument is used, keyword arguments cannot be used.")
|
|
55
|
+
super().__init__(actual_instance=args[0])
|
|
56
|
+
else:
|
|
57
|
+
super().__init__(**kwargs)
|
|
58
|
+
|
|
59
|
+
@field_validator('actual_instance')
|
|
60
|
+
def actual_instance_must_validate_anyof(cls, v):
|
|
61
|
+
instance = InnerSize1.model_construct()
|
|
62
|
+
error_messages = []
|
|
63
|
+
# validate data type: int
|
|
64
|
+
try:
|
|
65
|
+
instance.anyof_schema_1_validator = v
|
|
66
|
+
return v
|
|
67
|
+
except (ValidationError, ValueError) as e:
|
|
68
|
+
error_messages.append(str(e))
|
|
69
|
+
# validate data type: TunableIntCategorical
|
|
70
|
+
if not isinstance(v, TunableIntCategorical):
|
|
71
|
+
error_messages.append(f"Error! Input type `{type(v)}` is not `TunableIntCategorical`")
|
|
72
|
+
else:
|
|
73
|
+
return v
|
|
74
|
+
|
|
75
|
+
if error_messages:
|
|
76
|
+
# no match
|
|
77
|
+
raise ValueError("No match found when setting the actual_instance in InnerSize1 with anyOf schemas: TunableIntCategorical, int. Details: " + ", ".join(error_messages))
|
|
78
|
+
else:
|
|
79
|
+
return v
|
|
80
|
+
|
|
81
|
+
@classmethod
|
|
82
|
+
def from_dict(cls, obj: Dict[str, Any]) -> Self:
|
|
83
|
+
return cls.from_json(json.dumps(obj))
|
|
84
|
+
|
|
85
|
+
@classmethod
|
|
86
|
+
def from_json(cls, json_str: str) -> Self:
|
|
87
|
+
"""Returns the object represented by the json string"""
|
|
88
|
+
instance = cls.model_construct()
|
|
89
|
+
error_messages = []
|
|
90
|
+
# deserialize data into int
|
|
91
|
+
try:
|
|
92
|
+
# validation
|
|
93
|
+
instance.anyof_schema_1_validator = json.loads(json_str)
|
|
94
|
+
# assign value to actual_instance
|
|
95
|
+
instance.actual_instance = instance.anyof_schema_1_validator
|
|
96
|
+
return instance
|
|
97
|
+
except (ValidationError, ValueError) as e:
|
|
98
|
+
error_messages.append(str(e))
|
|
99
|
+
# anyof_schema_2_validator: Optional[TunableIntCategorical] = None
|
|
100
|
+
try:
|
|
101
|
+
instance.actual_instance = TunableIntCategorical.from_json(json_str)
|
|
102
|
+
return instance
|
|
103
|
+
except (ValidationError, ValueError) as e:
|
|
104
|
+
error_messages.append(str(e))
|
|
105
|
+
|
|
106
|
+
if error_messages:
|
|
107
|
+
# no match
|
|
108
|
+
raise ValueError("No match found when deserializing the JSON string into InnerSize1 with anyOf schemas: TunableIntCategorical, int. Details: " + ", ".join(error_messages))
|
|
109
|
+
else:
|
|
110
|
+
return instance
|
|
111
|
+
|
|
112
|
+
def to_json(self) -> str:
|
|
113
|
+
"""Returns the JSON representation of the actual instance"""
|
|
114
|
+
if self.actual_instance is None:
|
|
115
|
+
return "null"
|
|
116
|
+
|
|
117
|
+
if hasattr(self.actual_instance, "to_json") and callable(self.actual_instance.to_json):
|
|
118
|
+
return self.actual_instance.to_json()
|
|
119
|
+
else:
|
|
120
|
+
return json.dumps(self.actual_instance)
|
|
121
|
+
|
|
122
|
+
def to_dict(self) -> Optional[Union[Dict[str, Any], TunableIntCategorical, int]]:
|
|
123
|
+
"""Returns the dict representation of the actual instance"""
|
|
124
|
+
if self.actual_instance is None:
|
|
125
|
+
return None
|
|
126
|
+
|
|
127
|
+
if hasattr(self.actual_instance, "to_dict") and callable(self.actual_instance.to_dict):
|
|
128
|
+
return self.actual_instance.to_dict()
|
|
129
|
+
else:
|
|
130
|
+
return self.actual_instance
|
|
131
|
+
|
|
132
|
+
def to_str(self) -> str:
|
|
133
|
+
"""Returns the string representation of the actual instance"""
|
|
134
|
+
return pprint.pformat(self.model_dump())
|
|
135
|
+
|
|
136
|
+
|
|
@@ -0,0 +1,122 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictStr
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from shaped.autogen.models.feature import Feature
|
|
23
|
+
from shaped.autogen.models.label import Label
|
|
24
|
+
from typing import Optional, Set
|
|
25
|
+
from typing_extensions import Self
|
|
26
|
+
|
|
27
|
+
class InteractionConfig(BaseModel):
|
|
28
|
+
"""
|
|
29
|
+
InteractionConfig
|
|
30
|
+
""" # noqa: E501
|
|
31
|
+
label: Label = Field(description="Label definition for interaction outcomes.")
|
|
32
|
+
created_at: StrictStr = Field(description="Column name for the interaction timestamp.")
|
|
33
|
+
session_id: Optional[StrictStr] = None
|
|
34
|
+
interaction_id: Optional[StrictStr] = None
|
|
35
|
+
features: Optional[List[Feature]] = None
|
|
36
|
+
__properties: ClassVar[List[str]] = ["label", "created_at", "session_id", "interaction_id", "features"]
|
|
37
|
+
|
|
38
|
+
model_config = ConfigDict(
|
|
39
|
+
populate_by_name=True,
|
|
40
|
+
validate_assignment=True,
|
|
41
|
+
protected_namespaces=(),
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def to_str(self) -> str:
|
|
46
|
+
"""Returns the string representation of the model using alias"""
|
|
47
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
48
|
+
|
|
49
|
+
def to_json(self) -> str:
|
|
50
|
+
"""Returns the JSON representation of the model using alias"""
|
|
51
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
52
|
+
return json.dumps(self.to_dict())
|
|
53
|
+
|
|
54
|
+
@classmethod
|
|
55
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
56
|
+
"""Create an instance of InteractionConfig from a JSON string"""
|
|
57
|
+
return cls.from_dict(json.loads(json_str))
|
|
58
|
+
|
|
59
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
60
|
+
"""Return the dictionary representation of the model using alias.
|
|
61
|
+
|
|
62
|
+
This has the following differences from calling pydantic's
|
|
63
|
+
`self.model_dump(by_alias=True)`:
|
|
64
|
+
|
|
65
|
+
* `None` is only added to the output dict for nullable fields that
|
|
66
|
+
were set at model initialization. Other fields with value `None`
|
|
67
|
+
are ignored.
|
|
68
|
+
"""
|
|
69
|
+
excluded_fields: Set[str] = set([
|
|
70
|
+
])
|
|
71
|
+
|
|
72
|
+
_dict = self.model_dump(
|
|
73
|
+
by_alias=True,
|
|
74
|
+
exclude=excluded_fields,
|
|
75
|
+
exclude_none=True,
|
|
76
|
+
)
|
|
77
|
+
# override the default output from pydantic by calling `to_dict()` of label
|
|
78
|
+
if self.label:
|
|
79
|
+
_dict['label'] = self.label.to_dict()
|
|
80
|
+
# override the default output from pydantic by calling `to_dict()` of each item in features (list)
|
|
81
|
+
_items = []
|
|
82
|
+
if self.features:
|
|
83
|
+
for _item_features in self.features:
|
|
84
|
+
if _item_features:
|
|
85
|
+
_items.append(_item_features.to_dict())
|
|
86
|
+
_dict['features'] = _items
|
|
87
|
+
# set to None if session_id (nullable) is None
|
|
88
|
+
# and model_fields_set contains the field
|
|
89
|
+
if self.session_id is None and "session_id" in self.model_fields_set:
|
|
90
|
+
_dict['session_id'] = None
|
|
91
|
+
|
|
92
|
+
# set to None if interaction_id (nullable) is None
|
|
93
|
+
# and model_fields_set contains the field
|
|
94
|
+
if self.interaction_id is None and "interaction_id" in self.model_fields_set:
|
|
95
|
+
_dict['interaction_id'] = None
|
|
96
|
+
|
|
97
|
+
# set to None if features (nullable) is None
|
|
98
|
+
# and model_fields_set contains the field
|
|
99
|
+
if self.features is None and "features" in self.model_fields_set:
|
|
100
|
+
_dict['features'] = None
|
|
101
|
+
|
|
102
|
+
return _dict
|
|
103
|
+
|
|
104
|
+
@classmethod
|
|
105
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
106
|
+
"""Create an instance of InteractionConfig from a dict"""
|
|
107
|
+
if obj is None:
|
|
108
|
+
return None
|
|
109
|
+
|
|
110
|
+
if not isinstance(obj, dict):
|
|
111
|
+
return cls.model_validate(obj)
|
|
112
|
+
|
|
113
|
+
_obj = cls.model_validate({
|
|
114
|
+
"label": Label.from_dict(obj["label"]) if obj.get("label") is not None else None,
|
|
115
|
+
"created_at": obj.get("created_at"),
|
|
116
|
+
"session_id": obj.get("session_id"),
|
|
117
|
+
"interaction_id": obj.get("interaction_id"),
|
|
118
|
+
"features": [Feature.from_dict(_item) for _item in obj["features"]] if obj.get("features") is not None else None
|
|
119
|
+
})
|
|
120
|
+
return _obj
|
|
121
|
+
|
|
122
|
+
|
|
@@ -0,0 +1,104 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from shaped.autogen.models.pooling_function import PoolingFunction
|
|
23
|
+
from typing import Optional, Set
|
|
24
|
+
from typing_extensions import Self
|
|
25
|
+
|
|
26
|
+
class InteractionPoolingEncoder(BaseModel):
|
|
27
|
+
"""
|
|
28
|
+
Creates a query vector by pooling embeddings from a user's interaction history. This should only be used with users, as item interactions aren't stored.
|
|
29
|
+
""" # noqa: E501
|
|
30
|
+
input_user_id: StrictStr = Field(description="User ID parameter or value to pool interactions for.")
|
|
31
|
+
pooling_function: Optional[PoolingFunction] = Field(default=None, description="Function to use when pooling multiple embeddings.")
|
|
32
|
+
truncate_interactions: Optional[StrictInt] = Field(default=10, description="Maximum number of interactions to use for pooling.")
|
|
33
|
+
type: Optional[StrictStr] = Field(default='interaction_pooling', description="Encoder type discriminator.")
|
|
34
|
+
__properties: ClassVar[List[str]] = ["input_user_id", "pooling_function", "truncate_interactions", "type"]
|
|
35
|
+
|
|
36
|
+
@field_validator('type')
|
|
37
|
+
def type_validate_enum(cls, value):
|
|
38
|
+
"""Validates the enum"""
|
|
39
|
+
if value is None:
|
|
40
|
+
return value
|
|
41
|
+
|
|
42
|
+
if value not in set(['interaction_pooling']):
|
|
43
|
+
raise ValueError("must be one of enum values ('interaction_pooling')")
|
|
44
|
+
return value
|
|
45
|
+
|
|
46
|
+
model_config = ConfigDict(
|
|
47
|
+
populate_by_name=True,
|
|
48
|
+
validate_assignment=True,
|
|
49
|
+
protected_namespaces=(),
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def to_str(self) -> str:
|
|
54
|
+
"""Returns the string representation of the model using alias"""
|
|
55
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
56
|
+
|
|
57
|
+
def to_json(self) -> str:
|
|
58
|
+
"""Returns the JSON representation of the model using alias"""
|
|
59
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
60
|
+
return json.dumps(self.to_dict())
|
|
61
|
+
|
|
62
|
+
@classmethod
|
|
63
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
64
|
+
"""Create an instance of InteractionPoolingEncoder from a JSON string"""
|
|
65
|
+
return cls.from_dict(json.loads(json_str))
|
|
66
|
+
|
|
67
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
68
|
+
"""Return the dictionary representation of the model using alias.
|
|
69
|
+
|
|
70
|
+
This has the following differences from calling pydantic's
|
|
71
|
+
`self.model_dump(by_alias=True)`:
|
|
72
|
+
|
|
73
|
+
* `None` is only added to the output dict for nullable fields that
|
|
74
|
+
were set at model initialization. Other fields with value `None`
|
|
75
|
+
are ignored.
|
|
76
|
+
"""
|
|
77
|
+
excluded_fields: Set[str] = set([
|
|
78
|
+
])
|
|
79
|
+
|
|
80
|
+
_dict = self.model_dump(
|
|
81
|
+
by_alias=True,
|
|
82
|
+
exclude=excluded_fields,
|
|
83
|
+
exclude_none=True,
|
|
84
|
+
)
|
|
85
|
+
return _dict
|
|
86
|
+
|
|
87
|
+
@classmethod
|
|
88
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
89
|
+
"""Create an instance of InteractionPoolingEncoder from a dict"""
|
|
90
|
+
if obj is None:
|
|
91
|
+
return None
|
|
92
|
+
|
|
93
|
+
if not isinstance(obj, dict):
|
|
94
|
+
return cls.model_validate(obj)
|
|
95
|
+
|
|
96
|
+
_obj = cls.model_validate({
|
|
97
|
+
"input_user_id": obj.get("input_user_id"),
|
|
98
|
+
"pooling_function": obj.get("pooling_function"),
|
|
99
|
+
"truncate_interactions": obj.get("truncate_interactions") if obj.get("truncate_interactions") is not None else 10,
|
|
100
|
+
"type": obj.get("type") if obj.get("type") is not None else 'interaction_pooling'
|
|
101
|
+
})
|
|
102
|
+
return _obj
|
|
103
|
+
|
|
104
|
+
|
|
@@ -0,0 +1,104 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictInt, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from shaped.autogen.models.pooling_function import PoolingFunction
|
|
23
|
+
from typing import Optional, Set
|
|
24
|
+
from typing_extensions import Self
|
|
25
|
+
|
|
26
|
+
class InteractionRoundRobinEncoder(BaseModel):
|
|
27
|
+
"""
|
|
28
|
+
Retrieves items using round-robin strategy from a user's interaction history. Instead of pooling, this queries each interacted item and round-robins the results. This should only be used with users, as item interactions aren't stored.
|
|
29
|
+
""" # noqa: E501
|
|
30
|
+
input_user_id: StrictStr = Field(description="User ID parameter or value for round-robin retrieval.")
|
|
31
|
+
pooling_function: Optional[PoolingFunction] = Field(default=None, description="Function to use when pooling cluster results.")
|
|
32
|
+
num_clusters: Optional[StrictInt] = Field(default=5, description="Number of interaction clusters to create.")
|
|
33
|
+
type: Optional[StrictStr] = Field(default='interaction_round_robin', description="Encoder type discriminator.")
|
|
34
|
+
__properties: ClassVar[List[str]] = ["input_user_id", "pooling_function", "num_clusters", "type"]
|
|
35
|
+
|
|
36
|
+
@field_validator('type')
|
|
37
|
+
def type_validate_enum(cls, value):
|
|
38
|
+
"""Validates the enum"""
|
|
39
|
+
if value is None:
|
|
40
|
+
return value
|
|
41
|
+
|
|
42
|
+
if value not in set(['interaction_round_robin']):
|
|
43
|
+
raise ValueError("must be one of enum values ('interaction_round_robin')")
|
|
44
|
+
return value
|
|
45
|
+
|
|
46
|
+
model_config = ConfigDict(
|
|
47
|
+
populate_by_name=True,
|
|
48
|
+
validate_assignment=True,
|
|
49
|
+
protected_namespaces=(),
|
|
50
|
+
)
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def to_str(self) -> str:
|
|
54
|
+
"""Returns the string representation of the model using alias"""
|
|
55
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
56
|
+
|
|
57
|
+
def to_json(self) -> str:
|
|
58
|
+
"""Returns the JSON representation of the model using alias"""
|
|
59
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
60
|
+
return json.dumps(self.to_dict())
|
|
61
|
+
|
|
62
|
+
@classmethod
|
|
63
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
64
|
+
"""Create an instance of InteractionRoundRobinEncoder from a JSON string"""
|
|
65
|
+
return cls.from_dict(json.loads(json_str))
|
|
66
|
+
|
|
67
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
68
|
+
"""Return the dictionary representation of the model using alias.
|
|
69
|
+
|
|
70
|
+
This has the following differences from calling pydantic's
|
|
71
|
+
`self.model_dump(by_alias=True)`:
|
|
72
|
+
|
|
73
|
+
* `None` is only added to the output dict for nullable fields that
|
|
74
|
+
were set at model initialization. Other fields with value `None`
|
|
75
|
+
are ignored.
|
|
76
|
+
"""
|
|
77
|
+
excluded_fields: Set[str] = set([
|
|
78
|
+
])
|
|
79
|
+
|
|
80
|
+
_dict = self.model_dump(
|
|
81
|
+
by_alias=True,
|
|
82
|
+
exclude=excluded_fields,
|
|
83
|
+
exclude_none=True,
|
|
84
|
+
)
|
|
85
|
+
return _dict
|
|
86
|
+
|
|
87
|
+
@classmethod
|
|
88
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
89
|
+
"""Create an instance of InteractionRoundRobinEncoder from a dict"""
|
|
90
|
+
if obj is None:
|
|
91
|
+
return None
|
|
92
|
+
|
|
93
|
+
if not isinstance(obj, dict):
|
|
94
|
+
return cls.model_validate(obj)
|
|
95
|
+
|
|
96
|
+
_obj = cls.model_validate({
|
|
97
|
+
"input_user_id": obj.get("input_user_id"),
|
|
98
|
+
"pooling_function": obj.get("pooling_function"),
|
|
99
|
+
"num_clusters": obj.get("num_clusters") if obj.get("num_clusters") is not None else 5,
|
|
100
|
+
"type": obj.get("type") if obj.get("type") is not None else 'interaction_round_robin'
|
|
101
|
+
})
|
|
102
|
+
return _obj
|
|
103
|
+
|
|
104
|
+
|
|
@@ -0,0 +1,124 @@
|
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
|
|
3
|
+
"""
|
|
4
|
+
Shaped API
|
|
5
|
+
|
|
6
|
+
Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. The Shaped API has four main endpoints: **Tables** - Provision and manage batch and real-time data connectors. **Views** - Configure SQL transformations and AI enrichment on your input data. Use SQL to combine multiple data sources or use an LLM to add new categories, extract specific attributes from descriptions, etc. **Engines** - Deploy and manage your relevance engines. The Engine API exposes configuration for indexing logic, input datasets, externam embeddings, and more. **Query** - Execute queries against your engines, to return data based on an input query or rerank an existing list. The Query API exposes the retrieve, filter, score, and ranking steps of the 4-stage ranking architecture. The base URL for each endpoint is: `https://api.shaped.ai/v2`
|
|
7
|
+
|
|
8
|
+
The version of the OpenAPI document: 2.0.0
|
|
9
|
+
Generated by OpenAPI Generator (https://openapi-generator.tech)
|
|
10
|
+
|
|
11
|
+
Do not edit the class manually.
|
|
12
|
+
""" # noqa: E501
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
from __future__ import annotations
|
|
16
|
+
import pprint
|
|
17
|
+
import re # noqa: F401
|
|
18
|
+
import json
|
|
19
|
+
|
|
20
|
+
from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
|
|
21
|
+
from typing import Any, ClassVar, Dict, List, Optional
|
|
22
|
+
from typing import Optional, Set
|
|
23
|
+
from typing_extensions import Self
|
|
24
|
+
|
|
25
|
+
class ItemAttributePoolingEncoder(BaseModel):
|
|
26
|
+
"""
|
|
27
|
+
Creates a query vector by encoding the item's attributes. This can only be used with a content or text embedding. Can optionally provide item features directly via input_item_features, which will be merged with features from input_item_id.
|
|
28
|
+
""" # noqa: E501
|
|
29
|
+
input_item_id: Optional[StrictStr] = None
|
|
30
|
+
input_item_features: Optional[Dict[str, Any]] = None
|
|
31
|
+
type: Optional[StrictStr] = Field(default='item_attribute_pooling', description="Encoder type discriminator.")
|
|
32
|
+
additional_properties: Dict[str, Any] = {}
|
|
33
|
+
__properties: ClassVar[List[str]] = ["input_item_id", "input_item_features", "type"]
|
|
34
|
+
|
|
35
|
+
@field_validator('type')
|
|
36
|
+
def type_validate_enum(cls, value):
|
|
37
|
+
"""Validates the enum"""
|
|
38
|
+
if value is None:
|
|
39
|
+
return value
|
|
40
|
+
|
|
41
|
+
if value not in set(['item_attribute_pooling']):
|
|
42
|
+
raise ValueError("must be one of enum values ('item_attribute_pooling')")
|
|
43
|
+
return value
|
|
44
|
+
|
|
45
|
+
model_config = ConfigDict(
|
|
46
|
+
populate_by_name=True,
|
|
47
|
+
validate_assignment=True,
|
|
48
|
+
protected_namespaces=(),
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def to_str(self) -> str:
|
|
53
|
+
"""Returns the string representation of the model using alias"""
|
|
54
|
+
return pprint.pformat(self.model_dump(by_alias=True))
|
|
55
|
+
|
|
56
|
+
def to_json(self) -> str:
|
|
57
|
+
"""Returns the JSON representation of the model using alias"""
|
|
58
|
+
# TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
|
|
59
|
+
return json.dumps(self.to_dict())
|
|
60
|
+
|
|
61
|
+
@classmethod
|
|
62
|
+
def from_json(cls, json_str: str) -> Optional[Self]:
|
|
63
|
+
"""Create an instance of ItemAttributePoolingEncoder from a JSON string"""
|
|
64
|
+
return cls.from_dict(json.loads(json_str))
|
|
65
|
+
|
|
66
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
67
|
+
"""Return the dictionary representation of the model using alias.
|
|
68
|
+
|
|
69
|
+
This has the following differences from calling pydantic's
|
|
70
|
+
`self.model_dump(by_alias=True)`:
|
|
71
|
+
|
|
72
|
+
* `None` is only added to the output dict for nullable fields that
|
|
73
|
+
were set at model initialization. Other fields with value `None`
|
|
74
|
+
are ignored.
|
|
75
|
+
* Fields in `self.additional_properties` are added to the output dict.
|
|
76
|
+
"""
|
|
77
|
+
excluded_fields: Set[str] = set([
|
|
78
|
+
"additional_properties",
|
|
79
|
+
])
|
|
80
|
+
|
|
81
|
+
_dict = self.model_dump(
|
|
82
|
+
by_alias=True,
|
|
83
|
+
exclude=excluded_fields,
|
|
84
|
+
exclude_none=True,
|
|
85
|
+
)
|
|
86
|
+
# puts key-value pairs in additional_properties in the top level
|
|
87
|
+
if self.additional_properties is not None:
|
|
88
|
+
for _key, _value in self.additional_properties.items():
|
|
89
|
+
_dict[_key] = _value
|
|
90
|
+
|
|
91
|
+
# set to None if input_item_id (nullable) is None
|
|
92
|
+
# and model_fields_set contains the field
|
|
93
|
+
if self.input_item_id is None and "input_item_id" in self.model_fields_set:
|
|
94
|
+
_dict['input_item_id'] = None
|
|
95
|
+
|
|
96
|
+
# set to None if input_item_features (nullable) is None
|
|
97
|
+
# and model_fields_set contains the field
|
|
98
|
+
if self.input_item_features is None and "input_item_features" in self.model_fields_set:
|
|
99
|
+
_dict['input_item_features'] = None
|
|
100
|
+
|
|
101
|
+
return _dict
|
|
102
|
+
|
|
103
|
+
@classmethod
|
|
104
|
+
def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
|
|
105
|
+
"""Create an instance of ItemAttributePoolingEncoder from a dict"""
|
|
106
|
+
if obj is None:
|
|
107
|
+
return None
|
|
108
|
+
|
|
109
|
+
if not isinstance(obj, dict):
|
|
110
|
+
return cls.model_validate(obj)
|
|
111
|
+
|
|
112
|
+
_obj = cls.model_validate({
|
|
113
|
+
"input_item_id": obj.get("input_item_id"),
|
|
114
|
+
"input_item_features": obj.get("input_item_features"),
|
|
115
|
+
"type": obj.get("type") if obj.get("type") is not None else 'item_attribute_pooling'
|
|
116
|
+
})
|
|
117
|
+
# store additional fields in additional_properties
|
|
118
|
+
for _key in obj.keys():
|
|
119
|
+
if _key not in cls.__properties:
|
|
120
|
+
_obj.additional_properties[_key] = obj.get(_key)
|
|
121
|
+
|
|
122
|
+
return _obj
|
|
123
|
+
|
|
124
|
+
|