shaped 2.0.0__py3-none-any.whl → 2.0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (323) hide show
  1. shaped/__init__.py +54 -4
  2. shaped/autogen/__init__.py +541 -66
  3. shaped/autogen/api/__init__.py +4 -3
  4. shaped/autogen/api/engine_api.py +1467 -0
  5. shaped/autogen/api/{dataset_api.py → query_api.py} +219 -194
  6. shaped/autogen/api/table_api.py +1494 -0
  7. shaped/autogen/api/{model_management_api.py → view_api.py} +179 -181
  8. shaped/autogen/api_client.py +15 -8
  9. shaped/autogen/configuration.py +20 -9
  10. shaped/autogen/exceptions.py +19 -2
  11. shaped/autogen/models/__init__.py +254 -52
  12. shaped/autogen/models/ai_enrichment_view_config.py +123 -0
  13. shaped/autogen/models/{path.py → algorithm.py} +19 -19
  14. shaped/autogen/models/amplitude_table_config.py +106 -0
  15. shaped/autogen/models/ascending.py +136 -0
  16. shaped/autogen/models/attn_dropout_prob.py +136 -0
  17. shaped/autogen/models/attribute_journey.py +124 -0
  18. shaped/autogen/models/attribute_value.py +178 -0
  19. shaped/autogen/models/autoscaling_config.py +95 -0
  20. shaped/autogen/models/aws_pinpoint_table_config.py +108 -0
  21. shaped/autogen/models/batch_size.py +136 -0
  22. shaped/autogen/models/batch_size1.py +136 -0
  23. shaped/autogen/models/batch_size2.py +136 -0
  24. shaped/autogen/models/big_query_table_config.py +147 -0
  25. shaped/autogen/models/bm25.py +136 -0
  26. shaped/autogen/models/boosted_reorder_step.py +125 -0
  27. shaped/autogen/models/canary_rollout.py +99 -0
  28. shaped/autogen/models/candidate_attributes_retrieve_step.py +126 -0
  29. shaped/autogen/models/candidate_ids_retrieve_step.py +113 -0
  30. shaped/autogen/models/candidate_retrieval_strategy.py +41 -0
  31. shaped/autogen/models/clickhouse_table_config.py +146 -0
  32. shaped/autogen/models/column_order_retrieve_step.py +123 -0
  33. shaped/autogen/models/column_ordering.py +91 -0
  34. shaped/autogen/models/create_table_response.py +87 -0
  35. shaped/autogen/models/create_view_response.py +87 -0
  36. shaped/autogen/models/custom_table_config.py +135 -0
  37. shaped/autogen/models/data_compute_config.py +89 -0
  38. shaped/autogen/models/data_config.py +145 -0
  39. shaped/autogen/models/data_config_interaction_table.py +146 -0
  40. shaped/autogen/models/data_split_config.py +88 -0
  41. shaped/autogen/models/data_split_strategy.py +37 -0
  42. shaped/autogen/models/data_tier.py +37 -0
  43. shaped/autogen/models/default.py +246 -0
  44. shaped/autogen/models/delete_engine_response.py +87 -0
  45. shaped/autogen/models/delete_table_response.py +87 -0
  46. shaped/autogen/models/delete_view_response.py +87 -0
  47. shaped/autogen/models/deployment_config.py +123 -0
  48. shaped/autogen/models/distance_function.py +38 -0
  49. shaped/autogen/models/diversity_reorder_step.py +137 -0
  50. shaped/autogen/models/dropout_rate.py +136 -0
  51. shaped/autogen/models/dynamo_db_table_config.py +160 -0
  52. shaped/autogen/models/dynamo_db_table_config_scan_kwargs_value.py +138 -0
  53. shaped/autogen/models/embedder_batch_size.py +136 -0
  54. shaped/autogen/models/embedding_config.py +93 -0
  55. shaped/autogen/models/embedding_dim.py +136 -0
  56. shaped/autogen/models/embedding_dims.py +136 -0
  57. shaped/autogen/models/embedding_size.py +136 -0
  58. shaped/autogen/models/encoder.py +140 -0
  59. shaped/autogen/models/encoding_pooling_strategy.py +38 -0
  60. shaped/autogen/models/engine.py +109 -0
  61. shaped/autogen/models/engine_config_v2.py +152 -0
  62. shaped/autogen/models/engine_details_response.py +120 -0
  63. shaped/autogen/models/engine_schema.py +113 -0
  64. shaped/autogen/models/engine_schema_user_inner.py +134 -0
  65. shaped/autogen/models/entity_config.py +109 -0
  66. shaped/autogen/models/entity_journey.py +152 -0
  67. shaped/autogen/models/entity_type.py +38 -0
  68. shaped/autogen/models/evaluation_config.py +92 -0
  69. shaped/autogen/models/exploration_reorder_step.py +125 -0
  70. shaped/autogen/models/expression_filter_step.py +106 -0
  71. shaped/autogen/models/factors.py +136 -0
  72. shaped/autogen/models/factors1.py +136 -0
  73. shaped/autogen/models/feature.py +90 -0
  74. shaped/autogen/models/feature_type.py +60 -0
  75. shaped/autogen/models/file_table_config.py +112 -0
  76. shaped/autogen/models/filter_config.py +99 -0
  77. shaped/autogen/models/filter_dataset.py +140 -0
  78. shaped/autogen/models/filter_index_type.py +36 -0
  79. shaped/autogen/models/filter_retrieve_step.py +113 -0
  80. shaped/autogen/models/global_filter.py +102 -0
  81. shaped/autogen/models/hidden_dropout_prob.py +136 -0
  82. shaped/autogen/models/hidden_size.py +136 -0
  83. shaped/autogen/models/hidden_size1.py +136 -0
  84. shaped/autogen/models/http_problem_response.py +115 -0
  85. shaped/autogen/models/http_validation_error.py +2 -2
  86. shaped/autogen/models/hugging_face_encoder.py +113 -0
  87. shaped/autogen/models/iceberg_table_config.py +154 -0
  88. shaped/autogen/models/index_config.py +101 -0
  89. shaped/autogen/models/inner_size.py +136 -0
  90. shaped/autogen/models/inner_size1.py +136 -0
  91. shaped/autogen/models/interaction_config.py +122 -0
  92. shaped/autogen/models/interaction_pooling_encoder.py +104 -0
  93. shaped/autogen/models/interaction_round_robin_encoder.py +104 -0
  94. shaped/autogen/models/item_attribute_pooling_encoder.py +124 -0
  95. shaped/autogen/models/journey.py +140 -0
  96. shaped/autogen/models/kafka_table_config.py +129 -0
  97. shaped/autogen/models/kinesis_table_config.py +140 -0
  98. shaped/autogen/models/kinesis_table_config_column_schema_value.py +136 -0
  99. shaped/autogen/models/label.py +90 -0
  100. shaped/autogen/models/label_type.py +37 -0
  101. shaped/autogen/models/laplace_smoothing.py +136 -0
  102. shaped/autogen/models/latency_scaling_policy.py +112 -0
  103. shaped/autogen/models/learning_rate.py +136 -0
  104. shaped/autogen/models/learning_rate1.py +136 -0
  105. shaped/autogen/models/learning_rate2.py +136 -0
  106. shaped/autogen/models/learning_rate3.py +136 -0
  107. shaped/autogen/models/lexical_search_mode.py +99 -0
  108. shaped/autogen/models/list_engines_response.py +95 -0
  109. shaped/autogen/models/list_tables_response.py +95 -0
  110. shaped/autogen/models/list_views_response.py +95 -0
  111. shaped/autogen/models/loss_types.py +37 -0
  112. shaped/autogen/models/lr.py +136 -0
  113. shaped/autogen/models/lr1.py +136 -0
  114. shaped/autogen/models/lr2.py +136 -0
  115. shaped/autogen/models/max_depth.py +136 -0
  116. shaped/autogen/models/max_leaves.py +136 -0
  117. shaped/autogen/models/max_seq_length.py +136 -0
  118. shaped/autogen/models/max_seq_length1.py +136 -0
  119. shaped/autogen/models/max_seq_length2.py +136 -0
  120. shaped/autogen/models/mode.py +134 -0
  121. shaped/autogen/models/mode1.py +134 -0
  122. shaped/autogen/models/mode2.py +136 -0
  123. shaped/autogen/models/mongo_db_table_config.py +147 -0
  124. shaped/autogen/models/mssql_table_config.py +155 -0
  125. shaped/autogen/models/{my_sql_dataset_config.py → my_sql_table_config.py} +45 -28
  126. shaped/autogen/models/n_epochs.py +136 -0
  127. shaped/autogen/models/n_epochs1.py +136 -0
  128. shaped/autogen/models/n_epochs2.py +136 -0
  129. shaped/autogen/models/n_estimators.py +136 -0
  130. shaped/autogen/models/n_heads.py +136 -0
  131. shaped/autogen/models/n_layers.py +136 -0
  132. shaped/autogen/models/neg_per_positive.py +136 -0
  133. shaped/autogen/models/negative_samples_count.py +136 -0
  134. shaped/autogen/models/ngram_tokenizer.py +103 -0
  135. shaped/autogen/models/no_op_config.py +117 -0
  136. shaped/autogen/models/num_blocks.py +136 -0
  137. shaped/autogen/models/num_heads.py +136 -0
  138. shaped/autogen/models/num_leaves.py +136 -0
  139. shaped/autogen/models/objective.py +40 -0
  140. shaped/autogen/models/objective1.py +134 -0
  141. shaped/autogen/models/online_store_config.py +89 -0
  142. shaped/autogen/models/pagination_config.py +87 -0
  143. shaped/autogen/models/parameter_definition.py +96 -0
  144. shaped/autogen/models/parameters_value.py +240 -0
  145. shaped/autogen/models/passthrough_score.py +104 -0
  146. shaped/autogen/models/personal_filter.py +104 -0
  147. shaped/autogen/models/pipeline_stage_explanation.py +118 -0
  148. shaped/autogen/models/policy.py +134 -0
  149. shaped/autogen/models/pool_fn.py +134 -0
  150. shaped/autogen/models/pooling_function.py +37 -0
  151. shaped/autogen/models/{postgres_dataset_config.py → postgres_table_config.py} +66 -28
  152. shaped/autogen/models/posthog_table_config.py +133 -0
  153. shaped/autogen/models/prebuilt_filter_step.py +113 -0
  154. shaped/autogen/models/precomputed_item_embedding.py +99 -0
  155. shaped/autogen/models/precomputed_user_embedding.py +99 -0
  156. shaped/autogen/models/query.py +136 -0
  157. shaped/autogen/models/query1.py +136 -0
  158. shaped/autogen/models/query_any_of.py +140 -0
  159. shaped/autogen/models/query_definition.py +106 -0
  160. shaped/autogen/models/query_encoder.py +194 -0
  161. shaped/autogen/models/query_explanation.py +197 -0
  162. shaped/autogen/models/query_request.py +121 -0
  163. shaped/autogen/models/query_result.py +113 -0
  164. shaped/autogen/models/query_table_config.py +99 -0
  165. shaped/autogen/models/rank_item_attribute_values_query_config.py +122 -0
  166. shaped/autogen/models/rank_query_config.py +167 -0
  167. shaped/autogen/models/rank_query_config_filter_inner.py +149 -0
  168. shaped/autogen/models/rank_query_config_reorder_inner.py +149 -0
  169. shaped/autogen/models/rank_query_config_retrieve_inner.py +196 -0
  170. shaped/autogen/models/recreate_rollout.py +97 -0
  171. shaped/autogen/models/{redshift_dataset_config.py → redshift_table_config.py} +48 -25
  172. shaped/autogen/models/reference_table_config.py +113 -0
  173. shaped/autogen/models/regularization.py +136 -0
  174. shaped/autogen/models/request.py +378 -0
  175. shaped/autogen/models/request1.py +140 -0
  176. shaped/autogen/models/requests_per_second_scaling_policy.py +112 -0
  177. shaped/autogen/models/response_get_view_details_views_view_name_get.py +134 -0
  178. shaped/autogen/models/result.py +145 -0
  179. shaped/autogen/models/result_embeddings_value.py +127 -0
  180. shaped/autogen/models/retriever.py +196 -0
  181. shaped/autogen/models/retriever1.py +196 -0
  182. shaped/autogen/models/rollout_config.py +91 -0
  183. shaped/autogen/models/rudderstack_table_config.py +106 -0
  184. shaped/autogen/models/sampling_strategy.py +36 -0
  185. shaped/autogen/models/saved_query_info_response.py +89 -0
  186. shaped/autogen/models/saved_query_list_response.py +87 -0
  187. shaped/autogen/models/saved_query_request.py +115 -0
  188. shaped/autogen/models/schema_config.py +117 -0
  189. shaped/autogen/models/score.py +134 -0
  190. shaped/autogen/models/score_ensemble.py +140 -0
  191. shaped/autogen/models/score_ensemble_policy_config.py +141 -0
  192. shaped/autogen/models/score_ensemble_policy_config_policies_inner.py +422 -0
  193. shaped/autogen/models/search_config.py +105 -0
  194. shaped/autogen/models/segment_table_config.py +106 -0
  195. shaped/autogen/models/sequence_length.py +136 -0
  196. shaped/autogen/models/server_config.py +87 -0
  197. shaped/autogen/models/setup_engine_response.py +87 -0
  198. shaped/autogen/models/shaped_internal_recsys_policies_als_model_policy_als_model_policy_config.py +148 -0
  199. shaped/autogen/models/shaped_internal_recsys_policies_beeformer_model_policy_beeformer_model_policy_beeformer_model_policy_config.py +154 -0
  200. shaped/autogen/models/shaped_internal_recsys_policies_bert_model_policy_bert_model_policy_bert_model_policy_config.py +209 -0
  201. shaped/autogen/models/shaped_internal_recsys_policies_chronological_model_policy_chronological_model_policy_config.py +137 -0
  202. shaped/autogen/models/shaped_internal_recsys_policies_elsa_model_policy_elsa_model_policy_elsa_model_policy_config.py +139 -0
  203. shaped/autogen/models/shaped_internal_recsys_policies_gsasrec_model_policy_gsasrec_model_policy_gsas_rec_model_policy_config.py +205 -0
  204. shaped/autogen/models/shaped_internal_recsys_policies_item2vec_model_policy_item2_vec_model_policy_config.py +140 -0
  205. shaped/autogen/models/shaped_internal_recsys_policies_item_content_similarity_model_policy_item_content_similarity_model_policy_config.py +152 -0
  206. shaped/autogen/models/shaped_internal_recsys_policies_lightgbm_model_policy_lightgbm_model_policy_light_gbm_model_policy_config.py +239 -0
  207. shaped/autogen/models/shaped_internal_recsys_policies_ngram_model_policy_ngram_model_policy_config.py +119 -0
  208. shaped/autogen/models/shaped_internal_recsys_policies_popular_model_policy_popular_model_policy_config.py +137 -0
  209. shaped/autogen/models/shaped_internal_recsys_policies_random_model_policy_random_model_policy_config.py +104 -0
  210. shaped/autogen/models/shaped_internal_recsys_policies_recently_popular_policy_recently_popular_policy_config.py +130 -0
  211. shaped/autogen/models/shaped_internal_recsys_policies_rising_popular_policy_rising_popular_policy_config.py +123 -0
  212. shaped/autogen/models/shaped_internal_recsys_policies_sasrec_model_policy_sasrec_model_policy_sas_rec_model_policy_config.py +224 -0
  213. shaped/autogen/models/shaped_internal_recsys_policies_svd_model_policy_svd_model_policy_config.py +119 -0
  214. shaped/autogen/models/shaped_internal_recsys_policies_two_tower_model_policy_two_tower_model_policy_two_tower_model_policy_config.py +159 -0
  215. shaped/autogen/models/shaped_internal_recsys_policies_user_item_content_similarity_model_policy_user_item_content_similarity_model_policy_config.py +131 -0
  216. shaped/autogen/models/shaped_internal_recsys_policies_widedeep_model_policy_wide_deep_model_policy_config.py +131 -0
  217. shaped/autogen/models/shaped_internal_recsys_policies_xgboost_model_policy_xg_boost_model_policy_config.py +149 -0
  218. shaped/autogen/models/shopify_table_config.py +156 -0
  219. shaped/autogen/models/similarity_retrieve_step.py +121 -0
  220. shaped/autogen/models/{snowflake_dataset_config.py → snowflake_table_config.py} +47 -18
  221. shaped/autogen/models/sql_transform_type.py +37 -0
  222. shaped/autogen/models/sql_view_config.py +111 -0
  223. shaped/autogen/models/stemmer_tokenizer.py +105 -0
  224. shaped/autogen/models/step_explanation.py +137 -0
  225. shaped/autogen/models/strategy.py +134 -0
  226. shaped/autogen/models/table.py +102 -0
  227. shaped/autogen/models/table_deployment_type.py +38 -0
  228. shaped/autogen/models/table_insert_arguments.py +87 -0
  229. shaped/autogen/models/table_insert_response.py +87 -0
  230. shaped/autogen/models/text_encoding.py +136 -0
  231. shaped/autogen/models/text_search_retrieve_step.py +121 -0
  232. shaped/autogen/models/time_frequency.py +136 -0
  233. shaped/autogen/models/time_window.py +136 -0
  234. shaped/autogen/models/time_window_in_days.py +142 -0
  235. shaped/autogen/models/tokenizer.py +149 -0
  236. shaped/autogen/models/trained_model_encoder.py +99 -0
  237. shaped/autogen/models/training_compute_config.py +99 -0
  238. shaped/autogen/models/training_config.py +121 -0
  239. shaped/autogen/models/training_config_models_inner.py +308 -0
  240. shaped/autogen/models/training_strategy.py +37 -0
  241. shaped/autogen/models/trending_mode.py +37 -0
  242. shaped/autogen/models/truncate_filter_step.py +106 -0
  243. shaped/autogen/models/tunable_bool.py +97 -0
  244. shaped/autogen/models/tunable_float.py +118 -0
  245. shaped/autogen/models/tunable_int.py +118 -0
  246. shaped/autogen/models/tunable_int_categorical.py +99 -0
  247. shaped/autogen/models/tunable_string.py +99 -0
  248. shaped/autogen/models/tuning_config.py +89 -0
  249. shaped/autogen/models/type.py +134 -0
  250. shaped/autogen/models/update_table_response.py +87 -0
  251. shaped/autogen/models/update_view_response.py +87 -0
  252. shaped/autogen/models/user_attribute_pooling_encoder.py +124 -0
  253. shaped/autogen/models/val_split.py +136 -0
  254. shaped/autogen/models/validation_error.py +13 -3
  255. shaped/autogen/models/validation_error_loc_inner.py +138 -0
  256. shaped/autogen/models/value_type.py +7 -5
  257. shaped/autogen/models/vector_search_mode.py +99 -0
  258. shaped/autogen/models/view.py +104 -0
  259. shaped/autogen/models/view_details_ai.py +140 -0
  260. shaped/autogen/models/view_details_ai_schema_value.py +153 -0
  261. shaped/autogen/models/view_details_sql.py +140 -0
  262. shaped/autogen/models/view_status.py +41 -0
  263. shaped/autogen/models/weight_decay.py +136 -0
  264. shaped/autogen/models/whitespace_tokenizer.py +97 -0
  265. shaped/autogen/models/window_size.py +136 -0
  266. shaped/autogen/rest.py +8 -2
  267. shaped/cli/shaped_cli.py +12 -7
  268. shaped/client.py +587 -174
  269. shaped/config_builders.py +695 -0
  270. shaped/query_builder.py +774 -0
  271. {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/METADATA +119 -56
  272. shaped-2.0.2.dist-info/RECORD +278 -0
  273. shaped-2.0.2.dist-info/entry_points.txt +2 -0
  274. shaped/autogen/api/model_inference_api.py +0 -2825
  275. shaped/autogen/models/amplitude_dataset_config.py +0 -96
  276. shaped/autogen/models/aws_pinpoint_dataset_config.py +0 -96
  277. shaped/autogen/models/big_query_dataset_config.py +0 -114
  278. shaped/autogen/models/complement_items_request.py +0 -99
  279. shaped/autogen/models/complement_items_response.py +0 -89
  280. shaped/autogen/models/connectors_inner.py +0 -134
  281. shaped/autogen/models/create_dataset_arguments.py +0 -263
  282. shaped/autogen/models/create_embedding_response.py +0 -87
  283. shaped/autogen/models/create_item_embedding_request.py +0 -89
  284. shaped/autogen/models/create_model_arguments.py +0 -107
  285. shaped/autogen/models/create_model_response.py +0 -87
  286. shaped/autogen/models/create_user_embedding_request.py +0 -89
  287. shaped/autogen/models/custom_dataset_config.py +0 -115
  288. shaped/autogen/models/dataset_config.py +0 -101
  289. shaped/autogen/models/dataset_schema_type.py +0 -47
  290. shaped/autogen/models/datasets_inner.py +0 -91
  291. shaped/autogen/models/delete_model_response.py +0 -87
  292. shaped/autogen/models/fetch_config.py +0 -95
  293. shaped/autogen/models/file_config.py +0 -105
  294. shaped/autogen/models/file_source_config.py +0 -89
  295. shaped/autogen/models/inference_config.py +0 -101
  296. shaped/autogen/models/insert_model_response.py +0 -87
  297. shaped/autogen/models/interaction.py +0 -87
  298. shaped/autogen/models/list_datasets_response.py +0 -95
  299. shaped/autogen/models/list_models_response.py +0 -95
  300. shaped/autogen/models/model_config.py +0 -99
  301. shaped/autogen/models/model_response.py +0 -95
  302. shaped/autogen/models/mongo_db_dataset_config.py +0 -119
  303. shaped/autogen/models/post_rank_request.py +0 -117
  304. shaped/autogen/models/rank_attribute_response.py +0 -89
  305. shaped/autogen/models/rank_grid_attribute_request.py +0 -91
  306. shaped/autogen/models/rank_grid_attribute_request1.py +0 -93
  307. shaped/autogen/models/rank_grid_attribute_response.py +0 -91
  308. shaped/autogen/models/rank_response.py +0 -91
  309. shaped/autogen/models/retrieve_request.py +0 -101
  310. shaped/autogen/models/retrieve_response.py +0 -91
  311. shaped/autogen/models/retriever_top_k_override.py +0 -97
  312. shaped/autogen/models/rudder_stack_dataset_config.py +0 -96
  313. shaped/autogen/models/segment_dataset_config.py +0 -96
  314. shaped/autogen/models/similar_item_request.py +0 -101
  315. shaped/autogen/models/similar_response.py +0 -89
  316. shaped/autogen/models/similar_users_request.py +0 -99
  317. shaped/autogen/models/successful_response.py +0 -87
  318. shaped/autogen/models/view_model_response.py +0 -99
  319. shaped-2.0.0.dist-info/RECORD +0 -73
  320. shaped-2.0.0.dist-info/entry_points.txt +0 -2
  321. {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/WHEEL +0 -0
  322. {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/top_level.txt +0 -0
  323. {shaped-2.0.0.dist-info → shaped-2.0.2.dist-info}/zip-safe +0 -0
@@ -1,96 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr, field_validator
21
- from typing import Any, ClassVar, Dict, List
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class AmplitudeDatasetConfig(BaseModel):
26
- """
27
- AmplitudeDatasetConfig
28
- """ # noqa: E501
29
- name: StrictStr
30
- schema_type: StrictStr
31
- __properties: ClassVar[List[str]] = ["name", "schema_type"]
32
-
33
- @field_validator('schema_type')
34
- def schema_type_validate_enum(cls, value):
35
- """Validates the enum"""
36
- if value not in set(['AMPLITUDE']):
37
- raise ValueError("must be one of enum values ('AMPLITUDE')")
38
- return value
39
-
40
- model_config = ConfigDict(
41
- populate_by_name=True,
42
- validate_assignment=True,
43
- protected_namespaces=(),
44
- )
45
-
46
-
47
- def to_str(self) -> str:
48
- """Returns the string representation of the model using alias"""
49
- return pprint.pformat(self.model_dump(by_alias=True))
50
-
51
- def to_json(self) -> str:
52
- """Returns the JSON representation of the model using alias"""
53
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
54
- return json.dumps(self.to_dict())
55
-
56
- @classmethod
57
- def from_json(cls, json_str: str) -> Optional[Self]:
58
- """Create an instance of AmplitudeDatasetConfig from a JSON string"""
59
- return cls.from_dict(json.loads(json_str))
60
-
61
- def to_dict(self) -> Dict[str, Any]:
62
- """Return the dictionary representation of the model using alias.
63
-
64
- This has the following differences from calling pydantic's
65
- `self.model_dump(by_alias=True)`:
66
-
67
- * `None` is only added to the output dict for nullable fields that
68
- were set at model initialization. Other fields with value `None`
69
- are ignored.
70
- """
71
- excluded_fields: Set[str] = set([
72
- ])
73
-
74
- _dict = self.model_dump(
75
- by_alias=True,
76
- exclude=excluded_fields,
77
- exclude_none=True,
78
- )
79
- return _dict
80
-
81
- @classmethod
82
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
83
- """Create an instance of AmplitudeDatasetConfig from a dict"""
84
- if obj is None:
85
- return None
86
-
87
- if not isinstance(obj, dict):
88
- return cls.model_validate(obj)
89
-
90
- _obj = cls.model_validate({
91
- "name": obj.get("name"),
92
- "schema_type": obj.get("schema_type")
93
- })
94
- return _obj
95
-
96
-
@@ -1,96 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr, field_validator
21
- from typing import Any, ClassVar, Dict, List
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class AWSPinpointDatasetConfig(BaseModel):
26
- """
27
- AWSPinpointDatasetConfig
28
- """ # noqa: E501
29
- tenant_aws_account_id: StrictStr
30
- schema_type: StrictStr
31
- __properties: ClassVar[List[str]] = ["tenant_aws_account_id", "schema_type"]
32
-
33
- @field_validator('schema_type')
34
- def schema_type_validate_enum(cls, value):
35
- """Validates the enum"""
36
- if value not in set(['AWS_PINPOINT']):
37
- raise ValueError("must be one of enum values ('AWS_PINPOINT')")
38
- return value
39
-
40
- model_config = ConfigDict(
41
- populate_by_name=True,
42
- validate_assignment=True,
43
- protected_namespaces=(),
44
- )
45
-
46
-
47
- def to_str(self) -> str:
48
- """Returns the string representation of the model using alias"""
49
- return pprint.pformat(self.model_dump(by_alias=True))
50
-
51
- def to_json(self) -> str:
52
- """Returns the JSON representation of the model using alias"""
53
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
54
- return json.dumps(self.to_dict())
55
-
56
- @classmethod
57
- def from_json(cls, json_str: str) -> Optional[Self]:
58
- """Create an instance of AWSPinpointDatasetConfig from a JSON string"""
59
- return cls.from_dict(json.loads(json_str))
60
-
61
- def to_dict(self) -> Dict[str, Any]:
62
- """Return the dictionary representation of the model using alias.
63
-
64
- This has the following differences from calling pydantic's
65
- `self.model_dump(by_alias=True)`:
66
-
67
- * `None` is only added to the output dict for nullable fields that
68
- were set at model initialization. Other fields with value `None`
69
- are ignored.
70
- """
71
- excluded_fields: Set[str] = set([
72
- ])
73
-
74
- _dict = self.model_dump(
75
- by_alias=True,
76
- exclude=excluded_fields,
77
- exclude_none=True,
78
- )
79
- return _dict
80
-
81
- @classmethod
82
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
83
- """Create an instance of AWSPinpointDatasetConfig from a dict"""
84
- if obj is None:
85
- return None
86
-
87
- if not isinstance(obj, dict):
88
- return cls.model_validate(obj)
89
-
90
- _obj = cls.model_validate({
91
- "tenant_aws_account_id": obj.get("tenant_aws_account_id"),
92
- "schema_type": obj.get("schema_type")
93
- })
94
- return _obj
95
-
96
-
@@ -1,114 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from datetime import datetime
21
- from pydantic import BaseModel, ConfigDict, StrictStr, field_validator
22
- from typing import Any, ClassVar, Dict, List, Optional
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class BigQueryDatasetConfig(BaseModel):
27
- """
28
- BigQueryDatasetConfig
29
- """ # noqa: E501
30
- name: StrictStr
31
- table: StrictStr
32
- columns: List[StrictStr]
33
- datetime_key: StrictStr
34
- filters: Optional[List[StrictStr]] = None
35
- start_datetime: Optional[datetime] = None
36
- schedule_interval: Optional[StrictStr] = '@hourly'
37
- schema_type: StrictStr
38
- __properties: ClassVar[List[str]] = ["name", "table", "columns", "datetime_key", "filters", "start_datetime", "schedule_interval", "schema_type"]
39
-
40
- @field_validator('schema_type')
41
- def schema_type_validate_enum(cls, value):
42
- """Validates the enum"""
43
- if value not in set(['BIGQUERY']):
44
- raise ValueError("must be one of enum values ('BIGQUERY')")
45
- return value
46
-
47
- model_config = ConfigDict(
48
- populate_by_name=True,
49
- validate_assignment=True,
50
- protected_namespaces=(),
51
- )
52
-
53
-
54
- def to_str(self) -> str:
55
- """Returns the string representation of the model using alias"""
56
- return pprint.pformat(self.model_dump(by_alias=True))
57
-
58
- def to_json(self) -> str:
59
- """Returns the JSON representation of the model using alias"""
60
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
61
- return json.dumps(self.to_dict())
62
-
63
- @classmethod
64
- def from_json(cls, json_str: str) -> Optional[Self]:
65
- """Create an instance of BigQueryDatasetConfig from a JSON string"""
66
- return cls.from_dict(json.loads(json_str))
67
-
68
- def to_dict(self) -> Dict[str, Any]:
69
- """Return the dictionary representation of the model using alias.
70
-
71
- This has the following differences from calling pydantic's
72
- `self.model_dump(by_alias=True)`:
73
-
74
- * `None` is only added to the output dict for nullable fields that
75
- were set at model initialization. Other fields with value `None`
76
- are ignored.
77
- """
78
- excluded_fields: Set[str] = set([
79
- ])
80
-
81
- _dict = self.model_dump(
82
- by_alias=True,
83
- exclude=excluded_fields,
84
- exclude_none=True,
85
- )
86
- # set to None if start_datetime (nullable) is None
87
- # and model_fields_set contains the field
88
- if self.start_datetime is None and "start_datetime" in self.model_fields_set:
89
- _dict['start_datetime'] = None
90
-
91
- return _dict
92
-
93
- @classmethod
94
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
95
- """Create an instance of BigQueryDatasetConfig from a dict"""
96
- if obj is None:
97
- return None
98
-
99
- if not isinstance(obj, dict):
100
- return cls.model_validate(obj)
101
-
102
- _obj = cls.model_validate({
103
- "name": obj.get("name"),
104
- "table": obj.get("table"),
105
- "columns": obj.get("columns"),
106
- "datetime_key": obj.get("datetime_key"),
107
- "filters": obj.get("filters"),
108
- "start_datetime": obj.get("start_datetime"),
109
- "schedule_interval": obj.get("schedule_interval") if obj.get("schedule_interval") is not None else '@hourly',
110
- "schema_type": obj.get("schema_type")
111
- })
112
- return _obj
113
-
114
-
@@ -1,99 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from shaped.autogen.models.inference_config import InferenceConfig
23
- from typing import Optional, Set
24
- from typing_extensions import Self
25
-
26
- class ComplementItemsRequest(BaseModel):
27
- """
28
- ComplementItemsRequest
29
- """ # noqa: E501
30
- item_ids: List[StrictStr]
31
- user_id: Optional[StrictStr] = None
32
- return_metadata: Optional[StrictBool] = None
33
- filter_predicate: Optional[StrictStr] = Field(default=None, description="A SQL where query that can be used to filter candidate items.")
34
- config: Optional[InferenceConfig] = None
35
- __properties: ClassVar[List[str]] = ["item_ids", "user_id", "return_metadata", "filter_predicate", "config"]
36
-
37
- model_config = ConfigDict(
38
- populate_by_name=True,
39
- validate_assignment=True,
40
- protected_namespaces=(),
41
- )
42
-
43
-
44
- def to_str(self) -> str:
45
- """Returns the string representation of the model using alias"""
46
- return pprint.pformat(self.model_dump(by_alias=True))
47
-
48
- def to_json(self) -> str:
49
- """Returns the JSON representation of the model using alias"""
50
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
51
- return json.dumps(self.to_dict())
52
-
53
- @classmethod
54
- def from_json(cls, json_str: str) -> Optional[Self]:
55
- """Create an instance of ComplementItemsRequest from a JSON string"""
56
- return cls.from_dict(json.loads(json_str))
57
-
58
- def to_dict(self) -> Dict[str, Any]:
59
- """Return the dictionary representation of the model using alias.
60
-
61
- This has the following differences from calling pydantic's
62
- `self.model_dump(by_alias=True)`:
63
-
64
- * `None` is only added to the output dict for nullable fields that
65
- were set at model initialization. Other fields with value `None`
66
- are ignored.
67
- """
68
- excluded_fields: Set[str] = set([
69
- ])
70
-
71
- _dict = self.model_dump(
72
- by_alias=True,
73
- exclude=excluded_fields,
74
- exclude_none=True,
75
- )
76
- # override the default output from pydantic by calling `to_dict()` of config
77
- if self.config:
78
- _dict['config'] = self.config.to_dict()
79
- return _dict
80
-
81
- @classmethod
82
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
83
- """Create an instance of ComplementItemsRequest from a dict"""
84
- if obj is None:
85
- return None
86
-
87
- if not isinstance(obj, dict):
88
- return cls.model_validate(obj)
89
-
90
- _obj = cls.model_validate({
91
- "item_ids": obj.get("item_ids"),
92
- "user_id": obj.get("user_id"),
93
- "return_metadata": obj.get("return_metadata"),
94
- "filter_predicate": obj.get("filter_predicate"),
95
- "config": InferenceConfig.from_dict(obj["config"]) if obj.get("config") is not None else None
96
- })
97
- return _obj
98
-
99
-
@@ -1,89 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- import pprint
17
- import re # noqa: F401
18
- import json
19
-
20
- from pydantic import BaseModel, ConfigDict, StrictStr
21
- from typing import Any, ClassVar, Dict, List, Optional
22
- from typing import Optional, Set
23
- from typing_extensions import Self
24
-
25
- class ComplementItemsResponse(BaseModel):
26
- """
27
- ComplementItemsResponse
28
- """ # noqa: E501
29
- ids: List[StrictStr]
30
- metadata: Optional[List[Dict[str, Any]]] = None
31
- __properties: ClassVar[List[str]] = ["ids", "metadata"]
32
-
33
- model_config = ConfigDict(
34
- populate_by_name=True,
35
- validate_assignment=True,
36
- protected_namespaces=(),
37
- )
38
-
39
-
40
- def to_str(self) -> str:
41
- """Returns the string representation of the model using alias"""
42
- return pprint.pformat(self.model_dump(by_alias=True))
43
-
44
- def to_json(self) -> str:
45
- """Returns the JSON representation of the model using alias"""
46
- # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
47
- return json.dumps(self.to_dict())
48
-
49
- @classmethod
50
- def from_json(cls, json_str: str) -> Optional[Self]:
51
- """Create an instance of ComplementItemsResponse from a JSON string"""
52
- return cls.from_dict(json.loads(json_str))
53
-
54
- def to_dict(self) -> Dict[str, Any]:
55
- """Return the dictionary representation of the model using alias.
56
-
57
- This has the following differences from calling pydantic's
58
- `self.model_dump(by_alias=True)`:
59
-
60
- * `None` is only added to the output dict for nullable fields that
61
- were set at model initialization. Other fields with value `None`
62
- are ignored.
63
- """
64
- excluded_fields: Set[str] = set([
65
- ])
66
-
67
- _dict = self.model_dump(
68
- by_alias=True,
69
- exclude=excluded_fields,
70
- exclude_none=True,
71
- )
72
- return _dict
73
-
74
- @classmethod
75
- def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
76
- """Create an instance of ComplementItemsResponse from a dict"""
77
- if obj is None:
78
- return None
79
-
80
- if not isinstance(obj, dict):
81
- return cls.model_validate(obj)
82
-
83
- _obj = cls.model_validate({
84
- "ids": obj.get("ids"),
85
- "metadata": obj.get("metadata")
86
- })
87
- return _obj
88
-
89
-
@@ -1,134 +0,0 @@
1
- # coding: utf-8
2
-
3
- """
4
- Shaped API
5
-
6
- Welcome to Shaped's API reference docs. These provide a detailed view of the endpoints and CLI commands that Shaped provides and brief explanations of how they should be used. Shaped's API is composed of 3 components: 1. **Dataset** - used to provision and manage 'Shaped Datasets', which are persisted data views of external data. Shaped Datasets can be created from any of our 'Shaped connectors' (e.g. S3, Segment, Snowflake, etc.) and support both batch ingestion (up to a 15min delay) and stream ingestion (up to a 30 second delay) depending on the specific connector used. Shaped datasets can also be created from local files, which is particularly useful for getting started with a snapshot of data. 2. **Model Management** - used to provision and manage 'Shaped Models', which represent a system of data pipelines, training and serving infrastructure for your ranking use-case. 3. **Model Inference** - a high performance API that's used to make user-understanding requests or ranking inferences to your 'Shaped Models'. For example, the 'rank' endpoint can be used to determine for a given user id query, what is the content that is most engaging to that user. The recommended workflow to interact with the Shaped API is as follows: 1. First create 'Shaped Datasets' to sync over data that your Shaped understanding models will need. The models at the minimum need interaction data to understand behavior of your users, so start with that and add your item and user catalog data later. 2. Then create 'Shaped Models' that use your created 'Shaped Datasets' as input. Your Shaped Model will will start streaming, processing and training from your connected data immediately. After a few hours your model will have tuned all parameters based on your data and will deploy an active model. 3. You can now use the 'Model Inference' endpoints to make real-time inferences to your model based on your use-case.
7
-
8
- The version of the OpenAPI document: 1.0.1
9
- Generated by OpenAPI Generator (https://openapi-generator.tech)
10
-
11
- Do not edit the class manually.
12
- """ # noqa: E501
13
-
14
-
15
- from __future__ import annotations
16
- from inspect import getfullargspec
17
- import json
18
- import pprint
19
- import re # noqa: F401
20
- from pydantic import BaseModel, ConfigDict, Field, StrictStr, ValidationError, field_validator
21
- from typing import Optional
22
- from shaped.autogen.models.dataset_config import DatasetConfig
23
- from shaped.autogen.models.file_config import FileConfig
24
- from typing import Union, Any, List, Set, TYPE_CHECKING, Optional, Dict
25
- from typing_extensions import Literal, Self
26
- from pydantic import Field
27
-
28
- CONNECTORSINNER_ANY_OF_SCHEMAS = ["DatasetConfig", "FileConfig"]
29
-
30
- class ConnectorsInner(BaseModel):
31
- """
32
- ConnectorsInner
33
- """
34
-
35
- # data type: FileConfig
36
- anyof_schema_1_validator: Optional[FileConfig] = None
37
- # data type: DatasetConfig
38
- anyof_schema_2_validator: Optional[DatasetConfig] = None
39
- if TYPE_CHECKING:
40
- actual_instance: Optional[Union[DatasetConfig, FileConfig]] = None
41
- else:
42
- actual_instance: Any = None
43
- any_of_schemas: Set[str] = { "DatasetConfig", "FileConfig" }
44
-
45
- model_config = {
46
- "validate_assignment": True,
47
- "protected_namespaces": (),
48
- }
49
-
50
- def __init__(self, *args, **kwargs) -> None:
51
- if args:
52
- if len(args) > 1:
53
- raise ValueError("If a position argument is used, only 1 is allowed to set `actual_instance`")
54
- if kwargs:
55
- raise ValueError("If a position argument is used, keyword arguments cannot be used.")
56
- super().__init__(actual_instance=args[0])
57
- else:
58
- super().__init__(**kwargs)
59
-
60
- @field_validator('actual_instance')
61
- def actual_instance_must_validate_anyof(cls, v):
62
- instance = ConnectorsInner.model_construct()
63
- error_messages = []
64
- # validate data type: FileConfig
65
- if not isinstance(v, FileConfig):
66
- error_messages.append(f"Error! Input type `{type(v)}` is not `FileConfig`")
67
- else:
68
- return v
69
-
70
- # validate data type: DatasetConfig
71
- if not isinstance(v, DatasetConfig):
72
- error_messages.append(f"Error! Input type `{type(v)}` is not `DatasetConfig`")
73
- else:
74
- return v
75
-
76
- if error_messages:
77
- # no match
78
- raise ValueError("No match found when setting the actual_instance in ConnectorsInner with anyOf schemas: DatasetConfig, FileConfig. Details: " + ", ".join(error_messages))
79
- else:
80
- return v
81
-
82
- @classmethod
83
- def from_dict(cls, obj: Dict[str, Any]) -> Self:
84
- return cls.from_json(json.dumps(obj))
85
-
86
- @classmethod
87
- def from_json(cls, json_str: str) -> Self:
88
- """Returns the object represented by the json string"""
89
- instance = cls.model_construct()
90
- error_messages = []
91
- # anyof_schema_1_validator: Optional[FileConfig] = None
92
- try:
93
- instance.actual_instance = FileConfig.from_json(json_str)
94
- return instance
95
- except (ValidationError, ValueError) as e:
96
- error_messages.append(str(e))
97
- # anyof_schema_2_validator: Optional[DatasetConfig] = None
98
- try:
99
- instance.actual_instance = DatasetConfig.from_json(json_str)
100
- return instance
101
- except (ValidationError, ValueError) as e:
102
- error_messages.append(str(e))
103
-
104
- if error_messages:
105
- # no match
106
- raise ValueError("No match found when deserializing the JSON string into ConnectorsInner with anyOf schemas: DatasetConfig, FileConfig. Details: " + ", ".join(error_messages))
107
- else:
108
- return instance
109
-
110
- def to_json(self) -> str:
111
- """Returns the JSON representation of the actual instance"""
112
- if self.actual_instance is None:
113
- return "null"
114
-
115
- if hasattr(self.actual_instance, "to_json") and callable(self.actual_instance.to_json):
116
- return self.actual_instance.to_json()
117
- else:
118
- return json.dumps(self.actual_instance)
119
-
120
- def to_dict(self) -> Optional[Union[Dict[str, Any], DatasetConfig, FileConfig]]:
121
- """Returns the dict representation of the actual instance"""
122
- if self.actual_instance is None:
123
- return None
124
-
125
- if hasattr(self.actual_instance, "to_dict") and callable(self.actual_instance.to_dict):
126
- return self.actual_instance.to_dict()
127
- else:
128
- return self.actual_instance
129
-
130
- def to_str(self) -> str:
131
- """Returns the string representation of the actual instance"""
132
- return pprint.pformat(self.model_dump())
133
-
134
-