sequenzo 0.1.18__cp39-cp39-macosx_10_9_universal2.whl → 0.1.20__cp39-cp39-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (360) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +157 -157
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +108 -6
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  8. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +157 -157
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so +0 -0
  11. sequenzo/dissimilarity_measures/utils/seqconc.c +157 -157
  12. sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqdss.c +157 -157
  14. sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdur.c +157 -157
  16. sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqlength.c +157 -157
  18. sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so +0 -0
  19. sequenzo/multidomain/cat.py +0 -53
  20. sequenzo/multidomain/dat.py +11 -3
  21. sequenzo/multidomain/idcd.py +0 -3
  22. sequenzo/multidomain/linked_polyad.py +0 -1
  23. sequenzo/openmp_setup.py +233 -0
  24. sequenzo/visualization/plot_transition_matrix.py +21 -22
  25. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  26. sequenzo-0.1.20.dist-info/RECORD +215 -0
  27. sequenzo/dissimilarity_measures/setup.py +0 -35
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  171. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  172. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  173. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  174. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  175. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  176. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  177. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  182. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  183. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  184. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  185. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  186. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  187. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  188. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  357. sequenzo-0.1.18.dist-info/RECORD +0 -544
  358. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  359. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  360. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,923 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
5
- // Copyright (C) 2012-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6
- //
7
- // This Source Code Form is subject to the terms of the Mozilla
8
- // Public License v. 2.0. If a copy of the MPL was not distributed
9
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
-
11
-
12
- #ifndef EIGEN_SPARSE_LU_H
13
- #define EIGEN_SPARSE_LU_H
14
-
15
- namespace Eigen {
16
-
17
- template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::StorageIndex> > class SparseLU;
18
- template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType;
19
- template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType;
20
-
21
- template <bool Conjugate,class SparseLUType>
22
- class SparseLUTransposeView : public SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> >
23
- {
24
- protected:
25
- typedef SparseSolverBase<SparseLUTransposeView<Conjugate,SparseLUType> > APIBase;
26
- using APIBase::m_isInitialized;
27
- public:
28
- typedef typename SparseLUType::Scalar Scalar;
29
- typedef typename SparseLUType::StorageIndex StorageIndex;
30
- typedef typename SparseLUType::MatrixType MatrixType;
31
- typedef typename SparseLUType::OrderingType OrderingType;
32
-
33
- enum {
34
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
35
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
36
- };
37
-
38
- SparseLUTransposeView() : m_sparseLU(NULL) {}
39
- SparseLUTransposeView(const SparseLUTransposeView& view) {
40
- this->m_sparseLU = view.m_sparseLU;
41
- }
42
- void setIsInitialized(const bool isInitialized) {this->m_isInitialized = isInitialized;}
43
- void setSparseLU(SparseLUType* sparseLU) {m_sparseLU = sparseLU;}
44
- using APIBase::_solve_impl;
45
- template<typename Rhs, typename Dest>
46
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
47
- {
48
- Dest& X(X_base.derived());
49
- eigen_assert(m_sparseLU->info() == Success && "The matrix should be factorized first");
50
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
51
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
52
-
53
-
54
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
55
- for(Index j = 0; j < B.cols(); ++j){
56
- X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j);
57
- }
58
- //Forward substitution with transposed or adjoint of U
59
- m_sparseLU->matrixU().template solveTransposedInPlace<Conjugate>(X);
60
-
61
- //Backward substitution with transposed or adjoint of L
62
- m_sparseLU->matrixL().template solveTransposedInPlace<Conjugate>(X);
63
-
64
- // Permute back the solution
65
- for (Index j = 0; j < B.cols(); ++j)
66
- X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j);
67
- return true;
68
- }
69
- inline Index rows() const { return m_sparseLU->rows(); }
70
- inline Index cols() const { return m_sparseLU->cols(); }
71
-
72
- private:
73
- SparseLUType *m_sparseLU;
74
- SparseLUTransposeView& operator=(const SparseLUTransposeView&);
75
- };
76
-
77
-
78
- /** \ingroup SparseLU_Module
79
- * \class SparseLU
80
- *
81
- * \brief Sparse supernodal LU factorization for general matrices
82
- *
83
- * This class implements the supernodal LU factorization for general matrices.
84
- * It uses the main techniques from the sequential SuperLU package
85
- * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
86
- * and complex arithmetic with single and double precision, depending on the
87
- * scalar type of your input matrix.
88
- * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
89
- * It benefits directly from the built-in high-performant Eigen BLAS routines.
90
- * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
91
- * enable a better optimization from the compiler. For best performance,
92
- * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
93
- *
94
- * An important parameter of this class is the ordering method. It is used to reorder the columns
95
- * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
96
- * numerical factorization. The cheapest method available is COLAMD.
97
- * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
98
- * built-in and external ordering methods.
99
- *
100
- * Simple example with key steps
101
- * \code
102
- * VectorXd x(n), b(n);
103
- * SparseMatrix<double> A;
104
- * SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver;
105
- * // fill A and b;
106
- * // Compute the ordering permutation vector from the structural pattern of A
107
- * solver.analyzePattern(A);
108
- * // Compute the numerical factorization
109
- * solver.factorize(A);
110
- * //Use the factors to solve the linear system
111
- * x = solver.solve(b);
112
- * \endcode
113
- *
114
- * \warning The input matrix A should be in a \b compressed and \b column-major form.
115
- * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
116
- *
117
- * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
118
- * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
119
- * If this is the case for your matrices, you can try the basic scaling method at
120
- * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
121
- *
122
- * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
123
- * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD
124
- *
125
- * \implsparsesolverconcept
126
- *
127
- * \sa \ref TutorialSparseSolverConcept
128
- * \sa \ref OrderingMethods_Module
129
- */
130
- template <typename _MatrixType, typename _OrderingType>
131
- class SparseLU : public SparseSolverBase<SparseLU<_MatrixType,_OrderingType> >, public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::StorageIndex>
132
- {
133
- protected:
134
- typedef SparseSolverBase<SparseLU<_MatrixType,_OrderingType> > APIBase;
135
- using APIBase::m_isInitialized;
136
- public:
137
- using APIBase::_solve_impl;
138
-
139
- typedef _MatrixType MatrixType;
140
- typedef _OrderingType OrderingType;
141
- typedef typename MatrixType::Scalar Scalar;
142
- typedef typename MatrixType::RealScalar RealScalar;
143
- typedef typename MatrixType::StorageIndex StorageIndex;
144
- typedef SparseMatrix<Scalar,ColMajor,StorageIndex> NCMatrix;
145
- typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
146
- typedef Matrix<Scalar,Dynamic,1> ScalarVector;
147
- typedef Matrix<StorageIndex,Dynamic,1> IndexVector;
148
- typedef PermutationMatrix<Dynamic, Dynamic, StorageIndex> PermutationType;
149
- typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
150
-
151
- enum {
152
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
153
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
154
- };
155
-
156
- public:
157
-
158
- SparseLU():m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
159
- {
160
- initperfvalues();
161
- }
162
- explicit SparseLU(const MatrixType& matrix)
163
- : m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1)
164
- {
165
- initperfvalues();
166
- compute(matrix);
167
- }
168
-
169
- ~SparseLU()
170
- {
171
- // Free all explicit dynamic pointers
172
- }
173
-
174
- void analyzePattern (const MatrixType& matrix);
175
- void factorize (const MatrixType& matrix);
176
- void simplicialfactorize(const MatrixType& matrix);
177
-
178
- /**
179
- * Compute the symbolic and numeric factorization of the input sparse matrix.
180
- * The input matrix should be in column-major storage.
181
- */
182
- void compute (const MatrixType& matrix)
183
- {
184
- // Analyze
185
- analyzePattern(matrix);
186
- //Factorize
187
- factorize(matrix);
188
- }
189
-
190
- /** \returns an expression of the transposed of the factored matrix.
191
- *
192
- * A typical usage is to solve for the transposed problem A^T x = b:
193
- * \code
194
- * solver.compute(A);
195
- * x = solver.transpose().solve(b);
196
- * \endcode
197
- *
198
- * \sa adjoint(), solve()
199
- */
200
- const SparseLUTransposeView<false,SparseLU<_MatrixType,_OrderingType> > transpose()
201
- {
202
- SparseLUTransposeView<false, SparseLU<_MatrixType,_OrderingType> > transposeView;
203
- transposeView.setSparseLU(this);
204
- transposeView.setIsInitialized(this->m_isInitialized);
205
- return transposeView;
206
- }
207
-
208
-
209
- /** \returns an expression of the adjoint of the factored matrix
210
- *
211
- * A typical usage is to solve for the adjoint problem A' x = b:
212
- * \code
213
- * solver.compute(A);
214
- * x = solver.adjoint().solve(b);
215
- * \endcode
216
- *
217
- * For real scalar types, this function is equivalent to transpose().
218
- *
219
- * \sa transpose(), solve()
220
- */
221
- const SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjoint()
222
- {
223
- SparseLUTransposeView<true, SparseLU<_MatrixType,_OrderingType> > adjointView;
224
- adjointView.setSparseLU(this);
225
- adjointView.setIsInitialized(this->m_isInitialized);
226
- return adjointView;
227
- }
228
-
229
- inline Index rows() const { return m_mat.rows(); }
230
- inline Index cols() const { return m_mat.cols(); }
231
- /** Indicate that the pattern of the input matrix is symmetric */
232
- void isSymmetric(bool sym)
233
- {
234
- m_symmetricmode = sym;
235
- }
236
-
237
- /** \returns an expression of the matrix L, internally stored as supernodes
238
- * The only operation available with this expression is the triangular solve
239
- * \code
240
- * y = b; matrixL().solveInPlace(y);
241
- * \endcode
242
- */
243
- SparseLUMatrixLReturnType<SCMatrix> matrixL() const
244
- {
245
- return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore);
246
- }
247
- /** \returns an expression of the matrix U,
248
- * The only operation available with this expression is the triangular solve
249
- * \code
250
- * y = b; matrixU().solveInPlace(y);
251
- * \endcode
252
- */
253
- SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,StorageIndex> > matrixU() const
254
- {
255
- return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,StorageIndex> >(m_Lstore, m_Ustore);
256
- }
257
-
258
- /**
259
- * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$
260
- * \sa colsPermutation()
261
- */
262
- inline const PermutationType& rowsPermutation() const
263
- {
264
- return m_perm_r;
265
- }
266
- /**
267
- * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$
268
- * \sa rowsPermutation()
269
- */
270
- inline const PermutationType& colsPermutation() const
271
- {
272
- return m_perm_c;
273
- }
274
- /** Set the threshold used for a diagonal entry to be an acceptable pivot. */
275
- void setPivotThreshold(const RealScalar& thresh)
276
- {
277
- m_diagpivotthresh = thresh;
278
- }
279
-
280
- #ifdef EIGEN_PARSED_BY_DOXYGEN
281
- /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A.
282
- *
283
- * \warning the destination matrix X in X = this->solve(B) must be colmun-major.
284
- *
285
- * \sa compute()
286
- */
287
- template<typename Rhs>
288
- inline const Solve<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const;
289
- #endif // EIGEN_PARSED_BY_DOXYGEN
290
-
291
- /** \brief Reports whether previous computation was successful.
292
- *
293
- * \returns \c Success if computation was successful,
294
- * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance
295
- * \c InvalidInput if the input matrix is invalid
296
- *
297
- * \sa iparm()
298
- */
299
- ComputationInfo info() const
300
- {
301
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
302
- return m_info;
303
- }
304
-
305
- /**
306
- * \returns A string describing the type of error
307
- */
308
- std::string lastErrorMessage() const
309
- {
310
- return m_lastError;
311
- }
312
-
313
- template<typename Rhs, typename Dest>
314
- bool _solve_impl(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const
315
- {
316
- Dest& X(X_base.derived());
317
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first");
318
- EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0,
319
- THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
320
-
321
- // Permute the right hand side to form X = Pr*B
322
- // on return, X is overwritten by the computed solution
323
- X.resize(B.rows(),B.cols());
324
-
325
- // this ugly const_cast_derived() helps to detect aliasing when applying the permutations
326
- for(Index j = 0; j < B.cols(); ++j)
327
- X.col(j) = rowsPermutation() * B.const_cast_derived().col(j);
328
-
329
- //Forward substitution with L
330
- this->matrixL().solveInPlace(X);
331
- this->matrixU().solveInPlace(X);
332
-
333
- // Permute back the solution
334
- for (Index j = 0; j < B.cols(); ++j)
335
- X.col(j) = colsPermutation().inverse() * X.col(j);
336
-
337
- return true;
338
- }
339
-
340
- /**
341
- * \returns the absolute value of the determinant of the matrix of which
342
- * *this is the QR decomposition.
343
- *
344
- * \warning a determinant can be very big or small, so for matrices
345
- * of large enough dimension, there is a risk of overflow/underflow.
346
- * One way to work around that is to use logAbsDeterminant() instead.
347
- *
348
- * \sa logAbsDeterminant(), signDeterminant()
349
- */
350
- Scalar absDeterminant()
351
- {
352
- using std::abs;
353
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
354
- // Initialize with the determinant of the row matrix
355
- Scalar det = Scalar(1.);
356
- // Note that the diagonal blocks of U are stored in supernodes,
357
- // which are available in the L part :)
358
- for (Index j = 0; j < this->cols(); ++j)
359
- {
360
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
361
- {
362
- if(it.index() == j)
363
- {
364
- det *= abs(it.value());
365
- break;
366
- }
367
- }
368
- }
369
- return det;
370
- }
371
-
372
- /** \returns the natural log of the absolute value of the determinant of the matrix
373
- * of which **this is the QR decomposition
374
- *
375
- * \note This method is useful to work around the risk of overflow/underflow that's
376
- * inherent to the determinant computation.
377
- *
378
- * \sa absDeterminant(), signDeterminant()
379
- */
380
- Scalar logAbsDeterminant() const
381
- {
382
- using std::log;
383
- using std::abs;
384
-
385
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
386
- Scalar det = Scalar(0.);
387
- for (Index j = 0; j < this->cols(); ++j)
388
- {
389
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
390
- {
391
- if(it.row() < j) continue;
392
- if(it.row() == j)
393
- {
394
- det += log(abs(it.value()));
395
- break;
396
- }
397
- }
398
- }
399
- return det;
400
- }
401
-
402
- /** \returns A number representing the sign of the determinant
403
- *
404
- * \sa absDeterminant(), logAbsDeterminant()
405
- */
406
- Scalar signDeterminant()
407
- {
408
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
409
- // Initialize with the determinant of the row matrix
410
- Index det = 1;
411
- // Note that the diagonal blocks of U are stored in supernodes,
412
- // which are available in the L part :)
413
- for (Index j = 0; j < this->cols(); ++j)
414
- {
415
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
416
- {
417
- if(it.index() == j)
418
- {
419
- if(it.value()<0)
420
- det = -det;
421
- else if(it.value()==0)
422
- return 0;
423
- break;
424
- }
425
- }
426
- }
427
- return det * m_detPermR * m_detPermC;
428
- }
429
-
430
- /** \returns The determinant of the matrix.
431
- *
432
- * \sa absDeterminant(), logAbsDeterminant()
433
- */
434
- Scalar determinant()
435
- {
436
- eigen_assert(m_factorizationIsOk && "The matrix should be factorized first.");
437
- // Initialize with the determinant of the row matrix
438
- Scalar det = Scalar(1.);
439
- // Note that the diagonal blocks of U are stored in supernodes,
440
- // which are available in the L part :)
441
- for (Index j = 0; j < this->cols(); ++j)
442
- {
443
- for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it)
444
- {
445
- if(it.index() == j)
446
- {
447
- det *= it.value();
448
- break;
449
- }
450
- }
451
- }
452
- return (m_detPermR * m_detPermC) > 0 ? det : -det;
453
- }
454
-
455
- Index nnzL() const { return m_nnzL; };
456
- Index nnzU() const { return m_nnzU; };
457
-
458
- protected:
459
- // Functions
460
- void initperfvalues()
461
- {
462
- m_perfv.panel_size = 16;
463
- m_perfv.relax = 1;
464
- m_perfv.maxsuper = 128;
465
- m_perfv.rowblk = 16;
466
- m_perfv.colblk = 8;
467
- m_perfv.fillfactor = 20;
468
- }
469
-
470
- // Variables
471
- mutable ComputationInfo m_info;
472
- bool m_factorizationIsOk;
473
- bool m_analysisIsOk;
474
- std::string m_lastError;
475
- NCMatrix m_mat; // The input (permuted ) matrix
476
- SCMatrix m_Lstore; // The lower triangular matrix (supernodal)
477
- MappedSparseMatrix<Scalar,ColMajor,StorageIndex> m_Ustore; // The upper triangular matrix
478
- PermutationType m_perm_c; // Column permutation
479
- PermutationType m_perm_r ; // Row permutation
480
- IndexVector m_etree; // Column elimination tree
481
-
482
- typename Base::GlobalLU_t m_glu;
483
-
484
- // SparseLU options
485
- bool m_symmetricmode;
486
- // values for performance
487
- internal::perfvalues m_perfv;
488
- RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot
489
- Index m_nnzL, m_nnzU; // Nonzeros in L and U factors
490
- Index m_detPermR, m_detPermC; // Determinants of the permutation matrices
491
- private:
492
- // Disable copy constructor
493
- SparseLU (const SparseLU& );
494
- }; // End class SparseLU
495
-
496
-
497
-
498
- // Functions needed by the anaysis phase
499
- /**
500
- * Compute the column permutation to minimize the fill-in
501
- *
502
- * - Apply this permutation to the input matrix -
503
- *
504
- * - Compute the column elimination tree on the permuted matrix
505
- *
506
- * - Postorder the elimination tree and the column permutation
507
- *
508
- */
509
- template <typename MatrixType, typename OrderingType>
510
- void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat)
511
- {
512
-
513
- //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat.
514
-
515
- // Firstly, copy the whole input matrix.
516
- m_mat = mat;
517
-
518
- // Compute fill-in ordering
519
- OrderingType ord;
520
- ord(m_mat,m_perm_c);
521
-
522
- // Apply the permutation to the column of the input matrix
523
- if (m_perm_c.size())
524
- {
525
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used.
526
- // Then, permute only the column pointers
527
- ei_declare_aligned_stack_constructed_variable(StorageIndex,outerIndexPtr,mat.cols()+1,mat.isCompressed()?const_cast<StorageIndex*>(mat.outerIndexPtr()):0);
528
-
529
- // If the input matrix 'mat' is uncompressed, then the outer-indices do not match the ones of m_mat, and a copy is thus needed.
530
- if(!mat.isCompressed())
531
- IndexVector::Map(outerIndexPtr, mat.cols()+1) = IndexVector::Map(m_mat.outerIndexPtr(),mat.cols()+1);
532
-
533
- // Apply the permutation and compute the nnz per column.
534
- for (Index i = 0; i < mat.cols(); i++)
535
- {
536
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
537
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
538
- }
539
- }
540
-
541
- // Compute the column elimination tree of the permuted matrix
542
- IndexVector firstRowElt;
543
- internal::coletree(m_mat, m_etree,firstRowElt);
544
-
545
- // In symmetric mode, do not do postorder here
546
- if (!m_symmetricmode) {
547
- IndexVector post, iwork;
548
- // Post order etree
549
- internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
550
-
551
-
552
- // Renumber etree in postorder
553
- Index m = m_mat.cols();
554
- iwork.resize(m+1);
555
- for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
556
- m_etree = iwork;
557
-
558
- // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree
559
- PermutationType post_perm(m);
560
- for (Index i = 0; i < m; i++)
561
- post_perm.indices()(i) = post(i);
562
-
563
- // Combine the two permutations : postorder the permutation for future use
564
- if(m_perm_c.size()) {
565
- m_perm_c = post_perm * m_perm_c;
566
- }
567
-
568
- } // end postordering
569
-
570
- m_analysisIsOk = true;
571
- }
572
-
573
- // Functions needed by the numerical factorization phase
574
-
575
-
576
- /**
577
- * - Numerical factorization
578
- * - Interleaved with the symbolic factorization
579
- * On exit, info is
580
- *
581
- * = 0: successful factorization
582
- *
583
- * > 0: if info = i, and i is
584
- *
585
- * <= A->ncol: U(i,i) is exactly zero. The factorization has
586
- * been completed, but the factor U is exactly singular,
587
- * and division by zero will occur if it is used to solve a
588
- * system of equations.
589
- *
590
- * > A->ncol: number of bytes allocated when memory allocation
591
- * failure occurred, plus A->ncol. If lwork = -1, it is
592
- * the estimated amount of space needed, plus A->ncol.
593
- */
594
- template <typename MatrixType, typename OrderingType>
595
- void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
596
- {
597
- using internal::emptyIdxLU;
598
- eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
599
- eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices");
600
-
601
- m_isInitialized = true;
602
-
603
- // Apply the column permutation computed in analyzepattern()
604
- // m_mat = matrix * m_perm_c.inverse();
605
- m_mat = matrix;
606
- if (m_perm_c.size())
607
- {
608
- m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers.
609
- //Then, permute only the column pointers
610
- const StorageIndex * outerIndexPtr;
611
- if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr();
612
- else
613
- {
614
- StorageIndex* outerIndexPtr_t = new StorageIndex[matrix.cols()+1];
615
- for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
616
- outerIndexPtr = outerIndexPtr_t;
617
- }
618
- for (Index i = 0; i < matrix.cols(); i++)
619
- {
620
- m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
621
- m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i];
622
- }
623
- if(!matrix.isCompressed()) delete[] outerIndexPtr;
624
- }
625
- else
626
- { //FIXME This should not be needed if the empty permutation is handled transparently
627
- m_perm_c.resize(matrix.cols());
628
- for(StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
629
- }
630
-
631
- Index m = m_mat.rows();
632
- Index n = m_mat.cols();
633
- Index nnz = m_mat.nonZeros();
634
- Index maxpanel = m_perfv.panel_size * m;
635
- // Allocate working storage common to the factor routines
636
- Index lwork = 0;
637
- Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
638
- if (info)
639
- {
640
- m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ;
641
- m_factorizationIsOk = false;
642
- return ;
643
- }
644
-
645
- // Set up pointers for integer working arrays
646
- IndexVector segrep(m); segrep.setZero();
647
- IndexVector parent(m); parent.setZero();
648
- IndexVector xplore(m); xplore.setZero();
649
- IndexVector repfnz(maxpanel);
650
- IndexVector panel_lsub(maxpanel);
651
- IndexVector xprune(n); xprune.setZero();
652
- IndexVector marker(m*internal::LUNoMarker); marker.setZero();
653
-
654
- repfnz.setConstant(-1);
655
- panel_lsub.setConstant(-1);
656
-
657
- // Set up pointers for scalar working arrays
658
- ScalarVector dense;
659
- dense.setZero(maxpanel);
660
- ScalarVector tempv;
661
- tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) );
662
-
663
- // Compute the inverse of perm_c
664
- PermutationType iperm_c(m_perm_c.inverse());
665
-
666
- // Identify initial relaxed snodes
667
- IndexVector relax_end(n);
668
- if ( m_symmetricmode == true )
669
- Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
670
- else
671
- Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
672
-
673
-
674
- m_perm_r.resize(m);
675
- m_perm_r.indices().setConstant(-1);
676
- marker.setConstant(-1);
677
- m_detPermR = 1; // Record the determinant of the row permutation
678
-
679
- m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0);
680
- m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0);
681
-
682
- // Work on one 'panel' at a time. A panel is one of the following :
683
- // (a) a relaxed supernode at the bottom of the etree, or
684
- // (b) panel_size contiguous columns, <panel_size> defined by the user
685
- Index jcol;
686
- Index pivrow; // Pivotal row number in the original row matrix
687
- Index nseg1; // Number of segments in U-column above panel row jcol
688
- Index nseg; // Number of segments in each U-column
689
- Index irep;
690
- Index i, k, jj;
691
- for (jcol = 0; jcol < n; )
692
- {
693
- // Adjust panel size so that a panel won't overlap with the next relaxed snode.
694
- Index panel_size = m_perfv.panel_size; // upper bound on panel width
695
- for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++)
696
- {
697
- if (relax_end(k) != emptyIdxLU)
698
- {
699
- panel_size = k - jcol;
700
- break;
701
- }
702
- }
703
- if (k == n)
704
- panel_size = n - jcol;
705
-
706
- // Symbolic outer factorization on a panel of columns
707
- Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu);
708
-
709
- // Numeric sup-panel updates in topological order
710
- Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
711
-
712
- // Sparse LU within the panel, and below the panel diagonal
713
- for ( jj = jcol; jj< jcol + panel_size; jj++)
714
- {
715
- k = (jj - jcol) * m; // Column index for w-wide arrays
716
-
717
- nseg = nseg1; // begin after all the panel segments
718
- //Depth-first-search for the current column
719
- VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m);
720
- VectorBlock<IndexVector> repfnz_k(repfnz, k, m);
721
- info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu);
722
- if ( info )
723
- {
724
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
725
- m_info = NumericalIssue;
726
- m_factorizationIsOk = false;
727
- return;
728
- }
729
- // Numeric updates to this column
730
- VectorBlock<ScalarVector> dense_k(dense, k, m);
731
- VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1);
732
- info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
733
- if ( info )
734
- {
735
- m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
736
- m_info = NumericalIssue;
737
- m_factorizationIsOk = false;
738
- return;
739
- }
740
-
741
- // Copy the U-segments to ucol(*)
742
- info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu);
743
- if ( info )
744
- {
745
- m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
746
- m_info = NumericalIssue;
747
- m_factorizationIsOk = false;
748
- return;
749
- }
750
-
751
- // Form the L-segment
752
- info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu);
753
- if ( info )
754
- {
755
- m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT ";
756
- std::ostringstream returnInfo;
757
- returnInfo << info;
758
- m_lastError += returnInfo.str();
759
- m_info = NumericalIssue;
760
- m_factorizationIsOk = false;
761
- return;
762
- }
763
-
764
- // Update the determinant of the row permutation matrix
765
- // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot.
766
- if (pivrow != jj) m_detPermR = -m_detPermR;
767
-
768
- // Prune columns (0:jj-1) using column jj
769
- Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
770
-
771
- // Reset repfnz for this column
772
- for (i = 0; i < nseg; i++)
773
- {
774
- irep = segrep(i);
775
- repfnz_k(irep) = emptyIdxLU;
776
- }
777
- } // end SparseLU within the panel
778
- jcol += panel_size; // Move to the next panel
779
- } // end for -- end elimination
780
-
781
- m_detPermR = m_perm_r.determinant();
782
- m_detPermC = m_perm_c.determinant();
783
-
784
- // Count the number of nonzeros in factors
785
- Base::countnz(n, m_nnzL, m_nnzU, m_glu);
786
- // Apply permutation to the L subscripts
787
- Base::fixupL(n, m_perm_r.indices(), m_glu);
788
-
789
- // Create supernode matrix L
790
- m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
791
- // Create the column major upper sparse matrix U;
792
- new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, StorageIndex> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() );
793
-
794
- m_info = Success;
795
- m_factorizationIsOk = true;
796
- }
797
-
798
- template<typename MappedSupernodalType>
799
- struct SparseLUMatrixLReturnType : internal::no_assignment_operator
800
- {
801
- typedef typename MappedSupernodalType::Scalar Scalar;
802
- explicit SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL)
803
- { }
804
- Index rows() const { return m_mapL.rows(); }
805
- Index cols() const { return m_mapL.cols(); }
806
- template<typename Dest>
807
- void solveInPlace( MatrixBase<Dest> &X) const
808
- {
809
- m_mapL.solveInPlace(X);
810
- }
811
- template<bool Conjugate, typename Dest>
812
- void solveTransposedInPlace( MatrixBase<Dest> &X) const
813
- {
814
- m_mapL.template solveTransposedInPlace<Conjugate>(X);
815
- }
816
-
817
- const MappedSupernodalType& m_mapL;
818
- };
819
-
820
- template<typename MatrixLType, typename MatrixUType>
821
- struct SparseLUMatrixUReturnType : internal::no_assignment_operator
822
- {
823
- typedef typename MatrixLType::Scalar Scalar;
824
- SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU)
825
- : m_mapL(mapL),m_mapU(mapU)
826
- { }
827
- Index rows() const { return m_mapL.rows(); }
828
- Index cols() const { return m_mapL.cols(); }
829
-
830
- template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const
831
- {
832
- Index nrhs = X.cols();
833
- Index n = X.rows();
834
- // Backward solve with U
835
- for (Index k = m_mapL.nsuper(); k >= 0; k--)
836
- {
837
- Index fsupc = m_mapL.supToCol()[k];
838
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
839
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
840
- Index luptr = m_mapL.colIndexPtr()[fsupc];
841
-
842
- if (nsupc == 1)
843
- {
844
- for (Index j = 0; j < nrhs; j++)
845
- {
846
- X(fsupc, j) /= m_mapL.valuePtr()[luptr];
847
- }
848
- }
849
- else
850
- {
851
- // FIXME: the following lines should use Block expressions and not Map!
852
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
853
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X.coeffRef(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
854
- U = A.template triangularView<Upper>().solve(U);
855
- }
856
-
857
- for (Index j = 0; j < nrhs; ++j)
858
- {
859
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
860
- {
861
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
862
- for ( ; it; ++it)
863
- {
864
- Index irow = it.index();
865
- X(irow, j) -= X(jcol, j) * it.value();
866
- }
867
- }
868
- }
869
- } // End For U-solve
870
- }
871
-
872
- template<bool Conjugate, typename Dest> void solveTransposedInPlace(MatrixBase<Dest> &X) const
873
- {
874
- using numext::conj;
875
- Index nrhs = X.cols();
876
- Index n = X.rows();
877
- // Forward solve with U
878
- for (Index k = 0; k <= m_mapL.nsuper(); k++)
879
- {
880
- Index fsupc = m_mapL.supToCol()[k];
881
- Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension
882
- Index nsupc = m_mapL.supToCol()[k+1] - fsupc;
883
- Index luptr = m_mapL.colIndexPtr()[fsupc];
884
-
885
- for (Index j = 0; j < nrhs; ++j)
886
- {
887
- for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++)
888
- {
889
- typename MatrixUType::InnerIterator it(m_mapU, jcol);
890
- for ( ; it; ++it)
891
- {
892
- Index irow = it.index();
893
- X(jcol, j) -= X(irow, j) * (Conjugate? conj(it.value()): it.value());
894
- }
895
- }
896
- }
897
- if (nsupc == 1)
898
- {
899
- for (Index j = 0; j < nrhs; j++)
900
- {
901
- X(fsupc, j) /= (Conjugate? conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]);
902
- }
903
- }
904
- else
905
- {
906
- Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) );
907
- Map< Matrix<Scalar,Dynamic,Dest::ColsAtCompileTime, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) );
908
- if(Conjugate)
909
- U = A.adjoint().template triangularView<Lower>().solve(U);
910
- else
911
- U = A.transpose().template triangularView<Lower>().solve(U);
912
- }
913
- }// End For U-solve
914
- }
915
-
916
-
917
- const MatrixLType& m_mapL;
918
- const MatrixUType& m_mapU;
919
- };
920
-
921
- } // End namespace Eigen
922
-
923
- #endif