sequenzo 0.1.18__cp39-cp39-macosx_10_9_universal2.whl → 0.1.20__cp39-cp39-macosx_10_9_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (360) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +157 -157
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-39-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +108 -6
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +2 -3
  8. sequenzo/dissimilarity_measures/get_substitution_cost_matrix.py +1 -1
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +157 -157
  10. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-39-darwin.so +0 -0
  11. sequenzo/dissimilarity_measures/utils/seqconc.c +157 -157
  12. sequenzo/dissimilarity_measures/utils/seqconc.cpython-39-darwin.so +0 -0
  13. sequenzo/dissimilarity_measures/utils/seqdss.c +157 -157
  14. sequenzo/dissimilarity_measures/utils/seqdss.cpython-39-darwin.so +0 -0
  15. sequenzo/dissimilarity_measures/utils/seqdur.c +157 -157
  16. sequenzo/dissimilarity_measures/utils/seqdur.cpython-39-darwin.so +0 -0
  17. sequenzo/dissimilarity_measures/utils/seqlength.c +157 -157
  18. sequenzo/dissimilarity_measures/utils/seqlength.cpython-39-darwin.so +0 -0
  19. sequenzo/multidomain/cat.py +0 -53
  20. sequenzo/multidomain/dat.py +11 -3
  21. sequenzo/multidomain/idcd.py +0 -3
  22. sequenzo/multidomain/linked_polyad.py +0 -1
  23. sequenzo/openmp_setup.py +233 -0
  24. sequenzo/visualization/plot_transition_matrix.py +21 -22
  25. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/METADATA +71 -10
  26. sequenzo-0.1.20.dist-info/RECORD +215 -0
  27. sequenzo/dissimilarity_measures/setup.py +0 -35
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  167. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  168. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  169. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  170. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  171. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  172. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  173. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  174. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  175. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  176. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  177. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  182. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  183. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  184. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  185. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  186. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  187. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  188. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  354. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  355. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  356. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  357. sequenzo-0.1.18.dist-info/RECORD +0 -544
  358. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/WHEEL +0 -0
  359. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/licenses/LICENSE +0 -0
  360. {sequenzo-0.1.18.dist-info → sequenzo-0.1.20.dist-info}/top_level.txt +0 -0
@@ -1,1959 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_BESSEL_FUNCTIONS_H
11
- #define EIGEN_BESSEL_FUNCTIONS_H
12
-
13
- namespace Eigen {
14
- namespace internal {
15
-
16
- // Parts of this code are based on the Cephes Math Library.
17
- //
18
- // Cephes Math Library Release 2.8: June, 2000
19
- // Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
20
- //
21
- // Permission has been kindly provided by the original author
22
- // to incorporate the Cephes software into the Eigen codebase:
23
- //
24
- // From: Stephen Moshier
25
- // To: Eugene Brevdo
26
- // Subject: Re: Permission to wrap several cephes functions in Eigen
27
- //
28
- // Hello Eugene,
29
- //
30
- // Thank you for writing.
31
- //
32
- // If your licensing is similar to BSD, the formal way that has been
33
- // handled is simply to add a statement to the effect that you are incorporating
34
- // the Cephes software by permission of the author.
35
- //
36
- // Good luck with your project,
37
- // Steve
38
-
39
-
40
- /****************************************************************************
41
- * Implementation of Bessel function, based on Cephes *
42
- ****************************************************************************/
43
-
44
- template <typename Scalar>
45
- struct bessel_i0e_retval {
46
- typedef Scalar type;
47
- };
48
-
49
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
50
- struct generic_i0e {
51
- EIGEN_DEVICE_FUNC
52
- static EIGEN_STRONG_INLINE T run(const T&) {
53
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
54
- THIS_TYPE_IS_NOT_SUPPORTED);
55
- return ScalarType(0);
56
- }
57
- };
58
-
59
- template <typename T>
60
- struct generic_i0e<T, float> {
61
- EIGEN_DEVICE_FUNC
62
- static EIGEN_STRONG_INLINE T run(const T& x) {
63
- /* i0ef.c
64
- *
65
- * Modified Bessel function of order zero,
66
- * exponentially scaled
67
- *
68
- *
69
- *
70
- * SYNOPSIS:
71
- *
72
- * float x, y, i0ef();
73
- *
74
- * y = i0ef( x );
75
- *
76
- *
77
- *
78
- * DESCRIPTION:
79
- *
80
- * Returns exponentially scaled modified Bessel function
81
- * of order zero of the argument.
82
- *
83
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
84
- *
85
- *
86
- *
87
- * ACCURACY:
88
- *
89
- * Relative error:
90
- * arithmetic domain # trials peak rms
91
- * IEEE 0,30 100000 3.7e-7 7.0e-8
92
- * See i0f().
93
- *
94
- */
95
-
96
- const float A[] = {-1.30002500998624804212E-8f, 6.04699502254191894932E-8f,
97
- -2.67079385394061173391E-7f, 1.11738753912010371815E-6f,
98
- -4.41673835845875056359E-6f, 1.64484480707288970893E-5f,
99
- -5.75419501008210370398E-5f, 1.88502885095841655729E-4f,
100
- -5.76375574538582365885E-4f, 1.63947561694133579842E-3f,
101
- -4.32430999505057594430E-3f, 1.05464603945949983183E-2f,
102
- -2.37374148058994688156E-2f, 4.93052842396707084878E-2f,
103
- -9.49010970480476444210E-2f, 1.71620901522208775349E-1f,
104
- -3.04682672343198398683E-1f, 6.76795274409476084995E-1f};
105
-
106
- const float B[] = {3.39623202570838634515E-9f, 2.26666899049817806459E-8f,
107
- 2.04891858946906374183E-7f, 2.89137052083475648297E-6f,
108
- 6.88975834691682398426E-5f, 3.36911647825569408990E-3f,
109
- 8.04490411014108831608E-1f};
110
- T y = pabs(x);
111
- T y_le_eight = internal::pchebevl<T, 18>::run(
112
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A);
113
- T y_gt_eight = pmul(
114
- internal::pchebevl<T, 7>::run(
115
- psub(pdiv(pset1<T>(32.0f), y), pset1<T>(2.0f)), B),
116
- prsqrt(y));
117
- // TODO: Perhaps instead check whether all packet elements are in
118
- // [-8, 8] and evaluate a branch based off of that. It's possible
119
- // in practice most elements are in this region.
120
- return pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
121
- }
122
- };
123
-
124
- template <typename T>
125
- struct generic_i0e<T, double> {
126
- EIGEN_DEVICE_FUNC
127
- static EIGEN_STRONG_INLINE T run(const T& x) {
128
- /* i0e.c
129
- *
130
- * Modified Bessel function of order zero,
131
- * exponentially scaled
132
- *
133
- *
134
- *
135
- * SYNOPSIS:
136
- *
137
- * double x, y, i0e();
138
- *
139
- * y = i0e( x );
140
- *
141
- *
142
- *
143
- * DESCRIPTION:
144
- *
145
- * Returns exponentially scaled modified Bessel function
146
- * of order zero of the argument.
147
- *
148
- * The function is defined as i0e(x) = exp(-|x|) j0( ix ).
149
- *
150
- *
151
- *
152
- * ACCURACY:
153
- *
154
- * Relative error:
155
- * arithmetic domain # trials peak rms
156
- * IEEE 0,30 30000 5.4e-16 1.2e-16
157
- * See i0().
158
- *
159
- */
160
-
161
- const double A[] = {-4.41534164647933937950E-18, 3.33079451882223809783E-17,
162
- -2.43127984654795469359E-16, 1.71539128555513303061E-15,
163
- -1.16853328779934516808E-14, 7.67618549860493561688E-14,
164
- -4.85644678311192946090E-13, 2.95505266312963983461E-12,
165
- -1.72682629144155570723E-11, 9.67580903537323691224E-11,
166
- -5.18979560163526290666E-10, 2.65982372468238665035E-9,
167
- -1.30002500998624804212E-8, 6.04699502254191894932E-8,
168
- -2.67079385394061173391E-7, 1.11738753912010371815E-6,
169
- -4.41673835845875056359E-6, 1.64484480707288970893E-5,
170
- -5.75419501008210370398E-5, 1.88502885095841655729E-4,
171
- -5.76375574538582365885E-4, 1.63947561694133579842E-3,
172
- -4.32430999505057594430E-3, 1.05464603945949983183E-2,
173
- -2.37374148058994688156E-2, 4.93052842396707084878E-2,
174
- -9.49010970480476444210E-2, 1.71620901522208775349E-1,
175
- -3.04682672343198398683E-1, 6.76795274409476084995E-1};
176
- const double B[] = {
177
- -7.23318048787475395456E-18, -4.83050448594418207126E-18,
178
- 4.46562142029675999901E-17, 3.46122286769746109310E-17,
179
- -2.82762398051658348494E-16, -3.42548561967721913462E-16,
180
- 1.77256013305652638360E-15, 3.81168066935262242075E-15,
181
- -9.55484669882830764870E-15, -4.15056934728722208663E-14,
182
- 1.54008621752140982691E-14, 3.85277838274214270114E-13,
183
- 7.18012445138366623367E-13, -1.79417853150680611778E-12,
184
- -1.32158118404477131188E-11, -3.14991652796324136454E-11,
185
- 1.18891471078464383424E-11, 4.94060238822496958910E-10,
186
- 3.39623202570838634515E-9, 2.26666899049817806459E-8,
187
- 2.04891858946906374183E-7, 2.89137052083475648297E-6,
188
- 6.88975834691682398426E-5, 3.36911647825569408990E-3,
189
- 8.04490411014108831608E-1};
190
- T y = pabs(x);
191
- T y_le_eight = internal::pchebevl<T, 30>::run(
192
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A);
193
- T y_gt_eight = pmul(
194
- internal::pchebevl<T, 25>::run(
195
- psub(pdiv(pset1<T>(32.0), y), pset1<T>(2.0)), B),
196
- prsqrt(y));
197
- // TODO: Perhaps instead check whether all packet elements are in
198
- // [-8, 8] and evaluate a branch based off of that. It's possible
199
- // in practice most elements are in this region.
200
- return pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
201
- }
202
- };
203
-
204
- template <typename T>
205
- struct bessel_i0e_impl {
206
- EIGEN_DEVICE_FUNC
207
- static EIGEN_STRONG_INLINE T run(const T x) {
208
- return generic_i0e<T>::run(x);
209
- }
210
- };
211
-
212
- template <typename Scalar>
213
- struct bessel_i0_retval {
214
- typedef Scalar type;
215
- };
216
-
217
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
218
- struct generic_i0 {
219
- EIGEN_DEVICE_FUNC
220
- static EIGEN_STRONG_INLINE T run(const T& x) {
221
- return pmul(
222
- pexp(pabs(x)),
223
- generic_i0e<T, ScalarType>::run(x));
224
- }
225
- };
226
-
227
- template <typename T>
228
- struct bessel_i0_impl {
229
- EIGEN_DEVICE_FUNC
230
- static EIGEN_STRONG_INLINE T run(const T x) {
231
- return generic_i0<T>::run(x);
232
- }
233
- };
234
-
235
- template <typename Scalar>
236
- struct bessel_i1e_retval {
237
- typedef Scalar type;
238
- };
239
-
240
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type >
241
- struct generic_i1e {
242
- EIGEN_DEVICE_FUNC
243
- static EIGEN_STRONG_INLINE T run(const T&) {
244
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
245
- THIS_TYPE_IS_NOT_SUPPORTED);
246
- return ScalarType(0);
247
- }
248
- };
249
-
250
- template <typename T>
251
- struct generic_i1e<T, float> {
252
- EIGEN_DEVICE_FUNC
253
- static EIGEN_STRONG_INLINE T run(const T& x) {
254
- /* i1ef.c
255
- *
256
- * Modified Bessel function of order one,
257
- * exponentially scaled
258
- *
259
- *
260
- *
261
- * SYNOPSIS:
262
- *
263
- * float x, y, i1ef();
264
- *
265
- * y = i1ef( x );
266
- *
267
- *
268
- *
269
- * DESCRIPTION:
270
- *
271
- * Returns exponentially scaled modified Bessel function
272
- * of order one of the argument.
273
- *
274
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
275
- *
276
- *
277
- *
278
- * ACCURACY:
279
- *
280
- * Relative error:
281
- * arithmetic domain # trials peak rms
282
- * IEEE 0, 30 30000 1.5e-6 1.5e-7
283
- * See i1().
284
- *
285
- */
286
- const float A[] = {9.38153738649577178388E-9f, -4.44505912879632808065E-8f,
287
- 2.00329475355213526229E-7f, -8.56872026469545474066E-7f,
288
- 3.47025130813767847674E-6f, -1.32731636560394358279E-5f,
289
- 4.78156510755005422638E-5f, -1.61760815825896745588E-4f,
290
- 5.12285956168575772895E-4f, -1.51357245063125314899E-3f,
291
- 4.15642294431288815669E-3f, -1.05640848946261981558E-2f,
292
- 2.47264490306265168283E-2f, -5.29459812080949914269E-2f,
293
- 1.02643658689847095384E-1f, -1.76416518357834055153E-1f,
294
- 2.52587186443633654823E-1f};
295
-
296
- const float B[] = {-3.83538038596423702205E-9f, -2.63146884688951950684E-8f,
297
- -2.51223623787020892529E-7f, -3.88256480887769039346E-6f,
298
- -1.10588938762623716291E-4f, -9.76109749136146840777E-3f,
299
- 7.78576235018280120474E-1f};
300
-
301
-
302
- T y = pabs(x);
303
- T y_le_eight = pmul(y, internal::pchebevl<T, 17>::run(
304
- pmadd(pset1<T>(0.5f), y, pset1<T>(-2.0f)), A));
305
- T y_gt_eight = pmul(
306
- internal::pchebevl<T, 7>::run(
307
- psub(pdiv(pset1<T>(32.0f), y),
308
- pset1<T>(2.0f)), B),
309
- prsqrt(y));
310
- // TODO: Perhaps instead check whether all packet elements are in
311
- // [-8, 8] and evaluate a branch based off of that. It's possible
312
- // in practice most elements are in this region.
313
- y = pselect(pcmp_le(y, pset1<T>(8.0f)), y_le_eight, y_gt_eight);
314
- return pselect(pcmp_lt(x, pset1<T>(0.0f)), pnegate(y), y);
315
- }
316
- };
317
-
318
- template <typename T>
319
- struct generic_i1e<T, double> {
320
- EIGEN_DEVICE_FUNC
321
- static EIGEN_STRONG_INLINE T run(const T& x) {
322
- /* i1e.c
323
- *
324
- * Modified Bessel function of order one,
325
- * exponentially scaled
326
- *
327
- *
328
- *
329
- * SYNOPSIS:
330
- *
331
- * double x, y, i1e();
332
- *
333
- * y = i1e( x );
334
- *
335
- *
336
- *
337
- * DESCRIPTION:
338
- *
339
- * Returns exponentially scaled modified Bessel function
340
- * of order one of the argument.
341
- *
342
- * The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
343
- *
344
- *
345
- *
346
- * ACCURACY:
347
- *
348
- * Relative error:
349
- * arithmetic domain # trials peak rms
350
- * IEEE 0, 30 30000 2.0e-15 2.0e-16
351
- * See i1().
352
- *
353
- */
354
- const double A[] = {2.77791411276104639959E-18, -2.11142121435816608115E-17,
355
- 1.55363195773620046921E-16, -1.10559694773538630805E-15,
356
- 7.60068429473540693410E-15, -5.04218550472791168711E-14,
357
- 3.22379336594557470981E-13, -1.98397439776494371520E-12,
358
- 1.17361862988909016308E-11, -6.66348972350202774223E-11,
359
- 3.62559028155211703701E-10, -1.88724975172282928790E-9,
360
- 9.38153738649577178388E-9, -4.44505912879632808065E-8,
361
- 2.00329475355213526229E-7, -8.56872026469545474066E-7,
362
- 3.47025130813767847674E-6, -1.32731636560394358279E-5,
363
- 4.78156510755005422638E-5, -1.61760815825896745588E-4,
364
- 5.12285956168575772895E-4, -1.51357245063125314899E-3,
365
- 4.15642294431288815669E-3, -1.05640848946261981558E-2,
366
- 2.47264490306265168283E-2, -5.29459812080949914269E-2,
367
- 1.02643658689847095384E-1, -1.76416518357834055153E-1,
368
- 2.52587186443633654823E-1};
369
- const double B[] = {
370
- 7.51729631084210481353E-18, 4.41434832307170791151E-18,
371
- -4.65030536848935832153E-17, -3.20952592199342395980E-17,
372
- 2.96262899764595013876E-16, 3.30820231092092828324E-16,
373
- -1.88035477551078244854E-15, -3.81440307243700780478E-15,
374
- 1.04202769841288027642E-14, 4.27244001671195135429E-14,
375
- -2.10154184277266431302E-14, -4.08355111109219731823E-13,
376
- -7.19855177624590851209E-13, 2.03562854414708950722E-12,
377
- 1.41258074366137813316E-11, 3.25260358301548823856E-11,
378
- -1.89749581235054123450E-11, -5.58974346219658380687E-10,
379
- -3.83538038596423702205E-9, -2.63146884688951950684E-8,
380
- -2.51223623787020892529E-7, -3.88256480887769039346E-6,
381
- -1.10588938762623716291E-4, -9.76109749136146840777E-3,
382
- 7.78576235018280120474E-1};
383
- T y = pabs(x);
384
- T y_le_eight = pmul(y, internal::pchebevl<T, 29>::run(
385
- pmadd(pset1<T>(0.5), y, pset1<T>(-2.0)), A));
386
- T y_gt_eight = pmul(
387
- internal::pchebevl<T, 25>::run(
388
- psub(pdiv(pset1<T>(32.0), y),
389
- pset1<T>(2.0)), B),
390
- prsqrt(y));
391
- // TODO: Perhaps instead check whether all packet elements are in
392
- // [-8, 8] and evaluate a branch based off of that. It's possible
393
- // in practice most elements are in this region.
394
- y = pselect(pcmp_le(y, pset1<T>(8.0)), y_le_eight, y_gt_eight);
395
- return pselect(pcmp_lt(x, pset1<T>(0.0)), pnegate(y), y);
396
- }
397
- };
398
-
399
- template <typename T>
400
- struct bessel_i1e_impl {
401
- EIGEN_DEVICE_FUNC
402
- static EIGEN_STRONG_INLINE T run(const T x) {
403
- return generic_i1e<T>::run(x);
404
- }
405
- };
406
-
407
- template <typename T>
408
- struct bessel_i1_retval {
409
- typedef T type;
410
- };
411
-
412
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
413
- struct generic_i1 {
414
- EIGEN_DEVICE_FUNC
415
- static EIGEN_STRONG_INLINE T run(const T& x) {
416
- return pmul(
417
- pexp(pabs(x)),
418
- generic_i1e<T, ScalarType>::run(x));
419
- }
420
- };
421
-
422
- template <typename T>
423
- struct bessel_i1_impl {
424
- EIGEN_DEVICE_FUNC
425
- static EIGEN_STRONG_INLINE T run(const T x) {
426
- return generic_i1<T>::run(x);
427
- }
428
- };
429
-
430
- template <typename T>
431
- struct bessel_k0e_retval {
432
- typedef T type;
433
- };
434
-
435
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
436
- struct generic_k0e {
437
- EIGEN_DEVICE_FUNC
438
- static EIGEN_STRONG_INLINE T run(const T&) {
439
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
440
- THIS_TYPE_IS_NOT_SUPPORTED);
441
- return ScalarType(0);
442
- }
443
- };
444
-
445
- template <typename T>
446
- struct generic_k0e<T, float> {
447
- EIGEN_DEVICE_FUNC
448
- static EIGEN_STRONG_INLINE T run(const T& x) {
449
- /* k0ef.c
450
- * Modified Bessel function, third kind, order zero,
451
- * exponentially scaled
452
- *
453
- *
454
- *
455
- * SYNOPSIS:
456
- *
457
- * float x, y, k0ef();
458
- *
459
- * y = k0ef( x );
460
- *
461
- *
462
- *
463
- * DESCRIPTION:
464
- *
465
- * Returns exponentially scaled modified Bessel function
466
- * of the third kind of order zero of the argument.
467
- *
468
- *
469
- *
470
- * ACCURACY:
471
- *
472
- * Relative error:
473
- * arithmetic domain # trials peak rms
474
- * IEEE 0, 30 30000 8.1e-7 7.8e-8
475
- * See k0().
476
- *
477
- */
478
-
479
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
480
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
481
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
482
- -5.35327393233902768720E-1f};
483
-
484
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
485
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
486
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
487
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
488
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
489
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
490
- const T two = pset1<T>(2.0);
491
- T x_le_two = internal::pchebevl<T, 7>::run(
492
- pmadd(x, x, pset1<T>(-2.0)), A);
493
- x_le_two = pmadd(
494
- generic_i0<T, float>::run(x), pnegate(
495
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
496
- x_le_two = pmul(pexp(x), x_le_two);
497
- T x_gt_two = pmul(
498
- internal::pchebevl<T, 10>::run(
499
- psub(pdiv(pset1<T>(8.0), x), two), B),
500
- prsqrt(x));
501
- return pselect(
502
- pcmp_le(x, pset1<T>(0.0)),
503
- MAXNUM,
504
- pselect(pcmp_le(x, two), x_le_two, x_gt_two));
505
- }
506
- };
507
-
508
- template <typename T>
509
- struct generic_k0e<T, double> {
510
- EIGEN_DEVICE_FUNC
511
- static EIGEN_STRONG_INLINE T run(const T& x) {
512
- /* k0e.c
513
- * Modified Bessel function, third kind, order zero,
514
- * exponentially scaled
515
- *
516
- *
517
- *
518
- * SYNOPSIS:
519
- *
520
- * double x, y, k0e();
521
- *
522
- * y = k0e( x );
523
- *
524
- *
525
- *
526
- * DESCRIPTION:
527
- *
528
- * Returns exponentially scaled modified Bessel function
529
- * of the third kind of order zero of the argument.
530
- *
531
- *
532
- *
533
- * ACCURACY:
534
- *
535
- * Relative error:
536
- * arithmetic domain # trials peak rms
537
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
538
- * See k0().
539
- *
540
- */
541
-
542
- const double A[] = {
543
- 1.37446543561352307156E-16,
544
- 4.25981614279661018399E-14,
545
- 1.03496952576338420167E-11,
546
- 1.90451637722020886025E-9,
547
- 2.53479107902614945675E-7,
548
- 2.28621210311945178607E-5,
549
- 1.26461541144692592338E-3,
550
- 3.59799365153615016266E-2,
551
- 3.44289899924628486886E-1,
552
- -5.35327393233902768720E-1};
553
- const double B[] = {
554
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
555
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
556
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
557
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
558
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
559
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
560
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
561
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
562
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
563
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
564
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
565
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
566
- 2.44030308206595545468E0
567
- };
568
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
569
- const T two = pset1<T>(2.0);
570
- T x_le_two = internal::pchebevl<T, 10>::run(
571
- pmadd(x, x, pset1<T>(-2.0)), A);
572
- x_le_two = pmadd(
573
- generic_i0<T, double>::run(x), pmul(
574
- pset1<T>(-1.0), plog(pmul(pset1<T>(0.5), x))), x_le_two);
575
- x_le_two = pmul(pexp(x), x_le_two);
576
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
577
- T x_gt_two = pmul(
578
- internal::pchebevl<T, 25>::run(
579
- psub(pdiv(pset1<T>(8.0), x), two), B),
580
- prsqrt(x));
581
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
582
- }
583
- };
584
-
585
- template <typename T>
586
- struct bessel_k0e_impl {
587
- EIGEN_DEVICE_FUNC
588
- static EIGEN_STRONG_INLINE T run(const T x) {
589
- return generic_k0e<T>::run(x);
590
- }
591
- };
592
-
593
- template <typename T>
594
- struct bessel_k0_retval {
595
- typedef T type;
596
- };
597
-
598
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
599
- struct generic_k0 {
600
- EIGEN_DEVICE_FUNC
601
- static EIGEN_STRONG_INLINE T run(const T&) {
602
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
603
- THIS_TYPE_IS_NOT_SUPPORTED);
604
- return ScalarType(0);
605
- }
606
- };
607
-
608
- template <typename T>
609
- struct generic_k0<T, float> {
610
- EIGEN_DEVICE_FUNC
611
- static EIGEN_STRONG_INLINE T run(const T& x) {
612
- /* k0f.c
613
- * Modified Bessel function, third kind, order zero
614
- *
615
- *
616
- *
617
- * SYNOPSIS:
618
- *
619
- * float x, y, k0f();
620
- *
621
- * y = k0f( x );
622
- *
623
- *
624
- *
625
- * DESCRIPTION:
626
- *
627
- * Returns modified Bessel function of the third kind
628
- * of order zero of the argument.
629
- *
630
- * The range is partitioned into the two intervals [0,8] and
631
- * (8, infinity). Chebyshev polynomial expansions are employed
632
- * in each interval.
633
- *
634
- *
635
- *
636
- * ACCURACY:
637
- *
638
- * Tested at 2000 random points between 0 and 8. Peak absolute
639
- * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15.
640
- * Relative error:
641
- * arithmetic domain # trials peak rms
642
- * IEEE 0, 30 30000 7.8e-7 8.5e-8
643
- *
644
- * ERROR MESSAGES:
645
- *
646
- * message condition value returned
647
- * K0 domain x <= 0 MAXNUM
648
- *
649
- */
650
-
651
- const float A[] = {1.90451637722020886025E-9f, 2.53479107902614945675E-7f,
652
- 2.28621210311945178607E-5f, 1.26461541144692592338E-3f,
653
- 3.59799365153615016266E-2f, 3.44289899924628486886E-1f,
654
- -5.35327393233902768720E-1f};
655
-
656
- const float B[] = {-1.69753450938905987466E-9f, 8.57403401741422608519E-9f,
657
- -4.66048989768794782956E-8f, 2.76681363944501510342E-7f,
658
- -1.83175552271911948767E-6f, 1.39498137188764993662E-5f,
659
- -1.28495495816278026384E-4f, 1.56988388573005337491E-3f,
660
- -3.14481013119645005427E-2f, 2.44030308206595545468E0f};
661
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
662
- const T two = pset1<T>(2.0);
663
- T x_le_two = internal::pchebevl<T, 7>::run(
664
- pmadd(x, x, pset1<T>(-2.0)), A);
665
- x_le_two = pmadd(
666
- generic_i0<T, float>::run(x), pnegate(
667
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
668
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
669
- T x_gt_two = pmul(
670
- pmul(
671
- pexp(pnegate(x)),
672
- internal::pchebevl<T, 10>::run(
673
- psub(pdiv(pset1<T>(8.0), x), two), B)),
674
- prsqrt(x));
675
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
676
- }
677
- };
678
-
679
- template <typename T>
680
- struct generic_k0<T, double> {
681
- EIGEN_DEVICE_FUNC
682
- static EIGEN_STRONG_INLINE T run(const T& x) {
683
- /*
684
- *
685
- * Modified Bessel function, third kind, order zero,
686
- * exponentially scaled
687
- *
688
- *
689
- *
690
- * SYNOPSIS:
691
- *
692
- * double x, y, k0();
693
- *
694
- * y = k0( x );
695
- *
696
- *
697
- *
698
- * DESCRIPTION:
699
- *
700
- * Returns exponentially scaled modified Bessel function
701
- * of the third kind of order zero of the argument.
702
- *
703
- *
704
- *
705
- * ACCURACY:
706
- *
707
- * Relative error:
708
- * arithmetic domain # trials peak rms
709
- * IEEE 0, 30 30000 1.4e-15 1.4e-16
710
- * See k0().
711
- *
712
- */
713
- const double A[] = {
714
- 1.37446543561352307156E-16,
715
- 4.25981614279661018399E-14,
716
- 1.03496952576338420167E-11,
717
- 1.90451637722020886025E-9,
718
- 2.53479107902614945675E-7,
719
- 2.28621210311945178607E-5,
720
- 1.26461541144692592338E-3,
721
- 3.59799365153615016266E-2,
722
- 3.44289899924628486886E-1,
723
- -5.35327393233902768720E-1};
724
- const double B[] = {
725
- 5.30043377268626276149E-18, -1.64758043015242134646E-17,
726
- 5.21039150503902756861E-17, -1.67823109680541210385E-16,
727
- 5.51205597852431940784E-16, -1.84859337734377901440E-15,
728
- 6.34007647740507060557E-15, -2.22751332699166985548E-14,
729
- 8.03289077536357521100E-14, -2.98009692317273043925E-13,
730
- 1.14034058820847496303E-12, -4.51459788337394416547E-12,
731
- 1.85594911495471785253E-11, -7.95748924447710747776E-11,
732
- 3.57739728140030116597E-10, -1.69753450938905987466E-9,
733
- 8.57403401741422608519E-9, -4.66048989768794782956E-8,
734
- 2.76681363944501510342E-7, -1.83175552271911948767E-6,
735
- 1.39498137188764993662E-5, -1.28495495816278026384E-4,
736
- 1.56988388573005337491E-3, -3.14481013119645005427E-2,
737
- 2.44030308206595545468E0
738
- };
739
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
740
- const T two = pset1<T>(2.0);
741
- T x_le_two = internal::pchebevl<T, 10>::run(
742
- pmadd(x, x, pset1<T>(-2.0)), A);
743
- x_le_two = pmadd(
744
- generic_i0<T, double>::run(x), pnegate(
745
- plog(pmul(pset1<T>(0.5), x))), x_le_two);
746
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
747
- T x_gt_two = pmul(
748
- pmul(
749
- pexp(-x),
750
- internal::pchebevl<T, 25>::run(
751
- psub(pdiv(pset1<T>(8.0), x), two), B)),
752
- prsqrt(x));
753
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
754
- }
755
- };
756
-
757
- template <typename T>
758
- struct bessel_k0_impl {
759
- EIGEN_DEVICE_FUNC
760
- static EIGEN_STRONG_INLINE T run(const T x) {
761
- return generic_k0<T>::run(x);
762
- }
763
- };
764
-
765
- template <typename T>
766
- struct bessel_k1e_retval {
767
- typedef T type;
768
- };
769
-
770
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
771
- struct generic_k1e {
772
- EIGEN_DEVICE_FUNC
773
- static EIGEN_STRONG_INLINE T run(const T&) {
774
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
775
- THIS_TYPE_IS_NOT_SUPPORTED);
776
- return ScalarType(0);
777
- }
778
- };
779
-
780
- template <typename T>
781
- struct generic_k1e<T, float> {
782
- EIGEN_DEVICE_FUNC
783
- static EIGEN_STRONG_INLINE T run(const T& x) {
784
- /* k1ef.c
785
- *
786
- * Modified Bessel function, third kind, order one,
787
- * exponentially scaled
788
- *
789
- *
790
- *
791
- * SYNOPSIS:
792
- *
793
- * float x, y, k1ef();
794
- *
795
- * y = k1ef( x );
796
- *
797
- *
798
- *
799
- * DESCRIPTION:
800
- *
801
- * Returns exponentially scaled modified Bessel function
802
- * of the third kind of order one of the argument:
803
- *
804
- * k1e(x) = exp(x) * k1(x).
805
- *
806
- *
807
- *
808
- * ACCURACY:
809
- *
810
- * Relative error:
811
- * arithmetic domain # trials peak rms
812
- * IEEE 0, 30 30000 4.9e-7 6.7e-8
813
- * See k1().
814
- *
815
- */
816
-
817
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
818
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
819
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
820
- 1.52530022733894777053E0f};
821
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
822
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
823
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
824
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
825
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
826
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
827
- const T two = pset1<T>(2.0);
828
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
829
- pmadd(x, x, pset1<T>(-2.0)), A), x);
830
- x_le_two = pmadd(
831
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
832
- x_le_two = pmul(x_le_two, pexp(x));
833
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
834
- T x_gt_two = pmul(
835
- internal::pchebevl<T, 10>::run(
836
- psub(pdiv(pset1<T>(8.0), x), two), B),
837
- prsqrt(x));
838
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
839
- }
840
- };
841
-
842
- template <typename T>
843
- struct generic_k1e<T, double> {
844
- EIGEN_DEVICE_FUNC
845
- static EIGEN_STRONG_INLINE T run(const T& x) {
846
- /* k1e.c
847
- *
848
- * Modified Bessel function, third kind, order one,
849
- * exponentially scaled
850
- *
851
- *
852
- *
853
- * SYNOPSIS:
854
- *
855
- * double x, y, k1e();
856
- *
857
- * y = k1e( x );
858
- *
859
- *
860
- *
861
- * DESCRIPTION:
862
- *
863
- * Returns exponentially scaled modified Bessel function
864
- * of the third kind of order one of the argument:
865
- *
866
- * k1e(x) = exp(x) * k1(x).
867
- *
868
- *
869
- *
870
- * ACCURACY:
871
- *
872
- * Relative error:
873
- * arithmetic domain # trials peak rms
874
- * IEEE 0, 30 30000 7.8e-16 1.2e-16
875
- * See k1().
876
- *
877
- */
878
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
879
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
880
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
881
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
882
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
883
- 1.52530022733894777053E0};
884
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
885
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
886
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
887
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
888
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
889
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
890
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
891
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
892
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
893
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
894
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
895
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
896
- 2.72062619048444266945E0};
897
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
898
- const T two = pset1<T>(2.0);
899
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
900
- pmadd(x, x, pset1<T>(-2.0)), A), x);
901
- x_le_two = pmadd(
902
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
903
- x_le_two = pmul(x_le_two, pexp(x));
904
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
905
- T x_gt_two = pmul(
906
- internal::pchebevl<T, 25>::run(
907
- psub(pdiv(pset1<T>(8.0), x), two), B),
908
- prsqrt(x));
909
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
910
- }
911
- };
912
-
913
- template <typename T>
914
- struct bessel_k1e_impl {
915
- EIGEN_DEVICE_FUNC
916
- static EIGEN_STRONG_INLINE T run(const T x) {
917
- return generic_k1e<T>::run(x);
918
- }
919
- };
920
-
921
- template <typename T>
922
- struct bessel_k1_retval {
923
- typedef T type;
924
- };
925
-
926
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
927
- struct generic_k1 {
928
- EIGEN_DEVICE_FUNC
929
- static EIGEN_STRONG_INLINE T run(const T&) {
930
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
931
- THIS_TYPE_IS_NOT_SUPPORTED);
932
- return ScalarType(0);
933
- }
934
- };
935
-
936
- template <typename T>
937
- struct generic_k1<T, float> {
938
- EIGEN_DEVICE_FUNC
939
- static EIGEN_STRONG_INLINE T run(const T& x) {
940
- /* k1f.c
941
- * Modified Bessel function, third kind, order one
942
- *
943
- *
944
- *
945
- * SYNOPSIS:
946
- *
947
- * float x, y, k1f();
948
- *
949
- * y = k1f( x );
950
- *
951
- *
952
- *
953
- * DESCRIPTION:
954
- *
955
- * Computes the modified Bessel function of the third kind
956
- * of order one of the argument.
957
- *
958
- * The range is partitioned into the two intervals [0,2] and
959
- * (2, infinity). Chebyshev polynomial expansions are employed
960
- * in each interval.
961
- *
962
- *
963
- *
964
- * ACCURACY:
965
- *
966
- * Relative error:
967
- * arithmetic domain # trials peak rms
968
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
969
- *
970
- * ERROR MESSAGES:
971
- *
972
- * message condition value returned
973
- * k1 domain x <= 0 MAXNUM
974
- *
975
- */
976
-
977
- const float A[] = {-2.21338763073472585583E-8f, -2.43340614156596823496E-6f,
978
- -1.73028895751305206302E-4f, -6.97572385963986435018E-3f,
979
- -1.22611180822657148235E-1f, -3.53155960776544875667E-1f,
980
- 1.52530022733894777053E0f};
981
- const float B[] = {2.01504975519703286596E-9f, -1.03457624656780970260E-8f,
982
- 5.74108412545004946722E-8f, -3.50196060308781257119E-7f,
983
- 2.40648494783721712015E-6f, -1.93619797416608296024E-5f,
984
- 1.95215518471351631108E-4f, -2.85781685962277938680E-3f,
985
- 1.03923736576817238437E-1f, 2.72062619048444266945E0f};
986
- const T MAXNUM = pset1<T>(NumTraits<float>::infinity());
987
- const T two = pset1<T>(2.0);
988
- T x_le_two = pdiv(internal::pchebevl<T, 7>::run(
989
- pmadd(x, x, pset1<T>(-2.0)), A), x);
990
- x_le_two = pmadd(
991
- generic_i1<T, float>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
992
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
993
- T x_gt_two = pmul(
994
- pexp(pnegate(x)),
995
- pmul(
996
- internal::pchebevl<T, 10>::run(
997
- psub(pdiv(pset1<T>(8.0), x), two), B),
998
- prsqrt(x)));
999
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1000
- }
1001
- };
1002
-
1003
- template <typename T>
1004
- struct generic_k1<T, double> {
1005
- EIGEN_DEVICE_FUNC
1006
- static EIGEN_STRONG_INLINE T run(const T& x) {
1007
- /* k1.c
1008
- * Modified Bessel function, third kind, order one
1009
- *
1010
- *
1011
- *
1012
- * SYNOPSIS:
1013
- *
1014
- * float x, y, k1f();
1015
- *
1016
- * y = k1f( x );
1017
- *
1018
- *
1019
- *
1020
- * DESCRIPTION:
1021
- *
1022
- * Computes the modified Bessel function of the third kind
1023
- * of order one of the argument.
1024
- *
1025
- * The range is partitioned into the two intervals [0,2] and
1026
- * (2, infinity). Chebyshev polynomial expansions are employed
1027
- * in each interval.
1028
- *
1029
- *
1030
- *
1031
- * ACCURACY:
1032
- *
1033
- * Relative error:
1034
- * arithmetic domain # trials peak rms
1035
- * IEEE 0, 30 30000 4.6e-7 7.6e-8
1036
- *
1037
- * ERROR MESSAGES:
1038
- *
1039
- * message condition value returned
1040
- * k1 domain x <= 0 MAXNUM
1041
- *
1042
- */
1043
- const double A[] = {-7.02386347938628759343E-18, -2.42744985051936593393E-15,
1044
- -6.66690169419932900609E-13, -1.41148839263352776110E-10,
1045
- -2.21338763073472585583E-8, -2.43340614156596823496E-6,
1046
- -1.73028895751305206302E-4, -6.97572385963986435018E-3,
1047
- -1.22611180822657148235E-1, -3.53155960776544875667E-1,
1048
- 1.52530022733894777053E0};
1049
- const double B[] = {-5.75674448366501715755E-18, 1.79405087314755922667E-17,
1050
- -5.68946255844285935196E-17, 1.83809354436663880070E-16,
1051
- -6.05704724837331885336E-16, 2.03870316562433424052E-15,
1052
- -7.01983709041831346144E-15, 2.47715442448130437068E-14,
1053
- -8.97670518232499435011E-14, 3.34841966607842919884E-13,
1054
- -1.28917396095102890680E-12, 5.13963967348173025100E-12,
1055
- -2.12996783842756842877E-11, 9.21831518760500529508E-11,
1056
- -4.19035475934189648750E-10, 2.01504975519703286596E-9,
1057
- -1.03457624656780970260E-8, 5.74108412545004946722E-8,
1058
- -3.50196060308781257119E-7, 2.40648494783721712015E-6,
1059
- -1.93619797416608296024E-5, 1.95215518471351631108E-4,
1060
- -2.85781685962277938680E-3, 1.03923736576817238437E-1,
1061
- 2.72062619048444266945E0};
1062
- const T MAXNUM = pset1<T>(NumTraits<double>::infinity());
1063
- const T two = pset1<T>(2.0);
1064
- T x_le_two = pdiv(internal::pchebevl<T, 11>::run(
1065
- pmadd(x, x, pset1<T>(-2.0)), A), x);
1066
- x_le_two = pmadd(
1067
- generic_i1<T, double>::run(x), plog(pmul(pset1<T>(0.5), x)), x_le_two);
1068
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), MAXNUM, x_le_two);
1069
- T x_gt_two = pmul(
1070
- pexp(-x),
1071
- pmul(
1072
- internal::pchebevl<T, 25>::run(
1073
- psub(pdiv(pset1<T>(8.0), x), two), B),
1074
- prsqrt(x)));
1075
- return pselect(pcmp_le(x, two), x_le_two, x_gt_two);
1076
- }
1077
- };
1078
-
1079
- template <typename T>
1080
- struct bessel_k1_impl {
1081
- EIGEN_DEVICE_FUNC
1082
- static EIGEN_STRONG_INLINE T run(const T x) {
1083
- return generic_k1<T>::run(x);
1084
- }
1085
- };
1086
-
1087
- template <typename T>
1088
- struct bessel_j0_retval {
1089
- typedef T type;
1090
- };
1091
-
1092
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1093
- struct generic_j0 {
1094
- EIGEN_DEVICE_FUNC
1095
- static EIGEN_STRONG_INLINE T run(const T&) {
1096
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1097
- THIS_TYPE_IS_NOT_SUPPORTED);
1098
- return ScalarType(0);
1099
- }
1100
- };
1101
-
1102
- template <typename T>
1103
- struct generic_j0<T, float> {
1104
- EIGEN_DEVICE_FUNC
1105
- static EIGEN_STRONG_INLINE T run(const T& x) {
1106
- /* j0f.c
1107
- * Bessel function of order zero
1108
- *
1109
- *
1110
- *
1111
- * SYNOPSIS:
1112
- *
1113
- * float x, y, j0f();
1114
- *
1115
- * y = j0f( x );
1116
- *
1117
- *
1118
- *
1119
- * DESCRIPTION:
1120
- *
1121
- * Returns Bessel function of order zero of the argument.
1122
- *
1123
- * The domain is divided into the intervals [0, 2] and
1124
- * (2, infinity). In the first interval the following polynomial
1125
- * approximation is used:
1126
- *
1127
- *
1128
- * 2 2 2
1129
- * (w - r ) (w - r ) (w - r ) P(w)
1130
- * 1 2 3
1131
- *
1132
- * 2
1133
- * where w = x and the three r's are zeros of the function.
1134
- *
1135
- * In the second interval, the modulus and phase are approximated
1136
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1137
- * and Phase(x) = x + 1/x R(1/x^2) - pi/4. The function is
1138
- *
1139
- * j0(x) = Modulus(x) cos( Phase(x) ).
1140
- *
1141
- *
1142
- *
1143
- * ACCURACY:
1144
- *
1145
- * Absolute error:
1146
- * arithmetic domain # trials peak rms
1147
- * IEEE 0, 2 100000 1.3e-7 3.6e-8
1148
- * IEEE 2, 32 100000 1.9e-7 5.4e-8
1149
- *
1150
- */
1151
-
1152
- const float JP[] = {-6.068350350393235E-008f, 6.388945720783375E-006f,
1153
- -3.969646342510940E-004f, 1.332913422519003E-002f,
1154
- -1.729150680240724E-001f};
1155
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1156
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1157
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1158
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1159
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1160
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1161
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1162
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1163
- const T DR1 = pset1<T>(5.78318596294678452118f);
1164
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1165
- T y = pabs(x);
1166
- T z = pmul(y, y);
1167
- T y_le_two = pselect(
1168
- pcmp_lt(y, pset1<T>(1.0e-3f)),
1169
- pmadd(z, pset1<T>(-0.25f), pset1<T>(1.0f)),
1170
- pmul(psub(z, DR1), internal::ppolevl<T, 4>::run(z, JP)));
1171
- T q = pdiv(pset1<T>(1.0f), y);
1172
- T w = prsqrt(y);
1173
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1174
- w = pmul(q, q);
1175
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH), NEG_PIO4F);
1176
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1177
- return pselect(pcmp_le(y, pset1<T>(2.0)), y_le_two, y_gt_two);
1178
- }
1179
- };
1180
-
1181
- template <typename T>
1182
- struct generic_j0<T, double> {
1183
- EIGEN_DEVICE_FUNC
1184
- static EIGEN_STRONG_INLINE T run(const T& x) {
1185
- /* j0.c
1186
- * Bessel function of order zero
1187
- *
1188
- *
1189
- *
1190
- * SYNOPSIS:
1191
- *
1192
- * double x, y, j0();
1193
- *
1194
- * y = j0( x );
1195
- *
1196
- *
1197
- *
1198
- * DESCRIPTION:
1199
- *
1200
- * Returns Bessel function of order zero of the argument.
1201
- *
1202
- * The domain is divided into the intervals [0, 5] and
1203
- * (5, infinity). In the first interval the following rational
1204
- * approximation is used:
1205
- *
1206
- *
1207
- * 2 2
1208
- * (w - r ) (w - r ) P (w) / Q (w)
1209
- * 1 2 3 8
1210
- *
1211
- * 2
1212
- * where w = x and the two r's are zeros of the function.
1213
- *
1214
- * In the second interval, the Hankel asymptotic expansion
1215
- * is employed with two rational functions of degree 6/6
1216
- * and 7/7.
1217
- *
1218
- *
1219
- *
1220
- * ACCURACY:
1221
- *
1222
- * Absolute error:
1223
- * arithmetic domain # trials peak rms
1224
- * DEC 0, 30 10000 4.4e-17 6.3e-18
1225
- * IEEE 0, 30 60000 4.2e-16 1.1e-16
1226
- *
1227
- */
1228
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1229
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1230
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1231
- 9.99999999999999997821E-1};
1232
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1233
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1234
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1235
- 1.00000000000000000218E0};
1236
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1237
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1238
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1239
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1240
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1241
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1242
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1243
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1244
- const double RP[] = {-4.79443220978201773821E9, 1.95617491946556577543E12,
1245
- -2.49248344360967716204E14, 9.70862251047306323952E15};
1246
- const double RQ[] = {1.00000000000000000000E0, 4.99563147152651017219E2,
1247
- 1.73785401676374683123E5, 4.84409658339962045305E7,
1248
- 1.11855537045356834862E10, 2.11277520115489217587E12,
1249
- 3.10518229857422583814E14, 3.18121955943204943306E16,
1250
- 1.71086294081043136091E18};
1251
- const T DR1 = pset1<T>(5.78318596294678452118E0);
1252
- const T DR2 = pset1<T>(3.04712623436620863991E1);
1253
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1254
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* pi / 4 */
1255
-
1256
- T y = pabs(x);
1257
- T z = pmul(y, y);
1258
- T y_le_five = pselect(
1259
- pcmp_lt(y, pset1<T>(1.0e-5)),
1260
- pmadd(z, pset1<T>(-0.25), pset1<T>(1.0)),
1261
- pmul(pmul(psub(z, DR1), psub(z, DR2)),
1262
- pdiv(internal::ppolevl<T, 3>::run(z, RP),
1263
- internal::ppolevl<T, 8>::run(z, RQ))));
1264
- T s = pdiv(pset1<T>(25.0), z);
1265
- T p = pdiv(
1266
- internal::ppolevl<T, 6>::run(s, PP),
1267
- internal::ppolevl<T, 6>::run(s, PQ));
1268
- T q = pdiv(
1269
- internal::ppolevl<T, 7>::run(s, QP),
1270
- internal::ppolevl<T, 7>::run(s, QQ));
1271
- T yn = padd(y, NEG_PIO4);
1272
- T w = pdiv(pset1<T>(-5.0), y);
1273
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1274
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1275
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1276
- }
1277
- };
1278
-
1279
- template <typename T>
1280
- struct bessel_j0_impl {
1281
- EIGEN_DEVICE_FUNC
1282
- static EIGEN_STRONG_INLINE T run(const T x) {
1283
- return generic_j0<T>::run(x);
1284
- }
1285
- };
1286
-
1287
- template <typename T>
1288
- struct bessel_y0_retval {
1289
- typedef T type;
1290
- };
1291
-
1292
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1293
- struct generic_y0 {
1294
- EIGEN_DEVICE_FUNC
1295
- static EIGEN_STRONG_INLINE T run(const T&) {
1296
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1297
- THIS_TYPE_IS_NOT_SUPPORTED);
1298
- return ScalarType(0);
1299
- }
1300
- };
1301
-
1302
- template <typename T>
1303
- struct generic_y0<T, float> {
1304
- EIGEN_DEVICE_FUNC
1305
- static EIGEN_STRONG_INLINE T run(const T& x) {
1306
- /* j0f.c
1307
- * Bessel function of the second kind, order zero
1308
- *
1309
- *
1310
- *
1311
- * SYNOPSIS:
1312
- *
1313
- * float x, y, y0f();
1314
- *
1315
- * y = y0f( x );
1316
- *
1317
- *
1318
- *
1319
- * DESCRIPTION:
1320
- *
1321
- * Returns Bessel function of the second kind, of order
1322
- * zero, of the argument.
1323
- *
1324
- * The domain is divided into the intervals [0, 2] and
1325
- * (2, infinity). In the first interval a rational approximation
1326
- * R(x) is employed to compute
1327
- *
1328
- * 2 2 2
1329
- * y0(x) = (w - r ) (w - r ) (w - r ) R(x) + 2/pi ln(x) j0(x).
1330
- * 1 2 3
1331
- *
1332
- * Thus a call to j0() is required. The three zeros are removed
1333
- * from R(x) to improve its numerical stability.
1334
- *
1335
- * In the second interval, the modulus and phase are approximated
1336
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1337
- * and Phase(x) = x + 1/x S(1/x^2) - pi/4. Then the function is
1338
- *
1339
- * y0(x) = Modulus(x) sin( Phase(x) ).
1340
- *
1341
- *
1342
- *
1343
- *
1344
- * ACCURACY:
1345
- *
1346
- * Absolute error, when y0(x) < 1; else relative error:
1347
- *
1348
- * arithmetic domain # trials peak rms
1349
- * IEEE 0, 2 100000 2.4e-7 3.4e-8
1350
- * IEEE 2, 32 100000 1.8e-7 5.3e-8
1351
- *
1352
- */
1353
-
1354
- const float YP[] = {9.454583683980369E-008f, -9.413212653797057E-006f,
1355
- 5.344486707214273E-004f, -1.584289289821316E-002f,
1356
- 1.707584643733568E-001f};
1357
- const float MO[] = {-6.838999669318810E-002f, 1.864949361379502E-001f,
1358
- -2.145007480346739E-001f, 1.197549369473540E-001f,
1359
- -3.560281861530129E-003f, -4.969382655296620E-002f,
1360
- -3.355424622293709E-006f, 7.978845717621440E-001f};
1361
- const float PH[] = {3.242077816988247E+001f, -3.630592630518434E+001f,
1362
- 1.756221482109099E+001f, -4.974978466280903E+000f,
1363
- 1.001973420681837E+000f, -1.939906941791308E-001f,
1364
- 6.490598792654666E-002f, -1.249992184872738E-001f};
1365
- const T YZ1 = pset1<T>(0.43221455686510834878f);
1366
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2 / pi */
1367
- const T NEG_PIO4F = pset1<T>(-0.7853981633974483096f); /* -pi / 4 */
1368
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1369
- T z = pmul(x, x);
1370
- T x_le_two = pmul(TWOOPI, pmul(plog(x), generic_j0<T, float>::run(x)));
1371
- x_le_two = pmadd(
1372
- psub(z, YZ1), internal::ppolevl<T, 4>::run(z, YP), x_le_two);
1373
- x_le_two = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_two);
1374
- T q = pdiv(pset1<T>(1.0), x);
1375
- T w = prsqrt(x);
1376
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO));
1377
- T u = pmul(q, q);
1378
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(u, PH), NEG_PIO4F);
1379
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1380
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1381
- }
1382
- };
1383
-
1384
- template <typename T>
1385
- struct generic_y0<T, double> {
1386
- EIGEN_DEVICE_FUNC
1387
- static EIGEN_STRONG_INLINE T run(const T& x) {
1388
- /* j0.c
1389
- * Bessel function of the second kind, order zero
1390
- *
1391
- *
1392
- *
1393
- * SYNOPSIS:
1394
- *
1395
- * double x, y, y0();
1396
- *
1397
- * y = y0( x );
1398
- *
1399
- *
1400
- *
1401
- * DESCRIPTION:
1402
- *
1403
- * Returns Bessel function of the second kind, of order
1404
- * zero, of the argument.
1405
- *
1406
- * The domain is divided into the intervals [0, 5] and
1407
- * (5, infinity). In the first interval a rational approximation
1408
- * R(x) is employed to compute
1409
- * y0(x) = R(x) + 2 * log(x) * j0(x) / PI.
1410
- * Thus a call to j0() is required.
1411
- *
1412
- * In the second interval, the Hankel asymptotic expansion
1413
- * is employed with two rational functions of degree 6/6
1414
- * and 7/7.
1415
- *
1416
- *
1417
- *
1418
- * ACCURACY:
1419
- *
1420
- * Absolute error, when y0(x) < 1; else relative error:
1421
- *
1422
- * arithmetic domain # trials peak rms
1423
- * DEC 0, 30 9400 7.0e-17 7.9e-18
1424
- * IEEE 0, 30 30000 1.3e-15 1.6e-16
1425
- *
1426
- */
1427
- const double PP[] = {7.96936729297347051624E-4, 8.28352392107440799803E-2,
1428
- 1.23953371646414299388E0, 5.44725003058768775090E0,
1429
- 8.74716500199817011941E0, 5.30324038235394892183E0,
1430
- 9.99999999999999997821E-1};
1431
- const double PQ[] = {9.24408810558863637013E-4, 8.56288474354474431428E-2,
1432
- 1.25352743901058953537E0, 5.47097740330417105182E0,
1433
- 8.76190883237069594232E0, 5.30605288235394617618E0,
1434
- 1.00000000000000000218E0};
1435
- const double QP[] = {-1.13663838898469149931E-2, -1.28252718670509318512E0,
1436
- -1.95539544257735972385E1, -9.32060152123768231369E1,
1437
- -1.77681167980488050595E2, -1.47077505154951170175E2,
1438
- -5.14105326766599330220E1, -6.05014350600728481186E0};
1439
- const double QQ[] = {1.00000000000000000000E0, 6.43178256118178023184E1,
1440
- 8.56430025976980587198E2, 3.88240183605401609683E3,
1441
- 7.24046774195652478189E3, 5.93072701187316984827E3,
1442
- 2.06209331660327847417E3, 2.42005740240291393179E2};
1443
- const double YP[] = {1.55924367855235737965E4, -1.46639295903971606143E7,
1444
- 5.43526477051876500413E9, -9.82136065717911466409E11,
1445
- 8.75906394395366999549E13, -3.46628303384729719441E15,
1446
- 4.42733268572569800351E16, -1.84950800436986690637E16};
1447
- const double YQ[] = {1.00000000000000000000E0, 1.04128353664259848412E3,
1448
- 6.26107330137134956842E5, 2.68919633393814121987E8,
1449
- 8.64002487103935000337E10, 2.02979612750105546709E13,
1450
- 3.17157752842975028269E15, 2.50596256172653059228E17};
1451
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1452
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2 / pi */
1453
- const T NEG_PIO4 = pset1<T>(-0.7853981633974483096); /* -pi / 4 */
1454
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1455
-
1456
- T z = pmul(x, x);
1457
- T x_le_five = pdiv(internal::ppolevl<T, 7>::run(z, YP),
1458
- internal::ppolevl<T, 7>::run(z, YQ));
1459
- x_le_five = pmadd(
1460
- pmul(TWOOPI, plog(x)), generic_j0<T, double>::run(x), x_le_five);
1461
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1462
- T s = pdiv(pset1<T>(25.0), z);
1463
- T p = pdiv(
1464
- internal::ppolevl<T, 6>::run(s, PP),
1465
- internal::ppolevl<T, 6>::run(s, PQ));
1466
- T q = pdiv(
1467
- internal::ppolevl<T, 7>::run(s, QP),
1468
- internal::ppolevl<T, 7>::run(s, QQ));
1469
- T xn = padd(x, NEG_PIO4);
1470
- T w = pdiv(pset1<T>(5.0), x);
1471
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1472
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1473
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1474
- }
1475
- };
1476
-
1477
- template <typename T>
1478
- struct bessel_y0_impl {
1479
- EIGEN_DEVICE_FUNC
1480
- static EIGEN_STRONG_INLINE T run(const T x) {
1481
- return generic_y0<T>::run(x);
1482
- }
1483
- };
1484
-
1485
- template <typename T>
1486
- struct bessel_j1_retval {
1487
- typedef T type;
1488
- };
1489
-
1490
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1491
- struct generic_j1 {
1492
- EIGEN_DEVICE_FUNC
1493
- static EIGEN_STRONG_INLINE T run(const T&) {
1494
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1495
- THIS_TYPE_IS_NOT_SUPPORTED);
1496
- return ScalarType(0);
1497
- }
1498
- };
1499
-
1500
- template <typename T>
1501
- struct generic_j1<T, float> {
1502
- EIGEN_DEVICE_FUNC
1503
- static EIGEN_STRONG_INLINE T run(const T& x) {
1504
- /* j1f.c
1505
- * Bessel function of order one
1506
- *
1507
- *
1508
- *
1509
- * SYNOPSIS:
1510
- *
1511
- * float x, y, j1f();
1512
- *
1513
- * y = j1f( x );
1514
- *
1515
- *
1516
- *
1517
- * DESCRIPTION:
1518
- *
1519
- * Returns Bessel function of order one of the argument.
1520
- *
1521
- * The domain is divided into the intervals [0, 2] and
1522
- * (2, infinity). In the first interval a polynomial approximation
1523
- * 2
1524
- * (w - r ) x P(w)
1525
- * 1
1526
- * 2
1527
- * is used, where w = x and r is the first zero of the function.
1528
- *
1529
- * In the second interval, the modulus and phase are approximated
1530
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1531
- * and Phase(x) = x + 1/x R(1/x^2) - 3pi/4. The function is
1532
- *
1533
- * j0(x) = Modulus(x) cos( Phase(x) ).
1534
- *
1535
- *
1536
- *
1537
- * ACCURACY:
1538
- *
1539
- * Absolute error:
1540
- * arithmetic domain # trials peak rms
1541
- * IEEE 0, 2 100000 1.2e-7 2.5e-8
1542
- * IEEE 2, 32 100000 2.0e-7 5.3e-8
1543
- *
1544
- *
1545
- */
1546
-
1547
- const float JP[] = {-4.878788132172128E-009f, 6.009061827883699E-007f,
1548
- -4.541343896997497E-005f, 1.937383947804541E-003f,
1549
- -3.405537384615824E-002f};
1550
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1551
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1552
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1553
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1554
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1555
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1556
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1557
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1558
- const T Z1 = pset1<T>(1.46819706421238932572E1f);
1559
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1560
-
1561
- T y = pabs(x);
1562
- T z = pmul(y, y);
1563
- T y_le_two = pmul(
1564
- psub(z, Z1),
1565
- pmul(x, internal::ppolevl<T, 4>::run(z, JP)));
1566
- T q = pdiv(pset1<T>(1.0f), y);
1567
- T w = prsqrt(y);
1568
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1569
- w = pmul(q, q);
1570
- T yn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1571
- T y_gt_two = pmul(p, pcos(padd(yn, y)));
1572
- // j1 is an odd function. This implementation differs from cephes to
1573
- // take this fact in to account. Cephes returns -j1(x) for y > 2 range.
1574
- y_gt_two = pselect(
1575
- pcmp_lt(x, pset1<T>(0.0f)), pnegate(y_gt_two), y_gt_two);
1576
- return pselect(pcmp_le(y, pset1<T>(2.0f)), y_le_two, y_gt_two);
1577
- }
1578
- };
1579
-
1580
- template <typename T>
1581
- struct generic_j1<T, double> {
1582
- EIGEN_DEVICE_FUNC
1583
- static EIGEN_STRONG_INLINE T run(const T& x) {
1584
- /* j1.c
1585
- * Bessel function of order one
1586
- *
1587
- *
1588
- *
1589
- * SYNOPSIS:
1590
- *
1591
- * double x, y, j1();
1592
- *
1593
- * y = j1( x );
1594
- *
1595
- *
1596
- *
1597
- * DESCRIPTION:
1598
- *
1599
- * Returns Bessel function of order one of the argument.
1600
- *
1601
- * The domain is divided into the intervals [0, 8] and
1602
- * (8, infinity). In the first interval a 24 term Chebyshev
1603
- * expansion is used. In the second, the asymptotic
1604
- * trigonometric representation is employed using two
1605
- * rational functions of degree 5/5.
1606
- *
1607
- *
1608
- *
1609
- * ACCURACY:
1610
- *
1611
- * Absolute error:
1612
- * arithmetic domain # trials peak rms
1613
- * DEC 0, 30 10000 4.0e-17 1.1e-17
1614
- * IEEE 0, 30 30000 2.6e-16 1.1e-16
1615
- *
1616
- */
1617
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1618
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1619
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1620
- 1.00000000000000000254E0};
1621
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1622
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1623
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1624
- 9.99999999999999997461E-1};
1625
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1626
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1627
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1628
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1629
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1630
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1631
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1632
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1633
- const double RP[] = {-8.99971225705559398224E8, 4.52228297998194034323E11,
1634
- -7.27494245221818276015E13, 3.68295732863852883286E15};
1635
- const double RQ[] = {1.00000000000000000000E0, 6.20836478118054335476E2,
1636
- 2.56987256757748830383E5, 8.35146791431949253037E7,
1637
- 2.21511595479792499675E10, 4.74914122079991414898E12,
1638
- 7.84369607876235854894E14, 8.95222336184627338078E16,
1639
- 5.32278620332680085395E18};
1640
- const T Z1 = pset1<T>(1.46819706421238932572E1);
1641
- const T Z2 = pset1<T>(4.92184563216946036703E1);
1642
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1643
- const T SQ2OPI = pset1<T>(7.9788456080286535587989E-1); /* sqrt(2 / pi) */
1644
- T y = pabs(x);
1645
- T z = pmul(y, y);
1646
- T y_le_five = pdiv(internal::ppolevl<T, 3>::run(z, RP),
1647
- internal::ppolevl<T, 8>::run(z, RQ));
1648
- y_le_five = pmul(pmul(pmul(y_le_five, x), psub(z, Z1)), psub(z, Z2));
1649
- T s = pdiv(pset1<T>(25.0), z);
1650
- T p = pdiv(
1651
- internal::ppolevl<T, 6>::run(s, PP),
1652
- internal::ppolevl<T, 6>::run(s, PQ));
1653
- T q = pdiv(
1654
- internal::ppolevl<T, 7>::run(s, QP),
1655
- internal::ppolevl<T, 7>::run(s, QQ));
1656
- T yn = padd(y, NEG_THPIO4);
1657
- T w = pdiv(pset1<T>(-5.0), y);
1658
- p = pmadd(p, pcos(yn), pmul(w, pmul(q, psin(yn))));
1659
- T y_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(y)));
1660
- // j1 is an odd function. This implementation differs from cephes to
1661
- // take this fact in to account. Cephes returns -j1(x) for y > 5 range.
1662
- y_gt_five = pselect(
1663
- pcmp_lt(x, pset1<T>(0.0)), pnegate(y_gt_five), y_gt_five);
1664
- return pselect(pcmp_le(y, pset1<T>(5.0)), y_le_five, y_gt_five);
1665
- }
1666
- };
1667
-
1668
- template <typename T>
1669
- struct bessel_j1_impl {
1670
- EIGEN_DEVICE_FUNC
1671
- static EIGEN_STRONG_INLINE T run(const T x) {
1672
- return generic_j1<T>::run(x);
1673
- }
1674
- };
1675
-
1676
- template <typename T>
1677
- struct bessel_y1_retval {
1678
- typedef T type;
1679
- };
1680
-
1681
- template <typename T, typename ScalarType = typename unpacket_traits<T>::type>
1682
- struct generic_y1 {
1683
- EIGEN_DEVICE_FUNC
1684
- static EIGEN_STRONG_INLINE T run(const T&) {
1685
- EIGEN_STATIC_ASSERT((internal::is_same<T, T>::value == false),
1686
- THIS_TYPE_IS_NOT_SUPPORTED);
1687
- return ScalarType(0);
1688
- }
1689
- };
1690
-
1691
- template <typename T>
1692
- struct generic_y1<T, float> {
1693
- EIGEN_DEVICE_FUNC
1694
- static EIGEN_STRONG_INLINE T run(const T& x) {
1695
- /* j1f.c
1696
- * Bessel function of second kind of order one
1697
- *
1698
- *
1699
- *
1700
- * SYNOPSIS:
1701
- *
1702
- * double x, y, y1();
1703
- *
1704
- * y = y1( x );
1705
- *
1706
- *
1707
- *
1708
- * DESCRIPTION:
1709
- *
1710
- * Returns Bessel function of the second kind of order one
1711
- * of the argument.
1712
- *
1713
- * The domain is divided into the intervals [0, 2] and
1714
- * (2, infinity). In the first interval a rational approximation
1715
- * R(x) is employed to compute
1716
- *
1717
- * 2
1718
- * y0(x) = (w - r ) x R(x^2) + 2/pi (ln(x) j1(x) - 1/x) .
1719
- * 1
1720
- *
1721
- * Thus a call to j1() is required.
1722
- *
1723
- * In the second interval, the modulus and phase are approximated
1724
- * by polynomials of the form Modulus(x) = sqrt(1/x) Q(1/x)
1725
- * and Phase(x) = x + 1/x S(1/x^2) - 3pi/4. Then the function is
1726
- *
1727
- * y0(x) = Modulus(x) sin( Phase(x) ).
1728
- *
1729
- *
1730
- *
1731
- *
1732
- * ACCURACY:
1733
- *
1734
- * Absolute error:
1735
- * arithmetic domain # trials peak rms
1736
- * IEEE 0, 2 100000 2.2e-7 4.6e-8
1737
- * IEEE 2, 32 100000 1.9e-7 5.3e-8
1738
- *
1739
- * (error criterion relative when |y1| > 1).
1740
- *
1741
- */
1742
-
1743
- const float YP[] = {8.061978323326852E-009f, -9.496460629917016E-007f,
1744
- 6.719543806674249E-005f, -2.641785726447862E-003f,
1745
- 4.202369946500099E-002f};
1746
- const float MO1[] = {6.913942741265801E-002f, -2.284801500053359E-001f,
1747
- 3.138238455499697E-001f, -2.102302420403875E-001f,
1748
- 5.435364690523026E-003f, 1.493389585089498E-001f,
1749
- 4.976029650847191E-006f, 7.978845453073848E-001f};
1750
- const float PH1[] = {-4.497014141919556E+001f, 5.073465654089319E+001f,
1751
- -2.485774108720340E+001f, 7.222973196770240E+000f,
1752
- -1.544842782180211E+000f, 3.503787691653334E-001f,
1753
- -1.637986776941202E-001f, 3.749989509080821E-001f};
1754
- const T YO1 = pset1<T>(4.66539330185668857532f);
1755
- const T NEG_THPIO4F = pset1<T>(-2.35619449019234492885f); /* -3*pi/4 */
1756
- const T TWOOPI = pset1<T>(0.636619772367581343075535f); /* 2/pi */
1757
- const T NEG_MAXNUM = pset1<T>(-NumTraits<float>::infinity());
1758
-
1759
- T z = pmul(x, x);
1760
- T x_le_two = pmul(psub(z, YO1), internal::ppolevl<T, 4>::run(z, YP));
1761
- x_le_two = pmadd(
1762
- x_le_two, x,
1763
- pmul(TWOOPI, pmadd(
1764
- generic_j1<T, float>::run(x), plog(x),
1765
- pdiv(pset1<T>(-1.0f), x))));
1766
- x_le_two = pselect(pcmp_lt(x, pset1<T>(0.0f)), NEG_MAXNUM, x_le_two);
1767
-
1768
- T q = pdiv(pset1<T>(1.0), x);
1769
- T w = prsqrt(x);
1770
- T p = pmul(w, internal::ppolevl<T, 7>::run(q, MO1));
1771
- w = pmul(q, q);
1772
- T xn = pmadd(q, internal::ppolevl<T, 7>::run(w, PH1), NEG_THPIO4F);
1773
- T x_gt_two = pmul(p, psin(padd(xn, x)));
1774
- return pselect(pcmp_le(x, pset1<T>(2.0)), x_le_two, x_gt_two);
1775
- }
1776
- };
1777
-
1778
- template <typename T>
1779
- struct generic_y1<T, double> {
1780
- EIGEN_DEVICE_FUNC
1781
- static EIGEN_STRONG_INLINE T run(const T& x) {
1782
- /* j1.c
1783
- * Bessel function of second kind of order one
1784
- *
1785
- *
1786
- *
1787
- * SYNOPSIS:
1788
- *
1789
- * double x, y, y1();
1790
- *
1791
- * y = y1( x );
1792
- *
1793
- *
1794
- *
1795
- * DESCRIPTION:
1796
- *
1797
- * Returns Bessel function of the second kind of order one
1798
- * of the argument.
1799
- *
1800
- * The domain is divided into the intervals [0, 8] and
1801
- * (8, infinity). In the first interval a 25 term Chebyshev
1802
- * expansion is used, and a call to j1() is required.
1803
- * In the second, the asymptotic trigonometric representation
1804
- * is employed using two rational functions of degree 5/5.
1805
- *
1806
- *
1807
- *
1808
- * ACCURACY:
1809
- *
1810
- * Absolute error:
1811
- * arithmetic domain # trials peak rms
1812
- * DEC 0, 30 10000 8.6e-17 1.3e-17
1813
- * IEEE 0, 30 30000 1.0e-15 1.3e-16
1814
- *
1815
- * (error criterion relative when |y1| > 1).
1816
- *
1817
- */
1818
- const double PP[] = {7.62125616208173112003E-4, 7.31397056940917570436E-2,
1819
- 1.12719608129684925192E0, 5.11207951146807644818E0,
1820
- 8.42404590141772420927E0, 5.21451598682361504063E0,
1821
- 1.00000000000000000254E0};
1822
- const double PQ[] = {5.71323128072548699714E-4, 6.88455908754495404082E-2,
1823
- 1.10514232634061696926E0, 5.07386386128601488557E0,
1824
- 8.39985554327604159757E0, 5.20982848682361821619E0,
1825
- 9.99999999999999997461E-1};
1826
- const double QP[] = {5.10862594750176621635E-2, 4.98213872951233449420E0,
1827
- 7.58238284132545283818E1, 3.66779609360150777800E2,
1828
- 7.10856304998926107277E2, 5.97489612400613639965E2,
1829
- 2.11688757100572135698E2, 2.52070205858023719784E1};
1830
- const double QQ[] = {1.00000000000000000000E0, 7.42373277035675149943E1,
1831
- 1.05644886038262816351E3, 4.98641058337653607651E3,
1832
- 9.56231892404756170795E3, 7.99704160447350683650E3,
1833
- 2.82619278517639096600E3, 3.36093607810698293419E2};
1834
- const double YP[] = {1.26320474790178026440E9, -6.47355876379160291031E11,
1835
- 1.14509511541823727583E14, -8.12770255501325109621E15,
1836
- 2.02439475713594898196E17, -7.78877196265950026825E17};
1837
- const double YQ[] = {1.00000000000000000000E0, 5.94301592346128195359E2,
1838
- 2.35564092943068577943E5, 7.34811944459721705660E7,
1839
- 1.87601316108706159478E10, 3.88231277496238566008E12,
1840
- 6.20557727146953693363E14, 6.87141087355300489866E16,
1841
- 3.97270608116560655612E18};
1842
- const T SQ2OPI = pset1<T>(.79788456080286535588);
1843
- const T NEG_THPIO4 = pset1<T>(-2.35619449019234492885); /* -3*pi/4 */
1844
- const T TWOOPI = pset1<T>(0.636619772367581343075535); /* 2/pi */
1845
- const T NEG_MAXNUM = pset1<T>(-NumTraits<double>::infinity());
1846
-
1847
- T z = pmul(x, x);
1848
- T x_le_five = pdiv(internal::ppolevl<T, 5>::run(z, YP),
1849
- internal::ppolevl<T, 8>::run(z, YQ));
1850
- x_le_five = pmadd(
1851
- x_le_five, x, pmul(
1852
- TWOOPI, pmadd(generic_j1<T, double>::run(x), plog(x),
1853
- pdiv(pset1<T>(-1.0), x))));
1854
-
1855
- x_le_five = pselect(pcmp_le(x, pset1<T>(0.0)), NEG_MAXNUM, x_le_five);
1856
- T s = pdiv(pset1<T>(25.0), z);
1857
- T p = pdiv(
1858
- internal::ppolevl<T, 6>::run(s, PP),
1859
- internal::ppolevl<T, 6>::run(s, PQ));
1860
- T q = pdiv(
1861
- internal::ppolevl<T, 7>::run(s, QP),
1862
- internal::ppolevl<T, 7>::run(s, QQ));
1863
- T xn = padd(x, NEG_THPIO4);
1864
- T w = pdiv(pset1<T>(5.0), x);
1865
- p = pmadd(p, psin(xn), pmul(w, pmul(q, pcos(xn))));
1866
- T x_gt_five = pmul(p, pmul(SQ2OPI, prsqrt(x)));
1867
- return pselect(pcmp_le(x, pset1<T>(5.0)), x_le_five, x_gt_five);
1868
- }
1869
- };
1870
-
1871
- template <typename T>
1872
- struct bessel_y1_impl {
1873
- EIGEN_DEVICE_FUNC
1874
- static EIGEN_STRONG_INLINE T run(const T x) {
1875
- return generic_y1<T>::run(x);
1876
- }
1877
- };
1878
-
1879
- } // end namespace internal
1880
-
1881
- namespace numext {
1882
-
1883
- template <typename Scalar>
1884
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0, Scalar)
1885
- bessel_i0(const Scalar& x) {
1886
- return EIGEN_MATHFUNC_IMPL(bessel_i0, Scalar)::run(x);
1887
- }
1888
-
1889
- template <typename Scalar>
1890
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i0e, Scalar)
1891
- bessel_i0e(const Scalar& x) {
1892
- return EIGEN_MATHFUNC_IMPL(bessel_i0e, Scalar)::run(x);
1893
- }
1894
-
1895
- template <typename Scalar>
1896
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1, Scalar)
1897
- bessel_i1(const Scalar& x) {
1898
- return EIGEN_MATHFUNC_IMPL(bessel_i1, Scalar)::run(x);
1899
- }
1900
-
1901
- template <typename Scalar>
1902
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_i1e, Scalar)
1903
- bessel_i1e(const Scalar& x) {
1904
- return EIGEN_MATHFUNC_IMPL(bessel_i1e, Scalar)::run(x);
1905
- }
1906
-
1907
- template <typename Scalar>
1908
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0, Scalar)
1909
- bessel_k0(const Scalar& x) {
1910
- return EIGEN_MATHFUNC_IMPL(bessel_k0, Scalar)::run(x);
1911
- }
1912
-
1913
- template <typename Scalar>
1914
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k0e, Scalar)
1915
- bessel_k0e(const Scalar& x) {
1916
- return EIGEN_MATHFUNC_IMPL(bessel_k0e, Scalar)::run(x);
1917
- }
1918
-
1919
- template <typename Scalar>
1920
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1, Scalar)
1921
- bessel_k1(const Scalar& x) {
1922
- return EIGEN_MATHFUNC_IMPL(bessel_k1, Scalar)::run(x);
1923
- }
1924
-
1925
- template <typename Scalar>
1926
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_k1e, Scalar)
1927
- bessel_k1e(const Scalar& x) {
1928
- return EIGEN_MATHFUNC_IMPL(bessel_k1e, Scalar)::run(x);
1929
- }
1930
-
1931
- template <typename Scalar>
1932
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j0, Scalar)
1933
- bessel_j0(const Scalar& x) {
1934
- return EIGEN_MATHFUNC_IMPL(bessel_j0, Scalar)::run(x);
1935
- }
1936
-
1937
- template <typename Scalar>
1938
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y0, Scalar)
1939
- bessel_y0(const Scalar& x) {
1940
- return EIGEN_MATHFUNC_IMPL(bessel_y0, Scalar)::run(x);
1941
- }
1942
-
1943
- template <typename Scalar>
1944
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_j1, Scalar)
1945
- bessel_j1(const Scalar& x) {
1946
- return EIGEN_MATHFUNC_IMPL(bessel_j1, Scalar)::run(x);
1947
- }
1948
-
1949
- template <typename Scalar>
1950
- EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(bessel_y1, Scalar)
1951
- bessel_y1(const Scalar& x) {
1952
- return EIGEN_MATHFUNC_IMPL(bessel_y1, Scalar)::run(x);
1953
- }
1954
-
1955
- } // end namespace numext
1956
-
1957
- } // end namespace Eigen
1958
-
1959
- #endif // EIGEN_BESSEL_FUNCTIONS_H