sequenzo 0.1.18__cp312-cp312-macosx_10_13_universal2.whl → 0.1.19__cp312-cp312-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (357) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-312-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +107 -5
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  8. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-312-darwin.so +0 -0
  10. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  11. sequenzo/dissimilarity_measures/utils/seqconc.cpython-312-darwin.so +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  13. sequenzo/dissimilarity_measures/utils/seqdss.cpython-312-darwin.so +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  15. sequenzo/dissimilarity_measures/utils/seqdur.cpython-312-darwin.so +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  17. sequenzo/dissimilarity_measures/utils/seqlength.cpython-312-darwin.so +0 -0
  18. sequenzo/multidomain/cat.py +0 -53
  19. sequenzo/multidomain/idcd.py +0 -1
  20. sequenzo/openmp_setup.py +233 -0
  21. sequenzo/visualization/plot_transition_matrix.py +21 -22
  22. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  23. sequenzo-0.1.19.dist-info/RECORD +215 -0
  24. sequenzo/dissimilarity_measures/setup.py +0 -35
  25. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  26. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  167. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  168. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  169. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  170. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  171. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  172. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  173. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  174. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  175. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  176. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  177. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  182. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  183. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  184. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  185. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  186. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  187. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  188. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  354. sequenzo-0.1.18.dist-info/RECORD +0 -544
  355. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  356. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  357. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,877 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_LU_H
11
- #define EIGEN_LU_H
12
-
13
- namespace Eigen {
14
-
15
- namespace internal {
16
- template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> >
17
- : traits<_MatrixType>
18
- {
19
- typedef MatrixXpr XprKind;
20
- typedef SolverStorage StorageKind;
21
- typedef int StorageIndex;
22
- enum { Flags = 0 };
23
- };
24
-
25
- } // end namespace internal
26
-
27
- /** \ingroup LU_Module
28
- *
29
- * \class FullPivLU
30
- *
31
- * \brief LU decomposition of a matrix with complete pivoting, and related features
32
- *
33
- * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition
34
- *
35
- * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
36
- * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
37
- * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
38
- * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
39
- * zeros are at the end.
40
- *
41
- * This decomposition provides the generic approach to solving systems of linear equations, computing
42
- * the rank, invertibility, inverse, kernel, and determinant.
43
- *
44
- * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
45
- * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
46
- * working with the SVD allows to select the smallest singular values of the matrix, something that
47
- * the LU decomposition doesn't see.
48
- *
49
- * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
50
- * permutationP(), permutationQ().
51
- *
52
- * As an example, here is how the original matrix can be retrieved:
53
- * \include class_FullPivLU.cpp
54
- * Output: \verbinclude class_FullPivLU.out
55
- *
56
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
57
- *
58
- * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
59
- */
60
- template<typename _MatrixType> class FullPivLU
61
- : public SolverBase<FullPivLU<_MatrixType> >
62
- {
63
- public:
64
- typedef _MatrixType MatrixType;
65
- typedef SolverBase<FullPivLU> Base;
66
- friend class SolverBase<FullPivLU>;
67
-
68
- EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU)
69
- enum {
70
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
71
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
72
- };
73
- typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType;
74
- typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType;
75
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
76
- typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
77
- typedef typename MatrixType::PlainObject PlainObject;
78
-
79
- /**
80
- * \brief Default Constructor.
81
- *
82
- * The default constructor is useful in cases in which the user intends to
83
- * perform decompositions via LU::compute(const MatrixType&).
84
- */
85
- FullPivLU();
86
-
87
- /** \brief Default Constructor with memory preallocation
88
- *
89
- * Like the default constructor but with preallocation of the internal data
90
- * according to the specified problem \a size.
91
- * \sa FullPivLU()
92
- */
93
- FullPivLU(Index rows, Index cols);
94
-
95
- /** Constructor.
96
- *
97
- * \param matrix the matrix of which to compute the LU decomposition.
98
- * It is required to be nonzero.
99
- */
100
- template<typename InputType>
101
- explicit FullPivLU(const EigenBase<InputType>& matrix);
102
-
103
- /** \brief Constructs a LU factorization from a given matrix
104
- *
105
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
106
- *
107
- * \sa FullPivLU(const EigenBase&)
108
- */
109
- template<typename InputType>
110
- explicit FullPivLU(EigenBase<InputType>& matrix);
111
-
112
- /** Computes the LU decomposition of the given matrix.
113
- *
114
- * \param matrix the matrix of which to compute the LU decomposition.
115
- * It is required to be nonzero.
116
- *
117
- * \returns a reference to *this
118
- */
119
- template<typename InputType>
120
- FullPivLU& compute(const EigenBase<InputType>& matrix) {
121
- m_lu = matrix.derived();
122
- computeInPlace();
123
- return *this;
124
- }
125
-
126
- /** \returns the LU decomposition matrix: the upper-triangular part is U, the
127
- * unit-lower-triangular part is L (at least for square matrices; in the non-square
128
- * case, special care is needed, see the documentation of class FullPivLU).
129
- *
130
- * \sa matrixL(), matrixU()
131
- */
132
- inline const MatrixType& matrixLU() const
133
- {
134
- eigen_assert(m_isInitialized && "LU is not initialized.");
135
- return m_lu;
136
- }
137
-
138
- /** \returns the number of nonzero pivots in the LU decomposition.
139
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
140
- * So that notion isn't really intrinsically interesting, but it is
141
- * still useful when implementing algorithms.
142
- *
143
- * \sa rank()
144
- */
145
- inline Index nonzeroPivots() const
146
- {
147
- eigen_assert(m_isInitialized && "LU is not initialized.");
148
- return m_nonzero_pivots;
149
- }
150
-
151
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
152
- * diagonal coefficient of U.
153
- */
154
- RealScalar maxPivot() const { return m_maxpivot; }
155
-
156
- /** \returns the permutation matrix P
157
- *
158
- * \sa permutationQ()
159
- */
160
- EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const
161
- {
162
- eigen_assert(m_isInitialized && "LU is not initialized.");
163
- return m_p;
164
- }
165
-
166
- /** \returns the permutation matrix Q
167
- *
168
- * \sa permutationP()
169
- */
170
- inline const PermutationQType& permutationQ() const
171
- {
172
- eigen_assert(m_isInitialized && "LU is not initialized.");
173
- return m_q;
174
- }
175
-
176
- /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
177
- * will form a basis of the kernel.
178
- *
179
- * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
180
- *
181
- * \note This method has to determine which pivots should be considered nonzero.
182
- * For that, it uses the threshold value that you can control by calling
183
- * setThreshold(const RealScalar&).
184
- *
185
- * Example: \include FullPivLU_kernel.cpp
186
- * Output: \verbinclude FullPivLU_kernel.out
187
- *
188
- * \sa image()
189
- */
190
- inline const internal::kernel_retval<FullPivLU> kernel() const
191
- {
192
- eigen_assert(m_isInitialized && "LU is not initialized.");
193
- return internal::kernel_retval<FullPivLU>(*this);
194
- }
195
-
196
- /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
197
- * will form a basis of the image (column-space).
198
- *
199
- * \param originalMatrix the original matrix, of which *this is the LU decomposition.
200
- * The reason why it is needed to pass it here, is that this allows
201
- * a large optimization, as otherwise this method would need to reconstruct it
202
- * from the LU decomposition.
203
- *
204
- * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
205
- *
206
- * \note This method has to determine which pivots should be considered nonzero.
207
- * For that, it uses the threshold value that you can control by calling
208
- * setThreshold(const RealScalar&).
209
- *
210
- * Example: \include FullPivLU_image.cpp
211
- * Output: \verbinclude FullPivLU_image.out
212
- *
213
- * \sa kernel()
214
- */
215
- inline const internal::image_retval<FullPivLU>
216
- image(const MatrixType& originalMatrix) const
217
- {
218
- eigen_assert(m_isInitialized && "LU is not initialized.");
219
- return internal::image_retval<FullPivLU>(*this, originalMatrix);
220
- }
221
-
222
- #ifdef EIGEN_PARSED_BY_DOXYGEN
223
- /** \return a solution x to the equation Ax=b, where A is the matrix of which
224
- * *this is the LU decomposition.
225
- *
226
- * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
227
- * the only requirement in order for the equation to make sense is that
228
- * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
229
- *
230
- * \returns a solution.
231
- *
232
- * \note_about_checking_solutions
233
- *
234
- * \note_about_arbitrary_choice_of_solution
235
- * \note_about_using_kernel_to_study_multiple_solutions
236
- *
237
- * Example: \include FullPivLU_solve.cpp
238
- * Output: \verbinclude FullPivLU_solve.out
239
- *
240
- * \sa TriangularView::solve(), kernel(), inverse()
241
- */
242
- template<typename Rhs>
243
- inline const Solve<FullPivLU, Rhs>
244
- solve(const MatrixBase<Rhs>& b) const;
245
- #endif
246
-
247
- /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is
248
- the LU decomposition.
249
- */
250
- inline RealScalar rcond() const
251
- {
252
- eigen_assert(m_isInitialized && "PartialPivLU is not initialized.");
253
- return internal::rcond_estimate_helper(m_l1_norm, *this);
254
- }
255
-
256
- /** \returns the determinant of the matrix of which
257
- * *this is the LU decomposition. It has only linear complexity
258
- * (that is, O(n) where n is the dimension of the square matrix)
259
- * as the LU decomposition has already been computed.
260
- *
261
- * \note This is only for square matrices.
262
- *
263
- * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
264
- * optimized paths.
265
- *
266
- * \warning a determinant can be very big or small, so for matrices
267
- * of large enough dimension, there is a risk of overflow/underflow.
268
- *
269
- * \sa MatrixBase::determinant()
270
- */
271
- typename internal::traits<MatrixType>::Scalar determinant() const;
272
-
273
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
274
- * who need to determine when pivots are to be considered nonzero. This is not used for the
275
- * LU decomposition itself.
276
- *
277
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
278
- * uses a formula to automatically determine a reasonable threshold.
279
- * Once you have called the present method setThreshold(const RealScalar&),
280
- * your value is used instead.
281
- *
282
- * \param threshold The new value to use as the threshold.
283
- *
284
- * A pivot will be considered nonzero if its absolute value is strictly greater than
285
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
286
- * where maxpivot is the biggest pivot.
287
- *
288
- * If you want to come back to the default behavior, call setThreshold(Default_t)
289
- */
290
- FullPivLU& setThreshold(const RealScalar& threshold)
291
- {
292
- m_usePrescribedThreshold = true;
293
- m_prescribedThreshold = threshold;
294
- return *this;
295
- }
296
-
297
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
298
- * determining the threshold.
299
- *
300
- * You should pass the special object Eigen::Default as parameter here.
301
- * \code lu.setThreshold(Eigen::Default); \endcode
302
- *
303
- * See the documentation of setThreshold(const RealScalar&).
304
- */
305
- FullPivLU& setThreshold(Default_t)
306
- {
307
- m_usePrescribedThreshold = false;
308
- return *this;
309
- }
310
-
311
- /** Returns the threshold that will be used by certain methods such as rank().
312
- *
313
- * See the documentation of setThreshold(const RealScalar&).
314
- */
315
- RealScalar threshold() const
316
- {
317
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
318
- return m_usePrescribedThreshold ? m_prescribedThreshold
319
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
320
- // and turns out to be identical to Higham's formula used already in LDLt.
321
- : NumTraits<Scalar>::epsilon() * RealScalar(m_lu.diagonalSize());
322
- }
323
-
324
- /** \returns the rank of the matrix of which *this is the LU decomposition.
325
- *
326
- * \note This method has to determine which pivots should be considered nonzero.
327
- * For that, it uses the threshold value that you can control by calling
328
- * setThreshold(const RealScalar&).
329
- */
330
- inline Index rank() const
331
- {
332
- using std::abs;
333
- eigen_assert(m_isInitialized && "LU is not initialized.");
334
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
335
- Index result = 0;
336
- for(Index i = 0; i < m_nonzero_pivots; ++i)
337
- result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
338
- return result;
339
- }
340
-
341
- /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
342
- *
343
- * \note This method has to determine which pivots should be considered nonzero.
344
- * For that, it uses the threshold value that you can control by calling
345
- * setThreshold(const RealScalar&).
346
- */
347
- inline Index dimensionOfKernel() const
348
- {
349
- eigen_assert(m_isInitialized && "LU is not initialized.");
350
- return cols() - rank();
351
- }
352
-
353
- /** \returns true if the matrix of which *this is the LU decomposition represents an injective
354
- * linear map, i.e. has trivial kernel; false otherwise.
355
- *
356
- * \note This method has to determine which pivots should be considered nonzero.
357
- * For that, it uses the threshold value that you can control by calling
358
- * setThreshold(const RealScalar&).
359
- */
360
- inline bool isInjective() const
361
- {
362
- eigen_assert(m_isInitialized && "LU is not initialized.");
363
- return rank() == cols();
364
- }
365
-
366
- /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
367
- * linear map; false otherwise.
368
- *
369
- * \note This method has to determine which pivots should be considered nonzero.
370
- * For that, it uses the threshold value that you can control by calling
371
- * setThreshold(const RealScalar&).
372
- */
373
- inline bool isSurjective() const
374
- {
375
- eigen_assert(m_isInitialized && "LU is not initialized.");
376
- return rank() == rows();
377
- }
378
-
379
- /** \returns true if the matrix of which *this is the LU decomposition is invertible.
380
- *
381
- * \note This method has to determine which pivots should be considered nonzero.
382
- * For that, it uses the threshold value that you can control by calling
383
- * setThreshold(const RealScalar&).
384
- */
385
- inline bool isInvertible() const
386
- {
387
- eigen_assert(m_isInitialized && "LU is not initialized.");
388
- return isInjective() && (m_lu.rows() == m_lu.cols());
389
- }
390
-
391
- /** \returns the inverse of the matrix of which *this is the LU decomposition.
392
- *
393
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
394
- * Use isInvertible() to first determine whether this matrix is invertible.
395
- *
396
- * \sa MatrixBase::inverse()
397
- */
398
- inline const Inverse<FullPivLU> inverse() const
399
- {
400
- eigen_assert(m_isInitialized && "LU is not initialized.");
401
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
402
- return Inverse<FullPivLU>(*this);
403
- }
404
-
405
- MatrixType reconstructedMatrix() const;
406
-
407
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
408
- inline Index rows() const EIGEN_NOEXCEPT { return m_lu.rows(); }
409
- EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR
410
- inline Index cols() const EIGEN_NOEXCEPT { return m_lu.cols(); }
411
-
412
- #ifndef EIGEN_PARSED_BY_DOXYGEN
413
- template<typename RhsType, typename DstType>
414
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
415
-
416
- template<bool Conjugate, typename RhsType, typename DstType>
417
- void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const;
418
- #endif
419
-
420
- protected:
421
-
422
- static void check_template_parameters()
423
- {
424
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
425
- }
426
-
427
- void computeInPlace();
428
-
429
- MatrixType m_lu;
430
- PermutationPType m_p;
431
- PermutationQType m_q;
432
- IntColVectorType m_rowsTranspositions;
433
- IntRowVectorType m_colsTranspositions;
434
- Index m_nonzero_pivots;
435
- RealScalar m_l1_norm;
436
- RealScalar m_maxpivot, m_prescribedThreshold;
437
- signed char m_det_pq;
438
- bool m_isInitialized, m_usePrescribedThreshold;
439
- };
440
-
441
- template<typename MatrixType>
442
- FullPivLU<MatrixType>::FullPivLU()
443
- : m_isInitialized(false), m_usePrescribedThreshold(false)
444
- {
445
- }
446
-
447
- template<typename MatrixType>
448
- FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
449
- : m_lu(rows, cols),
450
- m_p(rows),
451
- m_q(cols),
452
- m_rowsTranspositions(rows),
453
- m_colsTranspositions(cols),
454
- m_isInitialized(false),
455
- m_usePrescribedThreshold(false)
456
- {
457
- }
458
-
459
- template<typename MatrixType>
460
- template<typename InputType>
461
- FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix)
462
- : m_lu(matrix.rows(), matrix.cols()),
463
- m_p(matrix.rows()),
464
- m_q(matrix.cols()),
465
- m_rowsTranspositions(matrix.rows()),
466
- m_colsTranspositions(matrix.cols()),
467
- m_isInitialized(false),
468
- m_usePrescribedThreshold(false)
469
- {
470
- compute(matrix.derived());
471
- }
472
-
473
- template<typename MatrixType>
474
- template<typename InputType>
475
- FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix)
476
- : m_lu(matrix.derived()),
477
- m_p(matrix.rows()),
478
- m_q(matrix.cols()),
479
- m_rowsTranspositions(matrix.rows()),
480
- m_colsTranspositions(matrix.cols()),
481
- m_isInitialized(false),
482
- m_usePrescribedThreshold(false)
483
- {
484
- computeInPlace();
485
- }
486
-
487
- template<typename MatrixType>
488
- void FullPivLU<MatrixType>::computeInPlace()
489
- {
490
- check_template_parameters();
491
-
492
- // the permutations are stored as int indices, so just to be sure:
493
- eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest());
494
-
495
- m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff();
496
-
497
- const Index size = m_lu.diagonalSize();
498
- const Index rows = m_lu.rows();
499
- const Index cols = m_lu.cols();
500
-
501
- // will store the transpositions, before we accumulate them at the end.
502
- // can't accumulate on-the-fly because that will be done in reverse order for the rows.
503
- m_rowsTranspositions.resize(m_lu.rows());
504
- m_colsTranspositions.resize(m_lu.cols());
505
- Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
506
-
507
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
508
- m_maxpivot = RealScalar(0);
509
-
510
- for(Index k = 0; k < size; ++k)
511
- {
512
- // First, we need to find the pivot.
513
-
514
- // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
515
- Index row_of_biggest_in_corner, col_of_biggest_in_corner;
516
- typedef internal::scalar_score_coeff_op<Scalar> Scoring;
517
- typedef typename Scoring::result_type Score;
518
- Score biggest_in_corner;
519
- biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
520
- .unaryExpr(Scoring())
521
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
522
- row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
523
- col_of_biggest_in_corner += k; // need to add k to them.
524
-
525
- if(biggest_in_corner==Score(0))
526
- {
527
- // before exiting, make sure to initialize the still uninitialized transpositions
528
- // in a sane state without destroying what we already have.
529
- m_nonzero_pivots = k;
530
- for(Index i = k; i < size; ++i)
531
- {
532
- m_rowsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
533
- m_colsTranspositions.coeffRef(i) = internal::convert_index<StorageIndex>(i);
534
- }
535
- break;
536
- }
537
-
538
- RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner);
539
- if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot;
540
-
541
- // Now that we've found the pivot, we need to apply the row/col swaps to
542
- // bring it to the location (k,k).
543
-
544
- m_rowsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(row_of_biggest_in_corner);
545
- m_colsTranspositions.coeffRef(k) = internal::convert_index<StorageIndex>(col_of_biggest_in_corner);
546
- if(k != row_of_biggest_in_corner) {
547
- m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
548
- ++number_of_transpositions;
549
- }
550
- if(k != col_of_biggest_in_corner) {
551
- m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
552
- ++number_of_transpositions;
553
- }
554
-
555
- // Now that the pivot is at the right location, we update the remaining
556
- // bottom-right corner by Gaussian elimination.
557
-
558
- if(k<rows-1)
559
- m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
560
- if(k<size-1)
561
- m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
562
- }
563
-
564
- // the main loop is over, we still have to accumulate the transpositions to find the
565
- // permutations P and Q
566
-
567
- m_p.setIdentity(rows);
568
- for(Index k = size-1; k >= 0; --k)
569
- m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
570
-
571
- m_q.setIdentity(cols);
572
- for(Index k = 0; k < size; ++k)
573
- m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
574
-
575
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
576
-
577
- m_isInitialized = true;
578
- }
579
-
580
- template<typename MatrixType>
581
- typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
582
- {
583
- eigen_assert(m_isInitialized && "LU is not initialized.");
584
- eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
585
- return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
586
- }
587
-
588
- /** \returns the matrix represented by the decomposition,
589
- * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
590
- * This function is provided for debug purposes. */
591
- template<typename MatrixType>
592
- MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
593
- {
594
- eigen_assert(m_isInitialized && "LU is not initialized.");
595
- const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
596
- // LU
597
- MatrixType res(m_lu.rows(),m_lu.cols());
598
- // FIXME the .toDenseMatrix() should not be needed...
599
- res = m_lu.leftCols(smalldim)
600
- .template triangularView<UnitLower>().toDenseMatrix()
601
- * m_lu.topRows(smalldim)
602
- .template triangularView<Upper>().toDenseMatrix();
603
-
604
- // P^{-1}(LU)
605
- res = m_p.inverse() * res;
606
-
607
- // (P^{-1}LU)Q^{-1}
608
- res = res * m_q.inverse();
609
-
610
- return res;
611
- }
612
-
613
- /********* Implementation of kernel() **************************************************/
614
-
615
- namespace internal {
616
- template<typename _MatrixType>
617
- struct kernel_retval<FullPivLU<_MatrixType> >
618
- : kernel_retval_base<FullPivLU<_MatrixType> >
619
- {
620
- EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
621
-
622
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
623
- MatrixType::MaxColsAtCompileTime,
624
- MatrixType::MaxRowsAtCompileTime)
625
- };
626
-
627
- template<typename Dest> void evalTo(Dest& dst) const
628
- {
629
- using std::abs;
630
- const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
631
- if(dimker == 0)
632
- {
633
- // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
634
- // avoid crashing/asserting as that depends on floating point calculations. Let's
635
- // just return a single column vector filled with zeros.
636
- dst.setZero();
637
- return;
638
- }
639
-
640
- /* Let us use the following lemma:
641
- *
642
- * Lemma: If the matrix A has the LU decomposition PAQ = LU,
643
- * then Ker A = Q(Ker U).
644
- *
645
- * Proof: trivial: just keep in mind that P, Q, L are invertible.
646
- */
647
-
648
- /* Thus, all we need to do is to compute Ker U, and then apply Q.
649
- *
650
- * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
651
- * Thus, the diagonal of U ends with exactly
652
- * dimKer zero's. Let us use that to construct dimKer linearly
653
- * independent vectors in Ker U.
654
- */
655
-
656
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
657
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
658
- Index p = 0;
659
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
660
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
661
- pivots.coeffRef(p++) = i;
662
- eigen_internal_assert(p == rank());
663
-
664
- // we construct a temporaty trapezoid matrix m, by taking the U matrix and
665
- // permuting the rows and cols to bring the nonnegligible pivots to the top of
666
- // the main diagonal. We need that to be able to apply our triangular solvers.
667
- // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
668
- Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
669
- MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
670
- m(dec().matrixLU().block(0, 0, rank(), cols));
671
- for(Index i = 0; i < rank(); ++i)
672
- {
673
- if(i) m.row(i).head(i).setZero();
674
- m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
675
- }
676
- m.block(0, 0, rank(), rank());
677
- m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
678
- for(Index i = 0; i < rank(); ++i)
679
- m.col(i).swap(m.col(pivots.coeff(i)));
680
-
681
- // ok, we have our trapezoid matrix, we can apply the triangular solver.
682
- // notice that the math behind this suggests that we should apply this to the
683
- // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
684
- m.topLeftCorner(rank(), rank())
685
- .template triangularView<Upper>().solveInPlace(
686
- m.topRightCorner(rank(), dimker)
687
- );
688
-
689
- // now we must undo the column permutation that we had applied!
690
- for(Index i = rank()-1; i >= 0; --i)
691
- m.col(i).swap(m.col(pivots.coeff(i)));
692
-
693
- // see the negative sign in the next line, that's what we were talking about above.
694
- for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
695
- for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
696
- for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
697
- }
698
- };
699
-
700
- /***** Implementation of image() *****************************************************/
701
-
702
- template<typename _MatrixType>
703
- struct image_retval<FullPivLU<_MatrixType> >
704
- : image_retval_base<FullPivLU<_MatrixType> >
705
- {
706
- EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
707
-
708
- enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
709
- MatrixType::MaxColsAtCompileTime,
710
- MatrixType::MaxRowsAtCompileTime)
711
- };
712
-
713
- template<typename Dest> void evalTo(Dest& dst) const
714
- {
715
- using std::abs;
716
- if(rank() == 0)
717
- {
718
- // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
719
- // avoid crashing/asserting as that depends on floating point calculations. Let's
720
- // just return a single column vector filled with zeros.
721
- dst.setZero();
722
- return;
723
- }
724
-
725
- Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
726
- RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
727
- Index p = 0;
728
- for(Index i = 0; i < dec().nonzeroPivots(); ++i)
729
- if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
730
- pivots.coeffRef(p++) = i;
731
- eigen_internal_assert(p == rank());
732
-
733
- for(Index i = 0; i < rank(); ++i)
734
- dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
735
- }
736
- };
737
-
738
- /***** Implementation of solve() *****************************************************/
739
-
740
- } // end namespace internal
741
-
742
- #ifndef EIGEN_PARSED_BY_DOXYGEN
743
- template<typename _MatrixType>
744
- template<typename RhsType, typename DstType>
745
- void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
746
- {
747
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
748
- * So we proceed as follows:
749
- * Step 1: compute c = P * rhs.
750
- * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
751
- * Step 3: replace c by the solution x to Ux = c. May or may not exist.
752
- * Step 4: result = Q * c;
753
- */
754
-
755
- const Index rows = this->rows(),
756
- cols = this->cols(),
757
- nonzero_pivots = this->rank();
758
- const Index smalldim = (std::min)(rows, cols);
759
-
760
- if(nonzero_pivots == 0)
761
- {
762
- dst.setZero();
763
- return;
764
- }
765
-
766
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
767
-
768
- // Step 1
769
- c = permutationP() * rhs;
770
-
771
- // Step 2
772
- m_lu.topLeftCorner(smalldim,smalldim)
773
- .template triangularView<UnitLower>()
774
- .solveInPlace(c.topRows(smalldim));
775
- if(rows>cols)
776
- c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols);
777
-
778
- // Step 3
779
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
780
- .template triangularView<Upper>()
781
- .solveInPlace(c.topRows(nonzero_pivots));
782
-
783
- // Step 4
784
- for(Index i = 0; i < nonzero_pivots; ++i)
785
- dst.row(permutationQ().indices().coeff(i)) = c.row(i);
786
- for(Index i = nonzero_pivots; i < m_lu.cols(); ++i)
787
- dst.row(permutationQ().indices().coeff(i)).setZero();
788
- }
789
-
790
- template<typename _MatrixType>
791
- template<bool Conjugate, typename RhsType, typename DstType>
792
- void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const
793
- {
794
- /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1},
795
- * and since permutations are real and unitary, we can write this
796
- * as A^T = Q U^T L^T P,
797
- * So we proceed as follows:
798
- * Step 1: compute c = Q^T rhs.
799
- * Step 2: replace c by the solution x to U^T x = c. May or may not exist.
800
- * Step 3: replace c by the solution x to L^T x = c.
801
- * Step 4: result = P^T c.
802
- * If Conjugate is true, replace "^T" by "^*" above.
803
- */
804
-
805
- const Index rows = this->rows(), cols = this->cols(),
806
- nonzero_pivots = this->rank();
807
- const Index smalldim = (std::min)(rows, cols);
808
-
809
- if(nonzero_pivots == 0)
810
- {
811
- dst.setZero();
812
- return;
813
- }
814
-
815
- typename RhsType::PlainObject c(rhs.rows(), rhs.cols());
816
-
817
- // Step 1
818
- c = permutationQ().inverse() * rhs;
819
-
820
- // Step 2
821
- m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots)
822
- .template triangularView<Upper>()
823
- .transpose()
824
- .template conjugateIf<Conjugate>()
825
- .solveInPlace(c.topRows(nonzero_pivots));
826
-
827
- // Step 3
828
- m_lu.topLeftCorner(smalldim, smalldim)
829
- .template triangularView<UnitLower>()
830
- .transpose()
831
- .template conjugateIf<Conjugate>()
832
- .solveInPlace(c.topRows(smalldim));
833
-
834
- // Step 4
835
- PermutationPType invp = permutationP().inverse().eval();
836
- for(Index i = 0; i < smalldim; ++i)
837
- dst.row(invp.indices().coeff(i)) = c.row(i);
838
- for(Index i = smalldim; i < rows; ++i)
839
- dst.row(invp.indices().coeff(i)).setZero();
840
- }
841
-
842
- #endif
843
-
844
- namespace internal {
845
-
846
-
847
- /***** Implementation of inverse() *****************************************************/
848
- template<typename DstXprType, typename MatrixType>
849
- struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense>
850
- {
851
- typedef FullPivLU<MatrixType> LuType;
852
- typedef Inverse<LuType> SrcXprType;
853
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &)
854
- {
855
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
856
- }
857
- };
858
- } // end namespace internal
859
-
860
- /******* MatrixBase methods *****************************************************************/
861
-
862
- /** \lu_module
863
- *
864
- * \return the full-pivoting LU decomposition of \c *this.
865
- *
866
- * \sa class FullPivLU
867
- */
868
- template<typename Derived>
869
- inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
870
- MatrixBase<Derived>::fullPivLu() const
871
- {
872
- return FullPivLU<PlainObject>(eval());
873
- }
874
-
875
- } // end namespace Eigen
876
-
877
- #endif // EIGEN_LU_H