sequenzo 0.1.18__cp312-cp312-macosx_10_13_universal2.whl → 0.1.19__cp312-cp312-macosx_10_13_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sequenzo might be problematic. Click here for more details.

Files changed (357) hide show
  1. sequenzo/__init__.py +39 -7
  2. sequenzo/big_data/clara/utils/get_weighted_diss.c +155 -155
  3. sequenzo/big_data/clara/utils/get_weighted_diss.cpython-312-darwin.so +0 -0
  4. sequenzo/clustering/KMedoids.py +39 -0
  5. sequenzo/clustering/hierarchical_clustering.py +107 -5
  6. sequenzo/define_sequence_data.py +10 -1
  7. sequenzo/dissimilarity_measures/get_distance_matrix.py +1 -2
  8. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.c +155 -155
  9. sequenzo/dissimilarity_measures/utils/get_sm_trate_substitution_cost_matrix.cpython-312-darwin.so +0 -0
  10. sequenzo/dissimilarity_measures/utils/seqconc.c +155 -155
  11. sequenzo/dissimilarity_measures/utils/seqconc.cpython-312-darwin.so +0 -0
  12. sequenzo/dissimilarity_measures/utils/seqdss.c +155 -155
  13. sequenzo/dissimilarity_measures/utils/seqdss.cpython-312-darwin.so +0 -0
  14. sequenzo/dissimilarity_measures/utils/seqdur.c +155 -155
  15. sequenzo/dissimilarity_measures/utils/seqdur.cpython-312-darwin.so +0 -0
  16. sequenzo/dissimilarity_measures/utils/seqlength.c +155 -155
  17. sequenzo/dissimilarity_measures/utils/seqlength.cpython-312-darwin.so +0 -0
  18. sequenzo/multidomain/cat.py +0 -53
  19. sequenzo/multidomain/idcd.py +0 -1
  20. sequenzo/openmp_setup.py +233 -0
  21. sequenzo/visualization/plot_transition_matrix.py +21 -22
  22. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/METADATA +43 -10
  23. sequenzo-0.1.19.dist-info/RECORD +215 -0
  24. sequenzo/dissimilarity_measures/setup.py +0 -35
  25. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LDLT.h +0 -688
  26. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT.h +0 -558
  27. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Cholesky/LLT_LAPACKE.h +0 -99
  28. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/CholmodSupport/CholmodSupport.h +0 -682
  29. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexEigenSolver.h +0 -346
  30. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur.h +0 -462
  31. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/ComplexSchur_LAPACKE.h +0 -91
  32. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/EigenSolver.h +0 -622
  33. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedEigenSolver.h +0 -418
  34. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/GeneralizedSelfAdjointEigenSolver.h +0 -226
  35. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/HessenbergDecomposition.h +0 -374
  36. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/MatrixBaseEigenvalues.h +0 -158
  37. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealQZ.h +0 -657
  38. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur.h +0 -558
  39. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/RealSchur_LAPACKE.h +0 -77
  40. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h +0 -904
  41. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/SelfAdjointEigenSolver_LAPACKE.h +0 -87
  42. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Eigenvalues/Tridiagonalization.h +0 -561
  43. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AlignedBox.h +0 -486
  44. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/AngleAxis.h +0 -247
  45. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/EulerAngles.h +0 -114
  46. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Homogeneous.h +0 -501
  47. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Hyperplane.h +0 -282
  48. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/OrthoMethods.h +0 -235
  49. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/ParametrizedLine.h +0 -232
  50. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Quaternion.h +0 -870
  51. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Rotation2D.h +0 -199
  52. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/RotationBase.h +0 -206
  53. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Scaling.h +0 -188
  54. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Transform.h +0 -1563
  55. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Translation.h +0 -202
  56. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/Umeyama.h +0 -166
  57. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Geometry/arch/Geometry_SIMD.h +0 -168
  58. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/BlockHouseholder.h +0 -110
  59. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/Householder.h +0 -176
  60. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Householder/HouseholderSequence.h +0 -545
  61. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BasicPreconditioners.h +0 -226
  62. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/BiCGSTAB.h +0 -212
  63. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/ConjugateGradient.h +0 -229
  64. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h +0 -394
  65. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +0 -453
  66. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/IterativeSolverBase.h +0 -444
  67. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/LeastSquareConjugateGradient.h +0 -198
  68. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/IterativeLinearSolvers/SolveWithGuess.h +0 -117
  69. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/Jacobi/Jacobi.h +0 -483
  70. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/KLUSupport/KLUSupport.h +0 -358
  71. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/Determinant.h +0 -117
  72. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/FullPivLU.h +0 -877
  73. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/InverseImpl.h +0 -432
  74. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU.h +0 -624
  75. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/PartialPivLU_LAPACKE.h +0 -83
  76. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/LU/arch/InverseSize4.h +0 -351
  77. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/MetisSupport/MetisSupport.h +0 -137
  78. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Amd.h +0 -435
  79. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Eigen_Colamd.h +0 -1863
  80. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/OrderingMethods/Ordering.h +0 -153
  81. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PaStiXSupport/PaStiXSupport.h +0 -678
  82. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/PardisoSupport/PardisoSupport.h +0 -545
  83. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR.h +0 -674
  84. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h +0 -97
  85. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h +0 -635
  86. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/FullPivHouseholderQR.h +0 -713
  87. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR.h +0 -434
  88. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h +0 -68
  89. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SPQRSupport/SuiteSparseQRSupport.h +0 -335
  90. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/BDCSVD.h +0 -1366
  91. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD.h +0 -812
  92. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/JacobiSVD_LAPACKE.h +0 -91
  93. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/SVDBase.h +0 -376
  94. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SVD/UpperBidiagonalization.h +0 -414
  95. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky.h +0 -697
  96. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCholesky/SimplicialCholesky_impl.h +0 -174
  97. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/AmbiVector.h +0 -378
  98. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/CompressedStorage.h +0 -274
  99. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/ConservativeSparseSparseProduct.h +0 -352
  100. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/MappedSparseMatrix.h +0 -67
  101. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseAssign.h +0 -270
  102. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseBlock.h +0 -571
  103. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseColEtree.h +0 -206
  104. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCompressedBase.h +0 -370
  105. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseBinaryOp.h +0 -722
  106. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseCwiseUnaryOp.h +0 -150
  107. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDenseProduct.h +0 -342
  108. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDiagonalProduct.h +0 -138
  109. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseDot.h +0 -98
  110. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseFuzzy.h +0 -29
  111. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMap.h +0 -305
  112. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrix.h +0 -1518
  113. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseMatrixBase.h +0 -398
  114. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparsePermutation.h +0 -178
  115. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseProduct.h +0 -181
  116. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRedux.h +0 -49
  117. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseRef.h +0 -397
  118. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSelfAdjointView.h +0 -659
  119. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSolverBase.h +0 -124
  120. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseSparseProductWithPruning.h +0 -198
  121. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTranspose.h +0 -92
  122. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseTriangularView.h +0 -189
  123. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseUtil.h +0 -186
  124. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseVector.h +0 -478
  125. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/SparseView.h +0 -254
  126. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseCore/TriangularSolver.h +0 -315
  127. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU.h +0 -923
  128. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLUImpl.h +0 -66
  129. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Memory.h +0 -226
  130. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Structs.h +0 -110
  131. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_SupernodalMatrix.h +0 -375
  132. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_Utils.h +0 -80
  133. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_bmod.h +0 -181
  134. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_column_dfs.h +0 -179
  135. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_copy_to_ucol.h +0 -107
  136. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_gemm_kernel.h +0 -280
  137. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_heap_relax_snode.h +0 -126
  138. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_kernel_bmod.h +0 -130
  139. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_bmod.h +0 -223
  140. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_panel_dfs.h +0 -258
  141. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pivotL.h +0 -137
  142. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_pruneL.h +0 -136
  143. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseLU/SparseLU_relax_snode.h +0 -83
  144. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SparseQR/SparseQR.h +0 -758
  145. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdDeque.h +0 -116
  146. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdList.h +0 -106
  147. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/StdVector.h +0 -131
  148. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/StlSupport/details.h +0 -84
  149. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/SuperLUSupport/SuperLUSupport.h +0 -1025
  150. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/UmfPackSupport/UmfPackSupport.h +0 -642
  151. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Image.h +0 -82
  152. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/Kernel.h +0 -79
  153. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/RealSvd2x2.h +0 -55
  154. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/blas.h +0 -440
  155. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapack.h +0 -152
  156. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke.h +0 -16292
  157. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/misc/lapacke_mangling.h +0 -17
  158. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseBinaryOps.h +0 -358
  159. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ArrayCwiseUnaryOps.h +0 -696
  160. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/BlockMethods.h +0 -1442
  161. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseBinaryOps.h +0 -115
  162. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/CommonCwiseUnaryOps.h +0 -177
  163. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/IndexedViewMethods.h +0 -262
  164. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseBinaryOps.h +0 -152
  165. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/MatrixCwiseUnaryOps.h +0 -95
  166. sequenzo/dissimilarity_measures/src/eigen/Eigen/src/plugins/ReshapedMethods.h +0 -149
  167. sequenzo/dissimilarity_measures/src/eigen/blas/BandTriangularSolver.h +0 -97
  168. sequenzo/dissimilarity_measures/src/eigen/blas/GeneralRank1Update.h +0 -44
  169. sequenzo/dissimilarity_measures/src/eigen/blas/PackedSelfadjointProduct.h +0 -53
  170. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularMatrixVector.h +0 -79
  171. sequenzo/dissimilarity_measures/src/eigen/blas/PackedTriangularSolverVector.h +0 -88
  172. sequenzo/dissimilarity_measures/src/eigen/blas/Rank2Update.h +0 -57
  173. sequenzo/dissimilarity_measures/src/eigen/blas/common.h +0 -175
  174. sequenzo/dissimilarity_measures/src/eigen/blas/f2c/datatypes.h +0 -24
  175. sequenzo/dissimilarity_measures/src/eigen/blas/level1_cplx_impl.h +0 -155
  176. sequenzo/dissimilarity_measures/src/eigen/blas/level1_impl.h +0 -144
  177. sequenzo/dissimilarity_measures/src/eigen/blas/level1_real_impl.h +0 -122
  178. sequenzo/dissimilarity_measures/src/eigen/blas/level2_cplx_impl.h +0 -360
  179. sequenzo/dissimilarity_measures/src/eigen/blas/level2_impl.h +0 -553
  180. sequenzo/dissimilarity_measures/src/eigen/blas/level2_real_impl.h +0 -306
  181. sequenzo/dissimilarity_measures/src/eigen/blas/level3_impl.h +0 -702
  182. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/__init__.py +0 -1
  183. sequenzo/dissimilarity_measures/src/eigen/debug/gdb/printers.py +0 -314
  184. sequenzo/dissimilarity_measures/src/eigen/lapack/lapack_common.h +0 -29
  185. sequenzo/dissimilarity_measures/src/eigen/scripts/relicense.py +0 -69
  186. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/Tensor.h +0 -554
  187. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h +0 -329
  188. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h +0 -247
  189. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +0 -1176
  190. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h +0 -1559
  191. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBroadcasting.h +0 -1093
  192. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h +0 -518
  193. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConcatenation.h +0 -377
  194. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h +0 -1023
  195. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionBlocking.h +0 -73
  196. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h +0 -6
  197. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionGpu.h +0 -1413
  198. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMapper.h +0 -575
  199. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionSycl.h +0 -1650
  200. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h +0 -1679
  201. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConversion.h +0 -456
  202. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h +0 -1132
  203. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorConvolutionSycl.h +0 -544
  204. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h +0 -214
  205. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorCustomOp.h +0 -347
  206. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDevice.h +0 -137
  207. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceCuda.h +0 -6
  208. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceDefault.h +0 -104
  209. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceGpu.h +0 -389
  210. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceSycl.h +0 -1048
  211. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h +0 -409
  212. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensionList.h +0 -236
  213. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorDimensions.h +0 -490
  214. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvalTo.h +0 -236
  215. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorEvaluator.h +0 -983
  216. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExecutor.h +0 -703
  217. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorExpr.h +0 -388
  218. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h +0 -669
  219. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFixedSize.h +0 -379
  220. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForcedEval.h +0 -237
  221. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +0 -191
  222. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h +0 -488
  223. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGenerator.h +0 -302
  224. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGlobalFunctions.h +0 -33
  225. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h +0 -99
  226. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaUndefines.h +0 -44
  227. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIO.h +0 -79
  228. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorImagePatch.h +0 -603
  229. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIndexList.h +0 -738
  230. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInflation.h +0 -247
  231. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorInitializer.h +0 -82
  232. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorIntDiv.h +0 -263
  233. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorLayoutSwap.h +0 -216
  234. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMacros.h +0 -98
  235. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMap.h +0 -327
  236. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h +0 -311
  237. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorMorphing.h +0 -1102
  238. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPadding.h +0 -708
  239. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorPatch.h +0 -291
  240. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h +0 -322
  241. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h +0 -998
  242. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionCuda.h +0 -6
  243. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h +0 -966
  244. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReductionSycl.h +0 -582
  245. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorRef.h +0 -454
  246. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorReverse.h +0 -465
  247. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h +0 -528
  248. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorScanSycl.h +0 -513
  249. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorShuffling.h +0 -471
  250. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStorage.h +0 -161
  251. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorStriding.h +0 -346
  252. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h +0 -303
  253. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorTraits.h +0 -264
  254. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorUInt128.h +0 -249
  255. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorVolumePatch.h +0 -629
  256. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/DynamicSymmetry.h +0 -293
  257. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/StaticSymmetry.h +0 -236
  258. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/Symmetry.h +0 -338
  259. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/TensorSymmetry/util/TemplateGroupTheory.h +0 -669
  260. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/Barrier.h +0 -67
  261. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/EventCount.h +0 -249
  262. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/NonBlockingThreadPool.h +0 -486
  263. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/RunQueue.h +0 -236
  264. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadCancel.h +0 -23
  265. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadEnvironment.h +0 -40
  266. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadLocal.h +0 -301
  267. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadPoolInterface.h +0 -48
  268. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/ThreadPool/ThreadYield.h +0 -20
  269. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Meta.h +0 -537
  270. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/CXX11Workarounds.h +0 -88
  271. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/EmulateArray.h +0 -261
  272. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/CXX11/src/util/MaxSizeVector.h +0 -158
  273. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffJacobian.h +0 -108
  274. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h +0 -730
  275. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h +0 -220
  276. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/BVAlgorithms.h +0 -293
  277. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/BVH/KdBVH.h +0 -223
  278. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h +0 -790
  279. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h +0 -355
  280. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h +0 -305
  281. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_fftw_impl.h +0 -261
  282. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/FFT/ei_kissfft_impl.h +0 -449
  283. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h +0 -187
  284. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/DGMRES.h +0 -511
  285. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/GMRES.h +0 -335
  286. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IDRS.h +0 -436
  287. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IncompleteLU.h +0 -90
  288. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/IterationController.h +0 -154
  289. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/MINRES.h +0 -267
  290. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/IterativeSolvers/Scaling.h +0 -193
  291. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +0 -305
  292. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMcovar.h +0 -84
  293. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMonestep.h +0 -202
  294. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMpar.h +0 -160
  295. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LMqrsolv.h +0 -188
  296. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/LevenbergMarquardt/LevenbergMarquardt.h +0 -396
  297. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +0 -441
  298. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +0 -569
  299. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +0 -373
  300. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +0 -705
  301. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +0 -368
  302. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MatrixFunctions/StemFunction.h +0 -117
  303. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/MoreVectorization/MathFunctions.h +0 -95
  304. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/HybridNonLinearSolver.h +0 -601
  305. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h +0 -657
  306. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/chkder.h +0 -66
  307. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/covar.h +0 -70
  308. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/dogleg.h +0 -107
  309. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/fdjac1.h +0 -79
  310. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/lmpar.h +0 -298
  311. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/qrsolv.h +0 -91
  312. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1mpyq.h +0 -30
  313. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/r1updt.h +0 -99
  314. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NonLinearOptimization/rwupdt.h +0 -49
  315. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/NumericalDiff/NumericalDiff.h +0 -130
  316. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/Companion.h +0 -280
  317. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialSolver.h +0 -428
  318. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Polynomials/PolynomialUtils.h +0 -143
  319. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineInplaceLU.h +0 -352
  320. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrix.h +0 -862
  321. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineMatrixBase.h +0 -212
  322. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineProduct.h +0 -295
  323. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineStorage.h +0 -259
  324. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Skyline/SkylineUtil.h +0 -89
  325. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockOfDynamicSparseMatrix.h +0 -122
  326. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/BlockSparseMatrix.h +0 -1079
  327. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/DynamicSparseMatrix.h +0 -404
  328. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MarketIO.h +0 -282
  329. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/MatrixMarketIterator.h +0 -247
  330. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SparseExtra/RandomSetter.h +0 -349
  331. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsArrayAPI.h +0 -286
  332. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsBFloat16.h +0 -68
  333. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsFunctors.h +0 -357
  334. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsHalf.h +0 -66
  335. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsImpl.h +0 -1959
  336. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/BesselFunctionsPacketMath.h +0 -118
  337. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/HipVectorCompatibility.h +0 -67
  338. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsArrayAPI.h +0 -167
  339. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsBFloat16.h +0 -58
  340. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsFunctors.h +0 -330
  341. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsHalf.h +0 -58
  342. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h +0 -2045
  343. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsPacketMath.h +0 -79
  344. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/BesselFunctions.h +0 -46
  345. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX/SpecialFunctions.h +0 -16
  346. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/BesselFunctions.h +0 -46
  347. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/AVX512/SpecialFunctions.h +0 -16
  348. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/GPU/SpecialFunctions.h +0 -369
  349. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/BesselFunctions.h +0 -54
  350. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/SpecialFunctions/arch/NEON/SpecialFunctions.h +0 -34
  351. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/Spline.h +0 -507
  352. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFitting.h +0 -431
  353. sequenzo/dissimilarity_measures/src/eigen/unsupported/Eigen/src/Splines/SplineFwd.h +0 -93
  354. sequenzo-0.1.18.dist-info/RECORD +0 -544
  355. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/WHEEL +0 -0
  356. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/licenses/LICENSE +0 -0
  357. {sequenzo-0.1.18.dist-info → sequenzo-0.1.19.dist-info}/top_level.txt +0 -0
@@ -1,1093 +0,0 @@
1
- // This file is part of Eigen, a lightweight C++ template library
2
- // for linear algebra.
3
- //
4
- // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5
- //
6
- // This Source Code Form is subject to the terms of the Mozilla
7
- // Public License v. 2.0. If a copy of the MPL was not distributed
8
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
-
10
- #ifndef EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
11
- #define EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H
12
-
13
- namespace Eigen {
14
-
15
- /** \class TensorBroadcasting
16
- * \ingroup CXX11_Tensor_Module
17
- *
18
- * \brief Tensor broadcasting class.
19
- *
20
- *
21
- */
22
- namespace internal {
23
- template<typename Broadcast, typename XprType>
24
- struct traits<TensorBroadcastingOp<Broadcast, XprType> > : public traits<XprType>
25
- {
26
- typedef typename XprType::Scalar Scalar;
27
- typedef traits<XprType> XprTraits;
28
- typedef typename XprTraits::StorageKind StorageKind;
29
- typedef typename XprTraits::Index Index;
30
- typedef typename XprType::Nested Nested;
31
- typedef typename remove_reference<Nested>::type _Nested;
32
- static const int NumDimensions = XprTraits::NumDimensions;
33
- static const int Layout = XprTraits::Layout;
34
- typedef typename XprTraits::PointerType PointerType;
35
- };
36
-
37
- template<typename Broadcast, typename XprType>
38
- struct eval<TensorBroadcastingOp<Broadcast, XprType>, Eigen::Dense>
39
- {
40
- typedef const TensorBroadcastingOp<Broadcast, XprType> EIGEN_DEVICE_REF type;
41
- };
42
-
43
- template<typename Broadcast, typename XprType>
44
- struct nested<TensorBroadcastingOp<Broadcast, XprType>, 1, typename eval<TensorBroadcastingOp<Broadcast, XprType> >::type>
45
- {
46
- typedef TensorBroadcastingOp<Broadcast, XprType> type;
47
- };
48
-
49
- template <typename Dims>
50
- struct is_input_scalar {
51
- static const bool value = false;
52
- };
53
- template <>
54
- struct is_input_scalar<Sizes<> > {
55
- static const bool value = true;
56
- };
57
- #ifndef EIGEN_EMULATE_CXX11_META_H
58
- template <typename std::ptrdiff_t... Indices>
59
- struct is_input_scalar<Sizes<Indices...> > {
60
- static const bool value = (Sizes<Indices...>::total_size == 1);
61
- };
62
- #endif
63
-
64
- } // end namespace internal
65
-
66
-
67
-
68
- template<typename Broadcast, typename XprType>
69
- class TensorBroadcastingOp : public TensorBase<TensorBroadcastingOp<Broadcast, XprType>, ReadOnlyAccessors>
70
- {
71
- public:
72
- typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Scalar Scalar;
73
- typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
74
- typedef typename XprType::CoeffReturnType CoeffReturnType;
75
- typedef typename Eigen::internal::nested<TensorBroadcastingOp>::type Nested;
76
- typedef typename Eigen::internal::traits<TensorBroadcastingOp>::StorageKind StorageKind;
77
- typedef typename Eigen::internal::traits<TensorBroadcastingOp>::Index Index;
78
-
79
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBroadcastingOp(const XprType& expr, const Broadcast& broadcast)
80
- : m_xpr(expr), m_broadcast(broadcast) {}
81
-
82
- EIGEN_DEVICE_FUNC
83
- const Broadcast& broadcast() const { return m_broadcast; }
84
-
85
- EIGEN_DEVICE_FUNC
86
- const typename internal::remove_all<typename XprType::Nested>::type&
87
- expression() const { return m_xpr; }
88
-
89
- protected:
90
- typename XprType::Nested m_xpr;
91
- const Broadcast m_broadcast;
92
- };
93
-
94
-
95
- // Eval as rvalue
96
- template<typename Broadcast, typename ArgType, typename Device>
97
- struct TensorEvaluator<const TensorBroadcastingOp<Broadcast, ArgType>, Device>
98
- {
99
- typedef TensorBroadcastingOp<Broadcast, ArgType> XprType;
100
- typedef typename XprType::Index Index;
101
- static const int NumDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
102
- typedef DSizes<Index, NumDims> Dimensions;
103
- typedef typename XprType::Scalar Scalar;
104
- typedef typename TensorEvaluator<ArgType, Device>::Dimensions InputDimensions;
105
- typedef typename XprType::CoeffReturnType CoeffReturnType;
106
- typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
107
- static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
108
- protected: // all the non-static fields must have the same access control, otherwise the TensorEvaluator wont be standard layout;
109
- bool isCopy, nByOne, oneByN;
110
- public:
111
- typedef StorageMemory<CoeffReturnType, Device> Storage;
112
- typedef typename Storage::Type EvaluatorPointerType;
113
-
114
- enum {
115
- IsAligned = TensorEvaluator<ArgType, Device>::IsAligned,
116
- PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess,
117
- BlockAccess = TensorEvaluator<ArgType, Device>::BlockAccess,
118
- PreferBlockAccess = true,
119
- Layout = TensorEvaluator<ArgType, Device>::Layout,
120
- RawAccess = false
121
- };
122
-
123
- typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
124
-
125
- // We do block based broadcasting using a trick with 2x tensor rank and 0
126
- // strides. See block method implementation for details.
127
- typedef DSizes<Index, 2 * NumDims> BroadcastDimensions;
128
-
129
- //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
130
- typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
131
- typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
132
-
133
- typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock
134
- ArgTensorBlock;
135
-
136
- typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumDims,
137
- Layout, Index>
138
- TensorBlock;
139
- //===--------------------------------------------------------------------===//
140
-
141
- EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
142
- : isCopy(false), nByOne(false), oneByN(false),
143
- m_device(device), m_broadcast(op.broadcast()), m_impl(op.expression(), device)
144
- {
145
-
146
- // The broadcasting op doesn't change the rank of the tensor. One can't broadcast a scalar
147
- // and store the result in a scalar. Instead one should reshape the scalar into a a N-D
148
- // tensor with N >= 1 of 1 element first and then broadcast.
149
- EIGEN_STATIC_ASSERT((NumDims > 0), YOU_MADE_A_PROGRAMMING_MISTAKE);
150
- const InputDimensions& input_dims = m_impl.dimensions();
151
- isCopy = true;
152
- for (int i = 0; i < NumDims; ++i) {
153
- eigen_assert(input_dims[i] > 0);
154
- m_dimensions[i] = input_dims[i] * m_broadcast[i];
155
- if (m_broadcast[i] != 1) {
156
- isCopy = false;
157
- }
158
- }
159
-
160
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
161
- m_inputStrides[0] = 1;
162
- m_outputStrides[0] = 1;
163
- for (int i = 1; i < NumDims; ++i) {
164
- m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1];
165
- m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1];
166
- }
167
- } else {
168
- m_inputStrides[NumDims-1] = 1;
169
- m_outputStrides[NumDims-1] = 1;
170
- for (int i = NumDims-2; i >= 0; --i) {
171
- m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1];
172
- m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1];
173
- }
174
- }
175
-
176
- if (input_dims[0] == 1) {
177
- oneByN = true;
178
- for (int i = 1; i < NumDims; ++i) {
179
- if (m_broadcast[i] != 1) {
180
- oneByN = false;
181
- break;
182
- }
183
- }
184
- } else if (input_dims[NumDims-1] == 1) {
185
- nByOne = true;
186
- for (int i = 0; i < NumDims-1; ++i) {
187
- if (m_broadcast[i] != 1) {
188
- nByOne = false;
189
- break;
190
- }
191
- }
192
- }
193
-
194
- // Handle special format like NCHW, its input shape is '[1, N..., 1]' and
195
- // broadcast shape is '[N, 1..., N]'
196
- if (!oneByN && !nByOne) {
197
- if (input_dims[0] == 1 && input_dims[NumDims-1] == 1 && NumDims > 2) {
198
- nByOne = true;
199
- oneByN = true;
200
- for (int i = 1; i < NumDims-1; ++i) {
201
- if (m_broadcast[i] != 1) {
202
- nByOne = false;
203
- oneByN = false;
204
- break;
205
- }
206
- }
207
- }
208
- }
209
- }
210
-
211
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
212
-
213
- EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
214
- m_impl.evalSubExprsIfNeeded(NULL);
215
- return true;
216
- }
217
-
218
- #ifdef EIGEN_USE_THREADS
219
- template <typename EvalSubExprsCallback>
220
- EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
221
- EvaluatorPointerType, EvalSubExprsCallback done) {
222
- m_impl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
223
- }
224
- #endif // EIGEN_USE_THREADS
225
-
226
- EIGEN_STRONG_INLINE void cleanup() {
227
- m_impl.cleanup();
228
- }
229
-
230
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE CoeffReturnType coeff(Index index) const
231
- {
232
- if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) {
233
- return m_impl.coeff(0);
234
- }
235
-
236
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
237
- if (isCopy) {
238
- return m_impl.coeff(index);
239
- } else {
240
- return coeffColMajor(index);
241
- }
242
- } else {
243
- if (isCopy) {
244
- return m_impl.coeff(index);
245
- } else {
246
- return coeffRowMajor(index);
247
- }
248
- }
249
- }
250
-
251
- // TODO: attempt to speed this up. The integer divisions and modulo are slow
252
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index indexColMajor(Index index) const {
253
- Index inputIndex = 0;
254
- EIGEN_UNROLL_LOOP
255
- for (int i = NumDims - 1; i > 0; --i) {
256
- const Index idx = index / m_outputStrides[i];
257
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
258
- eigen_assert(idx < m_impl.dimensions()[i]);
259
- inputIndex += idx * m_inputStrides[i];
260
- } else {
261
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
262
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
263
- } else {
264
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
265
- }
266
- }
267
- index -= idx * m_outputStrides[i];
268
- }
269
- if (internal::index_statically_eq<Broadcast>(0, 1)) {
270
- eigen_assert(index < m_impl.dimensions()[0]);
271
- inputIndex += index;
272
- } else {
273
- if (internal::index_statically_eq<InputDimensions>(0, 1)) {
274
- eigen_assert(index % m_impl.dimensions()[0] == 0);
275
- } else {
276
- inputIndex += (index % m_impl.dimensions()[0]);
277
- }
278
- }
279
- return inputIndex;
280
- }
281
-
282
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffColMajor(Index index) const
283
- {
284
- return m_impl.coeff(indexColMajor(index));
285
- }
286
-
287
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index indexRowMajor(Index index) const {
288
- Index inputIndex = 0;
289
- EIGEN_UNROLL_LOOP
290
- for (int i = 0; i < NumDims - 1; ++i) {
291
- const Index idx = index / m_outputStrides[i];
292
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
293
- eigen_assert(idx < m_impl.dimensions()[i]);
294
- inputIndex += idx * m_inputStrides[i];
295
- } else {
296
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
297
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
298
- } else {
299
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
300
- }
301
- }
302
- index -= idx * m_outputStrides[i];
303
- }
304
- if (internal::index_statically_eq<Broadcast>(NumDims - 1, 1)) {
305
- eigen_assert(index < m_impl.dimensions()[NumDims - 1]);
306
- inputIndex += index;
307
- } else {
308
- if (internal::index_statically_eq<InputDimensions>(NumDims - 1, 1)) {
309
- eigen_assert(index % m_impl.dimensions()[NumDims - 1] == 0);
310
- } else {
311
- inputIndex += (index % m_impl.dimensions()[NumDims - 1]);
312
- }
313
- }
314
- return inputIndex;
315
- }
316
-
317
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffRowMajor(Index index) const
318
- {
319
- return m_impl.coeff(indexRowMajor(index));
320
- }
321
-
322
- template<int LoadMode>
323
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketReturnType packet(Index index) const
324
- {
325
- if (internal::is_input_scalar<typename internal::remove_all<InputDimensions>::type>::value) {
326
- return internal::pset1<PacketReturnType>(m_impl.coeff(0));
327
- }
328
-
329
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
330
- if (isCopy) {
331
- #ifdef EIGEN_GPU_COMPILE_PHASE
332
- // See PR 437: on NVIDIA P100 and K20m we observed a x3-4 speed up by enforcing
333
- // unaligned loads here. The reason is unclear though.
334
- return m_impl.template packet<Unaligned>(index);
335
- #else
336
- return m_impl.template packet<LoadMode>(index);
337
- #endif
338
- } else if (oneByN && !nByOne) {
339
- return packetNByOne<LoadMode>(index);
340
- } else if (!oneByN && nByOne) {
341
- return packetOneByN<LoadMode>(index);
342
- } else if (oneByN && nByOne) {
343
- return packetOneByNByOne<LoadMode>(index);
344
- } else {
345
- return packetColMajor<LoadMode>(index);
346
- }
347
- } else {
348
- if (isCopy) {
349
- #ifdef EIGEN_GPU_COMPILE_PHASE
350
- // See above.
351
- return m_impl.template packet<Unaligned>(index);
352
- #else
353
- return m_impl.template packet<LoadMode>(index);
354
- #endif
355
- } else if (oneByN && !nByOne) {
356
- return packetOneByN<LoadMode>(index);
357
- } else if (!oneByN && nByOne) {
358
- return packetNByOne<LoadMode>(index);
359
- } else if (oneByN && nByOne) {
360
- return packetOneByNByOne<LoadMode>(index);
361
- } else {
362
- return packetRowMajor<LoadMode>(index);
363
- }
364
- }
365
- }
366
-
367
- template<int LoadMode>
368
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetOneByNByOne
369
- (Index index) const
370
- {
371
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
372
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
373
-
374
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
375
- Index startDim, endDim;
376
- Index inputIndex, outputOffset, batchedIndex;
377
-
378
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
379
- startDim = NumDims - 1;
380
- endDim = 1;
381
- } else {
382
- startDim = 0;
383
- endDim = NumDims - 2;
384
- }
385
-
386
- batchedIndex = index % m_outputStrides[startDim];
387
- inputIndex = batchedIndex / m_outputStrides[endDim];
388
- outputOffset = batchedIndex % m_outputStrides[endDim];
389
-
390
- if (outputOffset + PacketSize <= m_outputStrides[endDim]) {
391
- values[0] = m_impl.coeff(inputIndex);
392
- return internal::pload1<PacketReturnType>(values);
393
- } else {
394
- EIGEN_UNROLL_LOOP
395
- for (int i = 0, cur = 0; i < PacketSize; ++i, ++cur) {
396
- if (outputOffset + cur < m_outputStrides[endDim]) {
397
- values[i] = m_impl.coeff(inputIndex);
398
- } else {
399
- ++inputIndex;
400
- inputIndex = (inputIndex == m_inputStrides[startDim] ? 0 : inputIndex);
401
- values[i] = m_impl.coeff(inputIndex);
402
- outputOffset = 0;
403
- cur = 0;
404
- }
405
- }
406
- return internal::pload<PacketReturnType>(values);
407
- }
408
- }
409
-
410
- template<int LoadMode>
411
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetOneByN(Index index) const
412
- {
413
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
414
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
415
-
416
- Index dim, inputIndex;
417
-
418
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
419
- dim = NumDims - 1;
420
- } else {
421
- dim = 0;
422
- }
423
-
424
- inputIndex = index % m_inputStrides[dim];
425
- if (inputIndex + PacketSize <= m_inputStrides[dim]) {
426
- return m_impl.template packet<Unaligned>(inputIndex);
427
- } else {
428
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
429
- EIGEN_UNROLL_LOOP
430
- for (int i = 0; i < PacketSize; ++i) {
431
- if (inputIndex > m_inputStrides[dim]-1) {
432
- inputIndex = 0;
433
- }
434
- values[i] = m_impl.coeff(inputIndex++);
435
- }
436
- return internal::pload<PacketReturnType>(values);
437
- }
438
- }
439
-
440
- template<int LoadMode>
441
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetNByOne(Index index) const
442
- {
443
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
444
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
445
-
446
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
447
- Index dim, inputIndex, outputOffset;
448
-
449
- if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
450
- dim = 1;
451
- } else {
452
- dim = NumDims - 2;
453
- }
454
-
455
- inputIndex = index / m_outputStrides[dim];
456
- outputOffset = index % m_outputStrides[dim];
457
- if (outputOffset + PacketSize <= m_outputStrides[dim]) {
458
- values[0] = m_impl.coeff(inputIndex);
459
- return internal::pload1<PacketReturnType>(values);
460
- } else {
461
- EIGEN_UNROLL_LOOP
462
- for (int i = 0, cur = 0; i < PacketSize; ++i, ++cur) {
463
- if (outputOffset + cur < m_outputStrides[dim]) {
464
- values[i] = m_impl.coeff(inputIndex);
465
- } else {
466
- values[i] = m_impl.coeff(++inputIndex);
467
- outputOffset = 0;
468
- cur = 0;
469
- }
470
- }
471
- return internal::pload<PacketReturnType>(values);
472
- }
473
- }
474
-
475
- // Ignore the LoadMode and always use unaligned loads since we can't guarantee
476
- // the alignment at compile time.
477
- template<int LoadMode>
478
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetColMajor(Index index) const
479
- {
480
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
481
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
482
-
483
- const Index originalIndex = index;
484
-
485
- Index inputIndex = 0;
486
- EIGEN_UNROLL_LOOP
487
- for (int i = NumDims - 1; i > 0; --i) {
488
- const Index idx = index / m_outputStrides[i];
489
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
490
- eigen_assert(idx < m_impl.dimensions()[i]);
491
- inputIndex += idx * m_inputStrides[i];
492
- } else {
493
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
494
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
495
- } else {
496
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
497
- }
498
- }
499
- index -= idx * m_outputStrides[i];
500
- }
501
- Index innermostLoc;
502
- if (internal::index_statically_eq<Broadcast>(0, 1)) {
503
- eigen_assert(index < m_impl.dimensions()[0]);
504
- innermostLoc = index;
505
- } else {
506
- if (internal::index_statically_eq<InputDimensions>(0, 1)) {
507
- eigen_assert(index % m_impl.dimensions()[0] == 0);
508
- innermostLoc = 0;
509
- } else {
510
- innermostLoc = index % m_impl.dimensions()[0];
511
- }
512
- }
513
- inputIndex += innermostLoc;
514
-
515
- // Todo: this could be extended to the second dimension if we're not
516
- // broadcasting alongside the first dimension, and so on.
517
- if (innermostLoc + PacketSize <= m_impl.dimensions()[0]) {
518
- return m_impl.template packet<Unaligned>(inputIndex);
519
- } else {
520
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
521
- values[0] = m_impl.coeff(inputIndex);
522
- EIGEN_UNROLL_LOOP
523
- for (int i = 1; i < PacketSize; ++i) {
524
- if (innermostLoc + i < m_impl.dimensions()[0]) {
525
- values[i] = m_impl.coeff(inputIndex+i);
526
- } else {
527
- values[i] = coeffColMajor(originalIndex+i);
528
- }
529
- }
530
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
531
- return rslt;
532
- }
533
- }
534
-
535
- template<int LoadMode>
536
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packetRowMajor(Index index) const
537
- {
538
- EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
539
- eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
540
-
541
- const Index originalIndex = index;
542
-
543
- Index inputIndex = 0;
544
- EIGEN_UNROLL_LOOP
545
- for (int i = 0; i < NumDims - 1; ++i) {
546
- const Index idx = index / m_outputStrides[i];
547
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
548
- eigen_assert(idx < m_impl.dimensions()[i]);
549
- inputIndex += idx * m_inputStrides[i];
550
- } else {
551
- if (internal::index_statically_eq<InputDimensions>(i, 1)) {
552
- eigen_assert(idx % m_impl.dimensions()[i] == 0);
553
- } else {
554
- inputIndex += (idx % m_impl.dimensions()[i]) * m_inputStrides[i];
555
- }
556
- }
557
- index -= idx * m_outputStrides[i];
558
- }
559
- Index innermostLoc;
560
- if (internal::index_statically_eq<Broadcast>(NumDims-1, 1)) {
561
- eigen_assert(index < m_impl.dimensions()[NumDims-1]);
562
- innermostLoc = index;
563
- } else {
564
- if (internal::index_statically_eq<InputDimensions>(NumDims-1, 1)) {
565
- eigen_assert(index % m_impl.dimensions()[NumDims-1] == 0);
566
- innermostLoc = 0;
567
- } else {
568
- innermostLoc = index % m_impl.dimensions()[NumDims-1];
569
- }
570
- }
571
- inputIndex += innermostLoc;
572
-
573
- // Todo: this could be extended to the second dimension if we're not
574
- // broadcasting alongside the first dimension, and so on.
575
- if (innermostLoc + PacketSize <= m_impl.dimensions()[NumDims-1]) {
576
- return m_impl.template packet<Unaligned>(inputIndex);
577
- } else {
578
- EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
579
- values[0] = m_impl.coeff(inputIndex);
580
- EIGEN_UNROLL_LOOP
581
- for (int i = 1; i < PacketSize; ++i) {
582
- if (innermostLoc + i < m_impl.dimensions()[NumDims-1]) {
583
- values[i] = m_impl.coeff(inputIndex+i);
584
- } else {
585
- values[i] = coeffRowMajor(originalIndex+i);
586
- }
587
- }
588
- PacketReturnType rslt = internal::pload<PacketReturnType>(values);
589
- return rslt;
590
- }
591
- }
592
-
593
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
594
- costPerCoeff(bool vectorized) const {
595
- double compute_cost = TensorOpCost::AddCost<Index>();
596
- if (!isCopy && NumDims > 0) {
597
- EIGEN_UNROLL_LOOP
598
- for (int i = NumDims - 1; i > 0; --i) {
599
- compute_cost += TensorOpCost::DivCost<Index>();
600
- if (internal::index_statically_eq<Broadcast>(i, 1)) {
601
- compute_cost +=
602
- TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
603
- } else {
604
- if (!internal::index_statically_eq<InputDimensions>(i, 1)) {
605
- compute_cost += TensorOpCost::MulCost<Index>() +
606
- TensorOpCost::ModCost<Index>() +
607
- TensorOpCost::AddCost<Index>();
608
- }
609
- }
610
- compute_cost +=
611
- TensorOpCost::MulCost<Index>() + TensorOpCost::AddCost<Index>();
612
- }
613
- }
614
- return m_impl.costPerCoeff(vectorized) +
615
- TensorOpCost(0, 0, compute_cost, vectorized, PacketSize);
616
- }
617
-
618
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
619
- internal::TensorBlockResourceRequirements getResourceRequirements() const {
620
- // TODO(wuke): Targeting L1 size is 30% faster than targeting L{-1} on large
621
- // tensors. But this might need further tuning.
622
- const size_t target_size = m_device.firstLevelCacheSize();
623
- return internal::TensorBlockResourceRequirements::merge(
624
- m_impl.getResourceRequirements(),
625
- internal::TensorBlockResourceRequirements::skewed<Scalar>(target_size));
626
- }
627
-
628
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
629
- block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
630
- bool /*root_of_expr_ast*/ = false) const {
631
- BlockBroadcastingParams params = blockBroadcastingParams(desc);
632
-
633
- if (params.inner_dim_size == 0 || params.bcast_dim_size == 0) {
634
- return emptyBlock();
635
- }
636
-
637
- // Prepare storage for the materialized broadcasting result.
638
- const typename TensorBlock::Storage block_storage =
639
- TensorBlock::prepareStorage(desc, scratch);
640
- ScalarNoConst* materialized_output = block_storage.data();
641
-
642
- // We potentially will need to materialize input blocks.
643
- size_t materialized_input_size = 0;
644
- ScalarNoConst* materialized_input = NULL;
645
-
646
- // Initialize block broadcating iterator state for outer dimensions (outer
647
- // with regard to bcast dimension). Dimension in this array are always in
648
- // inner_most -> outer_most order (col major layout).
649
- array<BlockBroadcastingIteratorState, NumDims> it;
650
- int idx = 0;
651
-
652
- for (int i = params.inner_dim_count + 1; i < NumDims; ++i) {
653
- const Index dim = IsColMajor ? i : NumDims - 1 - i;
654
- it[idx].size = params.output_dims[dim];
655
- it[idx].count = 0;
656
- it[idx].output_stride = m_outputStrides[dim];
657
- it[idx].output_span = it[idx].output_stride * (it[idx].size - 1);
658
- idx++;
659
- }
660
-
661
- // Write output into the beginning of `materialized_output`.
662
- Index output_offset = 0;
663
-
664
- // We will fill output block by broadcasting along the bcast dim, and
665
- // iterating over outer dimension.
666
- const Index output_size = NumDims == 0 ? 1 : params.output_dims.TotalSize();
667
-
668
- for (Index num_output_coeffs = 0; num_output_coeffs < output_size;) {
669
- ScalarNoConst* bcast_output = materialized_output + num_output_coeffs;
670
- Index bcast_offset = desc.offset() + output_offset;
671
-
672
- // Broadcast along the bcast dimension.
673
- num_output_coeffs += BroadcastBlockAlongBcastDim(
674
- params, bcast_offset, scratch, bcast_output, &materialized_input,
675
- &materialized_input_size);
676
-
677
- // Switch to the next outer dimension.
678
- for (int j = 0; j < idx; ++j) {
679
- if (++it[j].count < it[j].size) {
680
- output_offset += it[j].output_stride;
681
- break;
682
- }
683
- it[j].count = 0;
684
- output_offset -= it[j].output_span;
685
- }
686
- }
687
-
688
- return block_storage.AsTensorMaterializedBlock();
689
- }
690
-
691
- EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
692
-
693
- const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
694
-
695
- Broadcast functor() const { return m_broadcast; }
696
- #ifdef EIGEN_USE_SYCL
697
- // binding placeholder accessors to a command group handler for SYCL
698
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(
699
- cl::sycl::handler& cgh) const {
700
- m_impl.bind(cgh);
701
- }
702
- #endif
703
- private:
704
- static const bool IsColMajor =
705
- static_cast<int>(Layout) == static_cast<int>(ColMajor);
706
-
707
- // We will build a general case block broadcasting on top of broadcasting
708
- // primitive that will do broadcasting only for the inner dimension(s) along
709
- // the first dimension smaller than the input size (it's called `bcast_dim`).
710
- //
711
- // Example:
712
- // dim: 0 1 2 (ColMajor)
713
- // input size: [9, 3, 6]
714
- // block size: [9, 2, 6]
715
- //
716
- // We will compute broadcasted block by iterating over the outer dimensions
717
- // before `bcast_dim` (only dimension `2` in this example) and computing
718
- // broadcasts along the `bcast_dim` (dimension `1` in this example).
719
-
720
- // BlockBroadcastingParams holds precomputed parameters for broadcasting a
721
- // single block along the broadcasting dimension. Sizes and strides along the
722
- // `bcast_dim` might be invalid, they will be adjusted later in
723
- // `BroadcastBlockAlongBcastDim`.
724
- struct BlockBroadcastingParams {
725
- Dimensions input_dims; // input expression dimensions
726
- Dimensions output_dims; // output block sizes
727
- Dimensions output_strides; // output block strides
728
-
729
- int inner_dim_count; // count inner dimensions matching in size
730
- int bcast_dim; // broadcasting dimension index
731
- Index bcast_dim_size; // broadcasting dimension size
732
- Index inner_dim_size; // inner dimensions size
733
-
734
- // Block sizes and strides for the input block where all dimensions before
735
- // `bcast_dim` are equal to `1`.
736
- Dimensions input_block_sizes;
737
- Dimensions input_block_strides;
738
-
739
- // Block sizes and strides for blocks with extra dimensions and strides `0`.
740
- BroadcastDimensions bcast_block_sizes;
741
- BroadcastDimensions bcast_block_strides;
742
- BroadcastDimensions bcast_input_strides;
743
- };
744
-
745
- struct BlockBroadcastingIteratorState {
746
- Index size;
747
- Index count;
748
- Index output_stride;
749
- Index output_span;
750
- };
751
-
752
- EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE BlockBroadcastingParams
753
- blockBroadcastingParams(TensorBlockDesc& desc) const {
754
- BlockBroadcastingParams params;
755
-
756
- params.input_dims = Dimensions(m_impl.dimensions());
757
-
758
- // Output block sizes and strides.
759
- params.output_dims = desc.dimensions();
760
- params.output_strides = internal::strides<Layout>(params.output_dims);
761
-
762
- // Find the broadcasting dimension (first dimension with output size smaller
763
- // that the input size).
764
- params.bcast_dim = 0;
765
- params.bcast_dim_size = 1;
766
- params.inner_dim_size = 1;
767
-
768
- // Count the number of inner dimensions that have the same size in the block
769
- // and in the broadcast expression.
770
- params.inner_dim_count = 0;
771
-
772
- for (int i = 0; i < NumDims; ++i) {
773
- const int dim = IsColMajor ? i : NumDims - i - 1;
774
-
775
- if (params.output_dims[dim] == m_dimensions[dim]) {
776
- params.inner_dim_size *= params.output_dims[dim];
777
- ++params.inner_dim_count;
778
- continue;
779
- }
780
-
781
- // First non-matching dimension is the broadcasting dimension.
782
- eigen_assert(params.output_dims[dim] < m_dimensions[dim]);
783
- params.bcast_dim = dim;
784
- params.bcast_dim_size = params.output_dims[dim];
785
- break;
786
- }
787
-
788
- // Calculate the input block size for looking into the input.
789
- for (int i = 0; i < params.inner_dim_count; ++i) {
790
- const int dim = IsColMajor ? i : NumDims - i - 1;
791
- params.input_block_sizes[dim] = params.input_dims[dim];
792
- }
793
- for (int i = params.inner_dim_count; i < NumDims; ++i) {
794
- const int dim = IsColMajor ? i : NumDims - i - 1;
795
- params.input_block_sizes[dim] = 1;
796
- }
797
- params.input_block_strides =
798
- internal::strides<Layout>(params.input_block_sizes);
799
-
800
- // Broadcast with the 0-stride trick: Create 1 extra dim for each
801
- // broadcast, set the input stride to 0.
802
- //
803
- // When ColMajor:
804
- //
805
- // - bcast_block_sizes:
806
- // [d_0, b_0, d_1, b_1, ...]
807
- //
808
- // - bcast_block_strides:
809
- // [output_block_strides[0], output_block_strides[0] * d_0,
810
- // output_block_strides[1], output_block_strides[1] * d_1,
811
- // ...]
812
- //
813
- // - bcast_input_strides:
814
- // [input_block_strides[0], 0,
815
- // input_block_strides[1], 0,
816
- // ...].
817
- //
818
- for (int i = 0; i < params.inner_dim_count; ++i) {
819
- const int dim = IsColMajor ? i : NumDims - i - 1;
820
-
821
- const int copy_dim = IsColMajor ? 2 * i : 2 * NumDims - 2 * i - 1;
822
- const int broadcast_dim = IsColMajor ? copy_dim + 1 : copy_dim - 1;
823
-
824
- params.bcast_block_sizes[copy_dim] = params.input_dims[dim];
825
- params.bcast_block_sizes[broadcast_dim] = m_broadcast[dim];
826
- params.bcast_block_strides[copy_dim] = params.output_strides[dim];
827
- params.bcast_block_strides[broadcast_dim] =
828
- params.output_strides[dim] * params.input_dims[dim];
829
- params.bcast_input_strides[copy_dim] = params.input_block_strides[dim];
830
- params.bcast_input_strides[broadcast_dim] = 0;
831
- }
832
-
833
- for (int i = 2 * params.inner_dim_count; i < 2 * NumDims; ++i) {
834
- const int dim = IsColMajor ? i : 2 * NumDims - i - 1;
835
- params.bcast_block_sizes[dim] = 1;
836
- params.bcast_block_strides[dim] = 0;
837
- params.bcast_input_strides[dim] = 0;
838
- }
839
-
840
- return params;
841
- }
842
-
843
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock emptyBlock() const {
844
- DSizes<Index, NumDims> dimensions;
845
- for (int i = 0; i < NumDims; ++i) dimensions[i] = 0;
846
- return TensorBlock(internal::TensorBlockKind::kView, NULL, dimensions);
847
- }
848
-
849
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index BroadcastBlockAlongBcastDim(
850
- BlockBroadcastingParams params, Index bcast_offset,
851
- TensorBlockScratch& scratch, ScalarNoConst* materialized_output,
852
- ScalarNoConst** materialized_input,
853
- size_t* materialized_input_size) const {
854
- if (params.bcast_dim_size == 1) {
855
- // We just need one block read using the ready-set values above.
856
- return BroadcastBlock(
857
- params.input_block_sizes, params.input_block_strides,
858
- params.bcast_block_sizes, params.bcast_block_strides,
859
- params.bcast_input_strides, bcast_offset, 0, scratch,
860
- materialized_output, materialized_input, materialized_input_size);
861
-
862
- } else if (params.input_dims[params.bcast_dim] == 1) {
863
- // Broadcast bcast dimension (< NumDims) by bcast_dim_size.
864
- const int broadcast_bcast_dim =
865
- IsColMajor ? 2 * params.inner_dim_count + 1
866
- : 2 * NumDims - 2 * params.inner_dim_count - 2;
867
-
868
- params.bcast_block_sizes[broadcast_bcast_dim] = params.bcast_dim_size;
869
- params.bcast_input_strides[broadcast_bcast_dim] = 0;
870
- params.bcast_block_strides[broadcast_bcast_dim] =
871
- params.output_strides[params.bcast_dim];
872
-
873
- return BroadcastBlock(
874
- params.input_block_sizes, params.input_block_strides,
875
- params.bcast_block_sizes, params.bcast_block_strides,
876
- params.bcast_input_strides, bcast_offset, 0, scratch,
877
- materialized_output, materialized_input, materialized_input_size);
878
-
879
- } else {
880
- // Keep track of the total number of the coefficients written to the
881
- // output block.
882
- Index num_output_coeffs = 0;
883
-
884
- // The general case. Let's denote the output block as
885
- //
886
- // x[..., a:a+bcast_dim_size, :, ..., :]
887
- //
888
- // where a:a+bcast_dim_size is a slice on the bcast_dim dimension
889
- // (< NumDims). We need to split the a:a+bcast_dim_size into possibly 3
890
- // sub-blocks:
891
- //
892
- // (1) a:b, where b is the smallest multiple of
893
- // input_dims[bcast_dim_start] in [a, a+bcast_dim_size].
894
- //
895
- // (2) b:c, where c is the largest multiple of input_dims[bcast_dim_start]
896
- // in [a, a+bcast_dim_size].
897
- //
898
- // (3) c:a+bcast_dim_size .
899
- //
900
- // Or, when b and c do not exist, we just need to process the whole block
901
- // together.
902
-
903
- // Find a.
904
- const Index bcast_dim_left_index =
905
- bcast_offset / m_outputStrides[params.bcast_dim];
906
-
907
- // Find b and c.
908
- const Index input_bcast_dim_size = params.input_dims[params.bcast_dim];
909
-
910
- // First multiple after a. This is b when <= bcast_dim_left_index +
911
- // bcast_dim_size.
912
- const Index first_multiple =
913
- divup<Index>(bcast_dim_left_index, input_bcast_dim_size) *
914
- input_bcast_dim_size;
915
-
916
- if (first_multiple <= bcast_dim_left_index + params.bcast_dim_size) {
917
- // b exists, so does c. Find it.
918
- const Index last_multiple =
919
- (bcast_dim_left_index + params.bcast_dim_size) /
920
- input_bcast_dim_size * input_bcast_dim_size;
921
- const int copy_bcast_dim =
922
- IsColMajor ? 2 * params.inner_dim_count
923
- : 2 * NumDims - 2 * params.inner_dim_count - 1;
924
- const int broadcast_bcast_dim =
925
- IsColMajor ? 2 * params.inner_dim_count + 1
926
- : 2 * NumDims - 2 * params.inner_dim_count - 2;
927
-
928
- if (first_multiple > bcast_dim_left_index) {
929
- const Index head_size = first_multiple - bcast_dim_left_index;
930
- params.input_block_sizes[params.bcast_dim] = head_size;
931
- params.bcast_block_sizes[copy_bcast_dim] = head_size;
932
- params.bcast_input_strides[copy_bcast_dim] =
933
- params.input_block_strides[params.bcast_dim];
934
- params.bcast_block_strides[copy_bcast_dim] =
935
- params.output_strides[params.bcast_dim];
936
- params.bcast_block_sizes[broadcast_bcast_dim] = 1;
937
- params.bcast_input_strides[broadcast_bcast_dim] = 0;
938
- params.bcast_block_strides[broadcast_bcast_dim] =
939
- params.output_strides[params.bcast_dim] *
940
- params.input_dims[params.bcast_dim];
941
-
942
- num_output_coeffs += BroadcastBlock(
943
- params.input_block_sizes, params.input_block_strides,
944
- params.bcast_block_sizes, params.bcast_block_strides,
945
- params.bcast_input_strides, bcast_offset, 0, scratch,
946
- materialized_output, materialized_input, materialized_input_size);
947
- }
948
- if (first_multiple < last_multiple) {
949
- params.input_block_sizes[params.bcast_dim] = input_bcast_dim_size;
950
- params.bcast_block_sizes[copy_bcast_dim] = input_bcast_dim_size;
951
- params.bcast_input_strides[copy_bcast_dim] =
952
- params.input_block_strides[params.bcast_dim];
953
- params.bcast_block_strides[copy_bcast_dim] =
954
- params.output_strides[params.bcast_dim];
955
- params.bcast_block_sizes[broadcast_bcast_dim] =
956
- (last_multiple - first_multiple) / input_bcast_dim_size;
957
- params.bcast_input_strides[broadcast_bcast_dim] = 0;
958
- params.bcast_block_strides[broadcast_bcast_dim] =
959
- params.output_strides[params.bcast_dim] *
960
- params.input_dims[params.bcast_dim];
961
- const Index offset = (first_multiple - bcast_dim_left_index) *
962
- m_outputStrides[params.bcast_dim];
963
-
964
- num_output_coeffs += BroadcastBlock(
965
- params.input_block_sizes, params.input_block_strides,
966
- params.bcast_block_sizes, params.bcast_block_strides,
967
- params.bcast_input_strides, bcast_offset, offset, scratch,
968
- materialized_output, materialized_input, materialized_input_size);
969
- }
970
- if (last_multiple < bcast_dim_left_index + params.bcast_dim_size) {
971
- const Index tail_size =
972
- bcast_dim_left_index + params.bcast_dim_size - last_multiple;
973
- params.input_block_sizes[params.bcast_dim] = tail_size;
974
- params.bcast_block_sizes[copy_bcast_dim] = tail_size;
975
- params.bcast_input_strides[copy_bcast_dim] =
976
- params.input_block_strides[params.bcast_dim];
977
- params.bcast_block_strides[copy_bcast_dim] =
978
- params.output_strides[params.bcast_dim];
979
- params.bcast_block_sizes[broadcast_bcast_dim] = 1;
980
- params.bcast_input_strides[broadcast_bcast_dim] = 0;
981
- params.bcast_block_strides[broadcast_bcast_dim] =
982
- params.output_strides[params.bcast_dim] *
983
- params.input_dims[params.bcast_dim];
984
- const Index offset = (last_multiple - bcast_dim_left_index) *
985
- m_outputStrides[params.bcast_dim];
986
-
987
- num_output_coeffs += BroadcastBlock(
988
- params.input_block_sizes, params.input_block_strides,
989
- params.bcast_block_sizes, params.bcast_block_strides,
990
- params.bcast_input_strides, bcast_offset, offset, scratch,
991
- materialized_output, materialized_input, materialized_input_size);
992
- }
993
- } else {
994
- // b and c do not exist.
995
- const int copy_bcast_dim =
996
- IsColMajor ? 2 * params.inner_dim_count
997
- : 2 * NumDims - 2 * params.inner_dim_count - 1;
998
- params.input_block_sizes[params.bcast_dim] = params.bcast_dim_size;
999
- params.bcast_block_sizes[copy_bcast_dim] = params.bcast_dim_size;
1000
- params.bcast_input_strides[copy_bcast_dim] =
1001
- params.input_block_strides[params.bcast_dim];
1002
- params.bcast_block_strides[copy_bcast_dim] =
1003
- params.output_strides[params.bcast_dim];
1004
-
1005
- num_output_coeffs += BroadcastBlock(
1006
- params.input_block_sizes, params.input_block_strides,
1007
- params.bcast_block_sizes, params.bcast_block_strides,
1008
- params.bcast_input_strides, bcast_offset, 0, scratch,
1009
- materialized_output, materialized_input, materialized_input_size);
1010
- }
1011
-
1012
- return num_output_coeffs;
1013
- }
1014
- }
1015
-
1016
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index BroadcastBlock(
1017
- const Dimensions& input_block_sizes,
1018
- const Dimensions& input_block_strides,
1019
- const BroadcastDimensions& bcast_block_sizes,
1020
- const BroadcastDimensions& bcast_block_strides,
1021
- const BroadcastDimensions& bcast_input_strides, Index bcast_offset,
1022
- Index offset, TensorBlockScratch& scratch,
1023
- ScalarNoConst* materialized_output, ScalarNoConst** materialized_input,
1024
- size_t* materialized_input_size) const {
1025
- // ---------------------------------------------------------------------- //
1026
- // Tensor block descriptor for reading block from the input.
1027
- const Index input_offset = bcast_offset + offset;
1028
- TensorBlockDesc input_desc(
1029
- IsColMajor ? indexColMajor(input_offset) : indexRowMajor(input_offset),
1030
- input_block_sizes);
1031
-
1032
- ArgTensorBlock input_block = m_impl.block(input_desc, scratch);
1033
-
1034
- // ---------------------------------------------------------------------- //
1035
- // Materialize input block into a temporary memory buffer only if it's not
1036
- // already available in the arg block.
1037
- const ScalarNoConst* input_buffer = NULL;
1038
-
1039
- if (input_block.data() != NULL) {
1040
- // Input block already has raw data, there is no need to materialize it.
1041
- input_buffer = input_block.data();
1042
-
1043
- } else {
1044
- // Otherwise we have to do block assignment into a temporary buffer.
1045
-
1046
- // Maybe reuse previously allocated buffer, or allocate a new one with a
1047
- // scratch allocator.
1048
- const size_t input_total_size = input_block_sizes.TotalSize();
1049
- if (*materialized_input == NULL ||
1050
- *materialized_input_size < input_total_size) {
1051
- *materialized_input_size = input_total_size;
1052
- void* mem = scratch.allocate(*materialized_input_size * sizeof(Scalar));
1053
- *materialized_input = static_cast<ScalarNoConst*>(mem);
1054
- }
1055
-
1056
- typedef internal::TensorBlockAssignment<
1057
- ScalarNoConst, NumDims, typename ArgTensorBlock::XprType, Index>
1058
- TensorBlockAssignment;
1059
-
1060
- TensorBlockAssignment::Run(
1061
- TensorBlockAssignment::target(input_block_sizes, input_block_strides,
1062
- *materialized_input),
1063
- input_block.expr());
1064
-
1065
- input_buffer = *materialized_input;
1066
- }
1067
-
1068
- // ---------------------------------------------------------------------- //
1069
- // Copy data from materialized input block to the materialized output, using
1070
- // given broadcast strides (strides with zeroes).
1071
- typedef internal::TensorBlockIO<ScalarNoConst, Index, 2 * NumDims, Layout>
1072
- TensorBlockIO;
1073
-
1074
- typename TensorBlockIO::Src src(bcast_input_strides, input_buffer);
1075
- typename TensorBlockIO::Dst dst(bcast_block_sizes, bcast_block_strides,
1076
- materialized_output + offset);
1077
-
1078
- return TensorBlockIO::Copy(dst, src);
1079
- }
1080
-
1081
- protected:
1082
- const Device EIGEN_DEVICE_REF m_device;
1083
- const typename internal::remove_reference<Broadcast>::type m_broadcast;
1084
- Dimensions m_dimensions;
1085
- array<Index, NumDims> m_outputStrides;
1086
- array<Index, NumDims> m_inputStrides;
1087
- TensorEvaluator<ArgType, Device> m_impl;
1088
- };
1089
-
1090
-
1091
- } // end namespace Eigen
1092
-
1093
- #endif // EIGEN_CXX11_TENSOR_TENSOR_BROADCASTING_H