scikit-learn-intelex 2025.10.0__py313-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (267) hide show
  1. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
  2. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
  3. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/_daal4py.cp313-win_amd64.pyd +0 -0
  4. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +94 -0
  5. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/gbt_convertors.py +1199 -0
  6. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/logistic_regression_builders.py +211 -0
  7. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/tree_based_builders.py +425 -0
  8. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp313-win_amd64.pyd +0 -0
  9. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
  10. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +252 -0
  11. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
  12. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
  13. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
  14. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +565 -0
  15. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  16. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +19 -0
  17. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +528 -0
  18. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
  19. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +333 -0
  20. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
  21. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1285 -0
  22. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  23. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/__init__.py +29 -0
  24. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +826 -0
  25. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +269 -0
  26. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +290 -0
  27. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
  28. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
  29. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  30. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +561 -0
  31. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
  32. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_enet.py +157 -0
  33. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +198 -0
  34. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  35. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/__init__.py +19 -0
  36. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +432 -0
  37. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
  38. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +259 -0
  39. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
  40. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
  41. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
  42. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  43. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
  44. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  45. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +164 -0
  46. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  47. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
  48. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
  49. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
  50. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +493 -0
  51. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +136 -0
  52. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +72 -0
  53. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  54. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  55. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
  56. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +736 -0
  57. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
  58. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +80 -0
  59. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
  60. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +772 -0
  61. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/__init__.py +151 -0
  62. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_config.py +80 -0
  63. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_device_offload.py +199 -0
  64. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp313-win_amd64.pyd +0 -0
  65. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp313-win_amd64.pyd +0 -0
  66. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
  67. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +151 -0
  68. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +165 -0
  69. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +241 -0
  70. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
  71. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
  72. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
  73. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +80 -0
  74. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +582 -0
  75. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +145 -0
  76. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
  77. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
  78. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
  79. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_backend.py +258 -0
  80. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
  81. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
  82. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +148 -0
  83. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +148 -0
  84. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
  85. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +121 -0
  86. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +151 -0
  87. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
  88. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
  89. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +29 -0
  90. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +158 -0
  91. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_dlpack.py +64 -0
  92. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_sycl_usm.py +63 -0
  93. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +131 -0
  94. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +686 -0
  95. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/__init__.py +20 -0
  96. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +218 -0
  97. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +124 -0
  98. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +291 -0
  99. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/__init__.py +19 -0
  100. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/dummy.py +137 -0
  101. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
  102. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +781 -0
  103. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
  104. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
  105. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +201 -0
  106. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +230 -0
  107. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +293 -0
  108. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
  109. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
  110. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +252 -0
  111. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
  112. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
  113. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
  114. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +690 -0
  115. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
  116. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
  117. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +27 -0
  118. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +202 -0
  119. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
  120. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
  121. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/svm.py +592 -0
  122. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +352 -0
  123. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
  124. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
  125. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +168 -0
  126. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
  127. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/test_common.py +71 -0
  128. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +179 -0
  129. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +94 -0
  130. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +98 -0
  131. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_sycl_queue_manager.py +213 -0
  132. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_third_party.py +220 -0
  133. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
  134. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/validation.py +503 -0
  135. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__init__.py +69 -0
  136. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__main__.py +58 -0
  137. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_config.py +163 -0
  138. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +205 -0
  139. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_utils.py +219 -0
  140. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/base.py +109 -0
  141. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
  142. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +241 -0
  143. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +338 -0
  144. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
  145. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
  146. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +20 -0
  147. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +199 -0
  148. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +399 -0
  149. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +38 -0
  150. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
  151. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
  152. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
  153. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +440 -0
  154. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +307 -0
  155. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +19 -0
  156. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +558 -0
  157. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +164 -0
  158. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dispatcher.py +572 -0
  159. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +629 -0
  160. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/__init__.py +19 -0
  161. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/_dummy.py +615 -0
  162. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/tests/test_dummy.py +62 -0
  163. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +29 -0
  164. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1799 -0
  165. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +196 -0
  166. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py +72 -0
  167. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +101 -0
  168. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
  169. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +44 -0
  170. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +427 -0
  171. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +407 -0
  172. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +363 -0
  173. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +466 -0
  174. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +407 -0
  175. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
  176. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
  177. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
  178. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +565 -0
  179. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
  180. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +19 -0
  181. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +28 -0
  182. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +256 -0
  183. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +23 -0
  184. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +20 -0
  185. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +20 -0
  186. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +39 -0
  187. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +21 -0
  188. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py +20 -0
  189. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +34 -0
  190. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +27 -0
  191. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +189 -0
  192. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py +313 -0
  193. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +189 -0
  194. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +167 -0
  195. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +170 -0
  196. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +82 -0
  197. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py +17 -0
  198. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
  199. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +261 -0
  200. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +112 -0
  201. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
  202. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +406 -0
  203. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +390 -0
  204. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +25 -0
  205. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
  206. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +24 -0
  207. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  208. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +117 -0
  209. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +314 -0
  210. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
  211. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +26 -0
  212. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
  213. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +108 -0
  214. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +180 -0
  215. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
  216. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +24 -0
  217. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +29 -0
  218. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +120 -0
  219. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +200 -0
  220. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
  221. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +23 -0
  222. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +23 -0
  223. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +276 -0
  224. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +146 -0
  225. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
  226. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +299 -0
  227. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +299 -0
  228. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
  229. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +28 -0
  230. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +24 -0
  231. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  232. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +345 -0
  233. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +162 -0
  234. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +169 -0
  235. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +23 -0
  236. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +433 -0
  237. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py +29 -0
  238. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +403 -0
  239. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +278 -0
  240. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +158 -0
  241. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svc.py +306 -0
  242. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svr.py +155 -0
  243. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +124 -0
  244. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +607 -0
  245. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +256 -0
  246. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +111 -0
  247. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +335 -0
  248. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +269 -0
  249. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +111 -0
  250. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +48 -0
  251. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +418 -0
  252. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +335 -0
  253. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
  254. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +420 -0
  255. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
  256. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
  257. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +217 -0
  258. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/class_weight.py +100 -0
  259. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +97 -0
  260. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_class_weight.py +69 -0
  261. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
  262. scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +212 -0
  263. scikit_learn_intelex-2025.10.0.dist-info/LICENSE.txt +202 -0
  264. scikit_learn_intelex-2025.10.0.dist-info/METADATA +182 -0
  265. scikit_learn_intelex-2025.10.0.dist-info/RECORD +267 -0
  266. scikit_learn_intelex-2025.10.0.dist-info/WHEEL +5 -0
  267. scikit_learn_intelex-2025.10.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,20 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from daal4py.sklearn.model_selection import train_test_split
18
+ from onedal._device_offload import support_input_format
19
+
20
+ train_test_split = support_input_format(train_test_split)
@@ -0,0 +1,34 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ from numpy.testing import assert_allclose
19
+
20
+
21
+ # TODO:
22
+ # add pytest params for checking different dataframe inputs/outputs.
23
+ def test_sklearnex_import_train_test_split():
24
+ from sklearnex.model_selection import train_test_split
25
+
26
+ X = np.arange(100).reshape((10, 10))
27
+ y = np.arange(10)
28
+
29
+ split = train_test_split(X, y, test_size=None, train_size=0.5)
30
+ X_train, X_test, y_train, y_test = split
31
+ assert len(y_test) == len(y_train)
32
+
33
+ assert_allclose(X_train[:, 0], y_train * 10)
34
+ assert_allclose(X_test[:, 0], y_test * 10)
@@ -0,0 +1,27 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ from ._lof import LocalOutlierFactor
18
+ from .knn_classification import KNeighborsClassifier
19
+ from .knn_regression import KNeighborsRegressor
20
+ from .knn_unsupervised import NearestNeighbors
21
+
22
+ __all__ = [
23
+ "KNeighborsClassifier",
24
+ "KNeighborsRegressor",
25
+ "LocalOutlierFactor",
26
+ "NearestNeighbors",
27
+ ]
@@ -0,0 +1,189 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import warnings
18
+ from functools import wraps
19
+
20
+ import numpy as np
21
+ from sklearn.neighbors import LocalOutlierFactor as _sklearn_LocalOutlierFactor
22
+ from sklearn.utils.metaestimators import available_if
23
+ from sklearn.utils.validation import check_is_fitted
24
+
25
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
26
+ from daal4py.sklearn._utils import sklearn_check_version
27
+ from sklearnex._device_offload import dispatch, wrap_output_data
28
+ from sklearnex.neighbors.common import KNeighborsDispatchingBase
29
+ from sklearnex.neighbors.knn_unsupervised import NearestNeighbors
30
+
31
+ from ..utils._array_api import get_namespace
32
+ from ..utils.validation import check_feature_names
33
+
34
+
35
+ @control_n_jobs(decorated_methods=["fit", "kneighbors", "_kneighbors"])
36
+ class LocalOutlierFactor(KNeighborsDispatchingBase, _sklearn_LocalOutlierFactor):
37
+ __doc__ = (
38
+ _sklearn_LocalOutlierFactor.__doc__
39
+ + "\n NOTE: When X=None, methods kneighbors, kneighbors_graph, and predict will"
40
+ + "\n only output numpy arrays. In that case, the only way to offload to gpu"
41
+ + "\n is to use a global queue (e.g. using config_context)"
42
+ )
43
+ if sklearn_check_version("1.2"):
44
+ _parameter_constraints: dict = {
45
+ **_sklearn_LocalOutlierFactor._parameter_constraints
46
+ }
47
+
48
+ # Only certain methods should be taken from knn to prevent code
49
+ # duplication. Inheriting would yield a complicated inheritance
50
+ # structure and violate the sklearn inheritance path.
51
+ _save_attributes = NearestNeighbors._save_attributes
52
+ _onedal_knn_fit = NearestNeighbors._onedal_fit
53
+ _onedal_kneighbors = NearestNeighbors._onedal_kneighbors
54
+
55
+ def _onedal_fit(self, X, y, queue=None):
56
+ if sklearn_check_version("1.2"):
57
+ self._validate_params()
58
+
59
+ self._onedal_knn_fit(X, y, queue=queue)
60
+
61
+ if self.contamination != "auto":
62
+ if not (0.0 < self.contamination <= 0.5):
63
+ raise ValueError(
64
+ "contamination must be in (0, 0.5], " "got: %f" % self.contamination
65
+ )
66
+
67
+ n_samples = self.n_samples_fit_
68
+
69
+ if self.n_neighbors > n_samples:
70
+ warnings.warn(
71
+ "n_neighbors (%s) is greater than the "
72
+ "total number of samples (%s). n_neighbors "
73
+ "will be set to (n_samples - 1) for estimation."
74
+ % (self.n_neighbors, n_samples)
75
+ )
76
+ self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))
77
+
78
+ (
79
+ self._distances_fit_X_,
80
+ _neighbors_indices_fit_X_,
81
+ ) = self._onedal_kneighbors(n_neighbors=self.n_neighbors_, queue=queue)
82
+
83
+ # Sklearn includes a check for float32 at this point which may not be
84
+ # necessary for onedal
85
+
86
+ self._lrd = self._local_reachability_density(
87
+ self._distances_fit_X_, _neighbors_indices_fit_X_
88
+ )
89
+
90
+ # Compute lof score over training samples to define offset_:
91
+ lrd_ratios_array = self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]
92
+
93
+ self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)
94
+
95
+ if self.contamination == "auto":
96
+ # inliers score around -1 (the higher, the less abnormal).
97
+ self.offset_ = -1.5
98
+ else:
99
+ self.offset_ = np.percentile(
100
+ self.negative_outlier_factor_, 100.0 * self.contamination
101
+ )
102
+
103
+ # adoption of warning for data with duplicated samples from
104
+ # https://github.com/scikit-learn/scikit-learn/pull/28773
105
+ if sklearn_check_version("1.6"):
106
+ if np.min(self.negative_outlier_factor_) < -1e7 and not self.novelty:
107
+ warnings.warn(
108
+ "Duplicate values are leading to incorrect results. "
109
+ "Increase the number of neighbors for more accurate results."
110
+ )
111
+
112
+ return self
113
+
114
+ def fit(self, X, y=None):
115
+ result = dispatch(
116
+ self,
117
+ "fit",
118
+ {
119
+ "onedal": self.__class__._onedal_fit,
120
+ "sklearn": _sklearn_LocalOutlierFactor.fit,
121
+ },
122
+ X,
123
+ None,
124
+ )
125
+ return result
126
+
127
+ def _predict(self, X=None):
128
+ check_is_fitted(self)
129
+
130
+ if X is not None:
131
+ xp, _ = get_namespace(X)
132
+ output = self.decision_function(X) < 0
133
+ is_inlier = xp.ones_like(output, dtype=int)
134
+ is_inlier[output] = -1
135
+ else:
136
+ is_inlier = np.ones(self.n_samples_fit_, dtype=int)
137
+ is_inlier[self.negative_outlier_factor_ < self.offset_] = -1
138
+
139
+ return is_inlier
140
+
141
+ # This had to be done because predict loses the queue when no
142
+ # argument is given and it is a dpctl tensor or dpnp array.
143
+ # This would cause issues in fit_predict. Also, available_if
144
+ # is hard to unwrap, and this is the most straightforward way.
145
+ @available_if(_sklearn_LocalOutlierFactor._check_novelty_fit_predict)
146
+ @wraps(_sklearn_LocalOutlierFactor.fit_predict, assigned=["__doc__"])
147
+ @wrap_output_data
148
+ def fit_predict(self, X, y=None):
149
+ return self.fit(X)._predict()
150
+
151
+ def _kneighbors(self, X=None, n_neighbors=None, return_distance=True):
152
+ check_is_fitted(self)
153
+ if X is not None:
154
+ check_feature_names(self, X, reset=False)
155
+ return dispatch(
156
+ self,
157
+ "kneighbors",
158
+ {
159
+ "onedal": self.__class__._onedal_kneighbors,
160
+ "sklearn": _sklearn_LocalOutlierFactor.kneighbors,
161
+ },
162
+ X,
163
+ n_neighbors=n_neighbors,
164
+ return_distance=return_distance,
165
+ )
166
+
167
+ kneighbors = wrap_output_data(_kneighbors)
168
+
169
+ @available_if(_sklearn_LocalOutlierFactor._check_novelty_score_samples)
170
+ @wraps(_sklearn_LocalOutlierFactor.score_samples, assigned=["__doc__"])
171
+ @wrap_output_data
172
+ def score_samples(self, X):
173
+ check_is_fitted(self)
174
+
175
+ distances_X, neighbors_indices_X = self._kneighbors(
176
+ X, n_neighbors=self.n_neighbors_
177
+ )
178
+
179
+ X_lrd = self._local_reachability_density(
180
+ distances_X,
181
+ neighbors_indices_X,
182
+ )
183
+
184
+ lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]
185
+
186
+ return -np.mean(lrd_ratios_array, axis=1)
187
+
188
+ fit.__doc__ = _sklearn_LocalOutlierFactor.fit.__doc__
189
+ kneighbors.__doc__ = _sklearn_LocalOutlierFactor.kneighbors.__doc__
@@ -0,0 +1,313 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import warnings
18
+
19
+ import numpy as np
20
+ from scipy import sparse as sp
21
+ from sklearn.neighbors._ball_tree import BallTree
22
+ from sklearn.neighbors._base import VALID_METRICS, KNeighborsMixin
23
+ from sklearn.neighbors._base import NeighborsBase as _sklearn_NeighborsBase
24
+ from sklearn.neighbors._kd_tree import KDTree
25
+ from sklearn.utils.validation import check_is_fitted
26
+
27
+ from daal4py.sklearn._utils import sklearn_check_version
28
+ from onedal._device_offload import _transfer_to_host
29
+ from onedal.utils.validation import _check_array, _num_features, _num_samples
30
+
31
+ from .._utils import PatchingConditionsChain
32
+ from ..base import oneDALEstimator
33
+ from ..utils._array_api import get_namespace
34
+ from ..utils.validation import check_feature_names
35
+
36
+
37
+ class KNeighborsDispatchingBase(oneDALEstimator):
38
+ def _fit_validation(self, X, y=None):
39
+ if sklearn_check_version("1.2"):
40
+ self._validate_params()
41
+ check_feature_names(self, X, reset=True)
42
+ if self.metric_params is not None and "p" in self.metric_params:
43
+ if self.p is not None:
44
+ warnings.warn(
45
+ "Parameter p is found in metric_params. "
46
+ "The corresponding parameter from __init__ "
47
+ "is ignored.",
48
+ SyntaxWarning,
49
+ stacklevel=2,
50
+ )
51
+ self.effective_metric_params_ = self.metric_params.copy()
52
+ effective_p = self.metric_params["p"]
53
+ else:
54
+ self.effective_metric_params_ = {}
55
+ effective_p = self.p
56
+
57
+ self.effective_metric_params_["p"] = effective_p
58
+ self.effective_metric_ = self.metric
59
+ # For minkowski distance, use more efficient methods where available
60
+ if self.metric == "minkowski":
61
+ p = self.effective_metric_params_["p"]
62
+ if p == 1:
63
+ self.effective_metric_ = "manhattan"
64
+ elif p == 2:
65
+ self.effective_metric_ = "euclidean"
66
+ elif p == np.inf:
67
+ self.effective_metric_ = "chebyshev"
68
+
69
+ if not isinstance(X, (KDTree, BallTree, _sklearn_NeighborsBase)):
70
+ self._fit_X = _check_array(
71
+ X, dtype=[np.float64, np.float32], accept_sparse=True
72
+ )
73
+ self.n_samples_fit_ = _num_samples(self._fit_X)
74
+ self.n_features_in_ = _num_features(self._fit_X)
75
+
76
+ if self.algorithm == "auto":
77
+ # A tree approach is better for small number of neighbors or small
78
+ # number of features, with KDTree generally faster when available
79
+ is_n_neighbors_valid_for_brute = (
80
+ self.n_neighbors is not None
81
+ and self.n_neighbors >= self._fit_X.shape[0] // 2
82
+ )
83
+ if self._fit_X.shape[1] > 15 or is_n_neighbors_valid_for_brute:
84
+ self._fit_method = "brute"
85
+ else:
86
+ if self.effective_metric_ in VALID_METRICS["kd_tree"]:
87
+ self._fit_method = "kd_tree"
88
+ elif (
89
+ callable(self.effective_metric_)
90
+ or self.effective_metric_ in VALID_METRICS["ball_tree"]
91
+ ):
92
+ self._fit_method = "ball_tree"
93
+ else:
94
+ self._fit_method = "brute"
95
+ else:
96
+ self._fit_method = self.algorithm
97
+
98
+ if hasattr(self, "_onedal_estimator"):
99
+ delattr(self, "_onedal_estimator")
100
+ # To cover test case when we pass patched
101
+ # estimator as an input for other estimator
102
+ if isinstance(X, _sklearn_NeighborsBase):
103
+ self._fit_X = X._fit_X
104
+ self._tree = X._tree
105
+ self._fit_method = X._fit_method
106
+ self.n_samples_fit_ = X.n_samples_fit_
107
+ self.n_features_in_ = X.n_features_in_
108
+ if hasattr(X, "_onedal_estimator"):
109
+ self.effective_metric_params_.pop("p")
110
+ if self._fit_method == "ball_tree":
111
+ X._tree = BallTree(
112
+ X._fit_X,
113
+ self.leaf_size,
114
+ metric=self.effective_metric_,
115
+ **self.effective_metric_params_,
116
+ )
117
+ elif self._fit_method == "kd_tree":
118
+ X._tree = KDTree(
119
+ X._fit_X,
120
+ self.leaf_size,
121
+ metric=self.effective_metric_,
122
+ **self.effective_metric_params_,
123
+ )
124
+ elif self._fit_method == "brute":
125
+ X._tree = None
126
+ else:
127
+ raise ValueError("algorithm = '%s' not recognized" % self.algorithm)
128
+
129
+ elif isinstance(X, BallTree):
130
+ self._fit_X = X.data
131
+ self._tree = X
132
+ self._fit_method = "ball_tree"
133
+ self.n_samples_fit_ = X.data.shape[0]
134
+ self.n_features_in_ = X.data.shape[1]
135
+
136
+ elif isinstance(X, KDTree):
137
+ self._fit_X = X.data
138
+ self._tree = X
139
+ self._fit_method = "kd_tree"
140
+ self.n_samples_fit_ = X.data.shape[0]
141
+ self.n_features_in_ = X.data.shape[1]
142
+
143
+ def _onedal_supported(self, device, method_name, *data):
144
+ if method_name == "fit":
145
+ self._fit_validation(data[0], data[1])
146
+
147
+ class_name = self.__class__.__name__
148
+ is_classifier = "Classifier" in class_name
149
+ is_regressor = "Regressor" in class_name
150
+ is_unsupervised = not (is_classifier or is_regressor)
151
+ patching_status = PatchingConditionsChain(
152
+ f"sklearn.neighbors.{class_name}.{method_name}"
153
+ )
154
+ if not patching_status.and_condition(
155
+ "radius" not in method_name, "RadiusNeighbors not implemented in sklearnex"
156
+ ):
157
+ return patching_status
158
+
159
+ if not patching_status.and_condition(
160
+ not isinstance(data[0], (KDTree, BallTree, _sklearn_NeighborsBase)),
161
+ f"Input type {type(data[0])} is not supported.",
162
+ ):
163
+ return patching_status
164
+
165
+ if self._fit_method in ["auto", "ball_tree"]:
166
+ condition = (
167
+ self.n_neighbors is not None
168
+ and self.n_neighbors >= self.n_samples_fit_ // 2
169
+ )
170
+ if self.n_features_in_ > 15 or condition:
171
+ result_method = "brute"
172
+ else:
173
+ if self.effective_metric_ in ["euclidean"]:
174
+ result_method = "kd_tree"
175
+ else:
176
+ result_method = "brute"
177
+ else:
178
+ result_method = self._fit_method
179
+
180
+ p_less_than_one = (
181
+ "p" in self.effective_metric_params_.keys()
182
+ and self.effective_metric_params_["p"] < 1
183
+ )
184
+ if not patching_status.and_condition(
185
+ not p_less_than_one, '"p" metric parameter is less than 1'
186
+ ):
187
+ return patching_status
188
+
189
+ if not patching_status.and_condition(
190
+ not sp.issparse(data[0]), "Sparse input is not supported."
191
+ ):
192
+ return patching_status
193
+
194
+ if not is_unsupervised:
195
+ is_valid_weights = self.weights in ["uniform", "distance"]
196
+ if is_classifier:
197
+ class_count = 1
198
+ is_single_output = False
199
+ y = None
200
+ # To check multioutput, might be overhead
201
+ if len(data) > 1:
202
+ y = np.asarray(data[1])
203
+ if is_classifier:
204
+ class_count = len(np.unique(y))
205
+ if hasattr(self, "_onedal_estimator"):
206
+ y = self._onedal_estimator._y
207
+ if y is not None and hasattr(y, "ndim") and hasattr(y, "shape"):
208
+ is_single_output = y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1
209
+
210
+ # TODO: add native support for these metric names
211
+ metrics_map = {"manhattan": ["l1", "cityblock"], "euclidean": ["l2"]}
212
+ for origin, aliases in metrics_map.items():
213
+ if self.effective_metric_ in aliases:
214
+ self.effective_metric_ = origin
215
+ break
216
+ if self.effective_metric_ == "manhattan":
217
+ self.effective_metric_params_["p"] = 1
218
+ elif self.effective_metric_ == "euclidean":
219
+ self.effective_metric_params_["p"] = 2
220
+
221
+ onedal_brute_metrics = [
222
+ "manhattan",
223
+ "minkowski",
224
+ "euclidean",
225
+ "chebyshev",
226
+ "cosine",
227
+ ]
228
+ onedal_kdtree_metrics = ["euclidean"]
229
+ is_valid_for_brute = (
230
+ result_method == "brute" and self.effective_metric_ in onedal_brute_metrics
231
+ )
232
+ is_valid_for_kd_tree = (
233
+ result_method == "kd_tree" and self.effective_metric_ in onedal_kdtree_metrics
234
+ )
235
+ if result_method == "kd_tree":
236
+ if not patching_status.and_condition(
237
+ device != "gpu", '"kd_tree" method is not supported on GPU.'
238
+ ):
239
+ return patching_status
240
+
241
+ if not patching_status.and_condition(
242
+ is_valid_for_kd_tree or is_valid_for_brute,
243
+ f"{result_method} with {self.effective_metric_} metric is not supported.",
244
+ ):
245
+ return patching_status
246
+ if not is_unsupervised:
247
+ if not patching_status.and_conditions(
248
+ [
249
+ (is_single_output, "Only single output is supported."),
250
+ (
251
+ is_valid_weights,
252
+ f'"{type(self.weights)}" weights type is not supported.',
253
+ ),
254
+ ]
255
+ ):
256
+ return patching_status
257
+ if method_name == "fit":
258
+ if is_classifier:
259
+ patching_status.and_condition(
260
+ class_count >= 2, "One-class case is not supported."
261
+ )
262
+ return patching_status
263
+ if method_name in ["predict", "predict_proba", "kneighbors", "score"]:
264
+ patching_status.and_condition(
265
+ hasattr(self, "_onedal_estimator"), "oneDAL model was not trained."
266
+ )
267
+ return patching_status
268
+ raise RuntimeError(f"Unknown method {method_name} in {class_name}")
269
+
270
+ def _onedal_gpu_supported(self, method_name, *data):
271
+ return self._onedal_supported("gpu", method_name, *data)
272
+
273
+ def _onedal_cpu_supported(self, method_name, *data):
274
+ return self._onedal_supported("cpu", method_name, *data)
275
+
276
+ def kneighbors_graph(self, X=None, n_neighbors=None, mode="connectivity"):
277
+ check_is_fitted(self)
278
+ if n_neighbors is None:
279
+ n_neighbors = self.n_neighbors
280
+
281
+ # check the input only in self.kneighbors
282
+
283
+ # construct CSR matrix representation of the k-NN graph
284
+ # requires moving data to host to construct the csr_matrix
285
+ if mode == "connectivity":
286
+ A_ind = self.kneighbors(X, n_neighbors, return_distance=False)
287
+ _, (A_ind,) = _transfer_to_host(A_ind)
288
+ n_queries = A_ind.shape[0]
289
+ A_data = np.ones(n_queries * n_neighbors)
290
+
291
+ elif mode == "distance":
292
+ A_data, A_ind = self.kneighbors(X, n_neighbors, return_distance=True)
293
+ _, (A_data, A_ind) = _transfer_to_host(A_data, A_ind)
294
+ A_data = np.reshape(A_data, (-1,))
295
+
296
+ else:
297
+ raise ValueError(
298
+ 'Unsupported mode, must be one of "connectivity", '
299
+ f'or "distance" but got "{mode}" instead'
300
+ )
301
+
302
+ n_queries = A_ind.shape[0]
303
+ n_samples_fit = self.n_samples_fit_
304
+ n_nonzero = n_queries * n_neighbors
305
+ A_indptr = np.arange(0, n_nonzero + 1, n_neighbors)
306
+
307
+ kneighbors_graph = sp.csr_matrix(
308
+ (A_data, np.reshape(A_ind, (-1,)), A_indptr), shape=(n_queries, n_samples_fit)
309
+ )
310
+
311
+ return kneighbors_graph
312
+
313
+ kneighbors_graph.__doc__ = KNeighborsMixin.kneighbors_graph.__doc__