scikit-learn-intelex 2025.10.0__py313-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/_daal4py.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/gbt_convertors.py +1199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/logistic_regression_builders.py +211 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mb/tree_based_builders.py +425 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +528 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +192 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +333 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1285 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +826 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +290 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +561 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_enet.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +432 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +259 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/_models_info.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_patching.py +90 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/utils/_launch_algorithms.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +493 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +136 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +736 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +772 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/__init__.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_config.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_device_offload.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp313-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +165 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +279 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/utils.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +80 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +582 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +145 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_backend.py +258 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/common/tests/test_sycl.py +148 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +121 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +151 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +190 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_dlpack.py +64 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/_sycl_usm.py +63 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +131 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +686 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +218 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +291 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/dummy/dummy.py +137 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +781 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +201 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +230 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +293 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +171 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +252 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +690 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +202 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/svm.py +592 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +352 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +168 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/test_common.py +71 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +179 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +94 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +98 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_sycl_queue_manager.py +213 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/_third_party.py +220 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/tests/test_validation.py +142 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/onedal/utils/validation.py +503 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__init__.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/__main__.py +58 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_config.py +163 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +205 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/_utils.py +219 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/base.py +109 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +241 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +338 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +405 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +455 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +199 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +399 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +38 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +157 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +440 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +307 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +558 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +164 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dispatcher.py +572 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +629 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/_dummy.py +615 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/dummy/tests/test_dummy.py +62 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1799 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +196 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py +72 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py +101 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +44 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +427 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +363 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +466 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py +407 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +267 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +214 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +565 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_ridge.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py +28 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +39 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +34 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py +27 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +189 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py +313 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +189 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +167 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +170 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +82 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py +17 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +261 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +112 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +406 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +390 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +25 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +117 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +314 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +30 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +26 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +108 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +180 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +120 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +200 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +20 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +276 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +146 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +299 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +28 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +24 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +345 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +169 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +23 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +433 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py +29 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +403 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py +278 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py +158 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svc.py +306 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/svr.py +155 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +124 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +607 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +256 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_hyperparameters.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +269 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +111 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +418 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +335 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +48 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +420 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py +19 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +217 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/class_weight.py +100 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py +97 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_class_weight.py +69 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_validation.py +238 -0
- scikit_learn_intelex-2025.10.0.data/data/Lib/site-packages/sklearnex/utils/validation.py +212 -0
- scikit_learn_intelex-2025.10.0.dist-info/LICENSE.txt +202 -0
- scikit_learn_intelex-2025.10.0.dist-info/METADATA +182 -0
- scikit_learn_intelex-2025.10.0.dist-info/RECORD +267 -0
- scikit_learn_intelex-2025.10.0.dist-info/WHEEL +5 -0
- scikit_learn_intelex-2025.10.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,826 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2020 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import numbers
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
from scipy import sparse as sp
|
|
21
|
+
from sklearn.linear_model._coordinate_descent import ElasticNet as ElasticNet_original
|
|
22
|
+
from sklearn.linear_model._coordinate_descent import Lasso as Lasso_original
|
|
23
|
+
from sklearn.utils import check_array, check_X_y
|
|
24
|
+
|
|
25
|
+
import daal4py
|
|
26
|
+
from daal4py.sklearn._utils import (
|
|
27
|
+
PatchingConditionsChain,
|
|
28
|
+
get_patch_message,
|
|
29
|
+
getFPType,
|
|
30
|
+
make2d,
|
|
31
|
+
sklearn_check_version,
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
from .._n_jobs_support import control_n_jobs
|
|
35
|
+
from ..utils.validation import check_feature_names
|
|
36
|
+
|
|
37
|
+
if not sklearn_check_version("1.2"):
|
|
38
|
+
from sklearn.linear_model._base import _deprecate_normalize
|
|
39
|
+
if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
|
|
40
|
+
from sklearn.utils import check_scalar
|
|
41
|
+
|
|
42
|
+
import logging
|
|
43
|
+
|
|
44
|
+
# only for compliance with Sklearn
|
|
45
|
+
import warnings
|
|
46
|
+
|
|
47
|
+
from sklearn.exceptions import ConvergenceWarning
|
|
48
|
+
from sklearn.preprocessing import normalize
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def _daal4py_check(self, X, y, check_input):
|
|
52
|
+
_fptype = getFPType(X)
|
|
53
|
+
|
|
54
|
+
# check alpha
|
|
55
|
+
if self.alpha == 0:
|
|
56
|
+
warnings.warn(
|
|
57
|
+
"With alpha=0, this algorithm does not converge "
|
|
58
|
+
"well. You are advised to use the LinearRegression "
|
|
59
|
+
"estimator",
|
|
60
|
+
stacklevel=2,
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
# check l1_ratio
|
|
64
|
+
if (
|
|
65
|
+
not isinstance(self.l1_ratio, numbers.Number)
|
|
66
|
+
or self.l1_ratio < 0
|
|
67
|
+
or self.l1_ratio > 1
|
|
68
|
+
):
|
|
69
|
+
raise ValueError(
|
|
70
|
+
"l1_ratio must be between 0 and 1; " f"got l1_ratio={self.l1_ratio}"
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
# check precompute
|
|
74
|
+
if isinstance(self.precompute, np.ndarray):
|
|
75
|
+
if check_input:
|
|
76
|
+
check_array(self.precompute, dtype=_fptype)
|
|
77
|
+
self.precompute = make2d(self.precompute)
|
|
78
|
+
else:
|
|
79
|
+
if self.precompute not in [False, True, "auto"]:
|
|
80
|
+
raise ValueError(
|
|
81
|
+
"precompute should be one of True, False, "
|
|
82
|
+
"'auto' or array-like. Got %r" % self.precompute
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
# check selection
|
|
86
|
+
if self.selection not in ["random", "cyclic"]:
|
|
87
|
+
raise ValueError("selection should be either random or cyclic.")
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def _daal4py_fit_enet(self, X, y_, check_input):
|
|
91
|
+
# appropriate checks
|
|
92
|
+
_daal4py_check(self, X, y_, check_input)
|
|
93
|
+
X = make2d(X)
|
|
94
|
+
y = make2d(y_)
|
|
95
|
+
_fptype = getFPType(X)
|
|
96
|
+
|
|
97
|
+
# only for dual_gap computation, it is not required for oneAPI
|
|
98
|
+
# Data Analytics Library
|
|
99
|
+
self._X = X
|
|
100
|
+
self.n_features_in_ = X.shape[1]
|
|
101
|
+
self._y = y
|
|
102
|
+
|
|
103
|
+
penalty_L1 = np.asarray(self.alpha * self.l1_ratio, dtype=X.dtype)
|
|
104
|
+
penalty_L2 = np.asarray(self.alpha * (1.0 - self.l1_ratio), dtype=X.dtype)
|
|
105
|
+
if penalty_L1.size != 1 or penalty_L2.size != 1:
|
|
106
|
+
raise ValueError("alpha or l1_ratio length is wrong")
|
|
107
|
+
penalty_L1 = penalty_L1.reshape((1, -1))
|
|
108
|
+
penalty_L2 = penalty_L2.reshape((1, -1))
|
|
109
|
+
|
|
110
|
+
# normalizing and centering
|
|
111
|
+
X_offset = np.zeros(X.shape[1], dtype=X.dtype)
|
|
112
|
+
X_scale = np.ones(X.shape[1], dtype=X.dtype)
|
|
113
|
+
if y.ndim == 1:
|
|
114
|
+
y_offset = X.dtype.type(0)
|
|
115
|
+
else:
|
|
116
|
+
y_offset = np.zeros(y.shape[1], dtype=X.dtype)
|
|
117
|
+
|
|
118
|
+
if sklearn_check_version("1.2"):
|
|
119
|
+
_normalize = False
|
|
120
|
+
else:
|
|
121
|
+
_normalize = self._normalize
|
|
122
|
+
if self.fit_intercept:
|
|
123
|
+
X_offset = np.average(X, axis=0)
|
|
124
|
+
if _normalize:
|
|
125
|
+
if self.copy_X:
|
|
126
|
+
X = np.copy(X) - X_offset
|
|
127
|
+
else:
|
|
128
|
+
X -= X_offset
|
|
129
|
+
X, X_scale = normalize(X, axis=0, copy=False, return_norm=True)
|
|
130
|
+
y_offset = np.average(y, axis=0)
|
|
131
|
+
y = y - y_offset
|
|
132
|
+
|
|
133
|
+
# only for compliance with Sklearn
|
|
134
|
+
if (
|
|
135
|
+
isinstance(self.precompute, np.ndarray)
|
|
136
|
+
and self.fit_intercept
|
|
137
|
+
and (
|
|
138
|
+
not np.allclose(X_offset, np.zeros(X.shape[1]))
|
|
139
|
+
or _normalize
|
|
140
|
+
and not np.allclose(X_scale, np.ones(X.shape[1]))
|
|
141
|
+
)
|
|
142
|
+
):
|
|
143
|
+
if sklearn_check_version("1.4"):
|
|
144
|
+
warnings.warn(
|
|
145
|
+
"Gram matrix was provided but X was centered"
|
|
146
|
+
" to fit intercept: recomputing Gram matrix.",
|
|
147
|
+
UserWarning,
|
|
148
|
+
)
|
|
149
|
+
else:
|
|
150
|
+
warnings.warn(
|
|
151
|
+
"Gram matrix was provided but X was centered"
|
|
152
|
+
" to fit intercept, "
|
|
153
|
+
"or X was normalized : recomputing Gram matrix.",
|
|
154
|
+
UserWarning,
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
mse_alg = daal4py.optimization_solver_mse(
|
|
158
|
+
numberOfTerms=X.shape[0], fptype=_fptype, method="defaultDense"
|
|
159
|
+
)
|
|
160
|
+
mse_alg.setup(X, y, None)
|
|
161
|
+
|
|
162
|
+
cd_solver = daal4py.optimization_solver_coordinate_descent(
|
|
163
|
+
function=mse_alg,
|
|
164
|
+
fptype=_fptype,
|
|
165
|
+
method="defaultDense",
|
|
166
|
+
selection=self.selection,
|
|
167
|
+
seed=0 if self.random_state is None else self.random_state,
|
|
168
|
+
nIterations=self.max_iter,
|
|
169
|
+
positive=self.positive,
|
|
170
|
+
accuracyThreshold=self.tol,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
# set warm_start
|
|
174
|
+
if self.warm_start and hasattr(self, "coef_") and isinstance(self.coef_, np.ndarray):
|
|
175
|
+
n_rows = y.shape[1]
|
|
176
|
+
n_cols = X.shape[1] + 1
|
|
177
|
+
inputArgument = np.zeros((n_rows, n_cols), dtype=_fptype)
|
|
178
|
+
for i in range(n_rows):
|
|
179
|
+
inputArgument[i][0] = self.intercept_ if (n_rows == 1) else self.intercept_[i]
|
|
180
|
+
inputArgument[i][1:] = self.coef_[:] if (n_rows == 1) else self.coef_[i, :]
|
|
181
|
+
cd_solver.setup(inputArgument)
|
|
182
|
+
doUse_condition = self.copy_X is False or (
|
|
183
|
+
self.fit_intercept and _normalize and self.copy_X
|
|
184
|
+
)
|
|
185
|
+
elastic_net_alg = daal4py.elastic_net_training(
|
|
186
|
+
fptype=_fptype,
|
|
187
|
+
method="defaultDense",
|
|
188
|
+
interceptFlag=(self.fit_intercept is True),
|
|
189
|
+
dataUseInComputation="doUse" if doUse_condition else "doNotUse",
|
|
190
|
+
penaltyL1=penalty_L1,
|
|
191
|
+
penaltyL2=penalty_L2,
|
|
192
|
+
optimizationSolver=cd_solver,
|
|
193
|
+
)
|
|
194
|
+
try:
|
|
195
|
+
if isinstance(self.precompute, np.ndarray):
|
|
196
|
+
elastic_net_res = elastic_net_alg.compute(
|
|
197
|
+
data=X, dependentVariables=y, gramMatrix=self.precompute
|
|
198
|
+
)
|
|
199
|
+
else:
|
|
200
|
+
elastic_net_res = elastic_net_alg.compute(data=X, dependentVariables=y)
|
|
201
|
+
except RuntimeError:
|
|
202
|
+
return None
|
|
203
|
+
|
|
204
|
+
# set coef_ and intersept_ results
|
|
205
|
+
elastic_net_model = elastic_net_res.model
|
|
206
|
+
self.daal_model_ = elastic_net_model
|
|
207
|
+
|
|
208
|
+
# update coefficients if normalizing and centering
|
|
209
|
+
if self.fit_intercept and _normalize:
|
|
210
|
+
elastic_net_model.Beta[:, 1:] = elastic_net_model.Beta[:, 1:] / X_scale
|
|
211
|
+
elastic_net_model.Beta[:, 0] = (
|
|
212
|
+
y_offset - np.dot(X_offset, elastic_net_model.Beta[:, 1:].T)
|
|
213
|
+
).T
|
|
214
|
+
|
|
215
|
+
coefs = elastic_net_model.Beta
|
|
216
|
+
|
|
217
|
+
self.intercept_ = coefs[:, 0].copy(order="C")
|
|
218
|
+
self.coef_ = coefs[:, 1:].copy(order="C")
|
|
219
|
+
|
|
220
|
+
# only for compliance with Sklearn
|
|
221
|
+
if y.shape[1] == 1:
|
|
222
|
+
self.coef_ = np.ravel(self.coef_)
|
|
223
|
+
self.intercept_ = np.ravel(self.intercept_)
|
|
224
|
+
if self.intercept_.shape[0] == 1:
|
|
225
|
+
self.intercept_ = self.intercept_[0]
|
|
226
|
+
|
|
227
|
+
# set n_iter_
|
|
228
|
+
n_iter = cd_solver.__get_result__().nIterations[0][0]
|
|
229
|
+
if y.shape[1] == 1:
|
|
230
|
+
self.n_iter_ = n_iter
|
|
231
|
+
else:
|
|
232
|
+
self.n_iter_ = np.full(y.shape[1], n_iter)
|
|
233
|
+
|
|
234
|
+
# only for compliance with Sklearn
|
|
235
|
+
if self.max_iter == n_iter + 1:
|
|
236
|
+
warnings.warn(
|
|
237
|
+
"Objective did not converge. You might want to "
|
|
238
|
+
"increase the number of iterations.",
|
|
239
|
+
ConvergenceWarning,
|
|
240
|
+
)
|
|
241
|
+
|
|
242
|
+
return self
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
def _daal4py_predict_enet(self, X):
|
|
246
|
+
X = make2d(X)
|
|
247
|
+
_fptype = getFPType(self.coef_)
|
|
248
|
+
|
|
249
|
+
elastic_net_palg = daal4py.elastic_net_prediction(
|
|
250
|
+
fptype=_fptype, method="defaultDense"
|
|
251
|
+
)
|
|
252
|
+
if self.n_features_in_ != X.shape[1]:
|
|
253
|
+
raise ValueError(
|
|
254
|
+
f"X has {X.shape[1]} features, "
|
|
255
|
+
f"but ElasticNet is expecting "
|
|
256
|
+
f"{self.n_features_in_} features as input"
|
|
257
|
+
)
|
|
258
|
+
elastic_net_res = elastic_net_palg.compute(X, self.daal_model_)
|
|
259
|
+
|
|
260
|
+
res = elastic_net_res.prediction
|
|
261
|
+
|
|
262
|
+
if res.shape[1] == 1 and self.coef_.ndim == 1:
|
|
263
|
+
res = np.ravel(res)
|
|
264
|
+
return res
|
|
265
|
+
|
|
266
|
+
|
|
267
|
+
def _daal4py_fit_lasso(self, X, y_, check_input):
|
|
268
|
+
# appropriate checks
|
|
269
|
+
_daal4py_check(self, X, y_, check_input)
|
|
270
|
+
X = make2d(X)
|
|
271
|
+
y = make2d(y_)
|
|
272
|
+
_fptype = getFPType(X)
|
|
273
|
+
|
|
274
|
+
# only for dual_gap computation, it is not required for oneAPI
|
|
275
|
+
# Data Analytics Library
|
|
276
|
+
self._X = X
|
|
277
|
+
self.n_features_in_ = X.shape[1]
|
|
278
|
+
self._y = y
|
|
279
|
+
|
|
280
|
+
# normalizing and centering
|
|
281
|
+
X_offset = np.zeros(X.shape[1], dtype=X.dtype)
|
|
282
|
+
X_scale = np.ones(X.shape[1], dtype=X.dtype)
|
|
283
|
+
if y.ndim == 1:
|
|
284
|
+
y_offset = X.dtype.type(0)
|
|
285
|
+
else:
|
|
286
|
+
y_offset = np.zeros(y.shape[1], dtype=X.dtype)
|
|
287
|
+
|
|
288
|
+
if sklearn_check_version("1.2"):
|
|
289
|
+
_normalize = False
|
|
290
|
+
else:
|
|
291
|
+
_normalize = self._normalize
|
|
292
|
+
if self.fit_intercept:
|
|
293
|
+
X_offset = np.average(X, axis=0)
|
|
294
|
+
if _normalize:
|
|
295
|
+
if self.copy_X:
|
|
296
|
+
X = np.copy(X) - X_offset
|
|
297
|
+
else:
|
|
298
|
+
X -= X_offset
|
|
299
|
+
X, X_scale = normalize(X, axis=0, copy=False, return_norm=True)
|
|
300
|
+
y_offset = np.average(y, axis=0)
|
|
301
|
+
y = y - y_offset
|
|
302
|
+
|
|
303
|
+
# only for compliance with Sklearn
|
|
304
|
+
if (
|
|
305
|
+
isinstance(self.precompute, np.ndarray)
|
|
306
|
+
and self.fit_intercept
|
|
307
|
+
and (
|
|
308
|
+
not np.allclose(X_offset, np.zeros(X.shape[1]))
|
|
309
|
+
or _normalize
|
|
310
|
+
and not np.allclose(X_scale, np.ones(X.shape[1]))
|
|
311
|
+
)
|
|
312
|
+
):
|
|
313
|
+
warnings.warn(
|
|
314
|
+
"Gram matrix was provided but X was centered"
|
|
315
|
+
" to fit intercept, "
|
|
316
|
+
"or X was normalized : recomputing Gram matrix.",
|
|
317
|
+
UserWarning,
|
|
318
|
+
)
|
|
319
|
+
|
|
320
|
+
mse_alg = daal4py.optimization_solver_mse(
|
|
321
|
+
numberOfTerms=X.shape[0], fptype=_fptype, method="defaultDense"
|
|
322
|
+
)
|
|
323
|
+
mse_alg.setup(X, y, None)
|
|
324
|
+
|
|
325
|
+
cd_solver = daal4py.optimization_solver_coordinate_descent(
|
|
326
|
+
function=mse_alg,
|
|
327
|
+
fptype=_fptype,
|
|
328
|
+
method="defaultDense",
|
|
329
|
+
selection=self.selection,
|
|
330
|
+
seed=0 if self.random_state is None else self.random_state,
|
|
331
|
+
nIterations=self.max_iter,
|
|
332
|
+
positive=self.positive,
|
|
333
|
+
accuracyThreshold=self.tol,
|
|
334
|
+
)
|
|
335
|
+
|
|
336
|
+
# set warm_start
|
|
337
|
+
if self.warm_start and hasattr(self, "coef_") and isinstance(self.coef_, np.ndarray):
|
|
338
|
+
n_rows = y.shape[1]
|
|
339
|
+
n_cols = X.shape[1] + 1
|
|
340
|
+
inputArgument = np.zeros((n_rows, n_cols), dtype=_fptype)
|
|
341
|
+
for i in range(n_rows):
|
|
342
|
+
inputArgument[i][0] = self.intercept_ if (n_rows == 1) else self.intercept_[i]
|
|
343
|
+
inputArgument[i][1:] = (
|
|
344
|
+
self.coef_[:].copy(order="C")
|
|
345
|
+
if (n_rows == 1)
|
|
346
|
+
else self.coef_[i, :].copy(order="C")
|
|
347
|
+
)
|
|
348
|
+
cd_solver.setup(inputArgument)
|
|
349
|
+
doUse_condition = self.copy_X is False or (
|
|
350
|
+
self.fit_intercept and _normalize and self.copy_X
|
|
351
|
+
)
|
|
352
|
+
lasso_alg = daal4py.lasso_regression_training(
|
|
353
|
+
fptype=_fptype,
|
|
354
|
+
method="defaultDense",
|
|
355
|
+
interceptFlag=(self.fit_intercept is True),
|
|
356
|
+
dataUseInComputation="doUse" if doUse_condition else "doNotUse",
|
|
357
|
+
lassoParameters=np.asarray(self.alpha, dtype=X.dtype).reshape((1, -1)),
|
|
358
|
+
optimizationSolver=cd_solver,
|
|
359
|
+
)
|
|
360
|
+
try:
|
|
361
|
+
if isinstance(self.precompute, np.ndarray):
|
|
362
|
+
lasso_res = lasso_alg.compute(
|
|
363
|
+
data=X, dependentVariables=y, gramMatrix=self.precompute
|
|
364
|
+
)
|
|
365
|
+
else:
|
|
366
|
+
lasso_res = lasso_alg.compute(data=X, dependentVariables=y)
|
|
367
|
+
except RuntimeError:
|
|
368
|
+
return None
|
|
369
|
+
|
|
370
|
+
# set coef_ and intersept_ results
|
|
371
|
+
lasso_model = lasso_res.model
|
|
372
|
+
self.daal_model_ = lasso_model
|
|
373
|
+
|
|
374
|
+
# update coefficients if normalizing and centering
|
|
375
|
+
if self.fit_intercept and _normalize:
|
|
376
|
+
lasso_model.Beta[:, 1:] = lasso_model.Beta[:, 1:] / X_scale
|
|
377
|
+
lasso_model.Beta[:, 0] = (
|
|
378
|
+
y_offset - np.dot(X_offset, lasso_model.Beta[:, 1:].T)
|
|
379
|
+
).T
|
|
380
|
+
|
|
381
|
+
coefs = lasso_model.Beta
|
|
382
|
+
|
|
383
|
+
self.intercept_ = coefs[:, 0].copy(order="C")
|
|
384
|
+
self.coef_ = coefs[:, 1:].copy(order="C")
|
|
385
|
+
|
|
386
|
+
# only for compliance with Sklearn
|
|
387
|
+
if y.shape[1] == 1:
|
|
388
|
+
self.coef_ = np.ravel(self.coef_)
|
|
389
|
+
self.intercept_ = np.ravel(self.intercept_)
|
|
390
|
+
if self.intercept_.shape[0] == 1:
|
|
391
|
+
self.intercept_ = self.intercept_[0]
|
|
392
|
+
|
|
393
|
+
# set n_iter_
|
|
394
|
+
n_iter = cd_solver.__get_result__().nIterations[0][0]
|
|
395
|
+
if y.shape[1] == 1:
|
|
396
|
+
self.n_iter_ = n_iter
|
|
397
|
+
else:
|
|
398
|
+
self.n_iter_ = np.full(y.shape[1], n_iter)
|
|
399
|
+
|
|
400
|
+
# only for compliance with Sklearn
|
|
401
|
+
if self.max_iter == n_iter + 1:
|
|
402
|
+
warnings.warn(
|
|
403
|
+
"Objective did not converge. You might want to "
|
|
404
|
+
"increase the number of iterations.",
|
|
405
|
+
ConvergenceWarning,
|
|
406
|
+
)
|
|
407
|
+
|
|
408
|
+
return self
|
|
409
|
+
|
|
410
|
+
|
|
411
|
+
def _daal4py_predict_lasso(self, X):
|
|
412
|
+
X = make2d(X)
|
|
413
|
+
_fptype = getFPType(self.coef_)
|
|
414
|
+
|
|
415
|
+
lasso_palg = daal4py.lasso_regression_prediction(
|
|
416
|
+
fptype=_fptype, method="defaultDense"
|
|
417
|
+
)
|
|
418
|
+
if self.n_features_in_ != X.shape[1]:
|
|
419
|
+
raise ValueError(
|
|
420
|
+
f"X has {X.shape[1]} features, "
|
|
421
|
+
f"but Lasso is expecting "
|
|
422
|
+
f"{self.n_features_in_} features as input"
|
|
423
|
+
)
|
|
424
|
+
lasso_res = lasso_palg.compute(X, self.daal_model_)
|
|
425
|
+
|
|
426
|
+
res = lasso_res.prediction
|
|
427
|
+
|
|
428
|
+
if res.shape[1] == 1 and self.coef_.ndim == 1:
|
|
429
|
+
res = np.ravel(res)
|
|
430
|
+
return res
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
def _fit(self, _X, _y, sample_weight=None, check_input=True):
|
|
434
|
+
check_feature_names(self, _X, reset=True)
|
|
435
|
+
if sklearn_check_version("1.2"):
|
|
436
|
+
self._validate_params()
|
|
437
|
+
elif sklearn_check_version("1.1"):
|
|
438
|
+
check_scalar(
|
|
439
|
+
self.alpha,
|
|
440
|
+
"alpha",
|
|
441
|
+
target_type=numbers.Real,
|
|
442
|
+
min_val=0.0,
|
|
443
|
+
)
|
|
444
|
+
if self.alpha == 0:
|
|
445
|
+
warnings.warn(
|
|
446
|
+
"With alpha=0, this algorithm does not converge "
|
|
447
|
+
"well. You are advised to use the LinearRegression "
|
|
448
|
+
"estimator",
|
|
449
|
+
stacklevel=2,
|
|
450
|
+
)
|
|
451
|
+
if isinstance(self.precompute, str):
|
|
452
|
+
raise ValueError(
|
|
453
|
+
"precompute should be one of True, False or array-like. Got %r"
|
|
454
|
+
% self.precompute
|
|
455
|
+
)
|
|
456
|
+
check_scalar(
|
|
457
|
+
self.l1_ratio,
|
|
458
|
+
"l1_ratio",
|
|
459
|
+
target_type=numbers.Real,
|
|
460
|
+
min_val=0.0,
|
|
461
|
+
max_val=1.0,
|
|
462
|
+
)
|
|
463
|
+
if self.max_iter is not None:
|
|
464
|
+
check_scalar(
|
|
465
|
+
self.max_iter, "max_iter", target_type=numbers.Integral, min_val=1
|
|
466
|
+
)
|
|
467
|
+
check_scalar(self.tol, "tol", target_type=numbers.Real, min_val=0.0)
|
|
468
|
+
# check X and y
|
|
469
|
+
if check_input:
|
|
470
|
+
X, y = check_X_y(
|
|
471
|
+
_X,
|
|
472
|
+
_y,
|
|
473
|
+
copy=False,
|
|
474
|
+
accept_sparse="csc",
|
|
475
|
+
dtype=[np.float64, np.float32],
|
|
476
|
+
multi_output=True,
|
|
477
|
+
y_numeric=True,
|
|
478
|
+
)
|
|
479
|
+
y = check_array(_y, copy=False, dtype=X.dtype.type, ensure_2d=False)
|
|
480
|
+
else:
|
|
481
|
+
X, y = _X, _y
|
|
482
|
+
|
|
483
|
+
if not sp.issparse(X):
|
|
484
|
+
self.fit_shape_good_for_daal_ = (
|
|
485
|
+
True if X.ndim <= 1 else True if X.shape[0] >= X.shape[1] else False
|
|
486
|
+
)
|
|
487
|
+
else:
|
|
488
|
+
self.fit_shape_good_for_daal_ = False
|
|
489
|
+
|
|
490
|
+
class_name = self.__class__.__name__
|
|
491
|
+
class_inst = ElasticNet if class_name == "ElasticNet" else Lasso
|
|
492
|
+
|
|
493
|
+
_function_name = f"sklearn.linear_model.{class_name}.fit"
|
|
494
|
+
_patching_status = PatchingConditionsChain(_function_name)
|
|
495
|
+
_dal_ready = _patching_status.and_conditions(
|
|
496
|
+
[
|
|
497
|
+
(not sp.issparse(X), "X is sparse. Sparse input is not supported."),
|
|
498
|
+
(
|
|
499
|
+
self.fit_shape_good_for_daal_,
|
|
500
|
+
"The shape of X does not satisfy oneDAL requirements: "
|
|
501
|
+
"number of features > number of samples.",
|
|
502
|
+
),
|
|
503
|
+
(
|
|
504
|
+
X.dtype == np.float64 or X.dtype == np.float32,
|
|
505
|
+
f"'{X.dtype}' X data type is not supported. "
|
|
506
|
+
"Only np.float32 and np.float64 are supported.",
|
|
507
|
+
),
|
|
508
|
+
(sample_weight is None, "Sample weights are not supported."),
|
|
509
|
+
]
|
|
510
|
+
)
|
|
511
|
+
_patching_status.write_log()
|
|
512
|
+
|
|
513
|
+
if not _dal_ready:
|
|
514
|
+
if hasattr(self, "daal_model_"):
|
|
515
|
+
del self.daal_model_
|
|
516
|
+
res_new = super(class_inst, self).fit(
|
|
517
|
+
X, y, sample_weight=sample_weight, check_input=check_input
|
|
518
|
+
)
|
|
519
|
+
self._gap = res_new.dual_gap_
|
|
520
|
+
return res_new
|
|
521
|
+
self.n_iter_ = None
|
|
522
|
+
self._gap = None
|
|
523
|
+
|
|
524
|
+
if not check_input:
|
|
525
|
+
# only for compliance with Sklearn,
|
|
526
|
+
# this assert is not required for oneAPI Data
|
|
527
|
+
# Analytics Library
|
|
528
|
+
print(type(X), X.flags["F_CONTIGUOUS"])
|
|
529
|
+
if isinstance(X, np.ndarray) and X.flags["F_CONTIGUOUS"] is False:
|
|
530
|
+
# print(X.flags)
|
|
531
|
+
raise ValueError("ndarray is not Fortran contiguous")
|
|
532
|
+
|
|
533
|
+
if not sklearn_check_version("1.2"):
|
|
534
|
+
self._normalize = _deprecate_normalize(
|
|
535
|
+
self.normalize, default=False, estimator_name=class_name
|
|
536
|
+
)
|
|
537
|
+
|
|
538
|
+
# only for pass tests
|
|
539
|
+
# "check_estimators_fit_returns_self(readonly_memmap=True) and
|
|
540
|
+
# check_regressors_train(readonly_memmap=True)
|
|
541
|
+
if not X.flags.writeable:
|
|
542
|
+
X = np.copy(X)
|
|
543
|
+
if not y.flags.writeable:
|
|
544
|
+
y = np.copy(y)
|
|
545
|
+
|
|
546
|
+
if class_name == "ElasticNet":
|
|
547
|
+
res = _daal4py_fit_enet(self, X, y, check_input=check_input)
|
|
548
|
+
else:
|
|
549
|
+
res = _daal4py_fit_lasso(self, X, y, check_input=check_input)
|
|
550
|
+
if res is None:
|
|
551
|
+
if hasattr(self, "daal_model_"):
|
|
552
|
+
del self.daal_model_
|
|
553
|
+
logging.info(_function_name + ": " + get_patch_message("sklearn_after_daal"))
|
|
554
|
+
res_new = super(class_inst, self).fit(
|
|
555
|
+
_X, _y, sample_weight=sample_weight, check_input=check_input
|
|
556
|
+
)
|
|
557
|
+
self._gap = res_new.dual_gap_
|
|
558
|
+
return res_new
|
|
559
|
+
return res
|
|
560
|
+
|
|
561
|
+
|
|
562
|
+
def _dual_gap(self):
|
|
563
|
+
if self._gap is None:
|
|
564
|
+
l1_reg = self.alpha * self.l1_ratio * self._X.shape[0]
|
|
565
|
+
l2_reg = self.alpha * (1.0 - self.l1_ratio) * self._X.shape[0]
|
|
566
|
+
n_targets = self._y.shape[1]
|
|
567
|
+
|
|
568
|
+
if n_targets == 1:
|
|
569
|
+
self._gap = self.tol + 1.0
|
|
570
|
+
X_offset = np.average(self._X, axis=0)
|
|
571
|
+
y_offset = np.average(self._y, axis=0)
|
|
572
|
+
coef = np.reshape(self.coef_, (self.coef_.shape[0], 1))
|
|
573
|
+
R = (self._y - y_offset) - np.dot((self._X - X_offset), coef)
|
|
574
|
+
XtA = np.dot((self._X - X_offset).T, R) - l2_reg * coef
|
|
575
|
+
R_norm2 = np.dot(R.T, R)
|
|
576
|
+
coef_norm2 = np.dot(self.coef_, self.coef_)
|
|
577
|
+
dual_norm_XtA = np.max(XtA) if self.positive else np.max(np.abs(XtA))
|
|
578
|
+
if dual_norm_XtA > l1_reg:
|
|
579
|
+
const = l1_reg / dual_norm_XtA
|
|
580
|
+
A_norm2 = R_norm2 * (const**2)
|
|
581
|
+
self._gap = 0.5 * (R_norm2 + A_norm2)
|
|
582
|
+
else:
|
|
583
|
+
const = 1.0
|
|
584
|
+
self._gap = R_norm2
|
|
585
|
+
l1_norm = np.sum(np.abs(self.coef_))
|
|
586
|
+
tmp = l1_reg * l1_norm
|
|
587
|
+
tmp -= const * np.dot(R.T, (self._y - y_offset))
|
|
588
|
+
tmp += 0.5 * l2_reg * (1 + const**2) * coef_norm2
|
|
589
|
+
self._gap += tmp
|
|
590
|
+
self._gap = self._gap[0][0]
|
|
591
|
+
else:
|
|
592
|
+
self._gap = np.full(n_targets, self.tol + 1.0)
|
|
593
|
+
X_offset = np.average(self._X, axis=0)
|
|
594
|
+
y_offset = np.average(self._y, axis=0)
|
|
595
|
+
for k in range(n_targets):
|
|
596
|
+
R = (self._y[:, k] - y_offset[k]) - np.dot(
|
|
597
|
+
(self._X - X_offset), self.coef_[k, :].T
|
|
598
|
+
)
|
|
599
|
+
XtA = np.dot((self._X - X_offset).T, R) - l2_reg * self.coef_[k, :].T
|
|
600
|
+
R_norm2 = np.dot(R.T, R)
|
|
601
|
+
coef_norm2 = np.dot(self.coef_[k, :], self.coef_[k, :].T)
|
|
602
|
+
dual_norm_XtA = np.max(XtA) if self.positive else np.max(np.abs(XtA))
|
|
603
|
+
if dual_norm_XtA > l1_reg:
|
|
604
|
+
const = l1_reg / dual_norm_XtA
|
|
605
|
+
A_norm2 = R_norm2 * (const**2)
|
|
606
|
+
self._gap[k] = 0.5 * (R_norm2 + A_norm2)
|
|
607
|
+
else:
|
|
608
|
+
const = 1.0
|
|
609
|
+
self._gap[k] = R_norm2
|
|
610
|
+
l1_norm = np.sum(np.abs(self.coef_[k, :]))
|
|
611
|
+
tmp = l1_reg * l1_norm
|
|
612
|
+
tmp -= const * np.dot(R.T, (self._y[:, k] - y_offset[k]))
|
|
613
|
+
tmp += 0.5 * l2_reg * (1 + const**2) * coef_norm2
|
|
614
|
+
self._gap[k] += tmp
|
|
615
|
+
return self._gap
|
|
616
|
+
|
|
617
|
+
|
|
618
|
+
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
619
|
+
class ElasticNet(ElasticNet_original):
|
|
620
|
+
__doc__ = ElasticNet_original.__doc__
|
|
621
|
+
|
|
622
|
+
if sklearn_check_version("1.2"):
|
|
623
|
+
_parameter_constraints: dict = {**ElasticNet_original._parameter_constraints}
|
|
624
|
+
|
|
625
|
+
def __init__(
|
|
626
|
+
self,
|
|
627
|
+
alpha=1.0,
|
|
628
|
+
l1_ratio=0.5,
|
|
629
|
+
fit_intercept=True,
|
|
630
|
+
precompute=False,
|
|
631
|
+
max_iter=1000,
|
|
632
|
+
copy_X=True,
|
|
633
|
+
tol=1e-4,
|
|
634
|
+
warm_start=False,
|
|
635
|
+
positive=False,
|
|
636
|
+
random_state=None,
|
|
637
|
+
selection="cyclic",
|
|
638
|
+
):
|
|
639
|
+
super(ElasticNet, self).__init__(
|
|
640
|
+
alpha=alpha,
|
|
641
|
+
l1_ratio=l1_ratio,
|
|
642
|
+
fit_intercept=fit_intercept,
|
|
643
|
+
precompute=precompute,
|
|
644
|
+
max_iter=max_iter,
|
|
645
|
+
copy_X=copy_X,
|
|
646
|
+
tol=tol,
|
|
647
|
+
warm_start=warm_start,
|
|
648
|
+
positive=positive,
|
|
649
|
+
random_state=random_state,
|
|
650
|
+
selection=selection,
|
|
651
|
+
)
|
|
652
|
+
|
|
653
|
+
else:
|
|
654
|
+
|
|
655
|
+
def __init__(
|
|
656
|
+
self,
|
|
657
|
+
alpha=1.0,
|
|
658
|
+
l1_ratio=0.5,
|
|
659
|
+
fit_intercept=True,
|
|
660
|
+
normalize="deprecated",
|
|
661
|
+
precompute=False,
|
|
662
|
+
max_iter=1000,
|
|
663
|
+
copy_X=True,
|
|
664
|
+
tol=1e-4,
|
|
665
|
+
warm_start=False,
|
|
666
|
+
positive=False,
|
|
667
|
+
random_state=None,
|
|
668
|
+
selection="cyclic",
|
|
669
|
+
):
|
|
670
|
+
super(ElasticNet, self).__init__(
|
|
671
|
+
alpha=alpha,
|
|
672
|
+
l1_ratio=l1_ratio,
|
|
673
|
+
fit_intercept=fit_intercept,
|
|
674
|
+
normalize=normalize,
|
|
675
|
+
precompute=precompute,
|
|
676
|
+
max_iter=max_iter,
|
|
677
|
+
copy_X=copy_X,
|
|
678
|
+
tol=tol,
|
|
679
|
+
warm_start=warm_start,
|
|
680
|
+
positive=positive,
|
|
681
|
+
random_state=random_state,
|
|
682
|
+
selection=selection,
|
|
683
|
+
)
|
|
684
|
+
|
|
685
|
+
def fit(self, X, y, sample_weight=None, check_input=True):
|
|
686
|
+
return _fit(self, X, y, sample_weight=sample_weight, check_input=check_input)
|
|
687
|
+
|
|
688
|
+
def predict(self, X):
|
|
689
|
+
check_feature_names(self, X, reset=False)
|
|
690
|
+
|
|
691
|
+
_X = check_array(
|
|
692
|
+
X, accept_sparse=["csr", "csc", "coo"], dtype=[np.float64, np.float32]
|
|
693
|
+
)
|
|
694
|
+
|
|
695
|
+
_patching_status = PatchingConditionsChain(
|
|
696
|
+
"sklearn.linear_model.ElasticNet.predict"
|
|
697
|
+
)
|
|
698
|
+
_dal_ready = _patching_status.and_conditions(
|
|
699
|
+
[
|
|
700
|
+
(hasattr(self, "daal_model_"), "oneDAL model was not trained."),
|
|
701
|
+
(not sp.issparse(_X), "X is sparse. Sparse input is not supported."),
|
|
702
|
+
]
|
|
703
|
+
)
|
|
704
|
+
_patching_status.write_log()
|
|
705
|
+
|
|
706
|
+
if not _dal_ready:
|
|
707
|
+
return self._decision_function(X)
|
|
708
|
+
return _daal4py_predict_enet(self, _X)
|
|
709
|
+
|
|
710
|
+
@property
|
|
711
|
+
def dual_gap_(self):
|
|
712
|
+
return _dual_gap(self)
|
|
713
|
+
|
|
714
|
+
@dual_gap_.setter
|
|
715
|
+
def dual_gap_(self, value):
|
|
716
|
+
self._gap = value
|
|
717
|
+
|
|
718
|
+
@dual_gap_.deleter
|
|
719
|
+
def dual_gap_(self):
|
|
720
|
+
self._gap = None
|
|
721
|
+
|
|
722
|
+
fit.__doc__ = ElasticNet_original.fit.__doc__
|
|
723
|
+
predict.__doc__ = ElasticNet_original.predict.__doc__
|
|
724
|
+
|
|
725
|
+
|
|
726
|
+
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
727
|
+
class Lasso(Lasso_original):
|
|
728
|
+
__doc__ = Lasso_original.__doc__
|
|
729
|
+
|
|
730
|
+
if sklearn_check_version("1.2"):
|
|
731
|
+
_parameter_constraints: dict = {**Lasso_original._parameter_constraints}
|
|
732
|
+
|
|
733
|
+
def __init__(
|
|
734
|
+
self,
|
|
735
|
+
alpha=1.0,
|
|
736
|
+
fit_intercept=True,
|
|
737
|
+
precompute=False,
|
|
738
|
+
copy_X=True,
|
|
739
|
+
max_iter=1000,
|
|
740
|
+
tol=1e-4,
|
|
741
|
+
warm_start=False,
|
|
742
|
+
positive=False,
|
|
743
|
+
random_state=None,
|
|
744
|
+
selection="cyclic",
|
|
745
|
+
):
|
|
746
|
+
self.l1_ratio = 1.0
|
|
747
|
+
super().__init__(
|
|
748
|
+
alpha=alpha,
|
|
749
|
+
fit_intercept=fit_intercept,
|
|
750
|
+
precompute=precompute,
|
|
751
|
+
copy_X=copy_X,
|
|
752
|
+
max_iter=max_iter,
|
|
753
|
+
tol=tol,
|
|
754
|
+
warm_start=warm_start,
|
|
755
|
+
positive=positive,
|
|
756
|
+
random_state=random_state,
|
|
757
|
+
selection=selection,
|
|
758
|
+
)
|
|
759
|
+
|
|
760
|
+
else:
|
|
761
|
+
|
|
762
|
+
def __init__(
|
|
763
|
+
self,
|
|
764
|
+
alpha=1.0,
|
|
765
|
+
fit_intercept=True,
|
|
766
|
+
normalize="deprecated",
|
|
767
|
+
precompute=False,
|
|
768
|
+
copy_X=True,
|
|
769
|
+
max_iter=1000,
|
|
770
|
+
tol=1e-4,
|
|
771
|
+
warm_start=False,
|
|
772
|
+
positive=False,
|
|
773
|
+
random_state=None,
|
|
774
|
+
selection="cyclic",
|
|
775
|
+
):
|
|
776
|
+
self.l1_ratio = 1.0
|
|
777
|
+
super().__init__(
|
|
778
|
+
alpha=alpha,
|
|
779
|
+
fit_intercept=fit_intercept,
|
|
780
|
+
normalize=normalize,
|
|
781
|
+
precompute=precompute,
|
|
782
|
+
copy_X=copy_X,
|
|
783
|
+
max_iter=max_iter,
|
|
784
|
+
tol=tol,
|
|
785
|
+
warm_start=warm_start,
|
|
786
|
+
positive=positive,
|
|
787
|
+
random_state=random_state,
|
|
788
|
+
selection=selection,
|
|
789
|
+
)
|
|
790
|
+
|
|
791
|
+
def fit(self, X, y, sample_weight=None, check_input=True):
|
|
792
|
+
return _fit(self, X, y, sample_weight, check_input)
|
|
793
|
+
|
|
794
|
+
def predict(self, X):
|
|
795
|
+
check_feature_names(self, X, reset=False)
|
|
796
|
+
_X = check_array(
|
|
797
|
+
X, accept_sparse=["csr", "csc", "coo"], dtype=[np.float64, np.float32]
|
|
798
|
+
)
|
|
799
|
+
|
|
800
|
+
_patching_status = PatchingConditionsChain("sklearn.linear_model.Lasso.predict")
|
|
801
|
+
_dal_ready = _patching_status.and_conditions(
|
|
802
|
+
[
|
|
803
|
+
(hasattr(self, "daal_model_"), "oneDAL model was not trained."),
|
|
804
|
+
(not sp.issparse(_X), "X is sparse. Sparse input is not supported."),
|
|
805
|
+
]
|
|
806
|
+
)
|
|
807
|
+
_patching_status.write_log()
|
|
808
|
+
|
|
809
|
+
if not _dal_ready:
|
|
810
|
+
return self._decision_function(X)
|
|
811
|
+
return _daal4py_predict_lasso(self, _X)
|
|
812
|
+
|
|
813
|
+
@property
|
|
814
|
+
def dual_gap_(self):
|
|
815
|
+
return _dual_gap(self)
|
|
816
|
+
|
|
817
|
+
@dual_gap_.setter
|
|
818
|
+
def dual_gap_(self, value):
|
|
819
|
+
self._gap = value
|
|
820
|
+
|
|
821
|
+
@dual_gap_.deleter
|
|
822
|
+
def dual_gap_(self):
|
|
823
|
+
self._gap = None
|
|
824
|
+
|
|
825
|
+
fit.__doc__ = Lasso_original.fit.__doc__
|
|
826
|
+
predict.__doc__ = Lasso_original.predict.__doc__
|